1
|
Molina RE, Osorio A, Flores-Concha M, Gómez LA, Alvarado I, Ferrari I, Oñate A. Immunoinformatic design of a multivalent vaccine against Brucella abortus and its evaluation in a murine model using a DNA prime-protein boost strategy. Front Immunol 2024; 15:1456078. [PMID: 39640259 PMCID: PMC11617539 DOI: 10.3389/fimmu.2024.1456078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The development of effective vaccines against Brucella abortus is critical due to its significant impact on human and animal health. The objective of this study was to design and evaluate in silico and in vivo a multivalent vaccine based on the immunogenic potential of three selected open reading frames (ORFs) of Brucella. Methods The designed construct, named S22, was analyzed in silico to evaluate its physicochemical properties, antigenicity, allergenicity and toxicity. This construct was modeled and subjected to molecular dynamics analysis. Additionally, the antigenicity and protection induced by this construct was evaluated through In vivo assays immunizing BALB/c mice with protein (S22), DNA (pVS22) and combining both vaccine formats using a prime boost immunization strategy. Results All bioinformatics analyses showed safe and high quality structural features, revealing favorable interactions between S22 and the TLR4/MD2 complex. Moreover, results from in vivo assays indicated that the S22 protein induced robust levels of IgG1 and IgG2a, suggesting a balanced Th1 and Th2 immune response. The DNA construct (pVS22) elicited primarily a Th1 response, whereas the use of a prime boost strategy, which combines both formats resulted in a balanced immune response with significant induction of lymphoproliferation and elevated. Discussion Although our assays did not demonstrate the induction of a substantial protective response against B. abortus, this construct was capable of inducing immunogenicity. This study highlights the utility of in silico design for predicting and optimizing candidate vaccines and underscores the potential of using strategies such as prime boost, which incorporate antigens of different biological nature to modulate the immune response, while balancing parameters such as stability of the antigens and the cost of production.
Collapse
Affiliation(s)
- Raúl E. Molina
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | | | - Manuel Flores-Concha
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Leonardo A. Gómez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Ilse Alvarado
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Italo Ferrari
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| |
Collapse
|
2
|
Zubair A, Bibi B, Habib F, Sujan A, Ali M. Clinical trials and recent progress in HIV vaccine development. Funct Integr Genomics 2024; 24:143. [PMID: 39192058 DOI: 10.1007/s10142-024-01425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
The greatest obstacle for scientists is to develop an effective HIV vaccine. An effective vaccine represents the last hope for halting the unstoppable global spread of HIV and its catastrophic clinical consequences. Creating this vaccine has been challenging due to the virus's extensive genetic variability and the unique role of cytotoxic T lymphocytes (CTL) in containing it. Innovative methods to stimulate CTL have demonstrated significant therapeutic advantages in nonhuman primate model systems, unlike traditional vaccination techniques that are not expected to provide safe and efficient protection against HIV. Human clinical trials are currently evaluating these vaccination strategies, which involve plasmid DNA and live recombinant vectors. This review article covers the existing vaccines and ongoing trial vaccines. It also explores the different approaches used in developing HIV vaccines, including their molecular mechanisms, target site effectiveness, and potential side effects.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan.
| | - Bushra Bibi
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Faiza Habib
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Arooba Sujan
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Muhammad Ali
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan.
| |
Collapse
|
3
|
Ji T, Liu Y, Li Y, Li C, Han Y. Viral vector-based therapeutic HPV vaccines. Clin Exp Med 2024; 24:199. [PMID: 39196444 PMCID: PMC11358221 DOI: 10.1007/s10238-024-01470-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
Replication-defective viral vector vaccines have several advantages over conventional subunit vaccines, including potent antibody responses, cellular responses critical for eliminating pathogen-infected cells, and the induction of highly immunogenic and durable immune responses without adjuvants. The Human papillomavirus (HPV), a microorganism with over 200 genotypes, plays a crucial role in inducing human tumors, with the majority of HPV-related malignancies expressing HPV proteins. Tumors associated with HPV infection, most of which result from HPV16 infection, include those affecting the cervix, anus, vagina, penis, vulva, and oropharynx. In recent years, the development of therapeutic HPV vaccines utilizing viral vectors for the treatment of premalignant lesions or tumors caused by HPV infection has experienced rapid growth, with numerous research pipelines currently underway. Simultaneously, screening for optimal antigens requires more basic research and more optimized methods. In terms of preclinical research, we present the various models used to assess vaccine efficacy, highlighting their respective advantages and disadvantages. Further, we present current research status of therapeutic vaccines using HPV viral vectors, especially the indications, initial efficacy, combination drugs, etc. In general, this paper summarizes current viral vector therapeutic HPV vaccines in terms of HPV infection, antigen selection, vectors, efficacy evaluation, and progress in clinical trials.
Collapse
Affiliation(s)
- Teng Ji
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchuan Liu
- The Second Clinical Medical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutong Li
- The Second Clinical Medical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanfen Li
- The Second Clinical Medical College, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingyan Han
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Cancer Invasion and Metastasis (Ministry of Education), Hubei Key Laboratory of Tumor Invasion and Metastasis, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Li D, Bian L, Cui L, Zhou J, Li G, Zhao X, Xing L, Cui J, Sun B, Jiang C, Kong W, Zhang Y, Chen Y. Heterologous Prime-Boost Immunization Strategies Using Varicella-Zoster Virus gE mRNA Vaccine and Adjuvanted Protein Subunit Vaccine Triggered Superior Cell Immune Response in Middle-Aged Mice. Int J Nanomedicine 2024; 19:8029-8042. [PMID: 39130684 PMCID: PMC11316494 DOI: 10.2147/ijn.s464720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.
Collapse
Affiliation(s)
- Dongdong Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Lili Cui
- Beijing Institute of Drug Metabolism, Beijing, People’s Republic of China
| | - Jingying Zhou
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Gaotian Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Xiaoyan Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Liao Xing
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Jiaxing Cui
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Bo Sun
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, People’s Republic of China
- NMPA Key Laboratory of Humanized Animal Models for Evaluation of Vaccines and Cell Therapy Products, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
5
|
Wu C, Raheem IT, Nahas DD, Citron M, Kim PS, Montefiori DC, Ottinger EA, Hepler RW, Hrin R, Patel SB, Soisson SM, Joyce JG. Stabilized trimeric peptide immunogens of the complete HIV-1 gp41 N-heptad repeat and their use as HIV-1 vaccine candidates. Proc Natl Acad Sci U S A 2024; 121:e2317230121. [PMID: 38768344 PMCID: PMC11145295 DOI: 10.1073/pnas.2317230121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/29/2024] [Indexed: 05/22/2024] Open
Abstract
Efforts to develop an HIV-1 vaccine include those focusing on conserved structural elements as the target of broadly neutralizing monoclonal antibodies. MAb D5 binds to a highly conserved hydrophobic pocket on the gp41 N-heptad repeat (NHR) coiled coil and neutralizes through prevention of viral fusion and entry. Assessment of 17-mer and 36-mer NHR peptides presenting the D5 epitope in rodent immunogenicity studies showed that the longer peptide elicited higher titers of neutralizing antibodies, suggesting that neutralizing epitopes outside of the D5 pocket may exist. Although the magnitude and breadth of neutralization elicited by NHR-targeting antigens are lower than that observed for antibodies directed to other epitopes on the envelope glycoprotein complex, it has been shown that NHR-directed antibodies are potentiated in TZM-bl cells containing the FcγRI receptor. Herein, we report the design and evaluation of covalently stabilized trimeric 51-mer peptides encompassing the complete gp41 NHR. We demonstrate that these peptide trimers function as effective antiviral entry inhibitors and retain the ability to present the D5 epitope. We further demonstrate in rodent and nonhuman primate immunization studies that our 51-mer constructs elicit a broader repertoire of neutralizing antibody and improved cross-clade neutralization of primary HIV-1 isolates relative to 17-mer and 36-mer NHR peptides in A3R5 and FcγR1-enhanced TZM-bl assays. These results demonstrate that sensitive neutralization assays can be used for structural enhancement of moderately potent neutralizing epitopes. Finally, we present expanded trimeric peptide designs which include unique low-molecular-weight scaffolds that provide versatility in our immunogen presentation strategy.
Collapse
Affiliation(s)
- Chengwei Wu
- Discovery Chemistry, Merck & Co., Inc., West Point, PA19486
| | | | | | - Michael Citron
- Discovery Biology, Merck & Co., Inc., West Point, PA19486
| | - Peter S. Kim
- Office of the President, Merck & Co., Inc., West Point, PA19486
| | | | | | | | - Renee Hrin
- Discovery Biology, Merck & Co., Inc., West Point, PA19486
| | | | | | - Joseph G. Joyce
- Process Research and Development, Merck & Co., Inc., West Point, PA19486
| |
Collapse
|
6
|
Milani A, Akbari E, Pordanjani PM, Jamshidi F, Ghayoumi S, Sadeghi SA, Bolhassani A. Immunostimulatory effects of Hsp70 fragments and Hsp27 in design of novel HIV-1 vaccine formulations. HIV Med 2024; 25:276-290. [PMID: 37936563 DOI: 10.1111/hiv.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Heat shock proteins (HSPs) as an adjuvant induce antigen-specific immunity through facilitating antigen presentation and stimulating T cells. In this study, the immunostimulatory properties of two major fragments of Hsp70 (N-Hsp70(aa 1-387) with ATPase property and C-Hsp70 (aa 508-641) with peptide-binding capacity) and the full length of Hsp27 as vaccine adjuvants were evaluated to boost HIV-1 Nef antigen-specific immunity in both in vitro and in vivo experiments. METHODS At first, the nanoparticles harbouring DNA fusion constructs (i.e. N-Hsp70-Nef, C-Hsp70-Nef and Hsp27-Nef) complexed with HIV Rev (34-50) cell-penetrating peptide were generated to deliver DNA into the cells. Then, the recombinant Nef, Hsp27-Nef, N-Hsp70-Nef and C-Hsp70-Nef proteins were generated in E.coli expression system. Next, the immunostimulatory properties of these fusion constructs were evaluated in both in vitro and in vivo studies. Finally, the secretion of main cytokines from single-cycle replicable (SCR) HIV-1 virion-exposed splenocytes was investigated. RESULTS Our data showed that the stable and non-toxic DNA/Rev nanoparticles could successfully deliver the genes of interest into the cells. Moreover, higher secretion of antibodies and cytokines was detected in mice receiving the Hsp-Nef constructs than in mice receiving Nef antigen. The C-Hsp70 was also superior for inducing Nef-specific Th1 and CTL immunity compared with N-Hsp70 and Hsp27. The T-cell activity was maintained in the SCR-exposed splenocytes, especially the splenocytes of mice receiving the C-Hsp70-Nef regimen. CONCLUSION Altogether, these findings demonstrate the significance of Hsps as enhancers of antigen-specific immunity. Notably, the C-Hsp70 region showed better adjuvant properties for inducing cellular immunity in the improvement of HIV-1 therapeutic vaccines.
Collapse
Affiliation(s)
- Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Akbari
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | | - Fateme Jamshidi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Shahrzad Ghayoumi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Seyed Amir Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Sadeghi L, Bolhassani A, Mohit E, Baesi K, Aghasadeghi MR. Heterologous DNA Prime/Protein Boost Immunization Targeting Nef-Tat Fusion Antigen Induces Potent T-cell Activity and in vitro Anti-SCR HIV-1 Effects. Curr HIV Res 2024; 22:109-119. [PMID: 38712371 DOI: 10.2174/011570162x297602240430142231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Heterologous combinations in vaccine design are an effective approach to promote T cell activity and antiviral effects. The goal of this study was to compare the homologous and heterologous regimens targeting the Nef-Tat fusion antigen to develop a human immunodeficiency virus-1 (HIV-1) therapeutic vaccine candidate. METHODS At first, the DNA and protein constructs harboring HIV-1 Nef and the first exon of Tat as linked form (pcDNA-nef-tat and Nef-Tat protein) were prepared in large scale and high purity. The generation of the Nef-Tat protein was performed in the E. coli expression system using an IPTG inducer. Then, we evaluated and compared immune responses of homologous DNA prime/ DNA boost, homologous protein prime/ protein boost, and heterologous DNA prime/protein boost regimens in BALB/c mice. Finally, the ability of mice splenocytes to secret cytokines after exposure to single-cycle replicable (SCR) HIV-1 was compared between immunized and control groups in vitro. RESULTS The nef-tat gene was successfully subcloned in eukaryotic pcDNA3.1 (-) and prokaryotic pET-24a (+) expression vectors. The recombinant Nef-Tat protein was generated in the E. coli Rosetta strain under optimized conditions as a clear band of ~ 35 kDa detected on SDS-PAGE. Moreover, transfection of pcDNA-nef-tat into HEK-293T cells was successfully performed using Lipofectamine 2000, as confirmed by western blotting. The immunization studies showed that heterologous DNA prime/protein boost regimen could significantly elicit the highest levels of Ig- G2a, IFN-γ, and Granzyme B in mice as compared to homologous DNA/DNA and protein/protein regimens. Moreover, the secretion of IFN-γ was higher in DNA/protein regimens than in DNA/DNA and protein/protein regimens after exposure of mice splenocytes to SCR HIV-1 in vitro. CONCLUSION The chimeric HIV-1 Nef-Tat antigen was highly immunogenic, especially when applied in a heterologous prime/ boost regimen. This regimen could direct immune response toward cellular immunity (Th1 and CTL activity) and increase IFN-γ secretion after virus exposure.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
8
|
Damm D, Suleiman E, Wagner JT, Klessing S, Pfister F, Elsayed H, Walkenfort B, Stobrawe J, Mayer J, Lehner E, Müller-Schmucker SM, Hasenberg M, Wyatt RT, Vorauer-Uhl K, Temchura V, Überla K. Modulation of immune responses to liposomal vaccines by intrastructural help. Eur J Pharm Biopharm 2023; 192:112-125. [PMID: 37797679 PMCID: PMC10872448 DOI: 10.1016/j.ejpb.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The encapsulation of HIV-unrelated T helper peptides into liposomal vaccines presenting trimers of the HIV-1 envelope glycoprotein (Env) on the surface (T helper liposomes) may recruit heterologous T cells to provide help for Env-specific B cells. This mechanism called intrastructural help can modulate the HIV-specific humoral immune response. In this study, we used cationic T helper liposomes to induce intrastructural help effects in a small animal model. The liposomes were functionalized with Env trimers by a tag-free approach designed to enable a simplified GMP production. The pre-fusion conformation of the conjugated Env trimers was verified by immunogold electron microscopy (EM) imaging and flow cytometry. The liposomes induced strong activation of Env-specific B cells in vitro. In comparison to previously established anionic liposomes, cationic T helper liposomes were superior in CD4+ T cell activation after uptake by dendritic cells. Moreover, the T helper liposomes were able to target Env-specific B cells in secondary lymphoid organs after intramuscular injection. We also observed efficient T helper cell activation and proliferation in co-cultures with Env-specific B cells in the presence of cationic T helper liposomes. Mouse immunization experiments with cationic T helper liposomes further revealed a modulation of the Env-specific IgG subtype distribution and enhancement of the longevity of antibody responses by ovalbumin- and Hepatitis B (HBV)-specific T cell help. Thus, clinical evaluation of the concept of intrastructural help seems warranted.
Collapse
Affiliation(s)
- Dominik Damm
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Ehsan Suleiman
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria.
| | - Jannik T Wagner
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Stephan Klessing
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen, 91054 Erlangen, Germany.
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Egypt
| | - Bernd Walkenfort
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Jule Stobrawe
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Julia Mayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Elisabeth Lehner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Sandra M Müller-Schmucker
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Mike Hasenberg
- Imaging Center Essen (IMCES), Electron Microscopy Unit (EMU), Faculty of Medicine, University of Duisburg-Essen, 45147 Essen, Germany.
| | | | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria.
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Tarrés-Freixas F, Aguilar-Gurrieri C, Rodríguez de la Concepción ML, Urrea V, Trinité B, Ortiz R, Pradenas E, Blanco P, Marfil S, Molinos-Albert LM, Barajas A, Pons-Grífols A, Ávila-Nieto C, Varela I, Cervera L, Gutiérrez-Granados S, Segura MM, Gòdia F, Clotet B, Carrillo J, Blanco J. An engineered HIV-1 Gag-based VLP displaying high antigen density induces strong antibody-dependent functional immune responses. NPJ Vaccines 2023; 8:51. [PMID: 37024469 PMCID: PMC10077320 DOI: 10.1038/s41541-023-00648-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Antigen display on the surface of Virus-Like Particles (VLPs) improves immunogenicity compared to soluble proteins. We hypothesised that immune responses can be further improved by increasing the antigen density on the surface of VLPs. In this work, we report an HIV-1 Gag-based VLP platform engineered to maximise the presence of antigen on the VLP surface. An HIV-1 gp41-derived protein (Min), including the C-terminal part of gp41 and the transmembrane domain, was fused to HIV-1 Gag. This resulted in high-density MinGag-VLPs. These VLPs demonstrated to be highly immunogenic in animal models using either a homologous (VLP) or heterologous (DNA/VLP) vaccination regimen, with the latter yielding 10-fold higher anti-Gag and anti-Min antibody titres. Despite these strong humoral responses, immunisation with MinGag-VLPs did not induce neutralising antibodies. Nevertheless, antibodies were predominantly of an IgG2b/IgG2c profile and could efficiently bind CD16-2. Furthermore, we demonstrated that MinGag-VLP vaccination could mediate a functional effect and halt the progression of a Min-expressing tumour cell line in an in vivo mouse model.
Collapse
Affiliation(s)
- Ferran Tarrés-Freixas
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | | | | | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Pau Blanco
- Comparative Medicine and Bioimage Centre of Catalonia (CMCiB), Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Sílvia Marfil
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Luis Manuel Molinos-Albert
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Ana Barajas
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Anna Pons-Grífols
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Carlos Ávila-Nieto
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Ismael Varela
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cel•lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Sònia Gutiérrez-Granados
- Grup d'Enginyeria Cel•lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - María Mercedes Segura
- Grup d'Enginyeria Cel•lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cel•lular i Bioprocessos, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, 08913, Cerdanyola del Vallès, Catalonia, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, 08916, Barcelona, Spain.
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Can Ruti Campus, 08916, Badalona, Catalonia, Spain.
- University of Vic-Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain.
- Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona, 08916, Barcelona, Spain.
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Malik S, Muhammad K, Aslam SM, Waheed Y. Tracing the recent updates on vaccination approaches and significant adjuvants being developed against HIV. Expert Rev Anti Infect Ther 2023; 21:431-446. [PMID: 36803177 DOI: 10.1080/14787210.2023.2182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION Human Immunodeficiency Virus type 1 (HIV1); the causative agent of Acquired Immunodeficiency Syndrome (AIDS), has been a major target of the scientific community to develop an anti-viral therapy. Some successful discoveries have been made during the last two decades in the form of availability of antiviral therapy in endemic regions. Nevertheless, a total cure and safety vaccine has not yet been designed to eradicate HIV from the world. AREAS COVERED The purpose of this comprehensive study is to compile recent data regarding therapeutic interventions against HIV and to determine future research needs in this field. A systematic research strategy has been used to gather data from recent, most advanced published electronic sources. Literature based results show that experiments at the invitro level and animal models are continuously in research annals and are providing hope for human trials. EXPERT OPINION There is still a gap and more work is needed in the direction of modern drug and vaccination designs. Moreover coordination is necessary among researchers, educationists, public health workers, and the general community to communicate and coordinate the repercussions associated with the deadly disease. It is important for taking timely measures regarding mitigation and adaptation with HIV in future.
Collapse
Affiliation(s)
- Shiza Malik
- Bridging Health Foundation, Rawalpindi, Pakistan
| | - Khalid Muhammad
- Department of Biology, College of Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sanaa Masood Aslam
- Foundation University College of Dentistry, Foundation University Islamabad, Islamabad, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation, and Commercialization (ORIC), Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad, Pakistan.,Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
11
|
Zhang B, Mao H, Zhu H, Guo J, Zhou P, Ma Z. Response to HIV-1 gp160-carrying recombinant virus HSV-1 and HIV-1 VLP combined vaccine in BALB/c mice. Front Microbiol 2023; 14:1136664. [PMID: 37007461 PMCID: PMC10063819 DOI: 10.3389/fmicb.2023.1136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Human immunodeficiency virus (HIV) induced AIDS causes a large number of infections and deaths worldwide every year, still no vaccines are available to prevent infection. Recombinant herpes simplex virus type 1 (HSV-1) vector-based vaccines coding the target proteins of other pathogens have been widely used for disease control. Here, a recombinant virus with HIV-1 gp160 gene integration into the internal reverse (IR) region-deleted HSV-1 vector (HSV-BAC), was obtained by bacterial artificial chromosome (BAC) technology, and its immunogenicity investigated in BALB/c mice. The result showed similar replication ability of the HSV-BAC-based recombinant virus and wild type. Furthermore, humoral and cellular immune response showed superiority of intraperitoneal (IP) administration, compared to intranasally (IN), subcutaneous (SC) and intramuscularly (IM), that evidenced by production of significant antibody and T cell responses. More importantly, in a prime-boost combination study murine model, the recombinant viruses prime followed by HIV-1 VLP boost induced stronger and broader immune responses than single virus or protein vaccination in a similar vaccination regimen. Antibody production was sufficient with huge potential for viral clearance, along with efficient T-cell activation, which were evaluated by the enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC). Overall, these findings expose the value of combining different vaccine vectors and modalities to improve immunogenicity and breadth against different HIV-1 antigens.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongyan Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongjuan Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Jingxia Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
- *Correspondence: Zhenghai Ma,
| |
Collapse
|
12
|
Zhang J, He Q, Yan X, Liu J, Bai Y, An C, Cui B, Gao F, Mao Q, Wang J, Xu M, Liang Z. Mixed formulation of mRNA and protein-based COVID-19 vaccines triggered superior neutralizing antibody responses. MedComm (Beijing) 2022; 3:e188. [PMID: 36474858 PMCID: PMC9717706 DOI: 10.1002/mco2.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Integrating different types of vaccines into a singular immunization regimen is an effective and accessible approach to strengthen and broaden the immunogenicity of existing coronavirus disease 2019 (COVID-19) vaccine candidates. To optimize the immunization strategy of the novel mRNA-based vaccine and recombinant protein subunit vaccine that attracted much attention in COVID-19 vaccine development, we evaluated the immunogenicity of different combined regimens with the mRNA vaccine (RNA-RBD) and protein subunit vaccine (PS-RBD) in mice. Compared with homologous immunization of RNA-RBD or PS-RBD, heterologous prime-boost strategies for mRNA and protein subunit vaccines failed to simultaneously enhance neutralizing antibody (NAb) and Th1 cellular response in this study, showing modestly higher serum neutralizing activity and antibody-dependent cell-mediated cytotoxicity for "PS-RBD prime, RNA-RBD boost" and robust Th1 type cellular response for "RNA-RBD prime, PS-RBD boost". Interestingly, immunizing the mice with the mixed formulation of the two aforementioned vaccines in various proportions further significantly enhanced the NAb responses against ancestral, Delta, and Omicron strains and manifested increased Th1-type responses, suggesting that a mixed formulation of mRNA and protein vaccines might be a more prospective vaccination strategy. This study provides basic research data on the combined vaccination strategies of mRNA and protein-based COVID-19 vaccines.
Collapse
Affiliation(s)
- Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Qian He
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Xujia Yan
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Jianyang Liu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Chaoqiang An
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Bopei Cui
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Fan Gao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Junzhi Wang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Miao Xu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug ControlNHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological ProductsBeijingPeople's Republic of China
| |
Collapse
|
13
|
Different dendritic cells-based vaccine constructs influence HIV-1 antigen-specific immunological responses and cytokine generation in virion-exposed splenocytes. Int Immunopharmacol 2022; 113:109406. [DOI: 10.1016/j.intimp.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
14
|
Dual-Targeting Polymer Nanoparticles Efficiently Deliver DNA Vaccine and Induce Robust Prophylactic Immunity against Spring Viremia of Carp Virus Infection. Microbiol Spectr 2022; 10:e0308522. [PMID: 36073822 PMCID: PMC9603200 DOI: 10.1128/spectrum.03085-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Spring viremia of carp virus (SVCV) is highly contagious and lethal to most cyprinid fish, causing serious economic losses to the carp aquaculture industry. Although DNA vaccines can generate long-term humoral and cellular immune responses, which provide protective immunity against SVCV, the major drawback of DNA vaccines is their low immunogenicity in clinical tests. Here, we construct a dual-targeted polymer DNA vaccine delivery platform (MCS-PCHG) by using mannosylated chitosan to encapsulate the poly(d,l-lactide-co-glycolide)-loaded DNA vaccine containing the heavy-chain CH3 region (CH3) of common carp IgM and the antigenic domain (G131c). The developed nanovaccine delivery platform showed good biocompatibility in vivo and in vitro. With the modification of the mannose moiety and the modification of CH3, the constructed MCS-PCHG could efficiently activate the maturation of antigen-presenting cells. Moreover, we observe significantly high level of immune-related genes expression, serum antigen-specific IgM, SVCV-neutralizing antibody titers in fish vaccinated with MCS-PCHG. Next, the protective efficacy of MCS-PCHG was further evaluated by challenge test. The highest survival rate (ca. 84%) was observed in fish vaccinated with MCS-PCHG after challenging with SVCV. This study presents a novel design for smart, dual-targeted polymer nanoparticles, which are inherently biocompatible, promising for targeted vaccine delivery. IMPORTANCE Spring viremia of carp virus (SVCV) affects global cyprinid fish farming industry, with no available commercial vaccine. Herein, we developed a dual-targeting polymer nanovaccine (MCS-PCHG) by using mannose and common carp IgM heavy chain CH3 region (CH3) as antigen presenting cell (APCs) recognition moiety, attaining the effective delivery of antigen. This dual-targeting polymer vaccine can efficiently activate the APCs, and further induce robust and durable adaptive immune response with good protection against SVCV infection. Our study provides valuable theoretical basis for developing efficient vaccine against infectious diseases in aquaculture.
Collapse
|
15
|
Ximba P, Chapman R, Meyers A, Margolin E, van Diepen MT, Sander AF, Woodward J, Moore PL, Williamson AL, Rybicki EP. Development of a synthetic nanoparticle vaccine presenting the HIV-1 envelope glycoprotein. NANOTECHNOLOGY 2022; 33:485102. [PMID: 35882111 DOI: 10.1088/1361-6528/ac842c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Two-component self-assembling virus-like particles (VLPs) are promising scaffolds for achieving high-density display of HIV-1 envelope (gp140) trimers, which can improve the induction of neutralising antibodies (NAbs). In this study gp140 was displayed on the surface of VLPs formed by the AP205 phage coat protein. The CAP256 SU gp140 antigen was selected as the patient who this virus was isolated from developed broadly neutralising antibodies (bNAbs) shortly after superinfection with this virus. The CAP256 SU envelope is also sensitive to several bNAbs and has shown enhanced reactivity for certain bNAb precursors. A fusion protein comprising the HIV-1 CAP256 SU gp140 and the SpyTag (ST) (gp140-ST) was produced in HEK293 cells, and trimers were purified to homogeneity using gel filtration. SpyCatcher (SC)-AP205 VLPs were produced inEscherichia coliand purified by ultracentrifugation. The gp140-ST trimers and the SC-AP205 VLPs were mixed in varying molar ratios to generate VLPs displaying the glycoprotein (AP205-gp140-ST particles). Dynamic light scattering, negative stain electron microscopy and 2D classification indicated that gp140-ST was successfully bound to the VLPs, although not all potential binding sites were occupied. The immunogenicity of the coupled VLPs was evaluated in a pilot study in rabbits. One group was injected four times with coupled VLPs, and the second group was primed with DNA vaccines expressing Env and a mosaic Gag, followed by modified vaccinia Ankara expressing the same antigens. The animals were then boosted twice with coupled VLPs. Encouragingly, gp140-ST displayed on SC-AP205 VLPs was an effective boost to heterologously primed rabbits, leading to induction of autologous Tier 2 neutralising antibodies in 2/5 rabbits. However, four inoculations of coupled VLPs alone failed to elicit any Tier 2 antibodies. These results demonstrate that the native-like structure of HIV-1 envelope trimers and selection of a geometrically-suitable nanoparticle scaffold to achieve a high-density display of the trimers are important considerations that could improve the effect of nanoparticle-displayed gp140.
Collapse
Affiliation(s)
- Phindile Ximba
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rosamund Chapman
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ann Meyers
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Emmanuel Margolin
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michiel T van Diepen
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam F Sander
- Centre for Medical Parasitology at the Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jeremy Woodward
- Structural Biology Research Unit, University of Cape Town, South Africa
| | - Penny L Moore
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Anna-Lise Williamson
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Edward P Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
He Q, Mao Q, Zhang J, Gao F, Bai Y, Cui B, Liu J, An C, Wang Q, Yan X, Yang J, Song L, Song Z, Liu D, Yuan Y, Sun J, Zhao J, Bian L, Wu X, Huang W, Li C, Wang J, Liang Z, Xu M. Heterologous immunization with adenovirus vectored and inactivated vaccines effectively protects against SARS-CoV-2 variants in mice and macaques. Front Immunol 2022; 13:949248. [PMID: 36059554 PMCID: PMC9428284 DOI: 10.3389/fimmu.2022.949248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
To cope with the decline in COVID-19 vaccine-induced immunity caused by emerging SARS-CoV-2 variants, a heterologous immunization regimen using chimpanzee adenovirus vectored vaccine expressing SARS-CoV-2 spike (ChAd-S) and an inactivated vaccine (IV) was tested in mice and non-human primates (NHPs). Heterologous regimen successfully enhanced or at least maintained antibody and T cell responses and effectively protected against SARS-CoV-2 variants in mice and NHPs. An additional heterologous booster in mice further improved and prolonged the spike-specific antibody response and conferred effective neutralizing activity against the Omicron variant. Interestingly, priming with ChAd-S and boosting with IV reduced the lung injury risk caused by T cell over activation in NHPs compared to homologous ChAd-S regimen, meanwhile maintained the flexibility of antibody regulation system to react to virus invasion by upregulating or preserving antibody levels. This study demonstrated the satisfactory compatibility of ChAd-S and IV in prime-boost vaccination in animal models.
Collapse
Affiliation(s)
- Qian He
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qunying Mao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jialu Zhang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Fan Gao
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yu Bai
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Bopei Cui
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyang Liu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Chaoqiang An
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Qian Wang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xujia Yan
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jinghuan Yang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Lifang Song
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Ziyang Song
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Dong Liu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Yadi Yuan
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Jing Sun
- Guangzhou Laboratory, Guangzhou, China
| | | | - Lianlian Bian
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Xing Wu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Changgui Li
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Junzhi Wang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Junzhi Wang, ; Zhenglun Liang, ; Miao Xu,
| | - Zhenglun Liang
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Junzhi Wang, ; Zhenglun Liang, ; Miao Xu,
| | - Miao Xu
- Division of Hepatitis and Enterovirus Vaccines, Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Junzhi Wang, ; Zhenglun Liang, ; Miao Xu,
| |
Collapse
|
17
|
McCann N, O'Connor D, Lambe T, Pollard AJ. Viral vector vaccines. Curr Opin Immunol 2022; 77:102210. [PMID: 35643023 PMCID: PMC9612401 DOI: 10.1016/j.coi.2022.102210] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/06/2023]
Abstract
Over the past two years, the SARS-CoV-2 pandemic has highlighted the impact that emerging pathogens can have on global health. The development of new and effective vaccine technologies is vital in the fight against such threats. Viral vectors are a relatively new vaccine platform that relies on recombinant viruses to deliver selected immunogens into the host. In response to the SARS-CoV-2 pandemic, the development and subsequent rollout of adenoviral vector vaccines has shown the utility, impact, scalability and efficacy of this platform. Shown to elicit strong cellular and humoral immune responses in diverse populations, these vaccine vectors will be an important approach against infectious diseases in the future.
Collapse
Affiliation(s)
- Naina McCann
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - Daniel O'Connor
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford OX3 7LE, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
18
|
Richert L, Lelièvre JD, Lacabaratz C, Hardel L, Hocini H, Wiedemann A, Lucht F, Poizot-Martin I, Bauduin C, Diallo A, Rieux V, Rouch E, Surenaud M, Lefebvre C, Foucat E, Tisserand P, Guillaumat L, Durand M, Hejblum B, Launay O, Thiébaut R, Lévy Y. T Cell Immunogenicity, Gene Expression Profile, and Safety of Four Heterologous Prime-Boost Combinations of HIV Vaccine Candidates in Healthy Volunteers: Results of the Randomized Multi-Arm Phase I/II ANRS VRI01 Trial. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2663-2674. [PMID: 35613727 DOI: 10.4049/jimmunol.2101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Heterologous prime-boost strategies are of interest for HIV vaccine development. The order of prime-boost components could be important for the induction of T cell responses. In this phase I/II multi-arm trial, three vaccine candidates were used as prime or boost: modified vaccinia Ankara (MVA) HIV-B (coding for Gag, Pol, Nef); HIV LIPO-5 (five lipopeptides from Gag, Pol, Nef); DNA GTU-MultiHIV B (coding for Rev, Nef, Tat, Gag, Env gp160 clade B). Healthy human volunteers (n = 92) were randomized to four groups: 1) MVA at weeks 0/8 + LIPO-5 at weeks 20/28 (M/L); 2) LIPO-5 at weeks 0/8 + MVA at weeks 20/28 (L/M); 3) DNA at weeks 0/4/12 + LIPO-5 at weeks 20/28 (G/L); 4) DNA at weeks 0/4/12 + MVA at weeks 20/28 (G/M). The frequency of IFN-γ-ELISPOT responders at week 30 was 33, 43, 0, and 74%, respectively. Only MVA-receiving groups were further analyzed (n = 62). Frequency of HIV-specific cytokine-positive (IFN-γ, IL-2, or TNF-α) CD4+ T cells increased significantly from week 0 to week 30 (median change of 0.06, 0.11, and 0.10% for M/L, L/M, and G/M, respectively), mainly after MVA vaccinations, and was sustained until week 52. HIV-specific CD8+ T cell responses increased significantly at week 30 in M/L and G/M (median change of 0.02 and 0.05%). Significant whole-blood gene expression changes were observed 2 wk after the first MVA injection, regardless of its use as prime or boost. An MVA gene signature was identified, including 86 genes mainly related to cell cycle pathways. Three prime-boost strategies led to CD4+ and CD8+ T cell responses and to a whole-blood gene expression signature primarily due to their MVA HIV-B component.
Collapse
Affiliation(s)
- Laura Richert
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Inria SISTM Team, Talence, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Jean-Daniel Lelièvre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
- Groupe Henri-Mondor Albert-Chenevier, AP-HP, Créteil, France
| | - Christine Lacabaratz
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Lucile Hardel
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Hakim Hocini
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Frédéric Lucht
- CHU de Saint Etienne, Saint-Priest-en-Jarez, France
- Université Jean Monnet and Université de Lyon, Saint-Etienne, France
| | - Isabelle Poizot-Martin
- Aix-Marseille Université, APHM, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, ISSPAM, APHM Sainte-Marguerite, Service d'Immuno-Hématologie Clinique, Marseille, France
| | - Claire Bauduin
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | | | - Véronique Rieux
- Vaccine Research Institute, Créteil, France
- INSERM-ANRS, Paris, France
| | - Elodie Rouch
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | - Mathieu Surenaud
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Cécile Lefebvre
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Emile Foucat
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Pascaline Tisserand
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Lydia Guillaumat
- Vaccine Research Institute, Créteil, France
- INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Mélany Durand
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Inria SISTM Team, Talence, France
- Vaccine Research Institute, Créteil, France
| | - Boris Hejblum
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Inria SISTM Team, Talence, France
- Vaccine Research Institute, Créteil, France
| | - Odile Launay
- CIC 1417 F-CRIN I-REIVAC, INSERM, Hôpital Cochin, AP-HP, Paris, France; and
- Université Paris Descartes, Paris, France
| | - Rodolphe Thiébaut
- University of Bordeaux, INSERM, Bordeaux Population Health Research Center, UMR1219, Bordeaux, France
- Inria SISTM Team, Talence, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
- Vaccine Research Institute, Créteil, France
| | | |
Collapse
|
19
|
Bánki Z, Mateus J, Rössler A, Schäfer H, Bante D, Riepler L, Grifoni A, Sette A, Simon V, Falkensammer B, Ulmer H, Neurauter B, Borena W, Krammer F, von Laer D, Weiskopf D, Kimpel J. Heterologous ChAdOx1/BNT162b2 vaccination induces stronger immune response than homologous ChAdOx1 vaccination: The pragmatic, multi-center, three-arm, partially randomized HEVACC trial. EBioMedicine 2022; 80:104073. [PMID: 35617826 PMCID: PMC9126042 DOI: 10.1016/j.ebiom.2022.104073] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Several COVID-19 vaccines have been approved. The mRNA vaccine from Pfizer/BioNTech (Comirnaty, BNT162b2; BNT) and the vector vaccine from AstraZeneca (Vaxzevria, ChAdOx1; AZ) have been widely used. mRNA vaccines induce high antibody and T cell responses, also to SARS-CoV-2 variants, but are costlier and less stable than the slightly less effective vector vaccines. For vector vaccines, heterologous vaccination schedules have generally proven more effective than homologous schedules. METHODS In the HEVACC three-arm, single-blinded, adaptive design study (ClinicalTrials.gov Identifier: NCT04907331), participants between 18 and 65 years with no prior history of SARS-CoV-2 infection and a first dose of AZ or BNT were included. The AZ/AZ and the AZ/BNT arms were randomized (in a 1:1 ratio stratified by sex and trial site) and single-blinded, the third arm (BNT/BNT) was observational. We compared the reactogenicity between the study arms and hypothesized that immunogenicity was higher for the heterologous AZ/BNT compared to the homologous AZ/AZ regimen using neutralizing antibody titers as primary endpoint. FINDINGS This interim analysis was conducted after 234 participants had been randomized and 254 immunized (N=109 AZ/AZ, N=115 AZ/BNZ, N=30 BNT/BNT). Heterologous AZ/BNT vaccination was well tolerated without study-related severe adverse events. Neutralizing antibody titers on day 30 were statistically significant higher in the AZ/BNT and the BNT/BNT groups than in the AZ/AZ group, for B.1.617.2 (Delta) AZ/AZ median reciprocal titer 75.9 (99.9% CI 58.0 - 132.5), AZ/BNT 571.5 (99.9% CI 396.6 - 733.1), and BNT/BNT 404.5 (99.9% CI 68.3 - 1024). Similarly, the frequency and multifunctionality of spike-specific T cell responses was comparable between the AZ/BNT and the BNT/BNT groups, but lower in the AZ/AZ vaccinees. INTERPRETATION This study clearly shows the immunogenicity and safety of heterologous AZ/BNT vaccination and encourages further studies on heterologous vaccination schedules. FUNDING This work was supported by the Medical University of Innsbruck, and partially funded by NIAID contracts No. 75N9301900065, 75N93021C00016, and 75N93019C00051.
Collapse
Affiliation(s)
- Zoltán Bánki
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Jose Mateus
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Helena Schäfer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Lydia Riepler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara Falkensammer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Austria
| | - Bianca Neurauter
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria.
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA.
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020 Innsbruck, Austria.
| |
Collapse
|
20
|
Cytokine Adjuvants IL-7 and IL-15 Improve Humoral Responses of a SHIV LentiDNA Vaccine in Animal Models. Vaccines (Basel) 2022; 10:vaccines10030461. [PMID: 35335093 PMCID: PMC8949948 DOI: 10.3390/vaccines10030461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
HIV-1 remains a major public health issue worldwide in spite of efficacious antiviral therapies, but with no cure or preventive vaccine. The latter has been very challenging, as virus infection is associated with numerous escape mechanisms from host specific immunity and the correlates of protection remain incompletely understood. We have developed an innovative vaccine strategy, inspired by the efficacy of live-attenuated virus, but with the safety of a DNA vaccine, to confer both cellular and humoral responses. The CAL-SHIV-IN− lentiDNA vaccine comprises the backbone of the pathogenic SHIVKU2 genome, able to mimic the early phase of viral infection, but with a deleted integrase gene to ensure safety precluding integration within the host genome. This vaccine prototype, constitutively expressing viral antigen under the CAEV LTR promoter, elicited a variety of vaccine-specific, persistent CD4 and CD8 T cells against SIV-Gag and Nef up to 80 weeks post-immunization in cynomolgus macaques. Furthermore, these specific responses led to antiviral control of the pathogenic SIVmac251. To further improve the efficacy of this vaccine, we incorporated the IL-7 or IL-15 genes into the CAL-SHIV-IN− plasmid DNA in efforts to increase the pool of vaccine-specific memory T cells. In this study, we examined the immunogenicity of the two co-injected lentiDNA vaccines CAL-SHIV-IN− IRES IL-7 and CAL-SHIV-IN− IRES IL-15 in BALB/cJ mice and rhesus macaques and compared the immune responses with those generated by the parental vaccine CAL-SHIV-IN−. This co-immunization elicited potent vaccine-specific CD4 and CD8 T cells both in mice and rhesus macaques. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies were detected up to 40 weeks post-immunization in both plasma and mucosal compartments of rhesus macaques and were enhanced by the cytokines.
Collapse
|
21
|
Broadly binding and functional antibodies and persisting memory B cells elicited by HIV vaccine PDPHV. NPJ Vaccines 2022; 7:18. [PMID: 35140230 PMCID: PMC8828892 DOI: 10.1038/s41541-022-00441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Since publishing our original reports on the safety and immunogenicity of a polyvalent DNA prime-protein boost HIV vaccine (PDPHV) which elicited high titer antibody responses with broad specificity, neutralizing activities to multiple HIV-1 subtypes, as well as poly-functional T cell responses, accumulated findings from other HIV vaccine studies indicated the important roles of Ig isotype distribution, Fc medicated functions and the persistence of memory immune responses which were not studied in previous PDPHV related reports. The current report provides further detailed characterization of these parameters in human volunteers receiving the PDPHV regimen. Antibody responses were assessed using IgG isotype and gp70-V1V2-binding ELISAs, peptide arrays, and antibody-dependent cellular cytotoxicity (ADCC) assays. B cell ELISPOT was used to detect gp120-specific memory B cells. Our results showed that the gp120-specific antibodies were primarily of the IgG1 isotype. HIV-1 envelope protein variable regions V1 and V2 were actively targeted by the antibodies as determined by specific binding to both peptide and V1V2-carrying scaffolds. The antibodies showed potent and broad ADCC responses. Finally, the B cell ELISPOT analysis demonstrated persistence of gp120-specific memory B cells for at least 6 months after the last dose. These data indicate that broadly reactive binding Abs and ADCC responses as well as durable gp120-specific memory B cells were elicited by the polyvalent heterologous prime-boost vaccination regimens and showed great promise as a candidate HIV vaccine.
Collapse
|
22
|
Li J, Hou L, Guo X, Jin P, Wu S, Zhu J, Pan H, Wang X, Song Z, Wan J, Cui L, Li J, Chen Y, Wang X, Jin L, Liu J, Shi F, Xu X, Zhu T, Chen W, Zhu F. Heterologous AD5-nCOV plus CoronaVac versus homologous CoronaVac vaccination: a randomized phase 4 trial. Nat Med 2022; 28:401-409. [PMID: 35087233 PMCID: PMC8863573 DOI: 10.1038/s41591-021-01677-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and the waning of vaccine-elicited neutralizing antibodies suggests that additional coronavirus disease 2019 (COVID-19) vaccine doses may be needed for individuals who initially received CoronaVac. We evaluated the safety and immunogenicity of the recombinant adenovirus type 5 (AD5)-vectored COVID-19 vaccine Convidecia as a heterologous booster versus those of CoronaVac as homologous booster in adults previously vaccinated with CoronaVac in an ongoing, randomized, observer-blinded, parallel-controlled phase 4 trial ( NCT04892459 ). Adults who had received two doses of CoronaVac in the past 3-6 months were vaccinated with Convidecia (n = 96) or CoronaVac (n = 102). Adults who had received one dose of CoronaVac in the past 1-3 months were also vaccinated with Convidecia (n = 51) or CoronaVac (n = 50). The co-primary endpoints were the occurrence of adverse reactions within 28 d after vaccination and geometric mean titers (GMTs) of neutralizing antibodies against live wild-type SARS-CoV-2 virus at 14 d after booster vaccination. Adverse reactions after vaccination were significantly more frequent in Convidecia recipients but were generally mild to moderate in all treatment groups. Heterologous boosting with Convidecia elicited significantly increased GMTs of neutralizing antibody against SARS-CoV-2 than homologous boosting with CoronaVac in participants who had previously received one or two doses of CoronaVac. These data suggest that heterologous boosting with Convidecia following initial vaccination with CoronaVac is safe and more immunogenic than homologous boosting.
Collapse
Affiliation(s)
- Jingxin Li
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
- Institute of Global Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Lihua Hou
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Xiling Guo
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
| | - Pengfei Jin
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
| | - Shipo Wu
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, P. R. China
| | - Jiahong Zhu
- Lianshui County Center for Disease Control and Prevention, Lianshui County, P. R. China
| | - Hongxing Pan
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
| | - Xue Wang
- CanSino Biologics Inc., Tianjin, P. R. China
| | - Zhizhou Song
- Lianshui County Center for Disease Control and Prevention, Lianshui County, P. R. China
| | | | - Lunbiao Cui
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
| | - Junqiang Li
- CanSino Biologics Inc., Tianjin, P. R. China
| | - Yin Chen
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
| | - Xuewen Wang
- Canming Medical Technology Co., Ltd, Shanghai, P. R. China
| | - Lairun Jin
- Department of Public Health, Southeast University, Nanjing, P. R. China
| | - Jingxian Liu
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
| | - Fengjuan Shi
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China
| | - Xiaoyu Xu
- Vazyme Biotech Co., Ltd, Nanjing, P. R. China
| | - Tao Zhu
- CanSino Biologics Inc., Tianjin, P. R. China
| | - Wei Chen
- Institute of Biotechnology, Academy of Military Medical Sciences, Beijing, P. R. China.
| | - Fengcai Zhu
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, P. R. China.
- Institute of Global Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, P. R. China.
- Center for Global Health, Nanjing Medical University, Nanjing, P. R. China.
| |
Collapse
|
23
|
Maruggi G, Ulmer JB, Rappuoli R, Yu D. Self-amplifying mRNA-Based Vaccine Technology and Its Mode of Action. Curr Top Microbiol Immunol 2022; 440:31-70. [PMID: 33861374 DOI: 10.1007/82_2021_233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-amplifying mRNAs derived from the genomes of positive-strand RNA viruses have recently come into focus as a promising technology platform for vaccine development. Non-virally delivered self-amplifying mRNA vaccines have the potential to be highly versatile, potent, streamlined, scalable, and inexpensive. By amplifying their genome and the antigen encoding mRNA in the host cell, the self-amplifying mRNA mimics a viral infection, resulting in sustained levels of the target protein combined with self-adjuvanting innate immune responses, ultimately leading to potent and long-lasting antigen-specific humoral and cellular immune responses. Moreover, in principle, any eukaryotic sequence could be encoded by self-amplifying mRNA without the need to change the manufacturing process, thereby enabling a much faster and flexible research and development timeline than the current vaccines and hence a quicker response to emerging infectious diseases. This chapter highlights the rapid progress made in using non-virally delivered self-amplifying mRNA-based vaccines against infectious diseases in animal models. We provide an overview of the unique attributes of this vaccine approach, summarize the growing body of work defining its mechanism of action, discuss the current challenges and latest advances, and highlight perspectives about the future of this promising technology.
Collapse
Affiliation(s)
| | | | | | - Dong Yu
- GSK, 14200 Shady Grove Road, Rockville, MD, 20850, USA. .,Dynavax Technologies, 2100 Powell Street Suite, Emeryville, CA, 94608, USA.
| |
Collapse
|
24
|
Fan S, Xiao K, Li D, Zhao H, Zhang J, Yu L, Chang P, Zhu S, Xu X, Liao Y, Ji T, Jiang G, Yan D, Zeng F, Duan S, Xia B, Wang L, Yang F, He Z, Song Y, Cui P, Li X, Zhang Y, Zheng B, Zhang Y, Xu W, Li Q. Preclinical immunological evaluation of an intradermal heterologous vaccine against SARS-CoV-2 variants. Emerg Microbes Infect 2021; 11:212-226. [PMID: 34931939 PMCID: PMC8745378 DOI: 10.1080/22221751.2021.2021807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recent emergence of COVID-19 variants has necessitated the development of new vaccines that stimulate the formation of high levels of neutralizing antibodies against S antigen variants. A new strategy involves the intradermal administration of heterologous vaccines composed of one or two doses of inactivated vaccine and a booster dose with the mutated S1 protein (K-S). Such vaccines improve the immune efficacy by increasing the neutralizing antibody titers and promoting specific T cell responses against five variants of the RBD protein. A viral challenge test with the B.1.617.2 (Delta) variant confirmed that both administration schedules (i.e. “1 + 1” and “2 + 1”) ensured protection against this strain. These results suggest that the aforementioned strategy is effective for protecting against new variants and enhances the anamnestic immune response in the immunized population.
Collapse
Affiliation(s)
- Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Kang Xiao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Dandan Li
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Heng Zhao
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Jingjing Zhang
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Li Yu
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Penglan Chang
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Shuangli Zhu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Xingli Xu
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Tianjiao Ji
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Guorun Jiang
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Dongmei Yan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Fengyuan Zeng
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Baicheng Xia
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Yang Song
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Pingfang Cui
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Xiaolei Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Yaxing Zhang
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Bangyi Zheng
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development for Severe Infectious Diseases, Kunming, 650118, China
| |
Collapse
|
25
|
He Q, Mao Q, An C, Zhang J, Gao F, Bian L, Li C, Liang Z, Xu M, Wang J. Heterologous prime-boost: breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerg Microbes Infect 2021; 10:629-637. [PMID: 33691606 PMCID: PMC8009122 DOI: 10.1080/22221751.2021.1902245] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 02/03/2023]
Abstract
COVID-19 vaccines emerging from different platforms differ in efficacy, duration of protection, and side effects. To maximize the benefits of vaccination, we explored the utility of employing a heterologous prime-boost strategy in which different combinations of the four types of leading COVID-19 vaccine candidates that are undergoing clinical trials in China were tested in a mouse model. Our results showed that sequential immunization with adenovirus vectored vaccine followed by inactivated/recombinant subunit/mRNA vaccine administration specifically increased levels of neutralizing antibodies and promoted the modulation of antibody responses to predominantly neutralizing antibodies. Moreover, a heterologous prime-boost regimen with an adenovirus vector vaccine also improved Th1-biased T cell responses. Our results provide new ideas for the development and application of COVID-19 vaccines to control the SARS-CoV-2 pandemic.
Collapse
MESH Headings
- Adenovirus Vaccines/administration & dosage
- Adenovirus Vaccines/immunology
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19 Vaccines/adverse effects
- COVID-19 Vaccines/immunology
- Immunization, Secondary/methods
- Interferon-gamma/blood
- Lymphocyte Count
- Mice
- Mice, Inbred BALB C
- SARS-CoV-2/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- Vaccination/adverse effects
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- mRNA Vaccines
Collapse
Affiliation(s)
- Qian He
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Qunying Mao
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Chaoqiang An
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Jialu Zhang
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Lianlian Bian
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Changgui Li
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Hargrave A, Mustafa AS, Hanif A, Tunio JH, Hanif SNM. Current Status of HIV-1 Vaccines. Vaccines (Basel) 2021; 9:1026. [PMID: 34579263 PMCID: PMC8471857 DOI: 10.3390/vaccines9091026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
HIV-1 infection and its progression to AIDS remains a significant global health challenge, particularly for low-income countries. Developing a vaccine to prevent HIV-1 infections has proven to be immensely challenging with complex biological acquisition and infection, unforeseen clinical trial disappointments, and funding issues. This paper discusses important landmarks of progress in HIV-1 vaccine development, various vaccine strategies, and clinical trials.
Collapse
Affiliation(s)
- Anna Hargrave
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA;
| | - Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City 12037, Kuwait;
| | - Asma Hanif
- Department of Restorative Sciences, College of Dentistry, Kuwait University, Kuwait City 12037, Kuwait;
| | - Javed H. Tunio
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Shumaila Nida M. Hanif
- Department of Biomedical Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA;
| |
Collapse
|
27
|
Zhang J, He Q, An C, Mao Q, Gao F, Bian L, Wu X, Wang Q, Liu P, Song L, Huo Y, Liu S, Yan X, Yang J, Cui B, Li C, Wang J, Liang Z, Xu M. Boosting with heterologous vaccines effectively improves protective immune responses of the inactivated SARS-CoV-2 vaccine. Emerg Microbes Infect 2021; 10:1598-1608. [PMID: 34278956 PMCID: PMC8381941 DOI: 10.1080/22221751.2021.1957401] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Since the outbreak of COVID-19, a variety of vaccine platforms have been developed. Amongst these, inactivated vaccines have been authorized for emergency use or conditional marketing in many countries. To further enhance the protective immune responses in populations that have completed vaccination regimen, we investigated the immunogenic characteristics of different vaccine platforms and tried homologous or heterologous boost strategy post two doses of inactivated vaccines in a mouse model. Our results showed that the humoral and cellular immune responses induced by different vaccines when administered individually differ significantly. In particular, inactivated vaccines showed relatively lower level of neutralizing antibody and T cell responses, but a higher IgG2a/IgG1 ratio compared with other vaccines. Boosting with either recombinant subunit, adenovirus vectored or mRNA vaccine after two-doses of inactivated vaccine further improved both neutralizing antibody and Spike-specific Th1-type T cell responses compared to boosting with a third dose of inactivated vaccine. Our results provide new ideas for prophylactic inoculation strategy of SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Jialu Zhang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Qian He
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Chaoqiang An
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Qunying Mao
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lianlian Bian
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xing Wu
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Qian Wang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Pei Liu
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Lifang Song
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Yaqian Huo
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Siyuan Liu
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Xujia Yan
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Jinghuan Yang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Bopei Cui
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Changgui Li
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, People's Republic of China
| |
Collapse
|
28
|
Ensoli B, Moretti S, Borsetti A, Maggiorella MT, Buttò S, Picconi O, Tripiciano A, Sgadari C, Monini P, Cafaro A. New insights into pathogenesis point to HIV-1 Tat as a key vaccine target. Arch Virol 2021; 166:2955-2974. [PMID: 34390393 PMCID: PMC8363864 DOI: 10.1007/s00705-021-05158-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023]
Abstract
Despite over 30 years of enormous effort and progress in the field, no preventative and/or therapeutic vaccines against human immunodeficiency virus (HIV) are available. Here, we briefly summarize the vaccine strategies and vaccine candidates that in recent years advanced to efficacy trials with mostly unsatisfactory results. Next, we discuss a novel and somewhat contrarian approach based on biological and epidemiological evidence, which led us to choose the HIV protein Tat for the development of preventive and therapeutic HIV vaccines. Toward this goal, we review here the role of Tat in the virus life cycle as well as experimental and epidemiological evidence supporting its key role in the natural history of HIV infection and comorbidities. We then discuss the preclinical and clinical development of a Tat therapeutic vaccine, which, by improving the functionality and homeostasis of the immune system and by reducing the viral reservoir in virologically suppressed vaccinees, helps to establish key determinants for intensification of combination antiretroviral therapy (cART) and a functional cure. Future developments and potential applications of the Tat therapeutic vaccine are also discussed, as well as the rationale for its use in preventative strategies. We hope this contribution will lead to a reconsideration of the current paradigms for the development of HIV/AIDS vaccines, with a focus on targeting of viral proteins with key roles in HIV pathogenesis.
Collapse
Affiliation(s)
- Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sonia Moretti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Antonella Tripiciano
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paolo Monini
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Aurelio Cafaro
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
29
|
Karch CP, Matyas GR. The current and future role of nanovaccines in HIV-1 vaccine development. Expert Rev Vaccines 2021; 20:935-944. [PMID: 34184607 DOI: 10.1080/14760584.2021.1945448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: An efficacious vaccine for HIV-1 has been sought for over 30 years to eliminate the virus from the human population. Many challenges have occurred in the attempt to produce a successful immunogen, mainly caused by the basic biology of the virus. Immunogens have been developed focusing on inducing one or more of the following types of immune responses; neutralizing antibodies, non-neutralizing antibodies, and T-cell mediated responses. One way to better present and develop an immunogen for HIV-1 is through the use of nanotechnology and nanoparticles.Areas covered: This article gives a basic overview of the HIV-1 vaccine field, as well as nanotechnology, specifically nanovaccines. It then covers the application of nanovaccines made from biological macromolecules to HIV-1 vaccine development for neutralizing antibodies, non-neutralizing antibodies, and T-cell-mediated responses.Expert opinion: Nanovaccines are an area that is ripe for further exploration in HIV-1 vaccine field. Not only are nanovaccines capable of carrying and presenting antigens in native-like conformations, but they have also repeatedly been shown to increase immunogenicity over recombinant antigens alone. Only through further research can the true role of nanovaccines in the development of an efficacious HIV-1 vaccine be established.
Collapse
Affiliation(s)
- Christopher P Karch
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Laboratory of Adjuvant and Antigen Research, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
30
|
Barrière J, Re D, Peyrade F, Carles M. Current perspectives for SARS-CoV-2 vaccination efficacy improvement in patients with active treatment against cancer. Eur J Cancer 2021; 154:66-72. [PMID: 34243079 PMCID: PMC8260097 DOI: 10.1016/j.ejca.2021.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023]
Abstract
A higher risk of death from coronavirus disease 19 has been shown for patients with solid cancers or haematological malignancies (HM). Thanks to the accelerated development of anti–SARS-SoV-2 vaccines in less than a year since the start of the global pandemic, patients with cancer were quickly prioritised in early 2021 for vaccination, however dependent on the very unequal availability at the global level. Impaired immunogenicity of SARS-CoV-2 mRNA vaccines in immunocompromised patients was rapidly reported as early as April 2021, although the vaccination fortunately appears to be generally effective without increasing the spacing. Worryingly, the humoral response of the SARS-CoV-2 vaccination is, however, considered insufficient in patients followed for HM, in particular when they are on anti-CD20 treatment. Thus, improving vaccination coverage by strengthening immune stimulation should be evaluated in patients under active treatment against cancer. Here, we discuss three different approaches: a third dose of early vaccine (repeated immune stimulation), heterologous prime-boost vaccination (multimodal immune stimulation) and a double-dose strategy (maximisation of immune response). Dedicated therapeutic trials, currently almost non-existent, seem rapidly necessary.
Collapse
Affiliation(s)
- Jérôme Barrière
- Department of Medical Oncology, Polyclinique Saint Jean, Cagnes-sur-Mer, France.
| | - Daniel Re
- Department of Medical Oncology, Centre Hospitalier La Fontonne, Antibes, France.
| | - Frédéric Peyrade
- Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France.
| | - Michel Carles
- Department of Infectious Disease, Centre Hospitalo-Universitaire, Nice, France.
| |
Collapse
|
31
|
Excler JL, Saville M, Berkley S, Kim JH. Vaccine development for emerging infectious diseases. Nat Med 2021; 27:591-600. [PMID: 33846611 DOI: 10.1038/s41591-021-01301-0] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 01/19/2023]
Abstract
Examination of the vaccine strategies and technical platforms used for the COVID-19 pandemic in the context of those used for previous emerging and reemerging infectious diseases and pandemics may offer some mutually beneficial lessons. The unprecedented scale and rapidity of dissemination of recent emerging infectious diseases pose new challenges for vaccine developers, regulators, health authorities and political constituencies. Vaccine manufacturing and distribution are complex and challenging. While speed is essential, clinical development to emergency use authorization and licensure, pharmacovigilance of vaccine safety and surveillance of virus variants are also critical. Access to vaccines and vaccination needs to be prioritized in low- and middle-income countries. The combination of these factors will weigh heavily on the ultimate success of efforts to bring the current and any future emerging infectious disease pandemics to a close.
Collapse
Affiliation(s)
| | - Melanie Saville
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | | | - Jerome H Kim
- International Vaccine Institute, Seoul, Republic of Korea.
| |
Collapse
|
32
|
He Q, Mao Q, Zhang J, Bian L, Gao F, Wang J, Xu M, Liang Z. COVID-19 Vaccines: Current Understanding on Immunogenicity, Safety, and Further Considerations. Front Immunol 2021; 12:669339. [PMID: 33912196 PMCID: PMC8071852 DOI: 10.3389/fimmu.2021.669339] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The world has entered the second wave of the COVID-19 pandemic, and its intensity is significantly higher than that of the first wave of early 2020. Many countries or regions have been forced to start the second round of lockdowns. To respond rapidly to this global pandemic, dozens of COVID-19 vaccine candidates have been developed and many are undergoing clinical testing. Evaluating and defining effective vaccine candidates for human use is crucial for prioritizing vaccination programs against COVID-19. In this review, we have summarized and analyzed the efficacy, immunogenicity and safety data from clinical reports on different COVID-19 vaccines. We discuss the various guidelines laid out for the development of vaccines and the importance of biological standards for comparing the performance of vaccines. Lastly, we highlight the key remaining challenges, possible strategies for addressing them and the expected improvements in the next generation of COVID-19 vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Miao Xu
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
33
|
Karch CP, Burkhard P, Matyas GR, Beck Z. The diversity of HIV-1 fights against vaccine efficacy: how self-assembling protein nanoparticle technology may fight back. Nanomedicine (Lond) 2021; 16:673-680. [PMID: 33715403 DOI: 10.2217/nnm-2020-0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficacious HIV-1 vaccine has remained an elusive target for almost 40 years. The sheer diversity of the virus is one of the major roadblocks for vaccine development. HIV-1 frequently mutates and various strains predominate in different geographic regions, making the development of a globally applicable vaccine extremely difficult. Multiple approaches have been taken to overcome the issue of viral diversity, including sequence optimization, development of consensus and mosaic sequences and the use of different prime-boost approaches. To develop an efficacious vaccine, these approaches may need to be combined. One way to potentially synergize these approaches is to use a rationally designed protein nanoparticle that allows for the native-like presentation of antigens, such as the self-assembling protein nanoparticle.
Collapse
Affiliation(s)
- Christopher P Karch
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,Henry M Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA
| | - Peter Burkhard
- Alpha-O Peptides, Lörracherstrasse 50, 4125 Riehen, Switzerland
| | - Gary R Matyas
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA
| | - Zoltan Beck
- US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD 20910, USA.,Henry M Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD 20817, USA.,Current address: VRD, Pfizer, 401 N Middletown Rd, Pearl River, NY 10965, USA
| |
Collapse
|
34
|
Namazi F, Davoodi S, Bolhassani A. Comparison of the efficacy of HIV-1 Nef-Tat-Gp160-p24 polyepitope vaccine candidate with Nef protein in different immunization strategies. Curr Drug Deliv 2021; 19:142-156. [PMID: 33655833 DOI: 10.2174/1567201818666210224101144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES One of the promising strategies for effective HIV-1 vaccine design involves finding the polyepitope immunogens using T cell epitopes. METHODS Herein, an HIV-1 polyepitope construct (i.e., Nef-Tat-Gp160-P24) comprising of several epitopes from Nef, Tat, Gp160, and P24 proteins was designed. To improve its immunogenicity in BALB/c mice, cell-penetrating peptides (HR9 & MPG for DNA delivery, and LDP-NLS & CyLoP-1 for protein transfer), Montanide adjuvant, and heterologous DNA prime/polypeptide boost strategy were used. To compare the immunogenicity, Nef was utilized as a vaccine candidate. The levels of total IgG and its subclasses, cytokines, and Granzyme B were assessed using ELISA. RESULTS Immunological studies showed that heterologous prime-boost regimens for both antigens could considerably augment the levels of IgG2a, IgG2b, IFN-γ, and Granzyme B directed toward Th1 and CTL immune responses in comparison with homologous prime-boost strategies. The levels of IFN-γ, IL-10, total IgG, IgG1, and IgG2b were drastically higher in groups immunized with Nef-Tat-Gp160-P24 in heterologous prime-boost regimens than those in groups immunized with Nef. CONCLUSIONS The use of the Nef-Tat-Gp160-P24 polyepitope immunogen in heterologous prime-boost strategy could generate the mixture of Th1 and Th2 responses directed further toward Th1 response as a hopeful method for improvement of HIV-1 vaccine.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Saba Davoodi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran. Iran
| |
Collapse
|
35
|
Baden LR, Stieh DJ, Sarnecki M, Walsh SR, Tomaras GD, Kublin JG, McElrath MJ, Alter G, Ferrari G, Montefiori D, Mann P, Nijs S, Callewaert K, Goepfert P, Edupuganti S, Karita E, Langedijk JP, Wegmann F, Corey L, Pau MG, Barouch DH, Schuitemaker H, Tomaka F. Safety and immunogenicity of two heterologous HIV vaccine regimens in healthy, HIV-uninfected adults (TRAVERSE): a randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study. Lancet HIV 2020; 7:e688-e698. [PMID: 33010242 PMCID: PMC7529856 DOI: 10.1016/s2352-3018(20)30229-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 11/18/2022]
Abstract
Background Bioinformatically designed mosaic antigens increase the breadth of HIV vaccine-elicited immunity. This study compared the safety, tolerability, and immunogenicity of a newly developed, tetravalent Ad26 vaccine with the previously tested trivalent formulation. Methods This randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study (TRAVERSE) was done at 11 centres in the USA and one centre in Rwanda. Eligible participants were adults aged 18 to 50 years, who were HIV-uninfected, healthy at screening based on their medical history and a physical examination including laboratory assessment and vital sign measurements, and at low risk of HIV infection in the opinion of study staff, who applied a uniform definition of low-risk guidelines that was aligned across sites. Enrolled participants were randomly assigned at a 2:1 ratio to tetravalent and trivalent groups. Participants in tetravalent and trivalent groups were then further randomly assigned at a 5:1 ratio to adenovirus 26 (Ad26)-vectored vaccine and placebo subgroups. Randomisation was stratified by region (USA and Rwanda) and based on a computer-generated schedule using randomly permuted blocks prepared under the sponsor's supervision. We masked participants and investigators to treatment allocation throughout the study. On day 0, participants received a first injection of tetravalent vaccine (Ad26.Mos4.HIV or placebo) or trivalent vaccine (Ad26.Mos.HIV or placebo), and those injections were repeated 12 weeks later. At week 24, vaccine groups received a third dose of tetravalent or trivalent together with clade C gp140, and this was repeated at week 48, with placebos again administered to the placebo group. All study vaccines and placebo were administered by intramuscular injection in the deltoid muscle. We assessed adverse events in all participants who received at least one study injection (full analysis set) and Env-specific binding antibodies in all participants who received at least the first three vaccinations according to the protocol-specified vaccination schedule, had at least one measured post-dose blood sample collected, and were not diagnosed with HIV during the study (per-protocol set). This study is registered with Clinicaltrials.gov, NCT02788045. Findings Of 201 participants who were enrolled and randomly assigned, 198 received the first vaccination: 110 were in the tetravalent group, 55 in the trivalent group, and 33 in the placebo group. Overall, 185 (93%) completed two scheduled vaccinations per protocol, 180 (91%) completed three, and 164 (83%) completed four. Solicited, self-limiting local, systemic reactogenicity and unsolicited adverse events were similar in vaccine groups and higher than in placebo groups. All participants in the per-protocol set developed clade C Env binding antibodies after the second vaccination, with higher total IgG titres after the tetravalent vaccine than after the trivalent vaccine (10 413 EU/mL, 95% CI 7284–14 886 in the tetravalent group compared with 5494 EU/mL, 3759–8029 in the trivalent group). Titres further increased after the third and fourth vaccinations, persisting at least through week 72. Other immune responses were also higher with the tetravalent vaccine, including the magnitude and breadth of binding antibodies against a cross-clade panel of Env antigens, and the magnitude of IFNγ ELISPOT responses (median 521 SFU/106 peripheral blood mononuclear cells [PBMCs] in the tetravalent group and median 282 SFU/106 PBMCs in the trivalent group after the fourth vaccination) and Env-specific CD4+ T-cell response rates after the third and fourth vaccinations. No interference by pre-existing Ad26 immunity was identified. Interpretation The tetravalent vaccine regimen was generally safe, well-tolerated, and found to elicit higher immune responses than the trivalent regimen. Regimens that use this tetravalent vaccine component are being advanced into field trials to assess efficacy against HIV-1 infection. Funding National Institutes of Health, Henry M Jackson Foundation for Advancement of Military Medicine and the US Department of Defense, Ragon Institute of MGH, MIT, & Harvard, Bill & Melinda Gates Foundation, and Janssen Vaccines & Prevention.
Collapse
Affiliation(s)
- Lindsey R Baden
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | - Stephen R Walsh
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Georgia D Tomaras
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Guido Ferrari
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - David Montefiori
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Philipp Mann
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Steven Nijs
- Janssen Infectious Diseases, Beerse, Belgium
| | | | - Paul Goepfert
- Division of Infectious Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Srilatha Edupuganti
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Maria G Pau
- Janssen Vaccines & Prevention, Leiden, Netherlands
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Frank Tomaka
- Janssen Research and Development, Titusville, NJ, USA
| |
Collapse
|
36
|
Klasse PJ, Ozorowski G, Sanders RW, Moore JP. Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens? Cell Host Microbe 2020; 27:507-518. [PMID: 32272076 PMCID: PMC7187920 DOI: 10.1016/j.chom.2020.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 11/24/2022]
Abstract
Recombinant HIV-1 envelope (Env) glycoproteins of ever-increasing sophistication have been evaluated as vaccine candidates for over 30 years. Structurally defined mimics of native trimeric Env glycoproteins (e.g., SOSIP trimers) present multiple epitopes for broadly neutralizing antibodies (bNAbs) and their germline precursors, but elicitation of bNAbs remains elusive. Here, we argue that the interactions between Env and the immune system render it exceptional among viral vaccine antigens and hinder its immunogenicity in absolute and comparative terms. In other words, Env binds to CD4 on key immune cells and transduces signals that can compromise their function. Moreover, the extensive array of oligomannose glycans on Env shields peptidic B cell epitopes, impedes the presentation of T helper cell epitopes, and attracts mannose binding proteins, which could affect the antibody response. We suggest lines of research for assessing how to overcome obstacles that the exceptional features of Env impose on the creation of a successful HIV-1 vaccine.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine Development, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|