1
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera I, Corzo L, Naidoo V. Therapeutic Options in Alzheimer's Disease: From Classic Acetylcholinesterase Inhibitors to Multi-Target Drugs with Pleiotropic Activity. Life (Basel) 2024; 14:1555. [PMID: 39768263 PMCID: PMC11678002 DOI: 10.3390/life14121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease (AD) is a complex/multifactorial brain disorder involving hundreds of defective genes, epigenetic aberrations, cerebrovascular alterations, and environmental risk factors. The onset of the neurodegenerative process is triggered decades before the first symptoms appear, probably due to a combination of genomic and epigenetic phenomena. Therefore, the primary objective of any effective treatment is to intercept the disease process in its presymptomatic phases. Since the approval of acetylcholinesterase inhibitors (Tacrine, Donepezil, Rivastigmine, Galantamine) and Memantine, between 1993 and 2003, no new drug was approved by the FDA until the advent of immunotherapy with Aducanumab in 2021 and Lecanemab in 2023. Over the past decade, more than 10,000 new compounds with potential action on some pathogenic components of AD have been tested. The limitations of these anti-AD treatments have stimulated the search for multi-target (MT) drugs. In recent years, more than 1000 drugs with potential MT function have been studied in AD models. MT drugs aim to address the complex and multifactorial nature of the disease. This approach has the potential to offer more comprehensive benefits than single-target therapies, which may be limited in their effectiveness due to the intricate pathology of AD. A strategy still unexplored is the combination of epigenetic drugs with MT agents. Another option could be biotechnological products with pleiotropic action, among which nosustrophine-like compounds could represent an attractive, although not definitive, example.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, 15165 Corunna, Spain; (O.M.-I.); (N.C.); (I.C.); (L.C.); (V.N.)
| | | | | | | | | | | |
Collapse
|
2
|
Naskar R, Ghosh A, Bhattacharya R, Chakraborty S. A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology. Neurochem Int 2024; 180:105859. [PMID: 39265701 DOI: 10.1016/j.neuint.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make Caenorhabditis elegans one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. elegans as a model organism to study the neuroprotective efficacy of flavonoids and natural products.
Collapse
Affiliation(s)
- Roumi Naskar
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Anirrban Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| | - Raja Bhattacharya
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India.
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
3
|
Chvojkova M, Kolar D, Kovacova K, Cejkova L, Misiachna A, Hakenova K, Gorecki L, Horak M, Korabecny J, Soukup O, Vales K. Pro-cognitive effects of dual tacrine derivatives acting as cholinesterase inhibitors and NMDA receptor antagonists. Biomed Pharmacother 2024; 176:116821. [PMID: 38823278 DOI: 10.1016/j.biopha.2024.116821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/19/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Therapeutic options for Alzheimer's disease are limited. Dual compounds targeting two pathways concurrently may enable enhanced effect. The study focuses on tacrine derivatives inhibiting acetylcholinesterase (AChE) and simultaneously N-methyl-D-aspartate (NMDA) receptors. Compounds with balanced inhibitory potencies for the target proteins (K1578 and K1599) or increased potency for AChE (K1592 and K1594) were studied to identify the most promising pro-cognitive compound. Their effects were studied in cholinergic (scopolamine-induced) and glutamatergic (MK-801-induced) rat models of cognitive deficits in the Morris water maze. Moreover, the impacts on locomotion in the open field and AChE activity in relevant brain structures were investigated. The effect of the most promising compound on NMDA receptors was explored by in vitro electrophysiology. The cholinergic antagonist scopolamine induced a deficit in memory acquisition, however, it was unaffected by the compounds, and a deficit in reversal learning that was alleviated by K1578 and K1599. K1578 and K1599 significantly inhibited AChE in the striatum, potentially explaining the behavioral observations. The glutamatergic antagonist dizocilpine (MK-801) induced a deficit in memory acquisition, which was alleviated by K1599. K1599 also mitigated the MK-801-induced hyperlocomotion in the open field. In vitro patch-clamp corroborated the K1599-associated NMDA receptor inhibitory effect. K1599 emerged as the most promising compound, demonstrating pro-cognitive efficacy in both models, consistent with intended dual effect. We conclude that tacrine has the potential for development of derivatives with dual in vivo effects. Our findings contributed to the elucidation of the structural and functional properties of tacrine derivatives associated with optimal in vivo pro-cognitive efficacy.
Collapse
Affiliation(s)
- Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic.
| | - David Kolar
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic
| | - Katarina Kovacova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, Bratislava 4 842 15, Slovak Republic
| | - Lada Cejkova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic; Department of Physiology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 2 12843, Czech Republic
| | - Kristina Hakenova
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 10 100 00, Czech Republic
| | - Lukas Gorecki
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 142 20, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic; Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 02, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Topolova 748, Klecany 250 67, Czech Republic; Third Faculty of Medicine, Charles University, Ruska 87, Prague 10 100 00, Czech Republic
| |
Collapse
|
4
|
Asghar S, Mushtaq N, Ahmed A, Anwar L, Munawar R, Akhtar S. Potential of Tryptamine Derivatives as Multi-Target Directed Ligands for Alzheimer's Disease: AChE, MAO-B, and COX-2 as Molecular Targets. Molecules 2024; 29:490. [PMID: 38276568 PMCID: PMC10820890 DOI: 10.3390/molecules29020490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Extensive research has been dedicated to develop compounds that can target multiple aspects of Alzheimer's disease (AD) treatment due to a growing understanding of AD's complex multifaceted nature and various interconnected pathological pathways. In the present study, a series of biological assays were performed to evaluate the potential of the tryptamine analogues synthesized earlier in our lab as multi-target-directed ligands (MTDLs) for AD. To assess the inhibitory effects of the compounds, various in vitro assays were employed. Three compounds, SR42, SR25, and SR10, displayed significant AChE inhibitory activity, with IC50 values of 0.70 µM, 0.17 µM, and 1.00 µM, respectively. These values superseded the standard drug donepezil (1.96 µM). In the MAO-B inhibition assay, SR42 (IC50 = 43.21 µM) demonstrated superior inhibitory effects as compared to tryptamine and other derivatives. Moreover, SR22 (84.08%), SR24 (79.30%), and SR42 (75.16%) exhibited notable percent inhibition against the COX-2 enzyme at a tested concentration of 100 µM. To gain insights into their binding mode and to validate the biological results, molecular docking studies were conducted. Overall, the results suggest that SR42, a 4,5 nitro-benzoyl derivative of tryptamine, exhibited significant potential as a MTDL and warrants further investigation for the development of anti-Alzheimer agents.
Collapse
Affiliation(s)
- Saira Asghar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Nousheen Mushtaq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Ahsaan Ahmed
- Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Laila Anwar
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| | - Rabya Munawar
- Department of Pharmaceutical Chemistry, Dow College of Pharmacy, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Shamim Akhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hamdard University, Karachi 74600, Pakistan;
| |
Collapse
|
5
|
Londhe SG, Shenoy M, Kini SG, Walhekar V, Kumar D. Computational Investigation of Novel Compounds as Dual Inhibitors of AChE and GSK-3β for the Treatment of Alzheimer's Disease. Curr Top Med Chem 2024; 24:1738-1753. [PMID: 38859777 DOI: 10.2174/0115680266295740240602122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) stands out as one of the most devastating and prevalent neurodegenerative disorders known today. Researchers have identified several enzymatic targets associated with AD among which Glycogen synthase kinase-3β (GSK-3β) and Acetylcholinesterase (AChE) are prominent ones. Unfortunately, the market offers very few drugs for treating or managing AD, and none have shown significant efficacy against it. OBJECTIVES To address this critical issue, the design and discovery of dual inhibitors will represent a potential breakthrough in the fight against AD. In the pursuit of designing novel dual inhibitors, we explored molecular docking and dynamics analyses of tacrine and amantadine uredio-linked amide analogs such as GSK-3β and AChE dual inhibitors for curtailing AD. Tacrine and adamantine are the FDA-approved drugs that were structurally modified to design and develop novel drug candidates that may demonstrate concurrently dual selectivity towards GSK-3β and AChE. METHODS In the following study, molecular docking was executed by employing AutoDock Vina, and molecular dynamics and ADMET predictions were made using Desmond, Qikprop modules of Schrödinger. RESULTS Our findings revealed that compounds DST2 and DST11 exhibited remarkable molecular interactions with active sites of GSK-3β and AChE, respectively. These compounds effectively interacted with key amino acids, namely Lys85, Val135, Asp200, and Phe295, resulting in highly favourable docking energies of -9.7 and -12.7 kcal/mol. Furthermore, through molecular dynamics simulations spanning a trajectory of 100 ns, we confirmed the stability of ligands DST2 and DST11 within the active cavities of GSK-3β and AChE. The compounds exhibiting the most promising docking results also demonstrated excellent ADMET profiles. Notably, DST21 displayed an outstanding human oral absorption rate of 76.358%, surpassing the absorption rates of other molecules. CONCLUSION Overall, our in-silico studies revealed that the designed molecules showed potential as novel anti-Alzheimer agents capable of inhibiting both GSK-3β and AChE simultaneously. So, in the future, the designing and development of dual inhibitors will harbinger a new era of drug design in AD treatment.
Collapse
Affiliation(s)
- Saurabh G Londhe
- Department of Pharmaceutical Chemistry, BVDU's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| | - Mangala Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Suvarna G Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Vinayak Walhekar
- Department of Pharmaceutical Chemistry, BVDU's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, BVDU's Poona College of Pharmacy, Pune, 411038, Maharashtra, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
- UC Davis Comprehensive Cancer Centre, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Czarnecka K, Girek M, Kręcisz P, Skibiński R, Łątka K, Jończyk J, Bajda M, Szymczyk P, Galita G, Kabziński J, Majsterek I, Espargaró A, Sabate R, Szymański P. New cyclopentaquinoline and 3,5-dichlorobenzoic acid hybrids with neuroprotection against oxidative stress for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2158822. [PMID: 36629422 PMCID: PMC9848259 DOI: 10.1080/14756366.2022.2158822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative brain disease. Thus, drugs including donepezil, rivastigmine, and galantamine are not entirely effective in the treatment of this multifactorial disease. The present study evaluates eight derivatives (3a-3h) as candidates with stronger anti-AD potential but with less side effects. Reactive oxygen species (ROS) assays were used to assess oxidative stress which involve in the neurodegeneration. The neuroprotective properties of 3e against oxidative stress were done in three experiments using MTT test. The anti-AD potential was determined based on their anticholinesterase inhibition ability, determined using Ellman's method, Aβ aggregation potential according to thioflavin (Th) fluorescence assay, and their antioxidative and anti-inflammatory activities. Compound 3e exhibited moderate cholinesterase inhibition activity (AChE, IC50 = 0.131 µM; BuChE, IC50 = 0.116 µM; SI = 1.13), significant inhibition of Aβ(1-42) aggregation (55.7%, at 5 µM) and acceptable neuroprotective activity. Extensive analysis of in vitro and in vivo assays indicates that new cyclopentaquinoline derivatives offer promise as candidates for new anti-AD drugs.
Collapse
Affiliation(s)
- Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland,CONTACT Kamila Czarnecka
| | - Małgorzata Girek
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Paweł Kręcisz
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Kamil Łątka
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Jończyk
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany,Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Jacek Kabziński
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Lodz, Poland
| | - Alba Espargaró
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Raimon Sabate
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain,Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland,Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Warsaw, Poland,Paweł Szymański Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, Lodz90-151, Poland
| |
Collapse
|
7
|
Sundius T, Brandán SA. Structural, harmonic force field and vibrational studies of cholinesterase inhibitor tacrine used for treatment of Alzheimer's disease. Heliyon 2023; 9:e17280. [PMID: 37441405 PMCID: PMC10333470 DOI: 10.1016/j.heliyon.2023.e17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Different structures of free base (FB), two cationic forms (CA) and three hydrochloride forms (HCl) of cholinesterase inhibitor tacrine used for treatment of Alzheimer 's disease was evaluated using hybrid B3LYP calculations in order to perform their complete vibrational assignments using the scaled harmonic force fields. Structures of anhydrous form of tacrine have been optimized in gas phase and in aqueous solution. The structure of form III HCl is in agreement with the experimental determined by X-ray diffraction while the predicted IR, Raman, 1H- 13C NMR and UV spectra show good correlations with the corresponding experimental ones. Energy values show that the three forms of HCl can exist in both media because these energetic values decrease from 35.15 kJ/mol in gas phase to 5.51 kJ/mol in solution. For the most stable species of tacrine, the following stability order using natural bond orbital (NBO) studies was found: form I HCl > form III HCl > form I CA > FB. CA presents the higher solvation energy value, as reported for hydrochloride species of alkaloids and antihypertensive agents. The structural parameters of form III of HCl present better concordance and corresponds to that experimental observed in the solid phase. Higher topological properties of form III together with the strong N2-H26⋯Cl31 interaction could justify the presence of this form in the solid phase and in solution and the higher stabilities in both media. The gap values support the higher reactivity of form III while FB is the less reactive species in both media. Complete vibrational assignments for FB, CA and HCl species together with the corresponding scaled force constants are reported.
Collapse
Affiliation(s)
- Tom Sundius
- Department of Physics, University of Helsinki, Finland
| | - Silvia Antonia Brandán
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
8
|
Barbosa FAR, Canto RFS, Teixeira KF, de Souza AS, de Oliveira AS, Braga AL. Selenium-Derivative Compounds: A Review of New Perspectives in the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:689-700. [PMID: 35209817 DOI: 10.2174/0929867329666220224161454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/16/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most prevalent types of dementia, affecting millions of older people worldwide. AD is stimulating efforts to develop novel molecules targeting its main features associated with a decrease in acetylcholine levels, an increase in oxidative stress and depositions of amyloid-β (Aβ) and tau protein. In this regard, selenium-containing compounds have been demonstrated as potential multi-targeted compounds in the treatment of AD. These compounds are known for their antioxidant and anticholinesterase properties, causing a decrease in Aβ aggregation. OBJECTIVE In this review, we approach structure-activity relationships of each compound, associating the decrease of ROS activity, an increase of tau-like activity and inhibition of AChE with a decrease in the self-aggregation of Aβ. METHODS We also verify that the molecular descriptors apol, nHBAcc and MlogP may be related to optimized pharmacokinetic properties for anti-AD drugs. RESULTS In our analysis, few selenium-derived compounds presented similar molecular features to FDA-approved drugs. CONCLUSION We suggest that unknown selenium-derived molecules with apol, nHBAcc and MlogP like FDA-approved drugs may be better successes with optimized pharmacokinetic properties in future studies in AD.
Collapse
Affiliation(s)
- Flavio A R Barbosa
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil
| | - Rômulo F S Canto
- Department of Pharmacosciences, Foundation Federal University of Health Sciences of Porto Alegre, Porto Alegre-RS, Brazil
| | - Kerolain F Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Anacleto S de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo-SP, Brazil
| | - Aldo S de Oliveira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, Blumenau-SC, Brazil
| | - Antonio L Braga
- Department of Chemistry, Center for Physical and Mathematical Sciences, Federal University of Santa Catarina, Florianópolis-SC, Brazil.,Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, South Africa
| |
Collapse
|
9
|
A Multifunctional (-)-Meptazinol-Serotonin Hybrid Ameliorates Oxidative Stress-Associated Apoptotic Neuronal Death and Memory Deficits via Activating the Nrf2/Antioxidant Enzyme Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6935947. [PMID: 36819782 PMCID: PMC9935814 DOI: 10.1155/2023/6935947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) involves multiple pathophysiological processes. Oxidative stress is a major cause of AD-associated neuronal injury. The current research was designed to examine whether a novel (-)-meptazinol-serotonin hybrid (Mep-S) with potent antioxidant activity and additional inhibitory properties for acetylcholinesterase (AChE) activity could attenuate oxidative neuronal damage and cognitive deficits. In human SH-SY5Y cells, Mep-S suppressed H2O2-induced apoptosis by restoring mitochondrial membrane potential and inhibiting caspase-3 activation. Meanwhile, it attenuated oxidative stress elicited by H2O2 through lessening generation of reactive oxygen species as well as enhancing production of glutathione (GSH) and activity of superoxide dismutase (SOD). Mechanistically, Mep-S promoted nuclear translocation of a transcription factor nuclear factor E2-related factor-2 (Nrf2) in H2O2-challenged cells. This effect was accompanied by reduction in Kelch-like ECH-associated protein-1 (Keap1) levels as well as augmentation of Akt phosphorylation and expression of heme oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase-1 (NQO-1). Molecular docking analysis revealed that Mep-S may disrupt the protein-protein interactions between Keap1 and Nrf2. In an in vivo mouse model, Mep-S attenuated scopolamine-caused cognitive deficits with inhibition of apoptotic neuronal death and brain AChE activity. Furthermore, the scopolamine-induced impairment of total antioxidant capacity and reduction in SOD1, SOD2, and γ-glutamate-cysteine ligase expression in the brain were counteracted by Mep-S, accompanied by decreased Keap1 levels, increased Akt catalytic subunit and Nrf2 phosphorylation, and decreased Nrf2, HO-1, and NQO-1 expression. Collectively, our results suggest that Mep-S ameliorates apoptotic neuronal death and memory dysfunction associated with oxidative stress by regulating the Nrf2/antioxidant enzyme pathway through inactivating Keap1 and phosphorylating Nrf2 via Akt activation. Therefore, Mep-S may be a potential lead for multitarget neuroprotective agents to treat AD-like symptoms.
Collapse
|
10
|
Mettai M, Daoud I, Mesli F, Kenouche S, Melkemi N, Kherachi R, Belkadi A. Molecular docking/dynamics simulations, MEP analysis, bioisosteric replacement and ADME/T prediction for identification of dual targets inhibitors of Parkinson's disease with novel scaffold. In Silico Pharmacol 2023; 11:3. [PMID: 36687301 PMCID: PMC9852416 DOI: 10.1007/s40203-023-00139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Monoamine oxidase B and Adenosine A2A receptors are used as key targets for Parkinson's disease. Recently, hMAO-B and hA2AR Dual-targets inhibitory potential of a novel series of Phenylxanthine derivatives has been established in experimental findings. Hence, the current study examines the interactions between 38 compounds of this series with hMAO-B and hA2AR targets using different molecular modeling techniques to investigate the binding mode and stability of the formed complexes. A molecular docking study revealed that the compounds L24 ((E)-3-(3-Chlorophenyl)-N-(4-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl) phenyl) acrylamide and L32 ((E)-3-(3-Chlorophenyl)-N-(3-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)phenyl)acrylamide) had a high affinity (S-score: -10.160 and -7.344 kcal/mol) with the pocket of hMAO-B and hA2AR targets respectively, and the stability of the studied complexes was confirmed during MD simulations. Also, the MEP maps of compounds 24 and 32 were used to identify the nucleophilic and electrophilic attack regions. Moreover, the bioisosteric replacement approach was successfully applied to design two new analogs of each compound with similar biological activities and low energy scores. Furthermore, ADME-T and Drug-likeness results revealed the promising pharmacokinetic properties and oral bioavailability of these compounds. Thus, compounds L24, L32, and their analogs can undergo further analysis and optimization in order to design new lead compounds with higher efficacy toward Parkinson's disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00139-3.
Collapse
Affiliation(s)
- Merzaka Mettai
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ismail Daoud
- Department of Matter Sciences, University Mohamed Khider, BP 145 RP, 07000 Biskra, Algeria
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Fouzia Mesli
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Samir Kenouche
- Group of Modeling of Chemical Systems using Quantum Calculations, Applied Chemistry Laboratory, University of Mohamed Khider, 07000 Biskra, Algeria
| | - Nadjib Melkemi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Rania Kherachi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ahlem Belkadi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| |
Collapse
|
11
|
Bubley A, Erofeev A, Gorelkin P, Beloglazkina E, Majouga A, Krasnovskaya O. Tacrine-Based Hybrids: Past, Present, and Future. Int J Mol Sci 2023; 24:ijms24021717. [PMID: 36675233 PMCID: PMC9863713 DOI: 10.3390/ijms24021717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder which is characterized by β-amyloid (Aβ) aggregation, τ-hyperphosphorylation, and loss of cholinergic neurons. The other important hallmarks of AD are oxidative stress, metal dyshomeostasis, inflammation, and cell cycle dysregulation. Multiple therapeutic targets may be proposed for the development of anti-AD drugs, and the "one drug-multiple targets" strategy is of current interest. Tacrine (THA) was the first clinically approved cholinesterase (ChE) inhibitor, which was withdrawn due to high hepatotoxicity. However, its high potency in ChE inhibition, low molecular weight, and simple structure make THA a promising scaffold for developing multi-target agents. In this review, we summarized THA-based hybrids published from 2006 to 2022, thus providing an overview of strategies that have been used in drug design and approaches that have resulted in significant cognitive improvements and reduced hepatotoxicity.
Collapse
Affiliation(s)
- Anna Bubley
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexaner Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Peter Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
| | - Alexander Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russia
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy Prospect 4, Moscow 119049, Russia
- Correspondence:
| |
Collapse
|
12
|
Synthesis of Benzothiazole Linked Triazole Conjugates and Their Evaluation Against Cholinesterase Enzymes. ChemistrySelect 2022. [DOI: 10.1002/slct.202203060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Design, synthesis, AChE/BChE inhibitory activity, and molecular docking of spiro[chromeno[4,3-b]thieno[3,2-e]pyridine]-7-amine tacrine hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Discovery of Novel Tacrine Derivatives as Potent Antiproliferative Agents with CDKs Inhibitory Property. Bioorg Chem 2022; 126:105875. [DOI: 10.1016/j.bioorg.2022.105875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 01/06/2023]
|
15
|
Xuan Z, Gu X, Yan S, Xie Y, Zhou Y, Zhang H, Jin H, Hu S, Mak MSH, Zhou D, Keung Tsim KW, Carlier PR, Han Y, Cui W. Dimeric Tacrine(10)-hupyridone as a Multitarget-Directed Ligand To Treat Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2462-2477. [PMID: 34156230 DOI: 10.1021/acschemneuro.1c00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with multiple pathological features. Therefore, a multitarget-directed ligands (MTDLs) strategy has been developed to treat AD. We have previously designed and synthesized dimeric tacrine(10)-hupyridone (A10E), a novel tacrine derivative with acetylcholinesterase (AChE) inhibition and brain-derived neurotrophic factor (BDNF) activation activity, by linking tacrine and a fragment of huperzine A. However, it was largely unknown whether A10E could act on other AD targets and produce cognitive-enhancing ability in AD animal models. In this study, A10E could prevent cognitive impairments in APP/PS1 transgenic mice and β-amyloid (Aβ) oligomers-treated mice, with higher potency than tacrine and huperzine A. Moreover, A10E could effectively inhibit Aβ production and deposition, alleviate neuroinflammation, enhance BDNF expression, and elevate cholinergic neurotransmission in vivo. At nanomolar concentrations, A10E could inhibit Aβ oligomers-induced neurotoxicity via the activation of tyrosine kinase receptor B (TrkB)/Akt pathway in SH-SY5Y cells. Furthermore, Aβ oligomerization and fibrillization could be directly disrupted by A10E. Importantly, A10E at high concentrations did not produce obvious hepatotoxicity. Our results indicated that A10E could produce anti-AD neuroprotective effects via the inhibition of Aβ aggregation, the activation of the BDNF/TrkB pathway, the alleviation of neuroinflammation, and the decrease of AChE activity. As MTDLs could produce additional benefits, such as overcoming the deficits of drug combination and enhancing the compliance of AD patients, our results also suggested that A10E might be developed as a promising MTDL lead for the treatment of AD.
Collapse
Affiliation(s)
- Zhenquan Xuan
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xinmei Gu
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Sicheng Yan
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yanfei Xie
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yiying Zhou
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Hui Zhang
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Haibo Jin
- Affiliated Hospital of Medical School Ningbo University and Ningbo City Third Hospital, Ningbo 315211, China
| | - Shengquan Hu
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Marvin S. H. Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | | | - Karl Wah Keung Tsim
- Division of Life Science and Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Paul R. Carlier
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, China
| | - Wei Cui
- Ningbo Kangning Hospital, Ningbo 315211, China
- Translational Medicine Center of Pain, Emotion and Cognition, Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
16
|
Multitarget therapeutic approaches for Alzheimer's and Parkinson's diseases: an opportunity or an illusion? Future Med Chem 2021; 13:1301-1309. [PMID: 34137271 DOI: 10.4155/fmc-2021-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's and Parkinson's disease are the most prevalent neurodegenerative diseases and the leading causes of dementia worldwide. The etiology of these multifactorial pathologies is not completely known. The available therapeutic approaches can cause temporary relief of symptoms but cannot slow down their progression or cure them. Life-changing therapeutic solutions are urgently needed, as the number of people suffering from these pathologies has been increasing quickly over the last few decades. Several targets are being studied, and innovative approaches are being pursued to find new therapeutic options. This overview is focused on the most recent information regarding the paradigm of using multitarget compounds to treat both Alzheimer's and Parkinson's disease.
Collapse
|
17
|
Abd El-Aziz NM, Eldin Awad OM, Shehata MG, El-Sohaimy SA. Antioxidant and anti-acetylcholinesterase potential of artichoke phenolic compounds. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Fatiha Muhammad E, Kumar A, Wahab HA, Zhang KYJ. Identification of 1,2,4-Triazolylthioethanone Scaffold for the Design of New Acetylcholinesterase Inhibitors. Mol Inform 2021; 40:e2100020. [PMID: 34060234 DOI: 10.1002/minf.202100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/02/2021] [Indexed: 11/10/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors are the most effective drugs for Alzheimer's disease treatment. However, considering the potential and failure rates of AChE inhibitors, chemical scaffolds targeting cholinesterase specifically are still very limited. Herein, we report a new class of AChE inhibitors identified by employing a virtual screening approach that combines shape similarity with molecular docking calculations. Virtual screening followed by the evaluation of AChE inhibitory activity allowed us to identify 1,2,4-triazolylthioethanones as a novel class of AChE inhibitors. Thirteen compounds with 1,2,4-triazolylthiothanone core and IC50 values in the range of 0.15±0.07 to 3.32±0.92 μM have been reported here. Our findings shed light into a class of AChE inhibitors that could be useful starting point for the development of novel therapeutics to tackle Alzheimer's disease.
Collapse
Affiliation(s)
- Erma Fatiha Muhammad
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.,School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
19
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
20
|
Kos J, Kozik V, Pindjakova D, Jankech T, Smolinski A, Stepankova S, Hosek J, Oravec M, Jampilek J, Bak A. Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors. Int J Mol Sci 2021; 22:ijms22073444. [PMID: 33810550 PMCID: PMC8037530 DOI: 10.3390/ijms22073444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
A library of novel 4-{[(benzyloxy)carbonyl]amino}-2-hydroxybenzoic acid amides was designed and synthesized in order to provide potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors; the in vitro inhibitory profile and selectivity index were specified. Benzyl(3-hydroxy-4-{[2-(trifluoromethoxy)phenyl]carbamoyl}phenyl)carbamate was the best AChE inhibitor with the inhibitory concentration of IC50 = 36.05 µM in the series, while benzyl{3-hydroxy-4-[(2-methoxyphenyl)carbamoyl]phenyl}-carbamate was the most potent BChE inhibitor (IC50 = 22.23 µM) with the highest selectivity for BChE (SI = 2.26). The cytotoxic effect was evaluated in vitro for promising AChE/BChE inhibitors. The newly synthesized adducts were subjected to the quantitative shape comparison with the generation of an averaged pharmacophore pattern. Noticeably, three pairs of fairly similar fluorine/bromine-containing compounds can potentially form the activity cliff that is manifested formally by high structure–activity landscape index (SALI) numerical values. The molecular docking study was conducted for the most potent AChE/BChE inhibitors, indicating that the hydrophobic interactions were overwhelmingly generated with Gln119, Asp70, Pro285, Thr120, and Trp82 aminoacid residues, while the hydrogen bond (HB)-donor ones were dominated with Thr120. π-stacking interactions were specified with the Trp82 aminoacid residue of chain A as well. Finally, the stability of chosen liganded enzymatic systems was assessed using the molecular dynamic simulations. An attempt was made to explain the noted differences of the selectivity index for the most potent molecules, especially those bearing unsubstituted and fluorinated methoxy group.
Collapse
Affiliation(s)
- Jiri Kos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic;
- Correspondence: (J.K.); (A.B.)
| | - Violetta Kozik
- Department of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland;
| | - Dominika Pindjakova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (D.P.); (T.J.)
| | - Timotej Jankech
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (D.P.); (T.J.)
- NT-LAB o.z., Teplicka 35, 92101 Piestany, Slovakia
| | - Adam Smolinski
- GiG Research Institute, Pl. Gwarkow 1, 40166 Katowice, Poland;
| | - Sarka Stepankova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic;
| | - Jan Hosek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic;
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic;
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic;
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (D.P.); (T.J.)
| | - Andrzej Bak
- Department of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland;
- Correspondence: (J.K.); (A.B.)
| |
Collapse
|
21
|
Macha B, Kulkarni R, Garige AK, Pola S, Akkinepally R, Garlapati A. Design and Friedlander Reaction Based Synthesis of New Cycloalkyl Ring Fused Quinolines as Multifunctional Agents for Alzheimer's Treatment: In Silico Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202003400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Baswaraju Macha
- Medicinal Chemistry Division University College of Pharmaceutical Sciences Kakatiya University Warangal Telangana 506009 India
| | - Ravindra Kulkarni
- Bharati Vidyapeeth's Poona College of Pharmacy Paudh Road, Erandawane Pune 411038 India
| | - Anil Kumar Garige
- Jayamukhi Institute of Pharmaceutical Sciences Narsampet Warangal 506332 India
| | - Shivani Pola
- Medicinal Chemistry Division University College of Pharmaceutical Sciences Kakatiya University Warangal Telangana 506009 India
| | - Raghuramrao Akkinepally
- Medicinal Chemistry Division University College of Pharmaceutical Sciences Kakatiya University Warangal Telangana 506009 India
| | - Achaiah Garlapati
- Medicinal Chemistry Division University College of Pharmaceutical Sciences Kakatiya University Warangal Telangana 506009 India
| |
Collapse
|
22
|
Molecular hybridization based design and synthesis of new benzo[5,6]chromeno[2,3-b]-quinolin-13(14H)-one analogs as cholinesterase inhibitors. Med Chem Res 2021. [DOI: 10.1007/s00044-020-02670-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Silva LB, Stefanello FS, Feitosa SC, Frizzo CP, Martins MAP, Zanatta N, Iglesias BA, Bonacorso HG. Novel 7-(1 H-pyrrol-1-yl)spiro[chromeno[4,3- b]quinoline-6,1′-cycloalkanes]: synthesis, cross-coupling reactions, and photophysical properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj05740a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper covers the synthesis of a series of eleven examples of new 7-(1H-pyrrol-1-yl)spiro[chromeno[4,3-b]quinoline-6,1′-cycloalkanes] (3), where cycloalkanes are cyclopentane, cyclohexane, and cycloheptane.
Collapse
Affiliation(s)
- Letícia B. Silva
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Felipe S. Stefanello
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Sarah C. Feitosa
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Clarissa P. Frizzo
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Bernardo A. Iglesias
- Laboratório de Bioinorgânica e Materiais Porfirínicos
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE)
- Departamento de Química
- Universidade Federal de Santa Maria
- Santa Maria
- Brazil
| |
Collapse
|
24
|
Li K, Jiang Y, Li G, Liu T, Yang Z. Novel Multitarget Directed Tacrine Hybrids as Anti-Alzheimer's Compounds Improved Synaptic Plasticity and Cognitive Impairment in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2020; 11:4316-4328. [PMID: 33216529 DOI: 10.1021/acschemneuro.0c00574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a complex pathological neurodegenerative disease that seriously threatens human health. Therefore, how to effectively improve and treat AD is an urgent problem. In this study, a novel multitarget derivative based on tacrine (named 9i), which could work simultaneously on more than one pathological target, was used to treat AD model APP/PS1 transgenic mice. After 4 weeks of intragastric administration, cognitive function and synaptic plasticity were significantly improved and β-amyloid (Aβ) plaques that are main pathological hallmarks of AD were decreased in the APP/PS1 mice. On the one hand, 9i inhibited the excessive activation of the Raf/MEK/ERK signaling pathway to alleviate the loss of neurons, which provides a foundation for structural integrity. On the other hand, synaptic associated proteins and the density of synaptic spines were increased in APP/PS1 mice treated with 9i, which provides the basis for the improvement of synaptic plasticity and cognitive impairment. Interestingly, 9i also reduced Aβ plaques in the DG region, which is consistent with previous in vitro experiments showing that 9i inhibited the self-assembly of Aβ fibers, thus protecting neurons from Aβ plaque neurotoxicity. Our results suggest that 9i as a novel compound can effectively improve the cognitive function and the pathological changes of AD in APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Kai Li
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yu Jiang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Guoliang Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhuo Yang
- College of Medicine, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Mezeiova E, Soukup O, Korabecny J. Huprines — an insight into the synthesis and biological properties. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Oset-Gasque MJ, Marco-Contelles JL. Tacrine-Natural-Product Hybrids for Alzheimer's Disease Therapy. Curr Med Chem 2020; 27:4392-4400. [PMID: 29611473 DOI: 10.2174/0929867325666180403151725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a complex, neurodegenerative pathology showing, among others, high cholinergic and neurotransmitter deficits, oxidative stress, inflammation, Aβ-aggregation resulting in senile plaques formation, and hyperphosphorylation of tau-protein leading to neurofibrillary tangles. Due to its multifactorial and complex nature, multitarget directed small-molecules able to simultaneously inhibit or bind diverse biological targets involved in the progress and development of AD are considered now the best therapeutic strategy to design new compounds for AD therapy. Among them, tacrine is a very well known standard-gold ligand, and natural products have been a traditional source of new agents for diverse therapeutic treatments. In this review, we will update recent developments of multitarget tacrinenatural products hybrids for AD therapy.
Collapse
Affiliation(s)
- María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | | |
Collapse
|
27
|
New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25173915. [PMID: 32867324 PMCID: PMC7504258 DOI: 10.3390/molecules25173915] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/31/2023] Open
Abstract
New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer’s disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC50 (AChE) = 0.131 ± 0.01 µM (five times more potent than tacrine), IC50(BChE) = 0.0680 ± 0.0014 µM, and 17.5 ± 1.5% propidium displacement at 20 µM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
Collapse
|
28
|
Kim SH, Lee EH, Lee SC, Kim AR, Park HH, Son JW, Koh SH, Yoon MY. Development of peptide aptamers as alternatives for antibody in the detection of amyloid-beta 42 aggregates. Anal Biochem 2020; 609:113921. [PMID: 32828793 DOI: 10.1016/j.ab.2020.113921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) causes cognitive impairment and serious social isolation. However, there are no effective treatments and even no established confirmatory diagnostic tools for the disease. Amyloid beta (Aβ) aggregation in the brain is the best-known pathognomonic mechanism of AD, so various methods for Aβ detection have been developed for the diagnosis of this disease. We synthesized two novel, ultra-sensitive peptide probes specialized in detecting Aβ aggregates, and examined their potential for future diagnostic application. The peptides are produced through phage high-throughput screening (HTS) and amplified through a serial process called biopanning, which is a repeating method of elution and amplification of probes. We picked phages specific for amyloid from two kinds of phage display. The synthesized peptides were confirmed to have excellent binding affinity to Aβ aggregates, by immunohistochemical staining and western blotting using the brains of 3X transgenic (Tg) AD mice at different stages (5-7, 12-17 months old) of AD severity. In the present study, it was confirmed that newly developed amyloid-binding peptides could be used as novel probes for the detection of Aβ aggregates, which can be used for clinical diagnosis of AD in the future.
Collapse
Affiliation(s)
- Sang-Heon Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Eun-Hye Lee
- Department of Neurology, Hanyang University College of Medicine, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea
| | - Sang-Choon Lee
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - A-Ru Kim
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University College of Medicine, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea
| | - Jeong-Woo Son
- Department of Neurology, Hanyang University College of Medicine, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea; Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, 11923, Gyeongchun-ro, Guri-Si, Gyeonggi-do, Republic of Korea.
| | - Moon-Young Yoon
- Department of Chemistry and Research Institute of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
29
|
Zagórska A, Jaromin A. Perspectives for New and More Efficient Multifunctional Ligands for Alzheimer's Disease Therapy. Molecules 2020; 25:E3337. [PMID: 32717806 PMCID: PMC7435667 DOI: 10.3390/molecules25153337] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
Despite tremendous research efforts at every level, globally, there is still a lack of effective drugs for the treatment of Alzheimer's disease (AD). The biochemical mechanisms of this devastating neurodegenerative disease are not yet clearly understood. This review analyses the relevance of multiple ligands in drug discovery for AD as a versatile toolbox for a polypharmacological approach to AD. Herein, we highlight major targets associated with AD, ranging from acetylcholine esterase (AChE), beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1), glycogen synthase kinase 3 beta (GSK-3β), N-methyl-d-aspartate (NMDA) receptor, monoamine oxidases (MAOs), metal ions in the brain, 5-hydroxytryptamine (5-HT) receptors, the third subtype of histamine receptor (H3 receptor), to phosphodiesterases (PDEs), along with a summary of their respective relationship to the disease network. In addition, a multitarget strategy for AD is presented, based on reported milestones in this area and the recent progress that has been achieved with multitargeted-directed ligands (MTDLs). Finally, the latest publications referencing the enlarged panel of new biological targets for AD related to the microglia are highlighted. However, the question of how to find meaningful combinations of targets for an MTDLs approach remains unanswered.
Collapse
Affiliation(s)
- Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383 Wrocław, Poland;
| |
Collapse
|
30
|
A Novel Compound YS-5-23 Exhibits Neuroprotective Effect by Reducing β-Site Amyloid Precursor Protein Cleaving Enzyme 1's Expression and H 2O 2-Induced Cytotoxicity in SH-SY5Y Cells. Neurochem Res 2020; 45:2113-2127. [PMID: 32556702 DOI: 10.1007/s11064-020-03073-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
The abnormally accumulated amyloid-β (Aβ) and oxidative stress contribute to the initiation and progression of Alzheimer's disease (AD). β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting enzyme for the production of Aβ. Furthermore, Aβ was reported to increase oxidative stress; then the overproduced oxidative stress continues to increase the expression and activity of BACE1. Consequently, inhibition of both BACE1 and oxidative stress is a better strategy for AD therapy compared with those one-target treatment methods. In the present study, our novel small molecule YS-5-23 was proved to possess both of the activities. Specifically, we found that YS-5-23 reduces BACE1's expression in both SH-SY5Y and Swedish mutated amyloid precursor protein (APP) overexpressed HEK293 cells, and it can also suppress BACE1's expression induced by H2O2. Moreover, YS-5-23 decreases H2O2-induced cytotoxicity including alleviating H2O2-induced apoptosis and loss of mitochondria membrane potential (MMP) because it attenuates the reactive oxygen species (ROS) level elevated by H2O2. Meanwhile, PI3K/Akt signaling pathway is involved in the anti-H2O2 and BACE1 inhibition effect of YS-5-23. Our findings indicate that YS-5-23 may develop as a drug candidate in the prevention and treatment of AD.
Collapse
|
31
|
das Neves AM, Berwaldt GA, Avila CT, Goulart TB, Moreira BC, Ferreira TP, Soares MSP, Pedra NS, Spohr L, dE Souza AAA, Spanevello RM, Cunico W. Synthesis of thiazolidin-4-ones and thiazinan-4-ones from 1-(2-aminoethyl)pyrrolidine as acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2020; 35:31-41. [PMID: 31645149 PMCID: PMC6818106 DOI: 10.1080/14756366.2019.1680659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The present study describes the synthesis of a novel series of thiazolidin-4-one and thiazinan-4-one using 1-(2-aminoethyl)pyrrolidine as amine precursor. All compounds were synthesised by one-pot three component cyclocondensation reaction from the amine, a substituted benzaldehyde and a mercaptocarboxylic acid. The compounds were obtained in moderate to good yields and were identified and characterised by 1H, 13 C, 2 D NMR and GC/MS techniques. The compounds also were screened for their in vitro acetylcholinesterase (AChE) activity in hippocampus and cerebral cortex on Wistar rats. The six most potent compounds have been investigated for their cytotoxicity by cell viability assay of astrocyte primary culture, an important cell of central nervous system. We highlighted two compounds (6a and 6k) that had the lowest IC50 in hippocampus (5.20 and 4.46 µM) and cerebral cortex (7.40 and 6.83 µM). These preliminary and important results could be considered a starting point for the development of new AChE inhibitory agents.
Collapse
Affiliation(s)
- Adriana M das Neves
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Gabriele A Berwaldt
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Cinara T Avila
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Taís B Goulart
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Bruna C Moreira
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Taís P Ferreira
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Mayara S P Soares
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Nathalia S Pedra
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Luiza Spohr
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Anita A A dE Souza
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Roselia M Spanevello
- Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| | - Wilson Cunico
- Laboratório de Química Aplicada a Bioativos, Centro Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas , Capão do Leão , Brazil
| |
Collapse
|
32
|
Pourshojaei Y, Abiri A, Eskandari K, Haghighijoo Z, Edraki N, Asadipour A. Phenoxyethyl Piperidine/Morpholine Derivatives as PAS and CAS Inhibitors of Cholinesterases: Insights for Future Drug Design. Sci Rep 2019; 9:19855. [PMID: 31882733 PMCID: PMC6934599 DOI: 10.1038/s41598-019-56463-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Acetylcholinesterase (AChE) catalyzes the conversion of Aβ peptide to its aggregated form and the peripheral anionic site (PAS) of AChE is mainly involved in this phenomenon. Also catalytic active site (CAS) of donepezil stimulates the break-down of acetylcholine (ACh) and depletion of ACh in cholinergic synapses are well established in brains of patients with AD. In this study, a set of compounds bearing phenoxyethyl amines were synthesized and their inhibitory activity toward electric eel AChE (eeAChE) and equine butyrylcholinesterase (eqBuChE) were evaluated. Molecular dynamics (MD) was employed to record the binding interactions of best compounds against human cholinesterases (hAChE and hBuChE) as well as donepezil as reference drug. In vitro results revealed that compound 5c is capable of inhibiting eeAChE activity at IC50 of 0.50 µM while no inhibitory activity was found for eqBuChE for up to 100 µM concentrations. Compound 5c, also due to its facile synthesis, small structure and high selectivity for eeAChE would be very interesting candidate in forthcoming studies. The main interacting parts of compound 5c and compound 7c (most potent eeAChE and eqBuChE inhibitors respectively) with receptors which confer selectivity for AChE and BuChE inhibition were identified, discussed, and compared with donepezil’s interactions. Also during MD simulation it was discovered for the first time that binding of substrates like donepezil to dual CAS and PAS or solely CAS region might have a suppressive impact on 4-α-helical bundles near the tryptophan amphiphilic tetramerization (WAT) domain of AChE and residues which are far away from AChE active site. The results proposed that residues involved in donepezil interactions (Trp86 and Phe295) which are located in CAS and mid-gorge are the mediator of conformational changes in whole protein structure.
Collapse
Affiliation(s)
- Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Haghighijoo
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
33
|
Fan TY, Wu WY, Yu SP, Zhong Y, Zhao C, Chen M, Li HM, Li NG, Chen Z, Chen S, Sun ZH, Duan JA, Shi ZH. Design, synthesis and evaluation of 2-amino-imidazol-4-one derivatives as potent β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Bioorg Med Chem Lett 2019; 29:126772. [DOI: 10.1016/j.bmcl.2019.126772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/29/2019] [Accepted: 10/19/2019] [Indexed: 11/16/2022]
|
34
|
Bak A, Pizova H, Kozik V, Vorcakova K, Kos J, Treml J, Odehnalova K, Oravec M, Imramovsky A, Bobal P, Smolinski A, Trávníček Z, Jampilek J. SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors. Int J Mol Sci 2019; 20:E5385. [PMID: 31671776 PMCID: PMC6862691 DOI: 10.3390/ijms20215385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
A set of 25 novel, silicon-based carbamate derivatives as potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors was synthesized and characterized by their in vitro inhibition profiles and the selectivity indexes (SIs). The prepared compounds were also tested for their inhibition potential on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. In fact, some of the newly prepared molecules revealed comparable or even better inhibitory activities compared to the marketed drugs (rivastigmine or galanthamine) and commercially applied pesticide Diuron®, respectively. Generally, most compounds exhibited better inhibition potency towards AChE; however, a wider activity span was observed for BChE. Notably, benzyl N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(2-hydroxyphenyl)carbamoyl]ethyl]-carbamate (2) and benzyl N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(3-hydroxyphenyl)carbamoyl]ethyl]-carbamate (3) were characterized by fairly high selective indexes. Specifically, compound 2 was prescribed with the lowest IC50 value that corresponds quite well with galanthamine inhibition activity, while the inhibitory profiles of molecules 3 and benzyl-N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(4-hydroxyphenyl)carbamoyl]ethyl]carbamate (4) are in line with rivastigmine activity. Moreover, a structure-activity relationship (SAR)-driven similarity evaluation of the physicochemical properties for the carbamates examined appeared to have foreseen the activity cliffs using a similarity-activity landscape index for BChE inhibitory response values. The 'indirect' ligand-based and 'direct' protein-mediated in silico approaches were applied to specify electronic/steric/lipophilic factors that are potentially valid for quantitative (Q)SAR modeling of the carbamate analogues. The stochastic model validation was used to generate an 'average' 3D-QSAR pharmacophore pattern. Finally, the target-oriented molecular docking was employed to (re)arrange the spatial distribution of the ligand property space for BChE and photosystem II (PSII).
Collapse
Affiliation(s)
- Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland.
| | - Hana Pizova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 612 42 Brno, Czech Republic.
| | - Violetta Kozik
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland.
| | - Katarina Vorcakova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic.
| | - Jiri Kos
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic, (J.K.).
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 612 42 Brno, Czech Republic.
| | - Klara Odehnalova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 612 42 Brno, Czech Republic.
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic.
| | - Ales Imramovsky
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic.
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 612 42 Brno, Czech Republic.
| | - Adam Smolinski
- Department of Energy Saving and Air Protection, Central Mining Institute, Plac Gwarkow 1, 40 166 Katowice, Poland.
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic, (J.K.).
| | - Josef Jampilek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic, (J.K.).
| |
Collapse
|
35
|
Cheng XJ, Gu JX, Pang YP, Liu J, Xu T, Li XR, Hua YZ, Newell KA, Huang XF, Yu Y, Liu Y. Tacrine-Hydrogen Sulfide Donor Hybrid Ameliorates Cognitive Impairment in the Aluminum Chloride Mouse Model of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3500-3509. [PMID: 31244052 DOI: 10.1021/acschemneuro.9b00120] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by progressive loss of memory and cognitive function, and is associated with the deficiency of synaptic acetylcholine, as well as chronic neuroinflmmation. Tacrine, a potent acetylcholinesterase (AChE) inhibitor, was previously a prescribed clinical therapeutic agent for AD, but it was recently withdrawn because it caused widespread hepatotoxicity. Hydrogen sulfide (H2S) has neuroprotective, hepatoprotective, and anti-inflammatory effects. In this study, we synthesized a new compound, a tacrine-H2S donor hybrid (THS) by introducing H2S-releasing moieties (ACS81) to tacrine. Subsequently, pharmacological and biological evaluations of THS were conducted in the aluminum trichloride (AlCl3)-induced AD mice model. We found that THS (15 mmol/kg) improved cognitive and locomotor activity in AD mice in the step-through test and open field test, respectively. THS showed strong AChE inhibitory activity in the serum and hippocampus of AD mice and induced increased hippocampal H2S levels. Furthermore, THS reduced mRNA expression of the proinflammatory cytokines, TNF-α, IL-6, and IL-1β and increased synapse-associated proteins (synaptophysin and postsynaptic density protein 95) in the hippocampus of AD mice. Importantly, THS, unlike tacrine, did not increase liver transaminases (alanine transaminase and aspartate transaminase) or proinflammatory cytokines, indicating THS is much safer than tacrine. Therefore, the multifunctional effects of this new hybrid compound of tacrine and H2S indicate it is a promising compound for further research into the treatment of AD.
Collapse
Affiliation(s)
- Xiao-jing Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-xue Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi-peng Pang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin-rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yu-zhou Hua
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Kelly A. Newell
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xu-Feng Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
- Illawarra Health and Medical Research Institute and Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| |
Collapse
|
36
|
The M 1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci Rep 2019; 9:5222. [PMID: 30914695 PMCID: PMC6435680 DOI: 10.1038/s41598-019-41425-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/04/2019] [Indexed: 01/19/2023] Open
Abstract
Muscarinic acetylcholine receptors have been implicated as potential neuroprotective targets for glaucoma. We tested the hypothesis that the lack of a single muscarinic receptor subtype leads to age-dependent neuron reduction in the retinal ganglion cell layer. Mice with targeted disruption of single muscarinic acetylcholine receptor subtype genes (M1 to M5) and wild-type controls were examined at two age categories, 5 and 15 months, respectively. We found no differences in intraocular pressure between individual mouse groups. Remarkably, in 15-month-old mice devoid of the M1 receptor, neuron number in the retinal ganglion cell layer and axon number in the optic nerve were markedly reduced. Moreover, mRNA expression for the prooxidative enzyme, NOX2, was increased, while mRNA expression for the antioxidative enzymes, SOD1, GPx1 and HO-1, was reduced in aged M1 receptor-deficient mice compared to age-matched wild-type mice. In line with these findings, the reactive oxygen species level was also elevated in the retinal ganglion cell layer of aged M1 receptor-deficient mice. In conclusion, M1 receptor deficiency results in retinal ganglion cell loss in aged mice via involvement of oxidative stress. Based on these findings, activation of M1 receptor signaling may become therapeutically useful to promote retinal ganglion cell survival.
Collapse
|
37
|
Synthesis, molecular docking and cholinesterase inhibitory activity of hydroxylated 2-phenylbenzofuran derivatives. Bioorg Chem 2019; 84:302-308. [DOI: 10.1016/j.bioorg.2018.11.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 02/08/2023]
|
38
|
Ahmadi A, Roghani M, Noori S, Nahri-Niknafs B. Substituted Aminobenzothiazole Derivatives of Tacrine: Synthesis and Study on Learning and Memory Impairment in Scopolamine-Induced Model of Amnesia in Rat. Mini Rev Med Chem 2019; 19:72-78. [PMID: 30009706 DOI: 10.2174/1389557518666180716122608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/15/2018] [Accepted: 07/06/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Currently, there is no conclusive cure for Alzheimer's disease (AD) and existing treatments mainly offer symptomatic relief. Dysfunction of the cholinergic system plays an important role in the pathogenesis of AD. Tacrine (1, 2, 3, 4-tetrahydroacridin-9-amine, III) was the first approved agent for the palliative therapy of AD but its use is associated with some complications. Development of novel multi target derivatives of Tacrine with lower complications is strongly warranted. In this study, new aminobenzothiazole (1-5, with many useful biological and pharmacological properties) analogues (IV-VIII) were synthesized by changing of amine moiety of III. Then, the effects of these new compounds on learning and memory impairment in scopolamine-induced model of amnesia were studied and the outcomes were compared with control and Tacrine groups in rat. MATERIAL AND METHODS The rats received Tacrine or its derivatives (IV-VIII) i.p. for two weeks at a dose of 10 mg/kg. For induction of amnesia, scopolamine at a dose of 1 mg/kg was daily administered i.p. started on day-8 till the end of the study. Behavioral experiments including Y-maze, novel object recognition (discrimination) and passive avoidance paradigms were conducted at week 2. RESULTS Data analysis showed that some Tacrine derivatives, especially VII with 2-amino, 6-nitrobenzothiazole moiety, could markedly and significantly improve alternation score, discrimination ratio and step through latency compared to control and Tacrine groups. CONCLUSION These findings indicated that some of these derivatives (especially compounds VI and VII) are capable to mitigate learning and memory deficits in scopolamine-induced model of amnesia in rats and may have potential benefit in management of patients with AD.
Collapse
Affiliation(s)
- Abbas Ahmadi
- Department of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Sanaz Noori
- Department of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Babak Nahri-Niknafs
- Department of Chemistry, Faculty of Science, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
39
|
Li H, Wang X, Yu H, Zhu J, Jin H, Wang A, Yang Z. Combining in vitro and in silico Approaches to Find New Candidate Drugs Targeting the Pathological Proteins Related to the Alzheimer's Disease. Curr Neuropharmacol 2018; 16:758-768. [PMID: 29086699 PMCID: PMC6080099 DOI: 10.2174/1570159x15666171030142108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 01/10/2023] Open
Abstract
Background: Alzheimer’s disease (AD) as the most common cause of dementia among older people has aroused the universal concern of the whole world. However, until now there is still none effective treatments. Consequently, the development of new drugs targeting this complicated brain disorder is urgent and needs more efforts. In this review, we detailed the current state of knowledge about new candidate drugs targeting the pathological proteins especially the drugs which are employed using the combined methods of in vitro and in silico. Methods: We looked up and reviewed online papers related to the pathogenesis and new drugs development of AD. Then, articles up to the requirements were respectively analyzed and summaried to provide the latest knowledge about the pathogenic effect and the new candidate drugs targeting Aβ and Tau proteins. Results: New candidate drugs targeting the Aβ include decreasing the production, promoting the clearence and preventing aggregation. However these drugs have mostly failed in Phase III clinical trial stage due to the unsuccessful of reversing cognition symptoms. As to tau protein, the prevention of tau aggregation and propagation is a promising strategy to synthesize/design mechanism-based drugs against tauopathies. Some candidate drugs are under research. Moreover, because of the complex pathogenesis of AD, multi-target drugs have also shed light on the treatment of AD. Conclusion: Given to the consecutive failure of Aβ-directed drugs and the feasibilities of tau-targeted therapy, more and more researchers suggested that the AD treatment should be moved from Aβ to tau or focused on considering the soluble form of Aβ and tau as a whole. Moreover, the novel in silico methods also have great potential in drug discovery, drug repositioning, virtual screening of chemical libraries. No matter how many difficulties and challenges in prevention and treatment of AD, we firmly believe that the effective and safe drugs will be found using the combined methods in the immediate future with the global effort.
Collapse
Affiliation(s)
- Hui Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaobing Wang
- Tumor Marker Research Center, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hongmei Yu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jing Zhu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Hongtao Jin
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Aiping Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhaogang Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|
40
|
Girek M, Szymański P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0590-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Cheng ZQ, Song JL, Zhu K, Zhang J, Jiang CS, Zhang H. Total Synthesis of Pulmonarin B and Design of Brominated Phenylacetic Acid/Tacrine Hybrids: Marine Pharmacophore Inspired Discovery of New ChE and Aβ Aggregation Inhibitors. Mar Drugs 2018; 16:md16090293. [PMID: 30134630 PMCID: PMC6164518 DOI: 10.3390/md16090293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/13/2018] [Accepted: 08/18/2018] [Indexed: 02/03/2023] Open
Abstract
A marine natural product, pulmonarin B (1), and a series of related tacrine hybrid analogues were synthesized and evaluated as cholinesterase (ChE) inhibitors. The in vitro ChE assay results revealed that 1 showed moderate dual acetylcholinesterase (AChE)/ butyrylcholinesterase (BChE) inhibitory activity, while the hybrid 12j proved to be the most potent dual inhibitor among the designed derivatives, being almost as active as tacrine. Molecular modeling studies together with kinetic analysis suggested that 12j interacted with both the catalytic active site and peripheral anionic site of AChE. Compounds 1 and 12j could also inhibit self-induced and AChE-induced Aβ aggregation. In addition, the cell-based assay against the human hepatoma cell line (HepG2) revealed that 1 and 12j did not show significant hepatotoxicity compared with tacrine and donepezil. Taken together, the present study confirmed that compound 1 was a potential anti-Alzheimer's disease (AD) hit, and 12j could be highlighted as a multifunctional lead compound for anti-AD drug development.
Collapse
Affiliation(s)
- Zhi-Qiang Cheng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Jia-Li Song
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Kongkai Zhu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Juan Zhang
- School of Biological Sciences, University of Brasília, Brasília 72220-275, Brazil.
| | - Cheng-Shi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
42
|
Hussein W, Sağlık BN, Levent S, Korkut B, Ilgın S, Özkay Y, Kaplancıklı ZA. Synthesis and Biological Evaluation of New Cholinesterase Inhibitors for Alzheimer's Disease. Molecules 2018; 23:molecules23082033. [PMID: 30110946 PMCID: PMC6222329 DOI: 10.3390/molecules23082033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 01/14/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder mostly influencing the elderly, and causes death due to dementia. The main pathogenic feature connected with the progression of this multifactorial disease is the weakening of the cholinergic system in the brain. Cholinesterase (ChE) inhibitors are recognized as one of the choices in the treatment of AD. The inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) were approved as a therapeutic strategy to reduce the symptoms of AD and prevent its progression. The capacity of BChE is not completely known yet; rather, it is accepted to assume a part in a few disorders such as AD. Thus, BChE inhibitors may have a greater role for the treatment of AD in the future. In the present study, 2-(9-acridinylamino)-2-oxoethyl piperazine/piperidine/morpholinecarbodithioate derivatives were synthesized in order to investigate anticholinesterase activity. Eight derivatives demonstrated a specific and promising action against BChE. Furthermore, compound 4n showed inhibitory activity against both enzymes. It was found that the active compounds were well tolerated in the cytotoxicity test. Possible interactions between the lead compound, 4n, and the BChE enzyme were determined through a docking study. The findings obtained within this paper will contribute to the development of new and effective synthetic anti-Alzheimer compounds, and will ideally encourage future screening against AD.
Collapse
Affiliation(s)
- Weiam Hussein
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Aden University, 6075 Aden, Yemen.
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Büşra Korkut
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|
43
|
Natural product-based multitargeted ligands for Alzheimer's disease treatment? Future Med Chem 2018; 10:1745-1748. [DOI: 10.4155/fmc-2018-0146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
44
|
Pinz MP, Dos Reis AS, Vogt AG, Krüger R, Alves D, Jesse CR, Roman SS, Soares MP, Wilhelm EA, Luchese C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer's disease model. Biomed Pharmacother 2018; 105:1006-1014. [PMID: 30021335 DOI: 10.1016/j.biopha.2018.06.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) at a dose of 1 mg/kg in memory impairment and anxiety in an Alzheimer's disease (AD) model induced by amyloid β-peptide (Aβ) (fragment 25-35) in mice. The involvement of acetylcholinesterase (AChE) activity and lipid peroxidation in hippocampus and cerebral cortex was evaluated. Male Swiss mice were pretreated with 4-PSQ (1 mg/kg, intragastrically (i.g.), daily) for fourteen days. Thirty minutes after the first treatment with 4-PSQ, the animals received a single injection of Aβ (3 nmol/3 μl/per site, intracerebroventricular (i.c.v.)). Mice were submitted to the behavioral tasks (open-field, elevated plus maze, Barnes maze, object recognition and location, and step-down inhibitory avoidance tests) from the fifth day onwards. On the fifteenth day, blood was removed for analysis of biochemical markers (glucose, triglycerides, urea, aspartate (AST) and alanine (ALT) aminotrasferases), and cerebral cortex and hippocampus for determination of AChE activity and thiobarbituric acid reactive species (TBARS) levels. Aβ caused memory impairment, anxiogenic behavior, increased AChE activity in the cerebral structures and TBARS levels in the cerebral cortex. 4-PSQ was effective to protect against behavioral changes, AChE activity and TBARS levels. In conclusion, 4-PSQ protected against learning and memory impairment and anxiety in a mouse model of AD induced by Aβ, and anticholinesterase and antioxidant actions are involved in the pharmacological effect of the compound.
Collapse
Affiliation(s)
- Mikaela P Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Angélica S Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Roberta Krüger
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Silvane S Roman
- Universidade Regional Integrada, Campus Erechim, CEP 99700-000, RS, Brazil
| | - Mauro P Soares
- Laboratório Regional de Diagnóstico Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, CEP: 96010-900, RS, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
45
|
N-oxide alkaloids from Crinum amabile (Amaryllidaceae). Molecules 2018; 23:molecules23061277. [PMID: 29861456 PMCID: PMC6099558 DOI: 10.3390/molecules23061277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 11/17/2022] Open
Abstract
Natural products play an important role in the development of new drugs. In this context, the Amaryllidaceae alkaloids have attracted considerable attention in view of their unique structural features and various biological activities. In this study, twenty-three alkaloids were identified from Crinum amabile by GC-MS and two new structures (augustine N-oxide and buphanisine N-oxide) were structurally elucidated by NMR. Anti-parasitic and cholinesterase (AChE and BuChE) inhibitory activities of six alkaloids isolated from this species, including the two new compounds, are described herein. None of the alkaloids isolated from C. amabile gave better results than the reference drugs, so it was possible to conclude that the N-oxide group does not increase their therapeutic potential.
Collapse
|
46
|
Sabolová D, Kristian P, Kožurková M. Multifunctional properties of novel tacrine congeners: cholinesterase inhibition and cytotoxic activity. J Appl Toxicol 2018; 38:1377-1387. [PMID: 29624715 DOI: 10.1002/jat.3622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022]
Abstract
This review describes the synthesis of a wide range of novel tetrahydroacridine derivatives (tiocyanates, selenocyanates, ureas, selenoureas, thioureas, isothioureas, disulfides, diselenides and several tacrine homo- and hetro-hybrids). These tacrine congeners exhibit significant anticholinesterase and cytotoxic properties and may therefore be of considerable potential for the development of new drugs for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Danica Sabolová
- Department of Biochemistry, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova, 11, Košice, Slovak Republic
| | - Pavol Kristian
- Department of Organic Chemistry, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova, 11, Košice, Slovak Republic
| | - Mária Kožurková
- Department of Biochemistry, Institute of Chemistry, P.J. Šafárik University Košice, Moyzesova, 11, Košice, Slovak Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, Hradec Kralove, Czech Republic
| |
Collapse
|
47
|
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder representing the leading cause of dementia and is affecting nearly 44 million people worldwide. AD is characterized by a progressive decline in acetylcholine levels in the cholinergic systems, which results in severe memory loss and cognitive impairments. Expression levels and activity of butyrylcholinesterase (BChE) enzyme has been noted to increase significantly in the late stages of AD, thus making it a viable drug target. A series of hydroxylated 2-phenylbenzofurans compounds were designed, synthesized and their inhibitory activities toward acetylcholinesterase (AChE) and BChE enzymes were evaluated. Two compounds (15 and 17) displayed higher inhibitory activity towards BChE with IC50 values of 6.23 μM and 3.57 μM, and a good antioxidant activity with EC50 values 14.9 μM and 16.7 μM, respectively. The same compounds further exhibited selective inhibitory activity against BChE over AChE. Computational studies were used to compare protein-binding pockets and evaluate the interaction fingerprints of the compound. Molecular simulations showed a conserved protein residue interaction network between the compounds, resulting in similar interaction energy values. Thus, combination of biochemical and computational approaches could represent rational guidelines for further structural modification of these hydroxy-benzofuran derivatives as future drugs for treatment of AD.
Collapse
|
48
|
Tetrahydroacridine derivatives with dichloronicotinic acid moiety as attractive, multipotent agents for Alzheimer's disease treatment. Eur J Med Chem 2018; 145:760-769. [DOI: 10.1016/j.ejmech.2018.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/26/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
|
49
|
Hu J, Pang WS, Han J, Zhang K, Zhang JZ, Chen LD. Gualou Guizhi decoction reverses brain damage with cerebral ischemic stroke, multi-component directed multi-target to screen calcium-overload inhibitors using combination of molecular docking and protein-protein docking. J Enzyme Inhib Med Chem 2017; 33:115-125. [PMID: 29185359 PMCID: PMC6009878 DOI: 10.1080/14756366.2017.1396457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Stroke is a disease of the leading causes of mortality and disability across the world, but the benefits of drugs curative effects look less compelling, intracellular calcium overload is considered to be a key pathologic factor for ischemic stroke. Gualou Guizhi decoction (GLGZD), a classical Chinese medicine compound prescription, it has been used to human clinical therapy of sequela of cerebral ischemia stroke for 10 years. This work investigated the GLGZD improved prescription against intracellular calcium overload could decreased the concentration of [Ca2+]i in cortex and striatum neurone of MCAO rats. GLGZD contains Trichosanthin and various small molecular that they are the potential active ingredients directed against NR2A, NR2B, FKBP12 and Calnodulin target proteins/enzyme have been screened by computer simulation. "Multicomponent systems" is capable to create pharmacological superposition effects. The Chinese medicine compound prescriptions could be considered as promising sources of candidates for discovery new agents.
Collapse
Affiliation(s)
- Juan Hu
- a Fujian Academy of Traditional Chinese Medicine , Fuzhou , PR China.,b School of Rehabilitation Medicine , Fujian University of Traditional Chinese Medicine , Fuzhou , PR China
| | - Wen-Sheng Pang
- b School of Rehabilitation Medicine , Fujian University of Traditional Chinese Medicine , Fuzhou , PR China.,c The Second People's Hospital of Fujian Province , Fuzhou , PR China
| | - Jing Han
- a Fujian Academy of Traditional Chinese Medicine , Fuzhou , PR China
| | - Kuan Zhang
- c The Second People's Hospital of Fujian Province , Fuzhou , PR China
| | - Ji-Zhou Zhang
- a Fujian Academy of Traditional Chinese Medicine , Fuzhou , PR China
| | - Li-Dian Chen
- a Fujian Academy of Traditional Chinese Medicine , Fuzhou , PR China.,b School of Rehabilitation Medicine , Fujian University of Traditional Chinese Medicine , Fuzhou , PR China
| |
Collapse
|
50
|
Skibiński R, Czarnecka K, Girek M, Bilichowski I, Chufarova N, Mikiciuk-Olasik E, Szymański P. Novel tetrahydroacridine derivatives with iodobenzoic acid moiety as multifunctional acetylcholinesterase inhibitors. Chem Biol Drug Des 2017; 91:505-518. [PMID: 28944565 DOI: 10.1111/cbdd.13111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/16/2017] [Accepted: 08/24/2017] [Indexed: 01/13/2023]
Abstract
New synthesized series of 9-amino-1,2,3,4-tetrahydroacridine derivatives with iodobenzoic acid moiety were studied for their inhibitory activity toward cholinesterase and against β-amyloid aggregation. All novel molecules 3a-3i interacted with both cholinesterases-acetylcholinesterase and butyrylcholinesterase-delivered nanomolar IC50 values. The structure-activity relationship showed that N-butyl moiety derivatives are stronger inhibitors toward AChE and BuChE than N-ethyl and N-propyl moieties compounds. The most potent compound toward acetylcholinesterase was inhibitor 3f (IC50 = 31.2 nm), and it was more active than reference drug, tacrine (IC50 = 100.2 nm). Compound 3f showed strong inhibition of butyrylcholinesterase (IC50 = 8.0 nm), also higher than tacrine (IC50 = 16.3 nm). In the kinetic studies, compound 3f revealed mixed type of acetylcholinesterase inhibition. The computer modeling was carried out. The most active compound 3f was confirmed as peripheral anionic site inhibitor of acetylcholinesterase. Moreover, molecule 3f inhibited β-amyloid aggregation (at the concentration 10 μm-24.96% of inhibition, 25 μm-72%, 50 μm-78.44%, and 100 μm-84.92%). Therefore, among all examined, compound 3f is the most promising molecule for further, more detailed research of novel multifunctional agents in the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Robert Skibiński
- Department of Medicinal Chemistry, Pharmaceutical Faculty, Medical University of Lublin, Lublin, Poland
| | - Kamila Czarnecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University, Łódź, Poland
| | - Małgorzata Girek
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University, Łódź, Poland
| | - Ireneusz Bilichowski
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University, Łódź, Poland
| | - Nina Chufarova
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University, Łódź, Poland
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University, Łódź, Poland
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University, Łódź, Poland
| |
Collapse
|