1
|
Huang J, Wang S, Lu X, Suo L, Wang M, Yue J, Lin R, Mao X, Li Q, Yan J. Molecular epidemiology of Burkholderia pseudomallei in Hainan Province of China based on O-antigen. INFECTIOUS MEDICINE 2024; 3:100150. [PMID: 39697185 PMCID: PMC11652903 DOI: 10.1016/j.imj.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 12/20/2024]
Abstract
Background Burkholderia pseudomallei is a gram-negative bacterium widely found in Southeast Asia and northern Australia. This bacterium, which lacks an available vaccine, is the causative agent of melioidosis and has properties that potentially enable its exploitation as a bioweapon. Methods Polymerase chain reaction assays targeting each of the lipopolysaccharide (LPS) genetic types were used to investigate genotype frequencies in B. pseudomallei populations. Silver staining, gas chromatography-mass spectrometry (GC-MS), and immunofluorescence were used to characterize LPS. Results In our study, a total of 169 clinical B. pseudomallei isolates were collected from Hainan Province, China between 2004 and 2016. The results showed that LPS genotype A was the predominant type, comprising 91.1% of the samples, compared with only 8.9% of LPS genotype B. The majority of patients were male and were diagnosed with sepsis or pneumonia. Silver staining and GC-MS demonstrated that LPS genotypes A and B exhibited distinct phenotypes and molecular structures. Immunofluorescence tests showed there was no cross-reaction between LPS genotypes A and B. Conclusions This is the first report on the molecular epidemiology of B. pseudomallei based on O-antigen in China. Tracking the regional distribution of different LPS genotypes offers significant insights relevant to the development and administration of LPS-based vaccines.
Collapse
Affiliation(s)
- Jinzhu Huang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Liangpeng Suo
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Minyang Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Juanjuan Yue
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rong Lin
- Department of Pneumology, People's Hospital of Sanya, Sanya 572022, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
2
|
Wong DA, Shaver ZM, Cabezas MD, Daniel-Ivad M, Warfel KF, Prasanna DV, Sobol SE, Fernandez R, Nicol R, DeLisa MP, Balskus EP, Karim AS, Jewett MC. Development of cell-free platforms for discovering, characterizing, and engineering post-translational modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586624. [PMID: 39651187 PMCID: PMC11623507 DOI: 10.1101/2024.03.25.586624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Post-translational modifications (PTMs) are important for the stability and function of many therapeutic proteins and peptides. Current methods for studying and engineering PTM installing proteins often suffer from low-throughput experimental techniques. Here we describe a generalizable, in vitro workflow coupling cell-free protein synthesis (CFPS) with AlphaLISA for the rapid expression and testing of PTM installing proteins. We apply our workflow to two representative classes of peptide and protein therapeutics: ribosomally synthesized and post-translationally modified peptides (RiPPs) and conjugate vaccines. First, we demonstrate how our workflow can be used to characterize the binding activity of RiPP recognition elements, an important first step in RiPP biosynthesis, and be integrated into a biodiscovery pipeline for computationally predicted RiPP products. Then, we adapt our workflow to study and engineer oligosaccharyltransferases (OSTs) involved in conjugate vaccine production, enabling the identification of mutant OSTs and sites within a carrier protein that enable high efficiency production of conjugate vaccines. In total, we expect that our workflow will accelerate design-build-test cycles for engineering PTMs.
Collapse
|
3
|
Sheikhi A, Shirmohammadpour M, Mahdei Nasirmahalleh N, Mirzaei B. Analysis of immunogenicity and purification methods in conjugated polysaccharide vaccines: a new approach in fighting pathogenic bacteria. Front Immunol 2024; 15:1483740. [PMID: 39635523 PMCID: PMC11614811 DOI: 10.3389/fimmu.2024.1483740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Carbohydrates are commonly found in conjunction with lipids or proteins, resulting in the formation of glycoconjugates such as glycoproteins, glycolipids, and proteoglycans. These glycoconjugates are essential in various biological activities, including inflammation, cell-cell recognition, bacterial infections, and immune response. Nonetheless, the isolation of naturally occurring glycoconjugates presents challenges due to their typically heterogeneous nature, resulting in variations between batches in structure and function, impeding a comprehensive understanding of their mechanisms of action. Consequently, there is a strong need for the efficient synthesis of artificial glycoconjugates with precisely described compositions and consistent biological properties. The chemical and enzymatic approaches discussed in this paper present numerous research opportunities to develop customised glycoconjugate vaccines.
Collapse
Affiliation(s)
- Arya Sheikhi
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
- Student Research Committee, Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Shirmohammadpour
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
- Student Research Committee, Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nima Mahdei Nasirmahalleh
- Department of Medical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Mirzaei
- Department of Microbiology and Virology, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
4
|
Di Marco F, Hipgrave Ederveen AL, van Schaick G, Moran AB, Domínguez-Vega E, Nicolardi S, Blöchl C, Koeleman CA, Danuser R, Al Kaabi A, Dotz V, Grijpstra J, Beurret M, Anish C, Wuhrer M. Comprehensive characterization of bacterial glycoconjugate vaccines by liquid chromatography - mass spectrometry. Carbohydr Polym 2024; 341:122327. [PMID: 38876725 DOI: 10.1016/j.carbpol.2024.122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Bacterial pathogens can cause a broad range of infections with detrimental effects on health. Vaccine development is essential as multi-drug resistance in bacterial infections is a rising concern. Recombinantly produced proteins carrying O-antigen glycosylation are promising glycoconjugate vaccine candidates to prevent bacterial infections. However, methods for their comprehensive structural characterization are lacking. Here, we present a bottom-up approach for their site-specific characterization, detecting N-glycopeptides by nano reversed-phase liquid chromatography-mass spectrometry (RP-LC-MS). Glycopeptide analyses revealed information on partial site-occupancy and site-specific glycosylation heterogeneity and helped corroborate the polysaccharide structures and their modifications. Bottom-up analysis was complemented by intact glycoprotein analysis using nano RP-LC-MS allowing the fast visualization of the polysaccharide distribution in the intact glycoconjugate. At the glycopeptide level, the model glycoconjugates analyzed showed different repeat unit (RU) distributions that spanned from 1 to 21 RUs attached to each of the different glycosylation sites. Interestingly, the intact glycoprotein analysis displayed a RU distribution ranging from 1 to 28 RUs, showing the predominant species when the different glycopeptide distributions are combined in the intact glycoconjugate. The complete workflow based on LC-MS measurements allows detailed and comprehensive analysis of the glycosylation state of glycoconjugate vaccines.
Collapse
Affiliation(s)
- Fiammetta Di Marco
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Agnes L Hipgrave Ederveen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Guusje van Schaick
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alan B Moran
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Constantin Blöchl
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Carolien A Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Renzo Danuser
- Janssen Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Ali Al Kaabi
- Janssen Vaccines AG (Branch of Cilag GmbH International), Rehhagstrasse 79, CH-3018 Bern, Switzerland
| | - Viktoria Dotz
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands; BioTherapeutics Analytical Development, Janssen Biologics B.V., Einsteinweg 101, 2333 CB Leiden, the Netherlands
| | - Jan Grijpstra
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Michel Beurret
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Chakkumkal Anish
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Archimedesweg 4-6, 2333 CN Leiden, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
5
|
Pietri GP, Bertuzzi S, Karnicar K, Unione L, Lisnic B, Malic S, Miklic K, Novak M, Calloni I, Santini L, Usenik A, Romano MR, Adamo R, Jonjic S, Turk D, Jiménez-Barbero J, Lenac Rovis T. Antigenic determinants driving serogroup-specific antibody response to Neisseria meningitidis C, W, and Y capsular polysaccharides: Insights for rational vaccine design. Carbohydr Polym 2024; 341:122349. [PMID: 38876728 DOI: 10.1016/j.carbpol.2024.122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
Meningococcal glycoconjugate vaccines sourced from capsular polysaccharides (CPSs) of pathogenic Neisseria meningitidis strains are well-established measures to prevent meningococcal disease. However, the exact structural factors responsible for antibody recognition are not known. CPSs of Neisseria meningitidis serogroups Y and W differ by a single stereochemical center, yet they evoke specific immune responses. Herein, we developed specific monoclonal antibodies (mAbs) targeting serogroups C, Y, and W and evaluated their ability to kill bacteria. We then used these mAbs to dissect structural elements responsible for carbohydrate-protein interactions. First, Men oligosaccharides were screened against the mAbs using ELISA to select putative lengths representing the minimal antigenic determinant. Next, molecular interaction features between the mAbs and serogroup-specific sugar fragments were elucidated using STD-NMR. Moreover, X-ray diffraction data with the anti-MenW CPS mAb enabled the elucidation of the sugar-antibody binding mode. Our findings revealed common traits in the epitopes of all three sialylated serogroups. The minimal binding epitopes typically comprise five to six repeating units. Moreover, the O-acetylation of the neuraminic acid moieties was fundamental for mAb binding. These insights hold promise for the rational design of optimized meningococcal oligosaccharides, opening new avenues for novel production methods, including chemical or enzymatic approaches.
Collapse
Affiliation(s)
- Gian Pietro Pietri
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Sara Bertuzzi
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | - Katarina Karnicar
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Bizkaia, Spain
| | - Berislav Lisnic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Suzana Malic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Karmela Miklic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Matej Novak
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Ilaria Calloni
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain
| | | | - Aleksandra Usenik
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | | | | | - Stipan Jonjic
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Dusan Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova cesta 39, 1000 Ljubljana, Slovenia; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009 Bilbao, Bizkaia, Spain; Department of Organic and Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, 48940 Leioa, Bizkaia, Spain; Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain.
| | - Tihana Lenac Rovis
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
6
|
Gurung PB, Shine G, Zhu J. Synthesis of Salmonella enteritidis Antigenic Tetrasaccharide Repeating Unit by Employing Cationic Gold(I)-Catalyzed Glycosylation Involving Glycosyl N-1,1-Dimethylpropargyl Carbamate Donors. J Org Chem 2024; 89:12547-12558. [PMID: 39137335 PMCID: PMC11384238 DOI: 10.1021/acs.joc.4c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Synthesis of an antigenic tetrasaccharide repeating unit of the O-polysaccharide of Salmonella enteritidis lipopolysaccharide has been accomplished. Those four monosaccharides were assembled stereoselectively by employing our recently developed cationic gold(I)-catalyzed glycosylation methodology involving various glycosyl N-1,1-dimethylpropargyl carbamate donors. The newly formed α-anomeric stereochemical configuration was controlled by the axial C2-OBz of the glycosyl donors via anchimeric assistance.
Collapse
Affiliation(s)
- Prem Bahadur Gurung
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Gavin Shine
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
7
|
Rana A, Misra AK. Convergent synthesis of the pentasaccharide repeating unit corresponding to the cell wall O-polysaccharide of Salmonella milwaukee (group U) O:43 strain. Carbohydr Res 2024; 542:109176. [PMID: 38851144 DOI: 10.1016/j.carres.2024.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Synthesis of the pentasaccharide repeating unit of the cell O-polysaccharide produced by Salmonella milwaukee O:43 strain (group U) has been achieved in very good yield adopting a convergent stereoselective [3 + 2] block glycosylation strategy. Thioglycosides and glycosyl trichloroacetimidate derivative were used as glycosyl donors in the presence of a combination of N-iodosuccinimide (NIS) and trimethylsilyl trifluoromethanesulfonate (TMSOTf) as thiophilic activator and TMSOTf as trichloroacetimidate activator respectively. The stereochemical outcome of all glycosylation reactions was excellent.
Collapse
Affiliation(s)
- Abhijit Rana
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector-V, Salt Lake, Kolkata, 700091, India
| | - Anup Kumar Misra
- Bose Institute, Department of Chemical Sciences, Block EN-80, Sector-V, Salt Lake, Kolkata, 700091, India.
| |
Collapse
|
8
|
Chettri D, Chirania M, Boro D, Verma AK. Glycoconjugates: Advances in modern medicines and human health. Life Sci 2024; 348:122689. [PMID: 38710281 DOI: 10.1016/j.lfs.2024.122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Glycans and their glycoconjugates are complex biomolecules that are crucial for various biological processes. Glycoconjugates are found in all domains of life. They are covalently linked to key biomolecules such as proteins and lipids to play a pivotal role in cell signaling, adhesion, and recognition. The diversity of glycan structures and the associated complexity of glycoconjugates is the reason for their role in intricate biosynthetic pathways. Glycoconjugates play an important role in various diseases where they are actively involved in the immune response as well as in the pathogenicity of infectious diseases. In addition, various autoimmune diseases have been linked to glycosylation defects of different biomolecules, making them an important molecule in the field of medicine. The glycoconjugates have been explored for the development of therapeutics and vaccines, representing a breakthrough in medical science. They also hold significance in research studies to understand the mechanisms behind various biological processes. Finally, glycoconjugates have found an emerging role in various industrial and environmental applications which have been discussed here.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Manisha Chirania
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Deepjyoti Boro
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim 737102, India.
| |
Collapse
|
9
|
Nappini R, Alfini R, Durante S, Salvini L, Raso MM, Palmieri E, Di Benedetto R, Carducci M, Rossi O, Cescutti P, Micoli F, Giannelli C. Modeling 1-Cyano-4-Dimethylaminopyridine Tetrafluoroborate (CDAP) Chemistry to Design Glycoconjugate Vaccines with Desired Structural and Immunological Characteristics. Vaccines (Basel) 2024; 12:707. [PMID: 39066345 PMCID: PMC11281720 DOI: 10.3390/vaccines12070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Glycoconjugation is a well-established technology for vaccine development: linkage of the polysaccharide (PS) antigen to an appropriate carrier protein overcomes the limitations of PS T-independent antigens, making them effective in infants and providing immunological memory. Glycoconjugate vaccines have been successful in reducing the burden of different diseases globally. However, many pathogens still require a vaccine, and many of them display a variety of glycans on their surface that have been proposed as key antigens for the development of high-valency glycoconjugate vaccines. CDAP chemistry represents a generic conjugation strategy that is easily applied to PS with different structures. This chemistry utilizes common groups to a large range of PS and proteins, e.g., hydroxyl groups on the PS and amino groups on the protein. Here, new fast analytical tools to study CDAP reaction have been developed, and reaction conditions for PS activation and conjugation have been extensively investigated. Mathematical models have been built to identify reaction conditions to generate conjugates with wanted characteristics and successfully applied to a large number of bacterial PSs from different pathogens, e.g., Klebsiella pneumoniae, Salmonella Paratyphi A, Salmonella Enteritidis, Salmonella Typhimurium, Shighella sonnei and Shigella flexneri. Furthermore, using Salmonella Paratyphi A O-antigen and CRM197 as models, a design of experiment approach has been used to study the impact of conjugation conditions and conjugate features on immunogenicity in rabbits. The approach used can be rapidly extended to other PSs and accelerate the development of high-valency glycoconjugate vaccines.
Collapse
Affiliation(s)
- Rebecca Nappini
- Dipartimento di Scienze della Vita, Università Degli Studi di Trieste, Via L Giorgieri 1, Ed. C11, 34127 Trieste, Italy; (R.N.); (P.C.)
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Renzo Alfini
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Salvatore Durante
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences (TLS), 53100 Siena, Italy;
| | - Maria Michelina Raso
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Elena Palmieri
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Paola Cescutti
- Dipartimento di Scienze della Vita, Università Degli Studi di Trieste, Via L Giorgieri 1, Ed. C11, 34127 Trieste, Italy; (R.N.); (P.C.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health (GVGH), 53100 Siena, Italy; (R.A.); (S.D.); (M.M.R.); (E.P.); (R.D.B.); (M.C.); (O.R.); (F.M.)
| |
Collapse
|
10
|
Cheung IY, Mauguen A, Modak S, Basu EM, Feng Y, Kushner BH, Cheung NK. Long Prime-Boost Interval and Heightened Anti-GD2 Antibody Response to Carbohydrate Cancer Vaccine. Vaccines (Basel) 2024; 12:587. [PMID: 38932316 PMCID: PMC11209353 DOI: 10.3390/vaccines12060587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The carbohydrate ganglioside GD2/GD3 cancer vaccine adjuvanted by β-glucan stimulates anti-GD2 IgG1 antibodies that strongly correlate with improved progression-free survival (PFS) and overall survival (OS) among patients with high-risk neuroblastoma. Thirty-two patients who relapsed on the vaccine (first enrollment) were re-treated on the same vaccine protocol (re-enrollment). Titers during the first enrollment peaked by week 32 at 751 ± 270 ng/mL, which plateaued despite vaccine boosts at 1.2-4.5 month intervals. After a median wash-out interval of 16.1 months from the last vaccine dose during the first enrollment to the first vaccine dose during re-enrollment, the anti-GD2 IgG1 antibody rose to a peak of 4066 ± 813 ng/mL by week 3 following re-enrollment (p < 0.0001 by the Wilcoxon matched-pairs signed-rank test). Yet, these peaks dropped sharply and continually despite repeated boosts at 1.2-4.5 month intervals, before leveling off by week 20 to the first enrollment peak levels. Despite higher antibody titers, patients experienced no pain or neuropathic side effects, which were typically associated with immunotherapy using monoclonal anti-GD2 antibodies. By the Kaplan-Meier method, PFS was estimated to be 51%, and OS was 81%. The association between IgG1 titer during re-enrollment and β-glucan receptor dectin-1 SNP rs3901533 was significant (p = 0.01). A longer prime-boost interval could significantly improve antibody responses in patients treated with ganglioside conjugate cancer vaccines.
Collapse
Affiliation(s)
- Irene Y. Cheung
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Audrey Mauguen
- Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA;
| | - Shakeel Modak
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Ellen M. Basu
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Yi Feng
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Brian H. Kushner
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| | - Nai Kong Cheung
- Departments of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; (S.M.); (E.M.B.); (Y.F.); (B.H.K.); (N.K.C.)
| |
Collapse
|
11
|
Nonne F, Molfetta M, Nappini R, La Guidara C, Di Benedetto R, Mfana S, Bellich B, Raso MM, Gasperini G, Alfini R, Cescutti P, Berlanda Scorza F, Ravenscroft N, Micoli F, Giannelli C. Development and Application of a High-Throughput Method for the Purification and Analysis of Surface Carbohydrates from Klebsiella pneumoniae. BIOLOGY 2024; 13:256. [PMID: 38666868 PMCID: PMC11048683 DOI: 10.3390/biology13040256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Klebsiella pneumoniae (Kp) is a Gram-negative bacterium, and a leading cause of neonatal sepsis in low- and middle-income countries, often associated with anti-microbial resistance. Two types of polysaccharides are expressed on the Kp cell surface and have been proposed as key antigens for vaccine design: capsular polysaccharides (known as K-antigens, K-Ags) and O-antigens (O-Ags). Historically, Kp has been classified using capsule serotyping and although 186 distinct genotypes have been predicted so far based on sequence analysis, many structures are still unknown. In contrast, only 11 distinct OAg serotypes have been described. The characterization of emerging strains requires the development of a high-throughput purification method to obtain sufficient K- and O-Ag material to characterize the large collection of serotypes and gain insight on structural features and potential cross-reactivity that could allow vaccine simplification. Here, this was achieved by adapting our established method for the simple purification of O-Ags, using mild acetic acid hydrolysis performed directly on bacterial cells, followed by filtration and precipitation steps. The method was successfully applied to purify the surface carbohydrates from different Kp strains, thereby demonstrating the robustness and general applicability of the purification method developed. Further, antigen characterization showed that the purification method had no impact on the structural integrity of the polysaccharides and preserved labile substituents such as O-acetyl and pyruvyl groups. This method can be further optimized for scaling up and manufacturing to support the development of high-valency saccharide-based vaccines against Kp.
Collapse
Affiliation(s)
- Francesca Nonne
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| | - Mariagrazia Molfetta
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| | - Rebecca Nappini
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
- Department of Life Science, University of Trieste, 34127 Trieste, Italy;
| | - Chiara La Guidara
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| | - Siwaphiwe Mfana
- Department of Chemistry, University of Cape Town, Cape Town 7700, South Africa; (S.M.); (N.R.)
| | - Barbara Bellich
- Department of Advanced Translational Diagnostics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Maria Michelina Raso
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| | | | - Renzo Alfini
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| | - Paola Cescutti
- Department of Life Science, University of Trieste, 34127 Trieste, Italy;
| | - Francesco Berlanda Scorza
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Cape Town 7700, South Africa; (S.M.); (N.R.)
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| | - Carlo Giannelli
- GSK Vaccines Institute for Global Health, 53100 Siena, Italy; (M.M.); (R.N.); (C.L.G.); (R.D.B.); (M.M.R.); (R.A.); (F.B.S.); (F.M.); (C.G.)
| |
Collapse
|
12
|
Rivera-Hernandez T, Carnathan DG, Richter J, Marchant P, Cork AJ, Elangovan G, Henningham A, Cole JN, Choudhury B, Moyle PM, Toth I, Batzloff MR, Good MF, Agarwal P, Kapoor N, Nizet V, Silvestri G, Walker MJ. Efficacy of Alum-Adjuvanted Peptide and Carbohydrate Conjugate Vaccine Candidates against Group A Streptococcus Pharyngeal Infection in a Non-Human Primate Model. Vaccines (Basel) 2024; 12:382. [PMID: 38675764 PMCID: PMC11054769 DOI: 10.3390/vaccines12040382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Vaccine development against group A Streptococcus (GAS) has gained traction in the last decade, fuelled by recognition of the significant worldwide burden of the disease. Several vaccine candidates are currently being evaluated in preclinical and early clinical studies. Here, we investigate two conjugate vaccine candidates that have shown promise in mouse models of infection. Two antigens, the J8 peptide from the conserved C-terminal end of the M protein, and the group A carbohydrate lacking N-acetylglucosamine side chain (ΔGAC) were each conjugated to arginine deiminase (ADI), an anchorless surface protein from GAS. Both conjugate vaccine candidates combined with alum adjuvant were tested in a non-human primate (NHP) model of pharyngeal infection. High antibody titres were detected against J8 and ADI antigens, while high background antibody titres in NHP sera hindered accurate quantification of ΔGAC-specific antibodies. The severity of pharyngitis and tonsillitis signs, as well as the level of GAS colonisation, showed no significant differences in NHPs immunised with either conjugate vaccine candidate compared to NHPs in the negative control group.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- Consejo Nacional de Humanidades Ciencia y Tecnología, Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Diane G. Carnathan
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (D.G.C.)
| | - Johanna Richter
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.R.); (G.E.)
| | | | - Amanda J. Cork
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.R.); (G.E.)
| | - Gayathiri Elangovan
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.R.); (G.E.)
| | - Anna Henningham
- Division of Ob/Gyn & Reproductive Sciences, Vc-Health Sciences-Schools, University of California San Diego, La Jolla, CA 92093, USA; (A.H.); (B.C.)
| | - Jason N. Cole
- Division of Ob/Gyn & Reproductive Sciences, Vc-Health Sciences-Schools, University of California San Diego, La Jolla, CA 92093, USA; (A.H.); (B.C.)
| | - Biswa Choudhury
- Division of Ob/Gyn & Reproductive Sciences, Vc-Health Sciences-Schools, University of California San Diego, La Jolla, CA 92093, USA; (A.H.); (B.C.)
| | - Peter M. Moyle
- School of Pharmacy, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Michael R. Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; (M.R.B.)
| | - Michael F. Good
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia; (M.R.B.)
| | | | - Neeraj Kapoor
- Vaxcyte Inc., San Carlos, CA 94070, USA (P.A.); (N.K.)
| | - Victor Nizet
- Division of Ob/Gyn & Reproductive Sciences, Vc-Health Sciences-Schools, University of California San Diego, La Jolla, CA 92093, USA; (A.H.); (B.C.)
| | - Guido Silvestri
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (D.G.C.)
| | - Mark J. Walker
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.R.); (G.E.)
| |
Collapse
|
13
|
Anyaegbunam ZKG, Mba IE, Doowuese Y, Anyaegbunam NJ, Mba T, Aina FA, Chigor VN, Nweze EI, Eze EA. Antimicrobial resistance containment in Africa: Moving beyond surveillance. BIOSAFETY AND HEALTH 2024; 6:50-58. [DOI: 10.1016/j.bsheal.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
|
14
|
Vasquez O, Alibrandi A, Bennett CS. De Novo Synthetic Approach to 2,4-Diamino-2,4,6-trideoxyhexoses (DATDH): Bacterial and Rare Deoxy-Amino Sugars. Org Lett 2023; 25:7873-7877. [PMID: 37862141 PMCID: PMC10923193 DOI: 10.1021/acs.orglett.3c03106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A synthetic route to 2,4-diamino-2,4,6-trideoxysugar stereoisomers in 6-7 steps and 22-33% overall yield is described. A key step in this pathway is the carbonyl coupling of d- and l-threoninol or d- and l-allo-threoninol to a phthalimido-allene mediated by chiral iridium-H8-BINAP, which allows for installation of two new chiral centers in one, highly diastereoselective (>20:1 dr) step. This approach provides a more concise, diastereoselective, and versatile method to access these deoxy-amino sugars than is currently available.
Collapse
Affiliation(s)
- Olivea Vasquez
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Angela Alibrandi
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| |
Collapse
|
15
|
Rodrigues Reis CE, Milessi TS, Ramos MDN, Singh AK, Mohanakrishna G, Aminabhavi TM, Kumar PS, Chandel AK. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications. Biotechnol Adv 2023; 68:108209. [PMID: 37467868 DOI: 10.1016/j.biotechadv.2023.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Glycoconjugates are the ubiquitous components of mammalian cells, mainly synthesized by covalent bonds of carbohydrates to other biomolecules such as proteins and lipids, with a wide range of potential applications in novel vaccines, therapeutic peptides and antibodies (Ab). Considering the emerging developments in glycoscience, renewable production of glycoconjugates is of importance and lignocellulosic biomass (LCB) is a potential source of carbohydrates to produce synthetic glycoconjugates in a sustainable pathway. In this review, recent advances in glycobiology aiming on glycoconjugates production is presented together with the recent and cutting-edge advances in the therapeutic properties and application of glycoconjugates, including therapeutic glycoproteins, glycosaminoglycans (GAGs), and nutraceuticals, emphasizing the integral role of glycosylation in their function and efficacy. Special emphasis is given towards the potential exploration of carbon neutral feedstocks, in which LCB has an emerging role. Techniques for extraction and recovery of mono- and oligosaccharides from LCB are critically discussed and influence of the heterogeneous nature of the feedstocks and different methods for recovery of these sugars in the development of the customized glycoconjugates is explored. Although reports on the use of LCB for the production of glycoconjugates are scarce, this review sets clear that the potential of LCB as a source for the production of valuable glycoconjugates cannot be underestimated and encourages that future research should focus on refining the existing methodologies and exploring new approaches to fully realize the potential of LCB in glycoconjugate production.
Collapse
Affiliation(s)
| | - Thais Suzane Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Márcio Daniel Nicodemos Ramos
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil.
| |
Collapse
|
16
|
Duan L, Nie Q, Hu Y, Wang L, Guo K, Zhou Z, Song X, Tu Y, Liu H, Hansen T, Sun JS, Zhang Q. Stereoselective Synthesis of the O-antigen of A. baumannii ATCC 17961 Using Long-Range Levulinoyl Group Participation. Angew Chem Int Ed Engl 2023; 62:e202306971. [PMID: 37327196 DOI: 10.1002/anie.202306971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.
Collapse
Affiliation(s)
- Liangshen Duan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Kaiyan Guo
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Zhuoyi Zhou
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Xu Song
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam (The, Netherlands
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| |
Collapse
|
17
|
Toukach PV. Supplementing the Carbohydrate Structure Database with glycoepitopes. Glycobiology 2023; 33:528-531. [PMID: 37306951 DOI: 10.1093/glycob/cwad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/13/2023] Open
Abstract
Carbohydrate structures in the Carbohydrate Structure Database have been referenced to glycoepitopes from the Immune Epitope Database allowing users to explore the glycan structures and contained epitopes. Starting with an epitope, one can figure out the glycans from other organisms that share the same structural determinant, and retrieve the associated taxonomical, medical, and other data. This database mapping demonstrates the advantages of the integration of immunological and glycomic databases.
Collapse
Affiliation(s)
- Philip V Toukach
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Laboratory of carbohydrate chemistry and biocides, Leninsky pr. 47, Moscow 119991, Russia
| |
Collapse
|
18
|
Kamneva AA, Yashunsky DV, Khatuntseva EA, Nifantiev NE. Synthesis of Pseudooligosaccharides Related to the Capsular Phosphoglycan of Haemophilus influenzae Type a. Molecules 2023; 28:5688. [PMID: 37570658 PMCID: PMC10419796 DOI: 10.3390/molecules28155688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Synthesis of spacer-armed pseudodi-, pseudotetra-, and pseudohexasaccharides related to the capsular phosphoglycan of Haemophilus influenzae type a, the second most virulent serotype of H. influenzae (after type b), was performed for the first time via iterative chain elongation using H-phosphonate chemistry for the formation of inter-unit phosphodiester bridges. These compounds were prepared for the design of neoglycoconjugates, as exemplified by the transformation of the obtained pseudohexasaccharide derivative into a biotinylated glycoconjugate suitable for use in immunological studies, particularly in diagnostic screening systems as a coating antigen for streptavidin-coated plates and chip slides.
Collapse
Affiliation(s)
| | | | | | - Nikolay E. Nifantiev
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, Moscow 119991, Russia; (A.A.K.); (D.V.Y.); (E.A.K.)
| |
Collapse
|
19
|
Tognetti F, Biagini M, Denis M, Berti F, Maione D, Stranges D. Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. Int J Mol Sci 2023; 24:12054. [PMID: 37569427 PMCID: PMC10418901 DOI: 10.3390/ijms241512054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.
Collapse
Affiliation(s)
- Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Cifuente JO, Schulze J, Bethe A, Di Domenico V, Litschko C, Budde I, Eidenberger L, Thiesler H, Ramón Roth I, Berger M, Claus H, D'Angelo C, Marina A, Gerardy-Schahn R, Schubert M, Guerin ME, Fiebig T. A multi-enzyme machine polymerizes the Haemophilus influenzae type b capsule. Nat Chem Biol 2023; 19:865-877. [PMID: 37277468 PMCID: PMC10299916 DOI: 10.1038/s41589-023-01324-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/31/2023] [Indexed: 06/07/2023]
Abstract
Bacterial capsules have critical roles in host-pathogen interactions. They provide a protective envelope against host recognition, leading to immune evasion and bacterial survival. Here we define the capsule biosynthesis pathway of Haemophilus influenzae serotype b (Hib), a Gram-negative bacterium that causes severe infections in infants and children. Reconstitution of this pathway enabled the fermentation-free production of Hib vaccine antigens starting from widely available precursors and detailed characterization of the enzymatic machinery. The X-ray crystal structure of the capsule polymerase Bcs3 reveals a multi-enzyme machine adopting a basket-like shape that creates a protected environment for the synthesis of the complex Hib polymer. This architecture is commonly exploited for surface glycan synthesis by both Gram-negative and Gram-positive pathogens. Supported by biochemical studies and comprehensive 2D nuclear magnetic resonance, our data explain how the ribofuranosyltransferase CriT, the phosphatase CrpP, the ribitol-phosphate transferase CroT and a polymer-binding domain function as a unique multi-enzyme assembly.
Collapse
Affiliation(s)
- Javier O Cifuente
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Julia Schulze
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Andrea Bethe
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Valerio Di Domenico
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Isabel Ramón Roth
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Cecilia D'Angelo
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Alberto Marina
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain.
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.
- Ikerbasque Basque Foundation for Science, Bilbao, Spain.
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
21
|
Micoli F, Stefanetti G, MacLennan CA. Exploring the variables influencing the immune response of traditional and innovative glycoconjugate vaccines. Front Mol Biosci 2023; 10:1201693. [PMID: 37261327 PMCID: PMC10227950 DOI: 10.3389/fmolb.2023.1201693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
Vaccines are cost-effective tools for reducing morbidity and mortality caused by infectious diseases. The rapid evolution of pneumococcal conjugate vaccines, the introduction of tetravalent meningococcal conjugate vaccines, mass vaccination campaigns in Africa with a meningococcal A conjugate vaccine, and the recent licensure and introduction of glycoconjugates against S. Typhi underlie the continued importance of research on glycoconjugate vaccines. More innovative ways to produce carbohydrate-based vaccines have been developed over the years, including bioconjugation, Outer Membrane Vesicles (OMV) and the Multiple antigen-presenting system (MAPS). Several variables in the design of these vaccines can affect the induced immune responses. We review immunogenicity studies comparing conjugate vaccines that differ in design variables, such as saccharide chain length and conjugation chemistry, as well as carrier protein and saccharide to protein ratio. We evaluate how a better understanding of the effects of these different parameters is key to designing improved glycoconjugate vaccines.
Collapse
Affiliation(s)
| | - Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Calman A. MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill and Melinda Gates Foundation, Seattle, WA, United States
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
22
|
Wan Y, Zhou M, Wang L, Hu K, Liu D, Liu H, Sun JS, Codée JDC, Zhang Q. Regio- and Stereoselective Organocatalyzed Relay Glycosylations To Synthesize 2-Amino-2-deoxy-1,3-dithioglycosides. Org Lett 2023; 25:3611-3617. [PMID: 37191370 DOI: 10.1021/acs.orglett.3c00859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Herein, we describe a novel methodology for the regio- and stereoselective convergent synthesis of 2-amino-2-deoxy-dithioglycosides via one-pot relay glycosylation of 3-O-acetyl-2-nitroglucal donors. This unique organo-catalysis relay glycosylation features excellent site- and stereoselectivity, good to excellent yields, mild reaction conditions, and broad substrate scope. 2-Amino-2-deoxy-glucosides/mannosides bearing 1,3-dithio-linkages were efficiently obtained from 3-O-acetyl-2-nitroglucal donors in both stepwise and one-pot glycosylation protocols. The dithiolated O-antigen of E. coli serogroup 64 was successfully synthesized using this newly developed method.
Collapse
Affiliation(s)
- Yongyong Wan
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Meimei Zhou
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Liming Wang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Kexin Hu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Deyong Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Hui Liu
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jian-Song Sun
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, Netherlands
| | - Qingju Zhang
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
23
|
Doyle L, Ovchinnikova OG, Huang BS, Forrester TJB, Lowary TL, Kimber MS, Whitfield C. Mechanism and linkage specificities of the dual retaining β-Kdo glycosyltransferase modules of KpsC from bacterial capsule biosynthesis. J Biol Chem 2023; 299:104609. [PMID: 36924942 PMCID: PMC10148158 DOI: 10.1016/j.jbc.2023.104609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
KpsC is a dual-module glycosyltransferase (GT) essential for "group 2" capsular polysaccharide biosynthesis in Escherichia coli and other Gram-negative pathogens. Capsules are vital virulence determinants in high-profile pathogens, making KpsC a viable target for intervention with small-molecule therapeutic inhibitors. Inhibitor development can be facilitated by understanding the mechanism of the target enzyme. Two separate GT modules in KpsC transfer 3-deoxy-β-d-manno-oct-2-ulosonic acid (β-Kdo) from cytidine-5'-monophospho-β-Kdo donor to a glycolipid acceptor. The N-terminal and C-terminal modules add alternating Kdo residues with β-(2→4) and β-(2→7) linkages, respectively, generating a conserved oligosaccharide core that is further glycosylated to produce diverse capsule structures. KpsC is a retaining GT, which retains the donor anomeric carbon stereochemistry. Retaining GTs typically use an SNi (substitution nucleophilic internal return) mechanism, but recent studies with WbbB, a retaining β-Kdo GT distantly related to KpsC, strongly suggest that this enzyme uses an alternative double-displacement mechanism. Based on the formation of covalent adducts with Kdo identified here by mass spectrometry and X-ray crystallography, we determined that catalytically important active site residues are conserved in WbbB and KpsC, suggesting a shared double-displacement mechanism. Additional crystal structures and biochemical experiments revealed the acceptor binding mode of the β-(2→4)-Kdo transferase module and demonstrated that acceptor recognition (and therefore linkage specificity) is conferred solely by the N-terminal α/β domain of each GT module. Finally, an Alphafold model provided insight into organization of the modules and a C-terminal membrane-anchoring region. Altogether, we identified key structural and mechanistic elements providing a foundation for targeting KpsC.
Collapse
Affiliation(s)
- Liam Doyle
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Olga G Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Bo-Shun Huang
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Taylor J B Forrester
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
24
|
Burns K, Dorfmueller HC, Wren BW, Mawas F, Shaw HA. Progress towards a glycoconjugate vaccine against Group A Streptococcus. NPJ Vaccines 2023; 8:48. [PMID: 36977677 PMCID: PMC10043865 DOI: 10.1038/s41541-023-00639-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The Group A Carbohydrate (GAC) is a defining feature of Group A Streptococcus (Strep A) or Streptococcus pyogenes. It is a conserved and simple polysaccharide, comprising a rhamnose backbone and GlcNAc side chains, further decorated with glycerol phosphate on approximately 40% GlcNAc residues. Its conservation, surface exposure and antigenicity have made it an interesting focus on Strep A vaccine design. Glycoconjugates containing this conserved carbohydrate should be a key approach towards the successful mission to build a universal Strep A vaccine candidate. In this review, a brief introduction to GAC, the main carbohydrate component of Strep A bacteria, and a variety of published carrier proteins and conjugation technologies are discussed. Components and technologies should be chosen carefully for building affordable Strep A vaccine candidates, particularly for low- and middle-income countries (LMICs). Towards this, novel technologies are discussed, such as the prospective use of bioconjugation with PglB for rhamnose polymer conjugation and generalised modules for membrane antigens (GMMA), particularly as low-cost solutions to vaccine production. Rational design of "double-hit" conjugates encompassing species specific glycan and protein components would be beneficial and production of a conserved vaccine to target Strep A colonisation without invoking an autoimmune response would be ideal.
Collapse
Affiliation(s)
- Keira Burns
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, Dow Street, Dundee, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fatme Mawas
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
| | - Helen A Shaw
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK.
| |
Collapse
|
25
|
Mba IE, Sharndama HC, Anyaegbunam ZKG, Anekpo CC, Amadi BC, Morumda D, Doowuese Y, Ihezuo UJ, Chukwukelu JU, Okeke OP. Vaccine development for bacterial pathogens: Advances, challenges and prospects. Trop Med Int Health 2023; 28:275-299. [PMID: 36861882 DOI: 10.1111/tmi.13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The advent and use of antimicrobials have played a key role in treating potentially life-threatening infectious diseases, improving health, and saving the lives of millions of people worldwide. However, the emergence of multidrug resistant (MDR) pathogens has been a significant health challenge that has compromised the ability to prevent and treat a wide range of infectious diseases that were once treatable. Vaccines offer potential as a promising alternative to fight against antimicrobial resistance (AMR) infectious diseases. Vaccine technologies include reverse vaccinology, structural biology methods, nucleic acid (DNA and mRNA) vaccines, generalised modules for membrane antigens, bioconjugates/glycoconjugates, nanomaterials and several other emerging technological advances that are offering a potential breakthrough in the development of efficient vaccines against pathogens. This review covers the opportunities and advancements in vaccine discovery and development targeting bacterial pathogens. We reflect on the impact of the already-developed vaccines targeting bacterial pathogens and the potential of those currently under different stages of preclinical and clinical trials. More importantly, we critically and comprehensively analyse the challenges while highlighting the key indices for future vaccine prospects. Finally, the issues and concerns of AMR for low-income countries (sub-Saharan Africa) and the challenges with vaccine integration, discovery and development in this region are critically evaluated.
Collapse
Affiliation(s)
- Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | - Zikora Kizito Glory Anyaegbunam
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | - Chijioke Chinedu Anekpo
- Department of Ear Nose and Throat, College of Medicine, Enugu State University of Science and Technology, Enugu, Nigeria
| | - Ben Chibuzo Amadi
- Pharmaceutical Technology and Industrial Pharmacy, University of Nigeria, Nsukka, Nigeria
| | - Daji Morumda
- Department of Microbiology, Federal University Wukari, Wukari, Taraba, Nigeria
| | - Yandev Doowuese
- Department of Microbiology, Federal University of Health Sciences, Otukpo, Nigeria
| | - Uchechi Justina Ihezuo
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka, Nigeria
| | | | | |
Collapse
|
26
|
Rohokale R, Guo Z. Development in the Concept of Bacterial Polysaccharide Repeating Unit-Based Antibacterial Conjugate Vaccines. ACS Infect Dis 2023; 9:178-212. [PMID: 36706246 PMCID: PMC9930202 DOI: 10.1021/acsinfecdis.2c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The surface of cells is coated with a dense layer of glycans, known as the cell glycocalyx. The complex glycans in the glycocalyx are involved in various biological events, such as bacterial pathogenesis, protection of bacteria from environmental stresses, etc. Polysaccharides on the bacterial cell surface are highly conserved and accessible molecules, and thus they are excellent immunological targets. Consequently, bacterial polysaccharides and their repeating units have been extensively studied as antigens for the development of antibacterial vaccines. This Review surveys the recent developments in the synthetic and immunological investigations of bacterial polysaccharide repeating unit-based conjugate vaccines against several human pathogenic bacteria. The major challenges associated with the development of functional carbohydrate-based antibacterial conjugate vaccines are also considered.
Collapse
Affiliation(s)
- Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States of America
| |
Collapse
|
27
|
Pitirollo O, Di Benedetto R, Henriques P, Gasperini G, Mancini F, Carducci M, Massai L, Rossi O, Volbeda AG, Codée JDC, Berlanda Scorza F, Moriel DG, Necchi F, Lay L, Adamo R, Micoli F. Elucidating the role of N-acetylglucosamine in Group A Carbohydrate for the development of an effective glycoconjugate vaccine against Group A Streptococcus. Carbohydr Polym 2023; 311:120736. [PMID: 37028871 DOI: 10.1016/j.carbpol.2023.120736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
Group A Carbohydrate (GAC), conjugated to an appropriate carrier protein, has been proposed as an attractive vaccine candidate against Group A Streptococcus infections. Native GAC consists of a polyrhamnose (polyRha) backbone with N-acetylglucosamine (GlcNAc) at every second rhamnose residue. Both native GAC and the polyRha backbone have been proposed as vaccine components. Here, chemical synthesis and glycoengineering were used to generate a panel of different length GAC and polyrhamnose fragments. Biochemical analyses were performed confirming that the epitope motif of GAC is composed of GlcNAc in the context of the polyrhamnose backbone. Conjugates from GAC isolated and purified from a bacterial strain and polyRha genetically expressed in E. coli and with similar molecular size to GAC were compared in different animal models. The GAC conjugate elicited higher anti-GAC IgG levels with stronger binding capacity to Group A Streptococcus strains than the polyRha one, both in mice and in rabbits. This work contributes to the development of a vaccine against Group A Streptococcus suggesting GAC as preferable saccharide antigen to include in the vaccine.
Collapse
Affiliation(s)
- Olimpia Pitirollo
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy; Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| | - Roberta Di Benedetto
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | | | - Gianmarco Gasperini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Francesca Mancini
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Martina Carducci
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Luisa Massai
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Omar Rossi
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Anne Geert Volbeda
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA Leiden, the Netherlands.
| | | | - Danilo Gomes Moriel
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Francesca Necchi
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena, Italy.
| |
Collapse
|
28
|
Du Z, Gill K, Toprani V, Zydney AL. Sterile filtration of a multi-serotype glycoconjugate vaccine drug product. Biotechnol Bioeng 2023; 120:1316-1322. [PMID: 36726046 DOI: 10.1002/bit.28342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 02/03/2023]
Abstract
Glycoconjugate vaccines consisting of multiple serotypes of the bacterial capsular polysaccharide can provide strong protection against infection by significant pathogens. Previous studies of the sterile filtration behavior of these glycoconjugates have been limited to experiments with individual serotypes even though the formulated vaccines contain several different serotypes to provide broad immunization. The objective of this study was to explore the fouling behavior of a glycoconjugate vaccine drug product consisting of four different polysaccharide serotypes. Sterile filtration data were obtained with 0.22 µm Durapore® membranes at both constant flux and constant pressure for both the individual serotypes and the drug product containing multiple serotypes. Fouled membranes were examined by confocal microscopy, demonstrating that all four serotypes deposit in a narrow band near the filter inlet. The different ionic composition of the formulation buffer (compared to the buffers used with the drug substance) had a large effect on the fouling behavior. In addition, the fouling resistance associated with the drug product was greater than the sum of the resistances of the individual serotypes. These results provide important insights into the sterile filtration behavior of these multivalent glycoconjugate vaccines.
Collapse
Affiliation(s)
- Zhuoshi Du
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kanwaldeep Gill
- Pharmaceutical Research and Development, Pfizer Inc., Andover, Massachusetts, USA
| | - Vishal Toprani
- Pharmaceutical Research and Development, Pfizer Inc., Andover, Massachusetts, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
29
|
Optimization of the Process for Preparing Bivalent Polysaccharide Conjugates to Develop Multivalent Conjugate Vaccines against Streptococcus pneumoniae or Neisseria meningitidis and Comparison with the Corresponding Licensed Vaccines in Animal Models. Curr Med Sci 2023; 43:22-34. [PMID: 36680685 PMCID: PMC9862236 DOI: 10.1007/s11596-022-2652-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/07/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study aimed to describe, optimize and evaluate a method for preparing multivalent conjugate vaccines by simultaneous conjugation of two different bacterial capsular polysaccharides (CPs) with tetanus toxoid (TT) as bivalent conjugates. METHODS Different molecular weights (MWs) of polysaccharides, activating agents and capsular polysaccharide/protein (CP/Pro) ratio that may influence conjugation and immunogenicity were investigated and optimized to prepare the bivalent conjugate bulk. Using the described method and optimized parameters, a 20-valent pneumococcal conjugate vaccine and a bivalent meningococcal vaccine were developed and their effectiveness was compared to that of corresponding licensed vaccines in rabbit or mouse models. RESULTS The immunogenicity test revealed that polysaccharides with lower MWs were better for Pn1-TT-Pn3 and MenA-TT-MenC, while higher MWs were superior for Pn4-TT-Pn14, Pn6A-TT-Pn6B, Pn7F-TT-Pn23F and Pn8-TT-Pn11A. For activating polysaccharides, 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) was superior to cyanogen bromide (CNBr), but for Pn1, Pn3 and MenC, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC) was the most suitable option. For Pn6A-TT-Pn6B and Pn8-TT-Pn11A, rabbits immunized with bivalent conjugates with lower CP/Pro ratios showed significantly stronger CP-specific antibody responses, while for Pn4-TT-Pn14, higher CP/Pro ratio was better. Instead of interfering with the respective immunological activity, our bivalent conjugates usually induced higher IgG titers than their monovalent counterparts. CONCLUSION The result indicated that the described conjugation technique was feasible and efficacious to prepare glycoconjugate vaccines, laying a solid foundation for developing extended-valent multivalent or combined conjugate vaccines without potentially decreased immune function.
Collapse
|
30
|
Sorieul C, Dolce M, Romano MR, Codée J, Adamo R. Glycoconjugate vaccines against antimicrobial resistant pathogens. Expert Rev Vaccines 2023; 22:1055-1078. [PMID: 37902243 DOI: 10.1080/14760584.2023.2274955] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is responsible for the death of millions worldwide and stands as a major threat to our healthcare systems, which are heavily reliant on antibiotics to fight bacterial infections. The development of vaccines against the main pathogens involved is urgently required as prevention remains essential against the rise of AMR. AREAS COVERED A systematic research review was conducted on MEDLINE database focusing on the six AMR pathogens defined as ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli), which are considered critical or high priority pathogens by the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). The analysis was intersecated with the terms carbohydrate, glycoconjugate, bioconjugate, glyconanoparticle, and multiple presenting antigen system vaccines. EXPERT OPINION Glycoconjugate vaccines have been successful in preventing meningitis and pneumoniae, and there are high expectations that they will play a key role in fighting AMR. We herein discuss the recent technological, preclinical, and clinical advances, as well as the challenges associated with the development of carbohydrate-based vaccines against leading AMR bacteria, with focus on the ESKAPE pathogens. The need of innovative clinical and regulatory approaches to tackle these targets is also highlighted.
Collapse
Affiliation(s)
- Charlotte Sorieul
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Marta Dolce
- GSK, Via Fiorentina 1, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | - Jeroen Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
31
|
Konietzny PB, Peters H, Hofer ML, Gerling-Driessen UIM, de Vries RP, Peters T, Hartmann L. Enzymatic Sialylation of Synthetic Multivalent Scaffolds: From 3'-Sialyllactose Glycomacromolecules to Novel Neoglycosides. Macromol Biosci 2022; 22:e2200358. [PMID: 36112275 DOI: 10.1002/mabi.202200358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/1912] [Indexed: 01/15/2023]
Abstract
Sialoglycans play a key role in many biological recognition processes and sialylated conjugates of various types have successfully been applied, e.g., as antivirals or in antitumor therapy. A key feature for high affinity binding of such conjugates is the multivalent presentation of sialoglycans which often possess synthetic challenges. Here, the combination is described of solid phase polymer synthesis and enzymatic sialylation yielding 3'-sialyllactose-presenting precision glycomacromolecules. CMP-Neu5Ac synthetase from Neisseria meningitidis (NmCSS) and sialyltransferase from Pasteurella multocida (PmST1) are combined in a one-pot reaction giving access to sequence-defined sialylated macromolecules. Surprisingly, when employing Tris(hydroxymethyl)aminomethane (Tris) as a buffer, formation of significant amounts of α-linked Tris-sialoside is observed as a side reaction. Further exploring and exploiting this unusual sialylation reaction, different neoglycosidic structures are synthesized showing that PmST1 can be used to derive both, sialylation on natural carbohydrates as well as on synthetic hydroxylated scaffolds.
Collapse
Affiliation(s)
- Patrick B Konietzny
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Hannelore Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Marc L Hofer
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ulla I M Gerling-Driessen
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Thomas Peters
- Institute of Chemistry and Metabolomics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
32
|
Amos RA, Atmodjo MA, Huang C, Gao Z, Venkat A, Taujale R, Kannan N, Moremen KW, Mohnen D. Polymerization of the backbone of the pectic polysaccharide rhamnogalacturonan I. NATURE PLANTS 2022; 8:1289-1303. [PMID: 36357524 PMCID: PMC10115348 DOI: 10.1038/s41477-022-01270-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/05/2022] [Indexed: 06/10/2023]
Abstract
Rhamnogalacturonan I (RG-I) is a major plant cell wall pectic polysaccharide defined by its repeating disaccharide backbone structure of [4)-α-D-GalA-(1,2)-α-L-Rha-(1,]. A family of RG-I:Rhamnosyltransferases (RRT) has previously been identified, but synthesis of the RG-I backbone has not been demonstrated in vitro because the identity of Rhamnogalacturonan I:Galaturonosyltransferase (RG-I:GalAT) was unknown. Here a putative glycosyltransferase, At1g28240/MUCI70, is shown to be an RG-I:GalAT. The name RGGAT1 is proposed to reflect the catalytic activity of this enzyme. When incubated together with the rhamnosyltransferase RRT4, the combined activities of RGGAT1 and RRT4 result in elongation of RG-I acceptors in vitro into a polymeric product. RGGAT1 is a member of a new GT family categorized as GT116, which does not group into existing GT-A clades and is phylogenetically distinct from the GALACTURONOSYLTRANSFERASE (GAUT) family of GalA transferases that synthesize the backbone of the pectin homogalacturonan. RGGAT1 has a predicted GT-A fold structure but employs a metal-independent catalytic mechanism that is rare among glycosyltransferases with this fold type. The identification of RGGAT1 and the 8-member Arabidopsis GT116 family provides a new avenue for studying the mechanism of RG-I synthesis and the function of RG-I in plants.
Collapse
Affiliation(s)
- Robert A Amos
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Melani A Atmodjo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chin Huang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Zhongwei Gao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Debra Mohnen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
33
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
34
|
Stefanetti G, MacLennan CA, Micoli F. Impact and Control of Sugar Size in Glycoconjugate Vaccines. Molecules 2022; 27:molecules27196432. [PMID: 36234967 PMCID: PMC9572008 DOI: 10.3390/molecules27196432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Glycoconjugate vaccines have contributed enormously to reducing and controlling encapsulated bacterial infections for over thirty years. Glycoconjugate vaccines are based on a carbohydrate antigen that is covalently linked to a carrier protein; this is necessary to cause T cell responses for optimal immunogenicity, and to protect young children. Many interdependent parameters affect the immunogenicity of glycoconjugate vaccines, including the size of the saccharide antigen. Here, we examine and discuss the impact of glycan chain length on the efficacy of glycoconjugate vaccines and report the methods employed to size polysaccharide antigens, while highlighting the underlying reaction mechanisms. A better understanding of the impact of key parameters on the immunogenicity of glycoconjugates is critical to developing a new generation of highly effective vaccines.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence:
| | - Calman Alexander MacLennan
- Enteric and Diarrheal Diseases, Global Health, Bill & Melinda Gates Foundation, 500 5th Ave. N, Seattle, WA 98109, USA
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- The Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
35
|
Halder T, Yadav SK, Yadav S. Synthesis of the trisaccharide repeating unit of Stenotrophomonas maltophilia O6 antigen through step-wise and one-pot approaches. Carbohydr Res 2022; 521:108669. [PMID: 36099720 DOI: 10.1016/j.carres.2022.108669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Synthetic conjugate vaccines are an important area of research for the prevention and occurrence of diseases caused by Gram-negative bacteria. For the development of such vaccines, access to the pure and homogeneous oligosaccharide fragments of the bacterial cell surface polysaccharides are necessary. Stenotrophomonas maltophilia is a typical opportunistic Gram-negative bacteria that causes severe pulmonary and other infections; often in hospitalized patients. With the emergence of multidrug resistant strains and increased virulence, new therapeutic strategies are needed to combat the threat. Herein, we report the syntheses of the trisaccharide repeating unit of S. maltophilia O6 antigen through stepwise and one-pot assemblies of the trisaccharide. The target trisaccharide was appended with a 2-aminoethyl linker that could provide the opportunity for conjugation to carrier proteins for the synthesis of vaccine candidates.
Collapse
Affiliation(s)
- Tanmoy Halder
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India
| | - Sunil K Yadav
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Chemistry & Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India.
| |
Collapse
|
36
|
Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens. Int J Biol Macromol 2022; 218:775-798. [PMID: 35872318 DOI: 10.1016/j.ijbiomac.2022.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
This paper gives an overview of conjugate glycovaccines which contain recombinant diphtheria toxoid CRM197 as a carrier protein. A special focus is given to synthetic methods used for preparation of neoglycoconjugates of CRM197 with oligosaccharide epitopes of cell surface carbohydrates of pathogenic bacteria and fungi. Syntheses of commercial vaccines and laboratory specimen on the basis of CRM197 are outlined briefly.
Collapse
|
37
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
38
|
Wu X, Zheng Z, Wang L, Xue Y, Liao J, Liu H, Liu D, Sun JS, Zhang Q. Stereoselective Synthesis of 2,3‐diamino‐2,3‐dideoxyglycosides from 3‐O‐acetyl‐2‐nitroglycals. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaopei Wu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Zhichao Zheng
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Liming Wang
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Yunxia Xue
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jinxi Liao
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Hui Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Deyong Liu
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Jian-Song Sun
- Jiangxi Normal University Jiangxi Normal University CHINA
| | - Qingju Zhang
- Jiangxi Normal University National Research Centre for Carbohydrate Synthesis 99 Ziyang Avenue 330022 Nanchang CHINA
| |
Collapse
|
39
|
Mukherjee MM, Ghosh R, Hanover JA. Recent Advances in Stereoselective Chemical O-Glycosylation Reactions. Front Mol Biosci 2022; 9:896187. [PMID: 35775080 PMCID: PMC9237389 DOI: 10.3389/fmolb.2022.896187] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022] Open
Abstract
Carbohydrates involving glycoconjugates play a pivotal role in many life processes. Better understanding toward glycobiological events including the structure–function relationship of these biomolecules and for diagnostic and therapeutic purposes including tailor-made vaccine development and synthesis of structurally well-defined oligosaccharides (OS) become important. Efficient chemical glycosylation in high yield and stereoselectivity is however challenging and depends on the fine tuning of a protection profile to get matching glycosyl donor–acceptor reactivity along with proper use of other important external factors like catalyst, solvent, temperature, activator, and additive. So far, many glycosylation methods have been reported including several reviews also. In the present review, we will concentrate our discussion on the recent trend on α- and β-selective glycosylation reactions reported during the past decade.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Rina Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, India
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: John A. Hanover, ; Rina Ghosh,
| |
Collapse
|
40
|
Phalipon A, Mulard LA. Toward a Multivalent Synthetic Oligosaccharide-Based Conjugate Vaccine against Shigella: State-of-the-Art for a Monovalent Prototype and Challenges. Vaccines (Basel) 2022; 10:403. [PMID: 35335035 PMCID: PMC8954881 DOI: 10.3390/vaccines10030403] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
This review focuses on the molecular glycovaccine concept, a promising option to develop a Shigella glycoconjugate vaccine. Subsequent to original developments involving, as main vaccine component, the detoxified Shigella lipopolysaccharide randomly conjugated at multiple sites to a carrier protein, novelty stems from the use of rationally designed, well-defined chemically synthesized oligosaccharide haptens conceived as functional surrogates of the main surface antigen, linked via single-point attachment onto a carrier. The concept and design of such a fine-tuned Shigella glycovaccine are presented by way of SF2a-TT15, a neoglycoprotein featuring a synthetic 15-mer oligosaccharide, which constitutes an original vaccine prototype targeting Shigella flexneri 2a, one of the predominant circulating strains in endemic settings. The clinical testing of SF2a-TT15 is summarized with the first-in-human phase I trial in young healthy adults showing a good safety profile and tolerability, while inducing bactericidal antibodies towards S. flexneri 2a bacteria. The proof-of-concept of this novel approach being established, an ongoing phase IIa clinical study in the nine-month-old infant target population in endemic area was launched, which is also outlined. Lastly, some challenges to move forward this original approach toward a multivalent cost-effective Shigella synthetic glycan conjugate vaccine are introduced.
Collapse
Grants
- Institut Pasteur (Grants PTR 99, GPH-FlexBiVac, Roux Cantarini and Pasteur Roux Cantarini Postdoctoral Fellowships, COMED-SF2a, INNOV-42-19) Institut Pasteur
- ANR, Grants ANR-06-EMPB-013, ANR-05-BLAN-0022, ANR-08-PCVI-0002, ANR-15-CE07-0019 Agence Nationale de la Recherche
- PF7-Health ID 261472-STOPENTERICS European Union Seventh Framework Program
- Grant agreement Investment ID OPP1191130, OPP1198140, OPP1201194 Bill and Melinda Gates Foundation
- Contract ID: Collaboration & License Agreement (Institut Pasteur, Gates MRI), December 2019 Bill and Melinda Gates Medical Research Institute
Collapse
Affiliation(s)
- Armelle Phalipon
- Institut Pasteur, Innovation Lab. Vaccines, F-75015 Paris, France
| | - Laurence A. Mulard
- Institut Pasteur, Université de Paris, CNRS UMR3523, Unité Chimie des Biomolécules, F-75015 Paris, France
| |
Collapse
|
41
|
Xiao K, Hu Y, Wan Y, Li X, Nie Q, Yan H, Wang L, Liao J, Liu D, Tu Y, Sun J, Codée JDC, Zhang Q. Hydrogen bond activated glycosylation under mild conditions. Chem Sci 2022; 13:1600-1607. [PMID: 35282639 PMCID: PMC8826775 DOI: 10.1039/d1sc05772c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The glycosylation protocol features broad substrate scope, controllable stereoselectivity, good to excellent yields and exceptionally mild catalysis conditions. Benefitting from the mild reaction conditions, this new hydrogen bond-mediated glycosylation system in combination with a hydrogen bond-mediated aglycon delivery system provides a reliable method for the synthesis of challenging phenolic glycosides. In addition, a chemoselective glycosylation procedure was developed using different imidate donors (trichloroacetimidates, N-phenyl trifluoroacetimidates, N-4-nitrophenyl trifluoroacetimidates, benzoxazolyl imidates and 6-nitro-benzothiazolyl imidates) and it was applied for a trisaccharide synthesis through a novel one-pot single catalyst strategy. A mild glycosylation system was developed using glycosyl imidate donors and a charge-enhanced thiourea H-bond donor catalyst. The method can be used for the effective synthesis of O-, C-, S- and N-glycosides and chemoselective one-pot glycosylation.![]()
Collapse
Affiliation(s)
- Ke Xiao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yongyong Wan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - XinXin Li
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Hao Yan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jinxi Liao
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Deyong Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jiansong Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China .,Key Laboratory of Functional Small Molecule, Ministry of Education, Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
42
|
PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nat Commun 2022; 13:590. [PMID: 35105886 PMCID: PMC8807736 DOI: 10.1038/s41467-022-28257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
Collapse
|
43
|
Stefanetti G, Borriello F, Richichi B, Zanoni I, Lay L. Immunobiology of Carbohydrates: Implications for Novel Vaccine and Adjuvant Design Against Infectious Diseases. Front Cell Infect Microbiol 2022; 11:808005. [PMID: 35118012 PMCID: PMC8803737 DOI: 10.3389/fcimb.2021.808005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Carbohydrates are ubiquitous molecules expressed on the surface of nearly all living cells, and their interaction with carbohydrate-binding proteins is critical to many immunobiological processes. Carbohydrates are utilized as antigens in many licensed vaccines against bacterial pathogens. More recently, they have also been considered as adjuvants. Interestingly, unlike other types of vaccines, adjuvants have improved immune response to carbohydrate-based vaccine in humans only in a few cases. Furthermore, despite the discovery of many new adjuvants in the last years, aluminum salts, when needed, remain the only authorized adjuvant for carbohydrate-based vaccines. In this review, we highlight historical and recent advances on the use of glycans either as vaccine antigens or adjuvants, and we review the use of currently available adjuvants to improve the efficacy of carbohydrate-based vaccines. A better understanding of the mechanism of carbohydrate interaction with innate and adaptive immune cells will benefit the design of a new generation of glycan-based vaccines and of immunomodulators to fight both longstanding and emerging diseases.
Collapse
Affiliation(s)
- Giuseppe Stefanetti
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, United States
| | - Francesco Borriello
- Division of Immunology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, University of Florence, Florence, Italy
| | - Ivan Zanoni
- Division of Immunology, Division of Gastroenterology, Harvard Medical School and Boston Children’s Hospital, Boston, MA, United States
| | - Luigi Lay
- Department of Chemistry, University of Milan, Milan, Italy
| |
Collapse
|
44
|
Sukhova EV, Yashunsky DV, Kurbatova EA, Akhmatova EA, Tsvetkov YE, Nifantiev NE. Synthesis and Preliminary Immunological Evaluation of a Pseudotetrasaccharide Related to a Repeating Unit of the Streptococcus pneumoniae Serotype 6A Capsular Polysaccharide. Front Mol Biosci 2021; 8:754753. [PMID: 34966778 PMCID: PMC8710661 DOI: 10.3389/fmolb.2021.754753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/29/2021] [Indexed: 11/21/2022] Open
Abstract
2-Aminoethyl glycoside of the pseudotetrasaccharide α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-d-Rib-ol-(5-P-2)-α-d-Galp corresponding to a repeating unit of the Streptococcus pneumoniae type 6A capsular polysaccharide has been synthesized. A suitably protected pseudotrisaccharide α-d-Glcp-(1→3)-α-l-Rhap-(1→3)-d-Rib-ol with a free 5-OH group in the ribitol moiety and a 2-OH derivative of 2-trifluoroacetamidoethyl α-d-galactopyranoside have been efficiently prepared and then connected via a phosphate bridge using the hydrogen phosphonate procedure. Preliminary immunological evaluation of this pseudotetrasaccharide and the previously synthesized pseudotetrasaccharide corresponding to a repeating unit of the capsular polysaccharide of S. pneumoniae serotype 6B has shown that they contain epitopes specifically recognized by anti-serogroup 6 antibodies and are able to model well the corresponding capsular polysaccharides. Conjugates of the synthetic pseudotetrasaccharides with bovine serum albumin were shown to be immunogenic in mice.
Collapse
Affiliation(s)
- Elena V Sukhova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Yashunsky
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Kurbatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elina A Akhmatova
- Laboratory of Therapeutic Vaccines, Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Yury E Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
45
|
Halder T, Yadav S. Total synthesis of the O-antigen repeating unit of Providencia stuartii O49 serotype through linear and one-pot assemblies. Beilstein J Org Chem 2021; 17:2915-2921. [PMID: 34956410 PMCID: PMC8685571 DOI: 10.3762/bjoc.17.199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Capsular polysaccharides of pathogenic bacteria have been reported to be effective vaccines against diseases caused by them. Providencia stuartii is a class of enterobacteria of the family Providencia that is responsible for several antibiotic resistant infections, particularly urinary tract infections of patients with prolonged catheterization in hospital settings. Towards the goal of development of vaccine candidates against this pathogen, we herein report the total synthesis of a trisaccharide repeating unit of the O-antigen polysaccharide of the P. stuartii O49 serotype containing the →6)-β-ᴅ-Galp-(1→3)-β-ᴅ-GalpNAc(1→4)-α-ᴅ-Galp(1→ linkage. The synthesis of the trisaccharide repeating unit was carried out first by a linear strategy involving the [1 + (1 + 1 = 2)] assembly, followed by a one-pot synthesis involving [1 + 1 + 1] strategy from the corresponding monosaccharides. The one-pot method provided a higher yield of the protected trisaccharide intermediate (73%) compared to the two step synthesis (66%). The protected trisaccharide was then deprotected and N-acetylated to finally afford the desired trisaccharide repeating unit as its α-p-methoxyphenyl glycoside.
Collapse
Affiliation(s)
- Tanmoy Halder
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| | - Somnath Yadav
- Department of Chemistry, Indian Institute of Technology (ISM), Dhanbad, 826004, Jharkhand, India
| |
Collapse
|
46
|
Luo X, Lian Q, Li W, Chen L, Zhang R, Yang D, Gao L, Qi X, Liu Z, Liao G. Fully synthetic Mincle-dependent self-adjuvanting cancer vaccines elicit robust humoral and T cell-dependent immune responses and protect mice from tumor development. Chem Sci 2021; 12:15998-16013. [PMID: 35024123 PMCID: PMC8672726 DOI: 10.1039/d1sc05736g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
A new strategy based on a macrophage-inducible C-type lectin (Mincle) agonist was established to construct synthetic cancer vaccines. Using sialyl-Tn (STn) as a model antigen, four conjugates with the Mincle agonist as a built-in adjuvant were designed and synthesized through a facile and efficient method. All conjugates could induce BMDMs to produce inflammatory cytokines in a Mincle-dependent manner and were found to elicit robust humoral and T cell-dependent immune responses alone in mice. The corresponding antibodies could recognize, bind and exhibit complement-dependent cytotoxicity to STn-positive cancer cells, leading to tumor cell lysis. Moreover, all conjugates could effectively inhibit tumor growth and prolong the mice survival time in vivo, with therapeutic effects better than STn-CRM197/Al. Notably, compared to conventional glycoprotein conjugate vaccines, these fully synthetic conjugate vaccines do not cause "epitope suppression." Mincle ligands thus hold great potential as a platform for the development of new vaccine carriers with self-adjuvanting properties for cancer treatment. Preliminary structure-activity relationship analysis shows that a vaccine containing one STn antigen carried by vizantin exhibits the best efficacy, providing support for further optimization and additional investigation into Mincle agonists as the carrier of self-adjuvanting cancer vaccines.
Collapse
Affiliation(s)
- Xiang Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Qinghai Lian
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Wenwei Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Liqing Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Renyu Zhang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Deying Yang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Lingqiang Gao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine Guangzhou 510006 China
| |
Collapse
|
47
|
Mateu Ferrando R, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:57-67. [PMID: 34895641 DOI: 10.1016/j.ddtec.2021.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
Since their discovery, therapeutic or prophylactic vaccines represent a promising option to prevent or cure infections and other pathologies, such as cancer or autoimmune disorders. More recently, among a number of nanomaterials, gold nanoparticles (AuNPs) have emerged as novel tools for vaccine developments, thanks to their inherent ability to tune and upregulate immune response. Moreover, owing to their features, AuNPs can exert optimal actions both as delivery systems and as adjuvants. Notwithstanding the potential huge impact in vaccinology, some challenges remain before AuNPs in vaccine formulations can be translated into the clinic. The current review provides an updated overview of the most recent and effective application of gold nanoparticles as efficient means to develop a new generation of vaccine.
Collapse
Affiliation(s)
- Ruth Mateu Ferrando
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy; CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|
48
|
Precise protein conjugation technology for the construction of homogenous glycovaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:69-75. [PMID: 34895642 DOI: 10.1016/j.ddtec.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
The introduction of vaccines for the treatment and prevention of bacterial or viral diseases in the early 19th century marked a crucial turning point in medical history. Since then, extensive immunization campaigns have eradicated smallpox and drastically reduced the number of diphtheria, tetanus, pertussis and measles cases worldwide. Although a broad selection of vaccines is available, there remains a need to develop additional vaccine candidates against a range of dangerous infectious diseases, preferably based on precise syntheses that lead to homogenous formulations. Different strategies for the construction of this type of vaccine candidates are being pursued. Glycoconjugate vaccines are successful in the fight against bacterial and viral infectious diseases. However, their exact mechanism of action remains largely unknown and the large-scale production of chemically defined constructs is challenging. In particular, the conjugation of the carbohydrate antigen to the protein carrier has proved to be crucial for the properties of these vaccines. This review highlights some of the latest findings and developments in the construction of glycoconjugate vaccines by means of site-specific chemical reactions.
Collapse
|
49
|
Anish C, Beurret M, Poolman J. Combined effects of glycan chain length and linkage type on the immunogenicity of glycoconjugate vaccines. NPJ Vaccines 2021; 6:150. [PMID: 34893630 PMCID: PMC8664855 DOI: 10.1038/s41541-021-00409-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
The development and use of antibacterial glycoconjugate vaccines have significantly reduced the occurrence of potentially fatal childhood and adult diseases such as bacteremia, bacterial meningitis, and pneumonia. In these vaccines, the covalent linkage of bacterial glycans to carrier proteins augments the immunogenicity of saccharide antigens by triggering T cell-dependent B cell responses, leading to high-affinity antibodies and durable protection. Licensed glycoconjugate vaccines either contain long-chain bacterial polysaccharides, medium-sized oligosaccharides, or short synthetic glycans. Here, we discuss factors that affect the glycan chain length in vaccines and review the available literature discussing the impact of glycan chain length on vaccine efficacy. Furthermore, we evaluate the available clinical data on licensed glycoconjugate vaccine preparations with varying chain lengths against two bacterial pathogens, Haemophilus influenzae type b and Neisseria meningitidis group C, regarding a possible correlation of glycan chain length with their efficacy. We find that long-chain glycans cross-linked to carrier proteins and medium-sized oligosaccharides end-linked to carriers both achieve high immunogenicity and efficacy. However, end-linked glycoconjugates that contain long untethered stretches of native glycan chains may induce hyporesponsiveness by T cell-independent activation of B cells, while cross-linked medium-sized oligosaccharides may suffer from suboptimal saccharide epitope accessibility.
Collapse
Affiliation(s)
- Chakkumkal Anish
- grid.497529.40000 0004 0625 7026Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| | - Michel Beurret
- Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands.
| | - Jan Poolman
- grid.497529.40000 0004 0625 7026Bacterial Vaccines Discovery and Early Development, Janssen Vaccines and Prevention B.V., Leiden, Netherlands
| |
Collapse
|
50
|
Kumbhar PS, Pandya AK, Manjappa AS, Disouza JI, Patravale VB. Carbohydrates-based diagnosis, prophylaxis and treatment of infectious diseases: Special emphasis on COVID-19. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [PMCID: PMC7935400 DOI: 10.1016/j.carpta.2021.100052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
COVID-19 pandemic is taking a dangerous turn due to unavailability of approved and effective vaccines and therapy. Currently available diagnostic techniques are time-consuming, expensive, and maybe impacted by the mutations produced in the virus. Therefore, investigation of novel, rapid, and economic diagnosis techniques, prophylactic vaccines and targeted efficacious drug delivery systems as treatment strategy is imperative. Carbohydrates are essential biomolecules which also act as markers in the realization of immune systems. Moreover, they exhibit antiviral, antimicrobial, and antifungal properties. Carbohydrate-based vaccines and therapeutics including stimuli sensitive systems can be developed successfully and used effectively to fight COVID-19. Thus, carbohydrate-based diagnostic, prophylactic and therapeutic alternatives could be promising to defeat COVID-19 propitiously. Morphology of SARS-CoV-2 and its relevance in devising combat strategies has been discussed. Carbohydrate-based approaches for tackling infectious diseases and their importance in the design of various diagnostic and treatment modalities have been reviewed.
Collapse
|