1
|
Temel H, Baydan E. Investigation of the In Vitro Antioxidant, Anticholinesterase, Antiurease, Antityrosinase, and Cytotoxic Properties of a Novel Compound: 4-Methoxy-2-(4-Methoxyphenyl)Benzo[d][1,3,2]Dioxaborole. Pharmacol Res Perspect 2025; 13:e70044. [PMID: 39786313 PMCID: PMC11716980 DOI: 10.1002/prp2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
In this study, the structure of a new boron compound obtained using 3-methoxy catechol and 4-methoxy phenyl boronic acid was characterized by 1H, 13C NMR, LC-MS-IT-TOF, UV-Vis and FTIR spectroscopy. The antioxidant activities of the newly synthesized compound were evaluated by DPPH free radical scavenging, ABTS quation radical scavenging and CUPRAC copper reducing capacity methods. Anticholinesterase activities were determined by acetylcholinesterase and butyrylcholinesterase enzyme inhibitor assays. Antiurease and antithyrosinase enzyme inhibition activities were also examined. Cytotoxic effects were evaluated on healthy cell lines and breast and colon cancer cell lines using MTT method. The results showed that the synthesized compound has high antioxidant activity. Especially the average antioxidant activity values obtained at 10 μg/mL concentration were found to be statistically significantly (p < 0.05) higher than the reference values of α-TOC and BHT. When the antioxidant activity data (IC50) were compared separately with α-TOC and BHT reference values, the new compound was found to be more effective. In acetylcholinesterase enzyme inhibition, the average activity values were found to be statistically significantly (p < 0.05) higher than the galantamine reference value. However, no statistically significant difference was observed at BChE (% inhibition) level with galantamine reference value. In terms of urease and tyrosinase enzyme inhibition activities, the urease activity of the synthesized compound was statistically significantly (p < 0.05) lower than the thiurea reference value. Tyrosinase activity was statistically significantly (p < 0.05) lower than kojic acid reference values. The synthesized and characterized compound was found to have no toxic effect on healthy cell lines and did not show any cytotoxic effect on breast cancer (MCF-7) and colon cancer (HT-29) cell lines.
Collapse
Affiliation(s)
- Hamdi Temel
- Department of Pharmacology, Faculty of MedicineYozgat Bozok UniversityYozgatTurkey
- Department of Pharmacology and Toxicology, Institute of Health SciencesAnkara UniversityAnkaraTurkey
| | - Emine Baydan
- Department of Pharmacology and Toxicology, Faculty of VeterinaryAnkara UniversityAnkaraTurkey
| |
Collapse
|
2
|
Haider MB, Saeed A, Ahmed A, Azeem M, Ismail H, Mehmood S, Taslimi P, Shah SAA, Irfan M, El-Seedi HR. Exploring Acyl Thiotriazinoindole Based Pharmacophores: Design, Synthesis, and SAR Studies with Molecular Docking and Biological Activity Profiling against Urease, α-amylase, α-glucosidase, Antimicrobial, and Antioxidant Targets. Protein J 2024; 43:1009-1024. [PMID: 39222239 DOI: 10.1007/s10930-024-10229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2024] [Indexed: 09/04/2024]
Abstract
A diminutive chemical library of acyl thiotriazinoindole (ATTI) based bioactive scaffolds was synthesized, instigated by taking the economical starting material Isatin, through a series of five steps. Isatin was first nitrated followed by the attachment of pentyl moiety via nucleophilic substitution reaction. The obtained compound was reacted with thiosemicarbazide to obtain thiosemicarbazone derivative, which was eventually cyclized using basic conditions in water as solvent. Finally, the reported series was obtained through reaction of nitrated thiotriazinoindole moiety with differently substituted phenacyl bromides. The synthesized compounds were characterized using NMR spectroscopy and elemental analysis. Finally, the synthesized motifs were scrutinized for their potential to impede urease, α-glucosidase, DPPH, and α-amylase. Compound 5 h with para cyano group manifested the most pivotal biological activity among all, displaying IC50 values of 29.7 ± 0.8, 20.5 ± 0.5 and 36.8 ± 3.9 µM against urease, α-glucosidase, and DPPH assay, respectively. Simultaneously, for α-amylase compound 5 g possessing a p-CH3 at phenyl ring unfolded as most active, with calculated IC50 values 90.3 ± 1.1 µM. The scaffolds were additionally gauged for their antifungal and antibacterial activity. Among the tested strains, 5d having bromo as substituent exhibited the most potent antibacterial activity, while it also demonstrated the highest potency against Aspergillus fumigatus. Other derivatives 5b, 5e, 5i, and 5j also exhibited dual inhibition against both antibacterial and antifungal strains. The interaction pattern of derivatives clearly displayed their SAR, and their docking scores were correlated with their IC50 values. In molecular docking studies, the importance of interactions like hydrogen bonding was further asserted. The electronic factors of various substituents engendered variety of interactions between the ligands and targets implying their importance in the structures of the synthesized heterocyclic scaffolds. To conclude, the synthesized compounds had satisfactory biological activity against various important targets. Further studies are therefore encouraged by attachment of different substitutions in the structure at various positions to enhance the activity of these compounds.
Collapse
Affiliation(s)
- Mian Bilal Haider
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Atteeque Ahmed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Azeem
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Sabba Mehmood
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100, Bartin, Turkey
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, 42300, Selangor Darul Ehsan, Malaysia
| | - Madiha Irfan
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia
| |
Collapse
|
3
|
Mohamed-Ezzat RA, Elgemeie GH. Novel synthesis of new triazine sulfonamides with antitumor, anti-microbial and anti-SARS-CoV-2 activities. BMC Chem 2024; 18:58. [PMID: 38532431 DOI: 10.1186/s13065-024-01164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Novel approach for synthesizing triazine sulfonamide derivatives is accomplished via reacting the sulfaguanidine derivatives with N-cyanodithioiminocarbonate. Further reaction of the novel triazine sulfonamide analogues with various secondary amines and anilines generated various substituted triazine sulfonamide analogues of promising broad-spectrum activities including anti-microbial, anti-tumor, and anti-viral properties. The in vitro anti-proliferative activities of most of the novel compounds were evaluated on the NCI-60 cell line panel. The antifungal and antibacterial activities of the compounds were also estimated. The anti-viral activity against SARS CoV-2 virus was performed using MTT cytotoxicity assay to evaluate the half-maximal cytotoxic concentration (CC50) and inhibitory concentration 50 (IC50) of a representative compound from the novel triazine sulfonamide category. Compound 3a demonstrated potent antiviral activity against SARS-CoV-2 with IC50 = 2.378 µM as compared to the activity of the antiviral drug remdesivir (IC50 = 10.11 µM). Our results indicate that, upon optimization, these new triazine sulfonamides could potentially serve as novel antiviral drugs.
Collapse
Affiliation(s)
- Reham A Mohamed-Ezzat
- Chemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Galal H Elgemeie
- Department of Chemistry, Faculty of Science, Helwan University, Helwan, Cairo, Egypt.
| |
Collapse
|
4
|
Zolghadri S, Beygi M, Mohammad TF, Alijanianzadeh M, Pillaiyar T, Garcia-Molina P, Garcia-Canovas F, Luis Munoz-Munoz J, Akbar Saboury A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem Pharmacol 2023; 212:115574. [PMID: 37127249 DOI: 10.1016/j.bcp.2023.115574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | - Mahdi Alijanianzadeh
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pablo Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Francisco Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Jose Luis Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, University of Northumbria, Newcastle Upon Tyne, UK
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Kciuk M, Mujwar S, Marciniak B, Gielecińska A, Bukowski K, Mojzych M, Kontek R. Genotoxicity of Novel Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides in Normal and Cancer Cells In Vitro. Int J Mol Sci 2023; 24:ijms24044053. [PMID: 36835469 PMCID: PMC9966268 DOI: 10.3390/ijms24044053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides constitute a novel group of heterocyclic compounds with broad biological activities including anticancer properties. The compounds investigated in this study (MM134, -6, -7, and 9) were found to have antiproliferative activity against BxPC-3 and PC-3 cancer cell lines in micromolar concentrations (IC50 0.11-0.33 µM). Here, we studied the genotoxic potential of the tested compounds with alkaline and neutral comet assays, accompanied by immunocytochemical detection of phosphorylated γH2AX. We found that pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides induce significant levels of DNA damage in BxPC-3 and PC-3 cells without causing genotoxic effects in normal human lung fibroblasts (WI-38) when used in their respective IC50 concentrations (except for MM134) and showed a dose-dependent increase in DNA damage following 24 h incubation of tested cancer cells with these agents. Furthermore, the influence of MM compounds on DNA damage response (DDR) factors was assessed using molecular docking and molecular dynamics simulation.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Correspondence:
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3 Maja 54, 08-110 Siedlce, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
6
|
Design, Synthesis and Evaluation of Vascular Endothelial Growth Factor Receptor Inhibitors for the Potential Treatment of Human Cancers. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Irshad S, Ahmad S, Khan MA, Aziz M, Ejaz SA, Elhadi M. 2‐Chloro‐5‐(1‐hydroxy‐3‐oxoisoindolin‐1‐yl)benzenesulfonamides as potential inhibitors of urease: Synthesis, in‐vitro and molecular modeling approach. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sajid Irshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Alternative Medicine The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Alternative Medicine The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Mohsin Abbas Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Alternative Medicine The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Alternative Medicine The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Alternative Medicine The Islamia University of Bahawalpur Bahawalpur Pakistan
| | - Muawya Elhadi
- Department of Physics, College of Science and Humanities Shaqra University Ad‐Dawadmi Saudi Arabia
| |
Collapse
|
8
|
Cephalosporin as Potent Urease and Tyrosinase Inhibitor: Exploration through Enzyme Inhibition, Kinetic Mechanism, and Molecular Docking Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1092761. [PMID: 35937399 PMCID: PMC9352478 DOI: 10.1155/2022/1092761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
In present study, eleven cephalosporin drugs were selected to explore their new medically important enzyme targets with inherited safety advantage. To this end, selected drugs with active ingredient, cefpodoxime proxetil, ceftazidime, cefepime, ceftriaxone sodium, cefaclor, cefotaxime sodium, cefixime trihydrate, cephalexin, cefadroxil, cephradine, and cefuroxime, were evaluated and found to have significant activity against urease (IC50 = 0.06 ± 0.004 to 0.37 ± 0.046 mM) and tyrosinase (IC50 = 0.01 ± 0.0005 to 0.12 ± 0.017 mM) enzymes. Urease activity was lower than standard thiourea; however, tyrosinase activity of all drugs outperforms (ranging 6 to 18 times) the positive control: hydroquinone (IC50 = 0.18 ± 0.02 mM). Moreover, the kinetic analysis of the most active drugs, ceftriaxone sodium and cefotaxime sodium, revealed that they bind irreversibly with both the enzymes; however, their mode of action was competitive for urease and mixed-type, preferentially competitive for tyrosinase enzyme. Like in vitro activity, ceftriaxone sodium and cefotaxime sodium docking analysis showed their considerable binding affinity and significant interactions with both urease and tyrosinase enzymes sufficient for downstream signaling responsible for observed enzyme inhibition in vitro, purposing them as potent candidates to control enzyme-rooted obstructions in future.
Collapse
|
9
|
Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Cytotoxic and Genotoxic Activities In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123761. [PMID: 35744887 PMCID: PMC9229263 DOI: 10.3390/molecules27123761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
In this paper, we present for the first time the evaluation of cytotoxicity and genotoxicity of de novo synthesized pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides MM129, MM130, and MM131 in human tumor cell lines: HeLa, HCT 116, PC-3, and BxPC-3. Cytotoxic and genotoxic properties of the tested compounds were estimated using the MTT assay, comet assay (alkaline and neutral version), and γ-H2AX immuno-staining. Examined sulfonamides exhibited strong anticancer properties towards tested cells in a very low concentration range (IC50 = 0.17-1.15 μM) after 72 h exposure time. The results of the alkaline and neutral version of the comet assay following 24 h incubation of the cells with tested compounds demonstrated the capability of heterocycles to induce significant DNA damage in exposed cells. HCT 116 cells were the most sensitive to the genotoxic activity of novel tricyclic pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides in the neutral version of the comet assay. Immunocytochemical detection of γ-H2AX showed an increase in DNA DSBs level in the HCT 116 cell line, after 24 h incubation with all tested compounds, confirming the results obtained in the neutral comet assay. Among all investigated compounds, MM131 showed the strongest cytotoxic and genotoxic activity toward all tested cell types. In conclusion, our results suggest that MM129, MM130, and MM131 exhibit high cytotoxic and genotoxic potential in vitro, especially towards the colorectal cancer cell line HCT 116. However, further investigations and analyses are required for their future implementation in the field of medicine.
Collapse
|
10
|
Korkmaz A, Bursal E. Synthesis, Biological Activity and Molecular Docking Studies of Novel Sulfonate Derivatives Bearing Salicylaldehyde. Chem Biodivers 2022; 19:e202200140. [PMID: 35561156 DOI: 10.1002/cbdv.202200140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/13/2022] [Indexed: 12/17/2022]
Abstract
Enzyme activity alterations have been associated with many metabolism disorders and have crucial roles in the pathogenesis of some diseases. Tyrosinase is a key enzyme in melanin biosynthesis, which is responsible for skin pigmentation to protect the skin from solar radiation. Pancreatic lipase has been considered a key enzyme for the treatment of obesity. Herein, we reported the synthesis and enzyme inhibitions of a series of sulfonates as possible tyrosinase and pancreatic lipase inhibitors. According to the calculated IC50 values, compound 3f (74.1±11.1 μM) and compound 3c (86.6±6.9 μM) were determined to be the best inhibitors among the synthesized compounds for the tyrosinase and pancreatic lipase enzymes, respectively. The approach yielded at extremely high level by creating very flexible structural domains for the chemically modified groups. The structural characterization of the target molecules was implemented by 1 H-NMR, 13 C-NMR, and HR-MS analyses. Also, molecular docking studies of the synthesized compounds with tyrosinase and pancreatic lipase enzymes were conducted using AutoDock Vina software. Additionally, the studies of the absorption distribution, metabolism, and excretion (ADME) were performed to uncover the target compounds' pharmacokinetics, drug similarities, and medicinal properties of the novel sulfonate derivatives bearing salicylaldehyde.
Collapse
Affiliation(s)
- Adem Korkmaz
- Faculty of Health Sciences, Muş Alparslan University, Muş, 49250, Turkey
| | - Ercan Bursal
- Faculty of Health Sciences, Muş Alparslan University, Muş, 49250, Turkey
| |
Collapse
|
11
|
Preparation of Novel Pyrazolo[4,3- e]tetrazolo[1,5- b][1,2,4]triazine Sulfonamides and Their Experimental and Computational Biological Studies. Int J Mol Sci 2022; 23:ijms23115892. [PMID: 35682571 PMCID: PMC9180621 DOI: 10.3390/ijms23115892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine sulfonamides constitute a novel class of heterocyclic compounds with broad biological activity, including anticancer properties. Investigated in this study, MM-compounds (MM134, MM136, MM137, and MM139) exhibited cytotoxic and proapoptotic activity against cancer cell lines (BxPC-3, PC-3, and HCT-116) in nanomolar concentrations without causing cytotoxicity in normal cells (L929 and WI38). In silico predictions indicate that tested compounds exhibit favorable pharmacokinetic profiles and may exert anticancer activity through the inhibition of BTK kinase, the AKT-mTOR pathway and PD1-PD-L1 interaction. Our findings point out that these sulfonamide derivatives may constitute a source of new anticancer drugs after optimization.
Collapse
|
12
|
Alizadeh SR, Ebrahimzadeh MA. Pyrazolotriazines: Biological activities, synthetic strategies and recent developments. Eur J Med Chem 2021; 223:113537. [PMID: 34147747 DOI: 10.1016/j.ejmech.2021.113537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Heterocyclic compounds create an important class of molecules that demonstrates various chemical spaces for the definition of effective medicines. Many N-heterocycles display numerous biological activities. Among condensed heterocycles, pyrazolotriazine derivatives have received the attention of researchers owing to the extensive spectrum of biological activities. The reactivity of identified compounds was similar to the free azoles and triazines. The pyrazolotriazine scaffold exhibited antiasthma, antiinflammatory, anticancer, antithrombogenic activity and showed activity for major depression and pathological anxiety. Pyrazolotriazine derivatives also exhibited antibacterial, anticancer, antimetabolites, antidiabetic, antiamoebic, anticonvulsant, antiproliferative activity, human carbonic anhydrase inhibition, cyclin-dependent kinase 2 inhibition, tyrosinase and urease inhibition, MAO-B inhibition, TTK inhibition, thymidine phosphorylase inhibition, tubulin polymerization inhibition, protoporphyrinogen oxidase inhibition, GABAA agonistic activity, hCRF1 receptor antagonistic activity, and CGRP receptor antagonistic activity. This paper structurally categorized various pyrazolotriazines to isomeric classes into six groups that containing pyrazolo [1,5-d] [1,2,4] triazine, pyrazolo [5,1-c] [1,2,4] triazine, pyrazolo [3,4-e] [1,2,4] triazine, pyrazolo [4,3-e] [1,2,4] triazines, pyrazolo [1,5-a] [1,3,5] triazine, and pyrazolo [3,4-d] [1,2,3] triazine and expressed biological activity, the synthetic procedures for each class of pyrazolotriazines, structure-activity relationship and their mechanism of action. Generally, this review summarily indicated the past and present studies about the discovery of new lead compounds with good biological activity.
Collapse
Affiliation(s)
- Seyedeh Roya Alizadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
13
|
Peng Z, Wang G, Zeng QH, Li Y, Liu H, Wang JJ, Zhao Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit Rev Food Sci Nutr 2021; 62:4053-4094. [PMID: 33459057 DOI: 10.1080/10408398.2021.1871724] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tyrosinase is a copper-containing oxidation enzyme, which is responsible for the production of melanin. This enzyme is widely distributed in microorganisms, animals and plants, and plays an essential role in undesirable browning of fruits and vegetables, antibiotic resistance, skin pigment formation, sclerotization of cuticle, neurodegeneration, etc. Hence, it has been recognized as a therapeutic target for the development of antibrowning agents, antibacterial agents, skin-whitening agents, insecticides, and other therapeutic agents. With great potential application in food, agricultural, cosmetic and pharmaceutical industries, a large number of synthetic tyrosinase inhibitors have been widely reported in recent years. In this review, we systematically summarized the advances of synthetic tyrosinase inhibitors in the literatures, including their inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibition kinetics, and interaction mechanisms with the enzyme. The collected information is expected to provide a rational guidance and effective strategy to develop novel, potent and safe tyrosinase inhibitors for better practical applications in the future.
Collapse
Affiliation(s)
- Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Yufeng Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Department of Food Science, Foshan University, Foshan, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China.,Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|
14
|
Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorg Chem 2020; 102:104057. [DOI: 10.1016/j.bioorg.2020.104057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/04/2020] [Accepted: 06/26/2020] [Indexed: 01/24/2023]
|
15
|
The Effect of Novel 7-methyl-5-phenyl-pyrazolo[4,3- e]tetrazolo[4,5- b][1,2,4]triazine Sulfonamide Derivatives on Apoptosis and Autophagy in DLD-1 and HT-29 Colon Cancer Cells. Int J Mol Sci 2020; 21:ijms21155221. [PMID: 32717981 PMCID: PMC7432848 DOI: 10.3390/ijms21155221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
The discovery of cytotoxic drugs is focused on designing a compound structure that directly affects cancer cells without an impact on normal cells. The mechanism of anticancer activity is mainly related with activation of apoptosis. However, recent scientific reports show that autophagy also plays a crucial role in cancer cell progression. Thus, the objective of this study was to synthesize 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine utilizing nucleophilic substitution reaction at the position N1. The biological activity of tested compounds was assessed in DLD-1 and HT-29 cell lines. The induction of apoptosis was confirmed by Annexin V binding assay and acridine orange/ethidium bromide staining. The loss of mitochondrial membrane potential and caspase-8 activity was estimated using cytometer flow analysis. The concentration of p53, LC3A, LC3B and beclin-1 was measured using the ELISA technique. Our study revealed that anticancer activity of 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine derivatives is related with initiation of apoptosis occur on the intrinsic pathway with mitochondrial membrane decrease and extrinsic with increase of activity of caspase-8. Moreover, a decrease in beclin-1, LC3A, and LC3B were observed in two cell lines after treatment with novel compounds. This study showed that novel 7-methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine derivatives might be a potential strategy in colon cancer treatment.
Collapse
|
16
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 547] [Impact Index Per Article: 91.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Sahoo CR, Paidesetty SK, Padhy RN. Nornostocine congeners as potential anticancer drugs: An overview. Drug Dev Res 2019. [DOI: 10.1002/ddr.21577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Chita R. Sahoo
- Central Research Laboratory, Institute of Medical Sciences & Sum HospitalSiksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar Odisha India
- Department of Medicinal Chemistry, School of Pharmaceutical SciencesSiksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| | - Sudhir K. Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical SciencesSiksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| | - Rabindra N. Padhy
- Central Research Laboratory, Institute of Medical Sciences & Sum HospitalSiksha ‘O’ Anusandhan (Deemed to be University) Bhubaneswar Odisha India
| |
Collapse
|
18
|
Hanif M, Kanwal F, Rafiq M, Hassan M, Mustaqeem M, Seo SY, Zhang Y, Lu C, Chen T, Saleem M. Symmetrical Heterocyclic Cage Skeleton: Synthesis, Urease Inhibition Activity, Kinetic Mechanistic Insight, and Molecular Docking Analyses. Molecules 2019; 24:E312. [PMID: 30654516 PMCID: PMC6359172 DOI: 10.3390/molecules24020312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/30/2022] Open
Abstract
The present study focuses on the design and synthesis of a cage-like organic skeleton containing two triazole rings jointed via imine linkage. These molecules can act as urease inhibitors. The in-vitro urease inhibition screening results showed that the combination of the two triazole skeleton in the cage-like morphology exhibited comparable urease inhibition activity to that of the reference thiourea while the metallic complexation, especially with copper, nickel, and palladium, showed excellent activity results with IC50 values of 0.94 ± 0.13, 3.71 ± 0.61, and 7.64 ± 1.21 (3a⁻c), and 1.20 ± 0.52, 3.93 ± 0.45, and 12.87 ± 2.11 µM (4a⁻c). However, the rest of compounds among the targeted series exhibited a low to moderate enzyme inhibition potential. To better understand the compounds' underlying mechanisms of the inhibitory effect (3a and 4a) and their most active metal complexes (3b and 4b), we performed an enzymatic kinetic analysis using the Lineweaver⁻Burk plot in the presence of different concentrations of inhibitors to represent the non-competitive inhibition nature of the compounds, 3a, 4a, and 4b, while mixed type inhibition was represented by the compound, 3b. Moreover, molecular docking confirmed the binding interactive behavior of 3a within the active site of the target protein.
Collapse
Affiliation(s)
- Muhammad Hanif
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
- Department of Chemistry, GC University Faisalabad, Sub campus Layyah 31200, Pakistan.
| | - Fariha Kanwal
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan.
| | - Mubashir Hassan
- College of Natural Science, Department of Biology, Kongju National University, Gongju, Chungcheongnam 32588, Korea.
| | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha, Sub-campus Bhakkar 30000, Pakistan.
| | - Sung-Yum Seo
- College of Natural Science, Department of Biology, Kongju National University, Gongju, Chungcheongnam 32588, Korea.
| | - Yunlong Zhang
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Changrui Lu
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Ting Chen
- State Key Laboratory for Modification of Chemicals Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| | - Muhammad Saleem
- Department of Chemistry, University of Sargodha, Sub-campus Bhakkar 30000, Pakistan.
| |
Collapse
|
19
|
Rego YF, Queiroz MP, Brito TO, Carvalho PG, de Queiroz VT, de Fátima Â, Macedo Jr. F. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J Adv Res 2018; 13:69-100. [PMID: 30094084 PMCID: PMC6077150 DOI: 10.1016/j.jare.2018.05.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/24/2023] Open
Abstract
Ureases are enzymes that hydrolyze urea into ammonium and carbon dioxide. They have received considerable attention due to their impacts on living organism health, since the urease activity in microorganisms, particularly in bacteria, are potential causes and/or factors contributing to the persistence of some pathogen infections. This review compiles examples of the most potent antiurease organic substances. Emphasis was given to systematic screening studies on the inhibitory activity of rationally designed series of compounds with the corresponding SAR considerations. Ureases of Canavalia ensiformis, the usual model in antiureolytic studies, are emphasized. Although the active site of this class of hydrolases is conserved among bacteria and vegetal ureases, the same is not observerd for allosteric site. Therefore, inhibitors acting by participating in interactions with the allosteric site are more susceptible to a potential lack of association among their inhibitory profile for different ureases. The information about the inhibitory activity of different classes of compounds can be usefull to guide the development of new urease inhibitors that may be used in future in small molecular therapy against pathogenic bacteria.
Collapse
Affiliation(s)
- Yuri F. Rego
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo P. Queiroz
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tiago O. Brito
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Priscila G. Carvalho
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Vagner T. de Queiroz
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando Macedo Jr.
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
20
|
Li Q, Yang H, Mo J, Chen Y, Wu Y, Kang C, Sun Y, Sun H. Identification by shape-based virtual screening and evaluation of new tyrosinase inhibitors. PeerJ 2018; 6:e4206. [PMID: 29383286 PMCID: PMC5788061 DOI: 10.7717/peerj.4206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022] Open
Abstract
Targeting tyrosinase is considered to be an effective way to control the production of melanin. Tyrosinase inhibitor is anticipated to provide new therapy to prevent skin pigmentation, melanoma and neurodegenerative diseases. Herein, we report our results in identifying new tyrosinase inhibitors. The shape-based virtual screening was performed to discover new tyrosinase inhibitors. Thirteen potential hits derived from virtual screening were tested by biological determinations. Compound 5186-0429 exhibited the most potent inhibitory activity. It dose-dependently inhibited the activity of tyrosinase, with the IC50 values 6.2 ± 2.0 µM and 10.3 ± 5.4 µM on tyrosine and L-Dopa formation, respectively. The kinetic study of 5186-0429 demonstrated that this compound acted as a competitive inhibitor. We believe the discoveries here could serve as a good starting point for further design of potent tyrosinase inhibitor.
Collapse
Affiliation(s)
- Qi Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Hongyu Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Jun Mo
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Wu
- Nanjing Duoyuan Biochemistry Co., Ltd., Nanjing, China
| | - Chen Kang
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States of America
| | - Yuan Sun
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, United States of America
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Sulfonamide-Linked Ciprofloxacin, Sulfadiazine and Amantadine Derivatives as a Novel Class of Inhibitors of Jack Bean Urease; Synthesis, Kinetic Mechanism and Molecular Docking. Molecules 2017; 22:molecules22081352. [PMID: 28813027 PMCID: PMC6152116 DOI: 10.3390/molecules22081352] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/09/2017] [Indexed: 01/19/2023] Open
Abstract
Sulfonamide derivatives serve as an important building blocks in the drug design discovery and development (4D) process. Ciprofloxacin-, sulfadiazine- and amantadine-based sulfonamides were synthesized as potent inhibitors of jack bean urease and free radical scavengers. Molecular diversity was explored and electronic factors were also examined. All 24 synthesized compounds exhibited excellent potential against urease enzyme. Compound 3e (IC50 = 0.081 ± 0.003 µM), 6a (IC50 = 0.0022 ± 0.0002 µM), 9e (IC50 = 0.0250 ± 0.0007 µM) and 12d (IC50 = 0.0266 ± 0.0021 µM) were found to be the lead compounds compared to standard (thiourea, IC50 = 17.814 ± 0.096 µM). Molecular docking studies were performed to delineate the binding affinity of the molecules and a kinetic mechanism of enzyme inhibition was propounded. Compounds 3e, 6a and 12d exhibited a mixed type of inhibition, while derivative 9e revealed a non-competitive mode of inhibition. Compounds 12a, 12b, 12d, 12e and 12f showed excellent radical scavenging potency in comparison to the reference drug vitamin C.
Collapse
|