1
|
De Luca V, Giovannuzzi S, Supuran CT, Capasso C. A comprehensive investigation of the anion inhibition profile of a β-carbonic anhydrase from Acinetobacter baumannii for crafting innovative antimicrobial treatments. J Enzyme Inhib Med Chem 2024; 39:2372731. [PMID: 39012078 PMCID: PMC467105 DOI: 10.1080/14756366.2024.2372731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024] Open
Abstract
This study refers to the intricate world of Acinetobacter baumannii, a resilient pathogenic bacterium notorious for its propensity at antibiotic resistance in nosocomial infections. Expanding upon previous findings that emphasised the bifunctional enzyme PaaY, revealing unexpected γ-carbonic anhydrase (CA) activity, our research focuses on a different class of CA identified within the A. baumannii genome, the β-CA, designated as 𝛽-AbauCA (also indicated as CanB), which plays a crucial role in the resistance mechanism mediated by AmpC beta-lactamase. Here, we cloned, expressed, and purified the recombinant 𝛽-AbauCA, unveiling its distinctive kinetic properties and inhibition profile with inorganic anions (classical CA inhibitors). The exploration of 𝛽-AbauCA not only enhances our understanding of the CA repertoire of A. baumannii but also establishes a foundation for targeted therapeutic interventions against this resilient pathogen, promising advancements in combating its adaptability and antibiotic resistance.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, Naples, Italy
| |
Collapse
|
2
|
Luca VD, Giovannuzzi S, Capasso C, Supuran CT. Sulfonamide-Based Inhibition of the β-Carbonic Anhydrase from A. baumannii, a Multidrug-Resistant Bacterium. Int J Mol Sci 2024; 25:12291. [PMID: 39596360 PMCID: PMC11594608 DOI: 10.3390/ijms252212291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative opportunistic pathogen responsible for severe hospital-associated infections. Owing to its ability to develop resistance to a wide range of antibiotics, novel therapeutic strategies are urgently needed. One promising approach is to target bacterial carbonic anhydrases (CAs; EC 4.2.1.1), which are enzymes critical for various metabolic processes. The genome of A. baumannii encodes a β-CA (βAbauCA), which is essential for producing bicarbonate ions required in the early stages of uridine triphosphate (UTP) synthesis, a precursor for the synthesis of peptidoglycans, which are vital components of the bacterial cell wall. This study aimed to inhibit βAbauCA in vitro, with the potential to impair the vitality of the pathogen in vivo. We conducted sequence and structural analyses of βAbauCA to explore its differences from those of human CAs. Additionally, kinetic and inhibition studies were performed to investigate the catalytic efficiency of βAbauCAβ and its interactions with sulfonamides and their bioisosteres, classical CA inhibitors. Our results showed that βAbauCA has a turnover rate higher than that of hCA I but lower than that of hCA II and displays distinct inhibition profiles compared to human α-CAs. Based on the obtained data, there are notable differences between the inhibition profiles of the human isoforms CA I and CA II and bacterial βAbauCA. This could open the door to designing inhibitors that selectively target bacterial β-CAs without affecting human α-CAs, as well as offer a novel strategy to weaken A. baumannii and other multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy;
| | - Simone Giovannuzzi
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.G.); (C.T.S.)
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, National Research Council (CNR), Institute of Biosciences and Bioresources, 80131 Naples, Italy;
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.G.); (C.T.S.)
| |
Collapse
|
3
|
Arora A, Lashani E, Turner RJ. Bacterial synthesis of metal nanoparticles as antimicrobials. Microb Biotechnol 2024; 17:e14549. [PMID: 39150434 PMCID: PMC11328525 DOI: 10.1111/1751-7915.14549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Nanoscience, a pivotal field spanning multiple industries, including healthcare, focuses on nanomaterials characterized by their dimensions. These materials are synthesized through conventional chemical and physical methods, often involving costly and energy-intensive processes. Alternatively, biogenic synthesis using bacteria, fungi, or plant extracts offers a potentially sustainable and non-toxic approach for producing metal-based nanoparticles (NP). This eco-friendly synthesis approach not only reduces environmental impact but also enhances features of NP production due to the unique biochemistry of the biological systems. Recent advancements have shown that along with chemically synthesized NPs, biogenic NPs possess significant antimicrobial properties. The inherent biochemistry of bacteria enables the efficient conversion of metal salts into NPs through reduction processes, which are further stabilized by biomolecular capping layers that improve biocompatibility and functional properties. This mini review explores the use of bacteria to produce NPs with antimicrobial activities. Microbial technologies to produce NP antimicrobials have considerable potential to help address the antimicrobial resistance crisis, thus addressing critical health issues aligned with the United Nations Sustainability Goal #3 of good health and well-being.
Collapse
Affiliation(s)
- Anika Arora
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Elham Lashani
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Raymond J. Turner
- Department of Biological SciencesUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
4
|
Supuran CT. Challenges for developing bacterial CA inhibitors as novel antibiotics. Enzymes 2024; 55:383-411. [PMID: 39222998 DOI: 10.1016/bs.enz.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Acetazolamide, methazolamide, ethoxzolamide and dorzolamide, classical sulfonamide carbonic anhydrase (CA) inhibitors (CAIs) designed for targeting human enzymes, were also shown to effectively inhibit bacterial CAs and were proposed for repurposing as antibacterial agents against several infective agents. CAs belonging to the α-, β- and/or γ-classes from pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, vacomycin resistant enterococci (VRE), Vibrio cholerae, Mycobacterium tuberculosis, Pseudomonas aeruginosa and other bacteria were considered as drug targets for which several classes of potent inhibitors have been developed. Treatment of some of these pathogens with various classes of such CAIs led to an impairment of the bacterial growth, reduced virulence and for drug resistant bacteria, a resensitization to clinically used antibiotics. Here I will discuss the strategies and challenges for obtaining CAIs with enhanced selectivity for inhibiting bacterial versus human enzymes, which may constitute an important weapon for addressing the drug resistance to β-lactams and other clinically used antibiotics.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
5
|
Gheibzadeh MS, Capasso C, Supuran CT, Zolfaghari Emameh R. Antibacterial carbonic anhydrase inhibitors targeting Vibrio cholerae enzymes. Expert Opin Ther Targets 2024; 28:623-635. [PMID: 39028535 DOI: 10.1080/14728222.2024.2369622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/14/2024] [Indexed: 07/20/2024]
Abstract
INTRODUCTION Cholera is a bacterial diarrheal disease caused by pathogen bacteria Vibrio cholerae, which produces the cholera toxin (CT). In addition to improving water sanitation, oral cholera vaccines have been developed to control infection. Besides, rehydration and antibiotic therapy are complementary treatment strategies for cholera. ToxT regulatory protein activates transcription of CT gene, which is enhanced by bicarbonate (HCO3-). AREAS COVERED This review delves into the genomic blueprint of V. cholerae, which encodes for α-, β-, and γ- carbonic anhydrases (CAs). We explore how the CAs contribute to the pathogenicity of V. cholerae and discuss the potential of CA inhibitors in mitigating the disease's impact. EXPERT OPINION CA inhibitors can reduce the virulence of bacteria and control cholera. Here, we reviewed all reported CA inhibitors, noting that α-CA from V. cholerae (VchCAα) was the most effective inhibited enzyme compared to the β- and γ-CA families (VchCAβ and VchCAγ). Among the CA inhibitors, acyl selenobenzenesulfonamidenamides and simple/heteroaromatic sulfonamides were the best VchCA inhibitors in the nM range. It was noted that some antibacterial compounds show good inhibitory effects on all three bacterial CAs. CA inhibitors belonging to other classes may be synthesized and tested on VchCAs to harness cholera.
Collapse
Affiliation(s)
- Mohammad Sadegh Gheibzadeh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, CNR, Napoli, Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Firenze, Italy
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
6
|
Bonardi A, Nocentini A, Giovannuzzi S, Paoletti N, Ammara A, Bua S, Abutaleb NS, Abdelsattar AS, Capasso C, Gratteri P, Flaherty DP, Seleem MN, Supuran CT. Development of Penicillin-Based Carbonic Anhydrase Inhibitors Targeting Multidrug-Resistant Neisseria gonorrhoeae. J Med Chem 2024; 67:9613-9627. [PMID: 38776401 DOI: 10.1021/acs.jmedchem.4c00740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of antibacterial drugs with new mechanisms of action is crucial in combating the rise of antibiotic-resistant infections. Bacterial carbonic anhydrases (CAs, EC 4.2.1.1) have been validated as promising antibacterial targets against pathogens such as Helicobacter pylori, Neisseria gonorrhoeae, and vancomycin-resistant enterococci. A multitarget strategy is proposed to design penicillin-based CA inhibitor hybrids for tackling resistance by targeting multiple bacterial pathways, thereby resensitizing drug-resistant strains to clinical antibiotics. The sulfonamide derivatives potently inhibited the CAs from N. gonorrhoeae and Escherichia coli with KI values in the range of 7.1-617.2 nM. Computational simulations with the main penicillin-binding protein (PBP) of N. gonorrhoeae indicated that these hybrid derivatives maintained the mechanism of action of the lead β-lactams. A subset of derivatives showed potent PBP-related antigonococcal effects against multidrug-resistant N. gonorrhoeae strains, with several compounds significantly outperforming both the lead β-lactam and CA inhibitor drugs (MIC values in the range 0.25 to 0.5 μg/mL).
Collapse
Affiliation(s)
- Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Simone Giovannuzzi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Niccolò Paoletti
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Andrea Ammara
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Silvia Bua
- Research Institute of the University of Bucharest (ICUB), Bucharest 050663, Romania
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Abdallah S Abdelsattar
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| | - Daniel P Flaherty
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section and Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
7
|
Supuran CT. Fighting antibacterial drug resistance. Expert Opin Ther Pat 2024; 34:397-400. [PMID: 38866729 DOI: 10.1080/13543776.2024.2367940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Turner RJ. The good, the bad, and the ugly of metals as antimicrobials. Biometals 2024; 37:545-559. [PMID: 38112899 PMCID: PMC11101337 DOI: 10.1007/s10534-023-00565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
We are now moving into the antimicrobial resistance (AMR) era where more antibiotic resistant bacteria are now the majority, a problem brought on by both misuse and over use of antibiotics. Unfortunately, the antibiotic development pipeline dwindled away over the past decades as they are not very profitable compounds for companies to develop. Regardless researchers over the past decade have made strides to explore alternative options and out of this we see revisiting historical infection control agents such as toxic metals. From this we now see a field of research exploring the efficacy of metal ions and metal complexes as antimicrobials. Such antimicrobials are delivered in a variety of forms from metal salts, alloys, metal complexes, organometallic compounds, and metal based nanomaterials and gives us the broad term metalloantimicrobials. We now see many effective formulations applied for various applications using metals as antimicrobials that are effective against drug resistant strains. The purpose of the document here is to step aside and begin a conversation on the issues of use of such toxic metal compounds against microbes. This critical opinion mini-review in no way aims to be comprehensive. The goal here is to understand the benefits of metalloantimicrobials, but also to consider strongly the disadvantages of using metals, and what are the potential consequences of misuse and overuse. We need to be conscious of the issues, to see the entire system and affect through a OneHealth vision.
Collapse
Affiliation(s)
- Raymond J Turner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, Canada.
| |
Collapse
|
9
|
Pisano L, Giovannuzzi S, Supuran CT. Management of Neisseria gonorrhoeae infection: from drug resistance to drug repurposing. Expert Opin Ther Pat 2024; 34:511-524. [PMID: 38856987 DOI: 10.1080/13543776.2024.2367005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management. AREAS COVERED New chemotypes for the classical antibiotic drug target gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, with an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target. EXPERT OPINION By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity in these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25-4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might thus be repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.
Collapse
Affiliation(s)
- Luigi Pisano
- Section of Dermatology, Health Sciences Department, University of Florence, Florence, Italy
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Cerna‐Vargas JP, Krell T. Exploring solute binding proteins in Pseudomonas aeruginosa that bind to γ-aminobutyrate and 5-aminovalerate and their role in activating sensor kinases. Microbiologyopen 2024; 13:e1415. [PMID: 38780167 PMCID: PMC11113362 DOI: 10.1002/mbo3.1415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The standard method of receptor activation involves the binding of signals or signal-loaded solute binding proteins (SBPs) to sensor domains. Many sensor histidine kinases (SHKs), which are activated by SBP binding, are encoded adjacent to their corresponding sbp gene. We examined three SBPs of Pseudomonas aeruginosa PAO1, encoded near the genes for the AgtS (PA0600) and AruS (PA4982) SHKs, to determine how common this arrangement is. Ligand screening and microcalorimetric studies revealed that the SBPs PA0602 and PA4985 preferentially bind to GABA (KD = 2.3 and 0.58 μM, respectively), followed by 5-aminovalerate (KD = 30 and 1.6 μM, respectively) and ethanoldiamine (KD = 2.3 and 0.58 μM, respectively). In contrast, AgtB (PA0604) exclusively recognizes 5-aminovaleric acid (KD = 2.9 μM). However, microcalorimetric titrations did not show any binding between the AgtS sensor domain and AgtB or PA0602, regardless of the presence of ligands. Similarly, bacterial two-hybrid assays did not demonstrate an interaction between PA4985 and the AruS sensor domain. Therefore, sbp and shk genes located nearby are not always functionally linked. We previously identified PA0222 as a GABA-specific SBP. The presence of three SBPs for GABA may be linked to GABA's role as a trigger for P. aeruginosa virulence.
Collapse
Affiliation(s)
- Jean Paul Cerna‐Vargas
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones CientíficasParque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de AlarcónMadridSpain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del ZaidínConsejo Superior de Investigaciones CientíficasGranadaSpain
| |
Collapse
|
11
|
Bernardoni BL, D'Agostino I, La Motta C, Angeli A. An insight into the last 5-year patents on Porphyromonas gingivalis and Streptococcus mutans, the pivotal pathogens in the oral cavity. Expert Opin Ther Pat 2024; 34:433-463. [PMID: 38684444 DOI: 10.1080/13543776.2024.2349739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION The oral cavity harbors an extensive array of over 700 microorganisms, forming the most complex biome of the entire human body, with bacterial species being the most abundant. Oral diseases, e.g. periodontitis and caries, are strictly associated with bacterial dysbiosis. Porphyromonas gingivalis and Streptococcus mutans stand out among bacteria colonizing the oral cavity. AREAS COVERED After a brief overview of the bacterial populations in the oral cavity and their roles in regulating (flora) oral cavity or causing diseases like periodontal and cariogenic pathogens, we focused our attention on P. gingivalis and S. mutans, searching for the last-5-year patents dealing with the proposal of new strategies to fight their infections. Following the PRISMA protocol, we filtered the results and analyzed over 100 applied/granted patents, to provide an in-depth insight into this R&D scenario. EXPERT OPINION Several antibacterial proposals have been patented in this period, from both chemical - peptides and small molecules - and biological - probiotics and antibodies - sources, along with natural extracts, polymers, and drug delivery systems. Most of the inventors are from China and Korea and their studies also investigated anti-inflammatory and antioxidant effects, being beneficial to oral health through a prophylactic, protective, or curative effect.
Collapse
Affiliation(s)
| | | | | | - Andrea Angeli
- Neurofarba Department, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Supuran CT. Novel carbonic anhydrase inhibitors for the treatment of Helicobacter pylori infection. Expert Opin Investig Drugs 2024; 33:523-532. [PMID: 38517734 DOI: 10.1080/13543784.2024.2334714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Helicobacter pylori, the causative agent of peptic ulcer, gastritis, and gastric cancer encodes two carbonic anhydrases (CA, EC 4.2.1.1) belonging to the α- and β-class (HpCAα/β), which have been validated as antibacterial drug targets. Acetazolamide and ethoxzolamide were also clinically used for the management of peptic ulcer. AREAS COVERED Sulfonamides were the most investigated HpCAα/β compounds, with several low nanomolar inhibitors identified, some of which also crystallized as adducts with HpCAα, allowing for the rationalization of the structure-activity relationship. Few data are available for other classes of inhibitors, such as phenols, sulfamides, sulfamates, dithiocarbamates, arylboronic acids, some of which showed effective in vitro inhibition and for phenols, also inhibition of planktonic growth, biofilm formation, and outer membrane vesicles spawning. EXPERT OPINION Several recent drug design studies reported selenazoles incorporating seleno/telluro-ethers attached to benzenesulfonamides, hybrids incorporating the EGFR inhibitor erlotinib and benzenesulfonamides, showing KIs < 100 nM against HpCAα and MICs in the range of 8-16 µg/mL for the most active derivatives. Few drug design studies for non-sulfonamide inhibitors were performed to date, although inhibition of these enzymes may help the fight of multidrug resistance to classical antibiotics which emerged in the last decades also for this bacterium.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Campbell MJ, Beenken KE, Spencer HJ, Jayana B, Hester H, Sahukhal GS, Elasri MO, Smeltzer MS. Comparative evaluation of small molecules reported to be inhibitors of Staphylococcus aureus biofilm formation. Microbiol Spectr 2024; 12:e0314723. [PMID: 38059629 PMCID: PMC10782960 DOI: 10.1128/spectrum.03147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Because biofilm formation is such a problematic feature of Staphylococcus aureus infections, much effort has been put into identifying biofilm inhibitors. However, the results observed with these compounds are often reported in isolation, and the methods used to assess biofilm formation vary between labs, making it impossible to assess relative efficacy and prioritize among these putative inhibitors for further study. The studies we report address this issue by directly comparing putative biofilm inhibitors using a consistent in vitro assay. This assay was previously shown to maximize biofilm formation, and the results observed with this assay have been proven to be relevant in vivo. Of the 19 compounds compared using this method, many had no impact on biofilm formation under these conditions. Indeed, only one proved effective at limiting biofilm formation without also inhibiting growth.
Collapse
Affiliation(s)
- Mara J. Campbell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Horace J. Spencer
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bina Jayana
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Hana Hester
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gyan S. Sahukhal
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohamed O. Elasri
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
14
|
Grønning AGB, Schéele C. Integrating a Multi-label Deep Learning Approach with Protein Information to Compare Bioactive Peptides in Brain and Plasma. Methods Mol Biol 2024; 2758:179-195. [PMID: 38549014 DOI: 10.1007/978-1-0716-3646-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptide therapeutics is gaining momentum. Advances in the field of peptidomics have enabled researchers to harvest vital information from various organisms and tissue types concerning peptide existence, expression and function. The development of mass spectrometry techniques for high-throughput peptide quantitation has paved the way for the identification and discovery of numerous known and novel peptides. Though much has been achieved, scientists are still facing difficulties when it comes to reducing the search space of the large mass spectrometry-generated peptidomics datasets and focusing on the subset of functionally relevant peptides. Moreover, there is currently no straightforward way to analytically compare the distributions of bioactive peptides in distinct biological samples, which may reveal much useful information when seeking to characterize tissue- or fluid-specific peptidomes. In this chapter, we demonstrate how to identify, rank, and compare predicted bioactive peptides and bioactivity distributions from extensive peptidomics datasets. To aid this task, we utilize MultiPep, a multi-label deep learning approach designed for classifying peptide bioactivities, to identify bioactive peptides. The predicted bioactivities are synergistically combined with protein information from the UniProt database, which assist in navigating through the jungle of putative therapeutic peptides and relevant peptide leads.
Collapse
Affiliation(s)
- Alexander G B Grønning
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
| | - Camilla Schéele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Voráčová M, Zore M, Yli-Kauhaluoma J, Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg Med Chem 2023; 96:117512. [PMID: 37939493 DOI: 10.1016/j.bmc.2023.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as β-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.
Collapse
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Giovannuzzi S, Marapaka AK, Abutaleb NS, Carta F, Liang HW, Nocentini A, Pisano L, Seleem MN, Flaherty DP, Supuran CT. Inhibition of pathogenic bacterial carbonic anhydrases by monothiocarbamates. J Enzyme Inhib Med Chem 2023; 38:2284119. [PMID: 37994421 PMCID: PMC11003479 DOI: 10.1080/14756366.2023.2284119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023] Open
Abstract
Carbonic anhydrases (CAs) from the pathogenic bacteria Nesseria gonorrhoeae and vancomycin-resistant enterococci (VRE) have recently been validated as antibacterial drug targets. Here we explored the inhibition of the α-CA from N. gonorrhoeae (α-NgCA), of α- and γ-class enzymes from Enterococcus faecium (α-EfCA and γ-EfCA) with a panel of aliphatic, heterocyclic and aryl-alkyl primary/secondary monothiocarbamates (MTCs). α-NgCA was inhibited in vitro with KIs ranging from 0.367 to 0.919 µM. The compounds inhibited the α-EfCA and γ-EfCA with KI ranges of 0.195-0.959 µM and of 0.149-1.90 µM, respectively. Some MTCs were also investigated for their inhibitory effects on the growth of clinically-relevant N. gonorrhoeae and VRE strains. No inhibitory effects on the growth of VRE were noted for all MTCs, whereas one compound (13) inhibited the growth N. gonorrhoeae strains at concentrations ranging from 16 to 64 µg/mL. This suggests that compound 13 may be a potential antibacterial agent against N. gonorrhoeae.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| | - Anil Kumar Marapaka
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, IN, USA
| | - Nader S. Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fabrizio Carta
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| | - Hsin-Wen Liang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| | - Luigi Pisano
- Section of Dermatology, Health Sciences Department, University of Florence, Florence, Italy
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- Center for One Health Research, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Daniel P. Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, IN, USA
- Purdue Institute for Drug Discovery, West Lafayette, IN, USA
- Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA
| | - Claudiu T. Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino (FI), Italy
| |
Collapse
|
17
|
Li Y, Liu T, Lai X, Xie H, Tang H, Wu S, Li Y. Rational design peptide inhibitors of Cyclophilin D as a potential treatment for acute pancreatitis. Medicine (Baltimore) 2023; 102:e36188. [PMID: 38050301 PMCID: PMC10695616 DOI: 10.1097/md.0000000000036188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023] Open
Abstract
Cyclophilin D (CypD) is a mitochondrial matrix peptidyl prolidase that regulates the mitochondrial permeability transition pore. Inhibition of CypD was suggested as a therapeutic strategy for acute pancreatitis. Peptide inhibitors emerged as novel binding ligand for blocking receptor activity. In this study, we present our computational approach for designing peptide inhibitors of CypD. The 3-D structure of random peptides were built, and docked into the active center of CypD using Rosetta script integrated FlexPepDock module. The peptide displayed the lowest binding energy against CypD was further selected for virtual iterative mutation based on virtual mutagenesis and molecular docking. Finally, the top 5 peptides with the lowest binding energy was selected for validating their affinity against CypD using inhibitory assay. We showed 4 out of the selected 5 peptides were capable for blocking the activity of CypD, while WACLQ display the strongest affinity against CypD, which reached 0.28 mM. The binding mechanism between WACLQ and CypD was characterized using molecular dynamics simulation. Here, we proved our approach can be a robust method for screening peptide inhibitors.
Collapse
Affiliation(s)
- Yuehong Li
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Ting Liu
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Xiaoyan Lai
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Huifang Xie
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| | - Heng Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Shuangchan Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xian, Shanxi Province, China
| | - Yongshun Li
- Department of Critical Care Medicine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, China
| |
Collapse
|
18
|
Pernas-Pleite C, Conejo-Martínez AM, Fernández Freire P, Hazen MJ, Marín I, Abad JP. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Int J Mol Sci 2023; 24:16183. [PMID: 38003373 PMCID: PMC10670984 DOI: 10.3390/ijms242216183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROS.
Collapse
Affiliation(s)
- Carlos Pernas-Pleite
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Amparo M. Conejo-Martínez
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Paloma Fernández Freire
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - María José Hazen
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
19
|
Yin L, Shen X, Yin D, Hou H, Wang J, Zhao R, Dai Y, Pan X, Qi K. Integrated analysis of noncoding RNAs and mRNAs reveals their potential roles in chicken spleen response to Klebsiella variicola infection. Res Vet Sci 2023; 164:105029. [PMID: 37769515 DOI: 10.1016/j.rvsc.2023.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Klebsiella variicola is an emerging pathogen that has become a threat to human and animal health. There is evidence that long noncoding RNAs (lncRNAs) are involved in a host cell's response to microbial infections. However, no study has defined the link between K. variicola pathogenesis and lncRNAs until now. We used RNA sequencing to comprehensively analyze the lncRNAs and mRNAs in the chicken spleen after K. variicola infection. In total, we identified 2896 differentially expressed mRNAs and 578 differentially expressed lncRNAs. To examine the potential functions of these lncRNAs, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analyses were performed on the target mRNAs of these differently expressed lncRNAs. The results suggested that lncRNAs play essential roles in modulating mRNA expression and triggering downstream immune signaling pathways to regulate the immune response in the chicken spleen. Using previous microRNA sequencing data, we constructed lncRNA-miRNA-mRNA regulatory networks to clarify the regulatory mechanisms in the chicken immune system. Several potential regulatory pairs related to K. variicola infection were found, involving XR_001467769.2, TCONS_00018386, gga-miR-132a-3p, gga-miR-132b-5p, gga-miR-2954, and novel62_mature. In conclusion, our findings make a significant contribution towards understanding the role of lncRNA in chicken spleen cells during K. variicola infection, thereby establishing a solid foundation for future research in this area.
Collapse
Affiliation(s)
- Lei Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Xuehuai Shen
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Dongdong Yin
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Hongyan Hou
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Jieru Wang
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Ruihong Zhao
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Yin Dai
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Xiaocheng Pan
- Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China.
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
20
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
21
|
Supuran CT. An overview of novel antimicrobial carbonic anhydrase inhibitors. Expert Opin Ther Targets 2023; 27:897-910. [PMID: 37747071 DOI: 10.1080/14728222.2023.2263914] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/24/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Four different genetic families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) are present in bacteria, α-, β-, γ- and ι-CAs. They play relevant functions related to CO2, HCO3-/H+ ions homeostasis, being involved in metabolic biosynthetic pathways, pH regulation, and represent virulence and survival factors for bacteria in various niches. Bacterial CAs started to be considered druggable targets in the last decade, as their inhibition impairs survival, growth, and virulence of these pathogens. AREAS COVERED Significant advances were registered in the last years for designing effective inhibitors of sulfonamide type for Helicobacter pylori α-CA, Neisseria gonorrhoeae α-CA, vacomycin-resistant enterococci (VRE) α- and γ-CAs, for which the in vivo validation has also been achieved. MIC-s in the range of 0.25-4.0 µg/mL for wild type and drug resistant N. gonorrhoeae strains, and of 0.007-2.0 µg/mL for VRE were observed for some 1,3,4-thiadiazole-2-sulfonamides, and acetazolamide was effective in gut decolonization from VRE. EXPERT OPINION Targeting bacterial CAs from other pathogens, among which Vibrio cholerae, Mycobacterium tuberculosis, Brucella suis, Salmonella enterica serovar Typhimurium, Legionella pneumophila, Porphyromonas gingivalis, Clostridium perfringens, Streptococcus mutans, Burkholderia pseudomallei, Francisella tularensis, Escherichia coli, Mammaliicoccus (Staphylococcus) sciuri, Pseudomonas aeruginosa, may lead to novel antibacterials devoid of drug resistance problems.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
22
|
Spoială A, Ilie CI, Dolete G, Petrișor G, Trușcă RD, Motelica L, Ficai D, Ficai A, Oprea OC, Dițu ML. The Development of Alginate/Ag NPs/Caffeic Acid Composite Membranes as Adsorbents for Water Purification. MEMBRANES 2023; 13:591. [PMID: 37367795 DOI: 10.3390/membranes13060591] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Since the water pollution problem still affects the environmental system and human health, the need to develop innovative membranes has become imperious. Lately, researchers have focused on developing novel materials to help diminish the contamination problem. The aim of present research was to obtain innovative adsorbent composite membranes based on a biodegradable polymer, alginate, to remove toxic pollutants. Of all pollutants, lead was chosen due to its high toxicity. The composite membranes were successfully obtained through a direct casting method. The silver nanoparticles (Ag NPs) and caffeic acid (CA) from the composite membranes were kept at low concentrations, which proved enough to bestow antimicrobial activity to the alginate membrane. The obtained composite membranes were characterised by Fourier transform infrared spectroscopy and microscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TG-DSC). Swelling behaviour, lead ion (Pb2+) removal capacity, regeneration and reusability were also determined. Further, the antimicrobial activity was tested against selected pathogenic strains (S. aureus, E. faecalis sp., P. aeruginosa, E. coli and C. albicans). The presence of Ag NPs and CA improves the antimicrobial activity of the newly developed membranes. Overall, the composite membranes are suitable for complex water treatment (removal of heavy metal ions and antimicrobial treatment).
Collapse
Affiliation(s)
- Angela Spoială
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Gabriela Petrișor
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Roxana-Doina Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 011061 Bucharest, Romania
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Centre for Micro and Nanomaterials & National Centre for Food Safety, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh Polizu Street, 050054 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Mara-Lia Dițu
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|
23
|
Lazar V, Oprea E, Ditu LM. Resistance, Tolerance, Virulence and Bacterial Pathogen Fitness-Current State and Envisioned Solutions for the Near Future. Pathogens 2023; 12:pathogens12050746. [PMID: 37242416 DOI: 10.3390/pathogens12050746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The current antibiotic crisis and the global phenomena of bacterial resistance, inherited and non-inherited, and tolerance-associated with biofilm formation-are prompting dire predictions of a post-antibiotic era in the near future. These predictions refer to increases in morbidity and mortality rates as a consequence of infections with multidrug-resistant or pandrug-resistant microbial strains. In this context, we aimed to highlight the current status of the antibiotic resistance phenomenon and the significance of bacterial virulence properties/fitness for human health and to review the main strategies alternative or complementary to antibiotic therapy, some of them being already clinically applied or in clinical trials, others only foreseen and in the research phase.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| | - Lia-Mara Ditu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalelor Street, 060101 Bucharest, Romania
| |
Collapse
|
24
|
Al-Sayed MF, Tarek El-Wakad M, Hassan MA, Soliman AM, Eldesoky AS. Optimal Concentration and Duration of Endotracheal Tube Coating to Achieve Optimal Antimicrobial Efficacy and Safety Balance: An In Vitro Study. Gels 2023; 9:gels9050414. [PMID: 37233005 DOI: 10.3390/gels9050414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is a common and genuine complication in fundamentally sick patients accepting mechanical ventilation. Silver nitrate sol-gel (SN) has been proposed as a potential preventative measure against VAP. Be that as it may, the arrangement of SN with distinctive concentrations and pH values remains a basic factor influencing its effectiveness. METHODS Silver nitrate sol-gel was arranged with distinctive concentrations (0.1852%, 0.03496%, 0.1852%, and 0.01968%) and pH values (8.5, 7.0, 8.0, and 5.0) separately. The antimicrobial action of the silver nitrate and NaOH arrangements were assessed against Escherichia coli as a reference strain. The thickness and pH of the arrangements were measured, and biocompatibility tests were performed on the coating tube. The auxiliary changes in the endotracheal tube (ETT) tests after treatment were analyzed utilizing electron microscopy (SEM) and transmission electron microscopy (TEM). RESULTS The pH estimations of the diverse arrangements showed that the pH values shifted depending on the test conditions, with pH values extending from 5.0 to 8.5. The consistency estimations of the arrangements showed that the thickness values expanded as the pH values drew closer to 7.5 and diminished when the pH values went over 7.5. The antimicrobial action of the silver nitrate and NaOH arrangements were successful against Escherichia coli, with microbial checks decreasing in concentration (0.03496%, 0.1852% (pH: 8), and 0.01968%). The biocompatibility tests revealed tall cell reasonability rates, demonstrating that the coating tube was secure for therapeutic utilization and did not hurt typical cells. The SEM and TEM investigation gave visual proof of the antibacterial impacts of the silver nitrate and NaOH arrangements on the bacterial surface or interior of the bacterial cells. Moreover, the investigation revealed that a concentration of 0.03496% was the foremost successful in hindering the development of ETT bacterial colonization at the nanoscale level. CONCLUSIONS We propose that cautious control and alteration of the pH and thickness of the arrangements are essential to guaranteeing the reproducibility and quality of the sol-gel materials. The silver nitrate and NaOH arrangements may serve as a potential preventative degree against VAP in sick patients, with a concentration of 0.03496% appearing to show the most elevated viability. The coating tube may serve as a secure and viable preventative measure against VAP in sick patients. Further investigation is required to optimize the concentration and introduction time of the arrangements to maximize their adequacy in avoiding VAP in real-world clinical settings.
Collapse
Affiliation(s)
- Manar Fathy Al-Sayed
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
- Department of Biomedical Engineering, Higher Technological Institute, Cairo 11511, Egypt
| | | | - Mohammed A Hassan
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
| | - Ahmed M Soliman
- Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11511, Egypt
| | - Amal S Eldesoky
- Department of Biomedical Engineering, Higher Technological Institute, Cairo 11511, Egypt
| |
Collapse
|
25
|
Yan Z, Wang P, Yang Q, Gao X, Gun S, Huang X. Change in Long Non-Coding RNA Expression Profile Related to the Antagonistic Effect of Clostridium perfringens Type C on Piglet Spleen. Curr Issues Mol Biol 2023; 45:2309-2325. [PMID: 36975519 PMCID: PMC10047886 DOI: 10.3390/cimb45030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
LncRNAs play important roles in resisting bacterial infection via host immune and inflammation responses. Clostridium perfringens (C. perfringens) type C is one of the main bacteria causing piglet diarrhea diseases, leading to major economic losses in the pig industry worldwide. In our previous studies, piglets resistant (SR) and susceptible (SS) to C. perfringens type C were identified based on differences in host immune capacity and total diarrhea scores. In this paper, the RNA-Seq data of the spleen were comprehensively reanalyzed to investigate antagonistic lncRNAs. Thus, 14 lncRNAs and 89 mRNAs were differentially expressed (DE) between the SR and SS groups compared to the control (SC) group. GO term enrichment, KEGG pathway enrichment and lncRNA-mRNA interactions were analyzed to identify four key lncRNA targeted genes via MAPK and NF-κB pathways to regulate cytokine genes (such as TNF-α and IL-6) against C. perfringens type C infection. The RT-qPCR results for six selected DE lncRNAs and mRNAs are consistent with the RNA-Seq data. This study analyzed the expression profiling of lncRNAs in the spleen of antagonistic and sensitive piglets and found four key lncRNAs against C. perfringens type C infection. The identification of antagonistic lncRNAs can facilitate investigations into the molecular mechanisms underlying resistance to diarrhea in piglets.
Collapse
|