1
|
Metabolic profiling of cytotoxic metabolites from five Tabebuia species supported by molecular correlation analysis. Sci Rep 2021; 11:8405. [PMID: 33863934 PMCID: PMC8052319 DOI: 10.1038/s41598-021-87695-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
Abstract
Tabebuia is the largest genus among the family Bignoniaceae. Tabebuia species are known for their high ornamental and curative value. Here, the cytotoxic potential of extracts from the leaves and stems of five Tabebuia species was analyzed. The highest activity was observed for T. rosea (Bertol.) DC. stem extract against HepG2 cell line (IC50 4.7 µg/mL), T. pallida L. stem extract against MCF-7 cell line (IC50 6.3 µg/mL), and T. pulcherrima stem extract against CACO2 cell line (IC50 2.6 µg/mL). Metabolic profiling of the ten extracts using liquid chromatography–high-resolution mass spectrometry for dereplication purposes led to annotation of forty compounds belonging to different chemical classes. Among the annotated compounds, irridoids represent the major class. Principle component analysis (PCA) was applied to test the similarity and variability among the tested species and the score plot showed similar chemical profiling between the leaves and stems of both T. pulcherrima and T. pallida L. and unique chemical profiling among T. rosea (Bertol.) DC., T. argentea Britton, and T. guayacan (Seem.) Hemsl. leaf extracts and the stem extract of T. rosea (Bertol.) DC. Additionally, a molecular correlation analysis was used to annotate the bioactive cytotoxic metabolites in the extracts and correlate between their chemical and biological profiles.
Collapse
|
2
|
Trujillo-Mayol I, Casas-Forero N, Pastene-Navarrete E, Lima Silva F, Alarcón-Enos J. Fractionation and Hydrolyzation of Avocado Peel Extract: Improvement of Antibacterial Activity. Antibiotics (Basel) 2020; 10:antibiotics10010023. [PMID: 33396588 PMCID: PMC7824035 DOI: 10.3390/antibiotics10010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Avocado Hass (Persea americana Mill) peel extract (APE) has the potential as a natural ingredient to substitute for chemical preservatives. The objectives of this study were to assess the phytochemical composition by high-performance liquid chromatography-quadrupole time-of-flight mass/mass spectrometry (HPLC-qTOF-MS/MS), total phenolic content (TPC), proanthocyanidin (PAC) content, and antioxidant activity of the APE, the organic fraction (OF), the aqueous fraction (AF), and the acid-microwave hydrolyzed APE (HAPE), on the antibacterial activity (ABA). The results indicated that APE and OF contained (p ˂ 0.05) a higher phenolic composition and antioxidant activity than AF and HAPE. The ABA specified that Pseudomonas aeruginosa and Bacillus cereus were inhibited by all the extracts (minimal inhibitory concentration-MIC ≥ 500 µg/mL), Staphylococcus aureus was only significantly inhibited by APE (≥750 µg/mL), the same MIC was observed for the OF on Salmonella spp. and Listeria monocytogenes. The HAPE increased the inhibitory efficiency up to 25% on Escherichia coli and Salmonella spp. (MIC ≥ 750 µg/mL), and 83.34% on L. monocytogenes (MIC ≥ 125 µg/mL) compared to APE (MIC ≥ 750 µg/mL). Also, HAPE inhibited the biofilm formation at the lowest concentration (125 µg/mL); meanwhile, the biofilm disruption showed to be concentration-time-dependent (p ˃ 0.05) compared to amoxicillin. In conclusion, the fractionation and hydrolyzation of APE improved the ABA; thus, those strategies are useful to design new antimicrobial compounds.
Collapse
Affiliation(s)
- Igor Trujillo-Mayol
- Food Engineering Department, Health and Food Science Faculty, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile; (I.T.-M.); (N.C.-F.)
| | - Nidia Casas-Forero
- Food Engineering Department, Health and Food Science Faculty, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile; (I.T.-M.); (N.C.-F.)
| | - Edgar Pastene-Navarrete
- Laboratory of Synthesis and Biotransformation of Natural Products, Faculty of Science, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile;
| | - Fabiana Lima Silva
- Laboratory of Synthesis and Biotransformation of Natural Products, Faculty of Science, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile;
- Institute of Health Sciences, Universidade Paulista, São Paulo 13565-905, Brazil;
| | - Julio Alarcón-Enos
- Laboratory of Synthesis and Biotransformation of Natural Products, Faculty of Science, Universidad del Bío-Bío, Av. Andrés Bello 720, PO Box 447, Chillan 3780000, Chile;
- Faculty of Basic Sciences, Universidad del Bío-Bío Campus Fernando May, Av. Andrés Bello 720, Chillan 3800708, Chile
- Correspondence: ; Tel.: +56-042-2463049
| |
Collapse
|
3
|
Ramos PAB, Moreirinha C, Silva S, Costa EM, Veiga M, Coscueta E, Santos SAO, Almeida A, Pintado MM, Freire CSR, Silva AMS, Silvestre AJD. The Health-Promoting Potential of Salix spp. Bark Polar Extracts: Key Insights on Phenolic Composition and In Vitro Bioactivity and Biocompatibility. Antioxidants (Basel) 2019; 8:antiox8120609. [PMID: 31801290 PMCID: PMC6943414 DOI: 10.3390/antiox8120609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 01/15/2023] Open
Abstract
Salix spp. have been exploited for energy generation, along with folk medicine use of bark extracts for antipyretic and analgesic benefits. Bark phenolic components, rather than salicin, have demonstrated interesting bioactivities, which may ensure the sustainable bioprospection of Salix bark. Therefore, this study highlights the detailed phenolic characterization, as well as the in vitro antioxidant, anti-hypertensive, Staphylococcus aureus growth inhibitory effects, and biocompatibility of Salix atrocinerea Brot., Salix fragilis L., and Salix viminalis L. bark polar extracts. Fifteen phenolic compounds were characterized by ultra-high-performance liquid chromatography-ultraviolet detection-mass spectrometry analysis, from which two flavan-3-ols, an acetophenone, five flavanones, and a flavonol were detected, for the first time, as their bark components. Salix bark extracts demonstrated strong free radical scavenging activity (5.58–23.62 µg mL−1 IC50 range), effective inhibition on angiotensin-I converting enzyme (58–84%), and S. aureus bactericidal action at 1250–2500 µg mL−1 (6–8 log CFU mL−1 reduction range). All tested Salix bark extracts did not show cytotoxic potential against Caco-2 cells, as well as S. atrocinerea Brot. and S. fragilis L. extracts at 625 and 1250 µg mL−1 against HaCaT and L929 cells. These valuable findings can pave innovative and safer food, nutraceutical, and/or cosmetic applications of Salix bark phenolic-containing fractions.
Collapse
Affiliation(s)
- Patrícia A. B. Ramos
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.A.B.R.); (C.M.); (S.A.O.S.); (C.S.R.F.); (A.M.S.S.)
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina Moreirinha
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.A.B.R.); (C.M.); (S.A.O.S.); (C.S.R.F.); (A.M.S.S.)
| | - Sara Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (E.M.C.); (M.V.); (E.C.); (M.M.P.)
| | - Eduardo M. Costa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (E.M.C.); (M.V.); (E.C.); (M.M.P.)
| | - Mariana Veiga
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (E.M.C.); (M.V.); (E.C.); (M.M.P.)
| | - Ezequiel Coscueta
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (E.M.C.); (M.V.); (E.C.); (M.M.P.)
| | - Sónia A. O. Santos
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.A.B.R.); (C.M.); (S.A.O.S.); (C.S.R.F.); (A.M.S.S.)
| | - Adelaide Almeida
- Biology Department and CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - M. Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (E.M.C.); (M.V.); (E.C.); (M.M.P.)
| | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.A.B.R.); (C.M.); (S.A.O.S.); (C.S.R.F.); (A.M.S.S.)
| | - Artur M. S. Silva
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.A.B.R.); (C.M.); (S.A.O.S.); (C.S.R.F.); (A.M.S.S.)
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (P.A.B.R.); (C.M.); (S.A.O.S.); (C.S.R.F.); (A.M.S.S.)
- Correspondence: ; Tel.: +351-234-370-711
| |
Collapse
|
4
|
Fellows R, Russo CM, Silva CS, Lee SG, Jez JM, Chisholm JD, Zubieta C, Nanao MH. A multisubstrate reductase from Plantago major: structure-function in the short chain reductase superfamily. Sci Rep 2018; 8:14796. [PMID: 30287897 PMCID: PMC6172241 DOI: 10.1038/s41598-018-32967-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/17/2018] [Indexed: 11/18/2022] Open
Abstract
The short chain dehydrogenase/reductase superfamily (SDR) is a large family of NAD(P)H-dependent enzymes found in all kingdoms of life. SDRs are particularly well-represented in plants, playing diverse roles in both primary and secondary metabolism. In addition, some plant SDRs are also able to catalyse a reductive cyclisation reaction critical for the biosynthesis of the iridoid backbone that contains a fused 5 and 6-membered ring scaffold. Mining the EST database of Plantago major, a medicinal plant that makes iridoids, we identified a putative 5β-progesterone reductase gene, PmMOR (P. major multisubstrate oxido-reductase), that is 60% identical to the iridoid synthase gene from Catharanthus roseus. The PmMOR protein was recombinantly expressed and its enzymatic activity assayed against three putative substrates, 8-oxogeranial, citral and progesterone. The enzyme demonstrated promiscuous enzymatic activity and was able to not only reduce progesterone and citral, but also to catalyse the reductive cyclisation of 8-oxogeranial. The crystal structures of PmMOR wild type and PmMOR mutants in complex with NADP+ or NAD+ and either 8-oxogeranial, citral or progesterone help to reveal the substrate specificity determinants and catalytic machinery of the protein. Site-directed mutagenesis studies were performed and provide a foundation for understanding the promiscuous activity of the enzyme.
Collapse
Affiliation(s)
- Rachel Fellows
- European Synchrotron Radiation Facility, Structural Biology Group, 71 Avenue des Martyrs, F-38000, Grenoble, France
| | | | - Catarina S Silva
- European Synchrotron Radiation Facility, Structural Biology Group, 71 Avenue des Martyrs, F-38000, Grenoble, France.,Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG, Grenoble, USA
| | - Soon Goo Lee
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO, 63130, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, 13244, USA
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire & Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRA, BIG, Grenoble, USA.
| | - Max H Nanao
- European Synchrotron Radiation Facility, Structural Biology Group, 71 Avenue des Martyrs, F-38000, Grenoble, France.
| |
Collapse
|
5
|
Burdon RCF, Junker RR, Scofield DG, Parachnowitsch AL. Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool. CHEMOECOLOGY 2018. [PMID: 29540962 PMCID: PMC5840241 DOI: 10.1007/s00049-018-0252-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacteria on floral tissue can have negative effects by consuming resources and affecting nectar quality, which subsequently could reduce pollinator visitation and plant fitness. Plants however can employ chemical defences to reduce bacteria density. In North American, bee-pollinated Penstemon digitalis, the nectar volatile S-(+)-linalool can influence plant fitness, and terpenes such as linalool are known for their antimicrobial properties suggesting that it may also play a role in plant–microbe interactions. Therefore, we hypothesized linalool could affect bacterial growth on P. digitalis plants/flowers. Because P. digitalis emits linalool from nectar and nectary tissue but not petals, we hypothesised that the effects of linalool could depend on tissue of origin due to varying exposure. We isolated bacteria from nectary tissue, petals and leaves, and compared their growth relative to control using two volatile concentrations representing the natural emission range of linalool. To assess whether effects were specific to linalool, we compared results with the co-occurring nectar volatile, methyl nicotinate. We show that response to floral volatiles can be substance and tissue-origin specific. Because linalool could slow growth rate of bacteria across the P. digitalis phyllosphere, floral emission of linalool could play a role in mediating plant–bacteria interactions in this system.
Collapse
Affiliation(s)
- Rosalie C F Burdon
- 1Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18d 75236 Uppsala, Sweden
| | - Robert R Junker
- 2Department of Biosciences, University Salzburg, Hellbrunnerstr. 34 5020 Salzburg, Austria
| | - Douglas G Scofield
- 3Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18d 75236 Uppsala, Sweden.,4Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, 75105 Uppsala, Sweden
| | - Amy L Parachnowitsch
- 1Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18d 75236 Uppsala, Sweden
| |
Collapse
|
6
|
Spilioti E, Vargiami M, Letsiou S, Gardikis K, Sygouni V, Koutsoukos P, Chinou I, Kassi E, Moutsatsou P. Biological properties of mud extracts derived from various spa resorts. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2017; 39:821-833. [PMID: 27443881 DOI: 10.1007/s10653-016-9852-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Spa resorts are known for thousands of years for their healing properties and have been empirically used for the treatment of many inflammatory conditions. Mud is one of the most often used natural materials for preventive, healing and cosmetic reasons and although it has been used since the antiquity, little light has been shed on its physical, chemical and biological properties. In this study we examined the effect of mud extracts on the expression of adhesion molecules (CAMs) by endothelial cells as well as their effects on monocyte adhesion to activated endothelial cells. Most of mud extracts inhibited the expression of VCAM-1 by endothelial cells and reduced monocyte adhesion to activated endothelial cells, indicating a potent anti-inflammatory activity. Furthermore, the mud extracts were tested for their antimicrobial activity; however, most of them appeared inactive against S. aureus and S. epidermidis. One of the mud extracts (showing the best stabilization features) increased significantly the expression of genes involved in cell protection, longevity and hydration of human keratinocytes, such as, collagen 6A1, forkhead box O3, sirtuin-1, superoxide dismutase 1 and aquaporin-3. The present study reveals that mud exerts important beneficial effects including anti-inflammatory and anti-aging activity as well as moisturizing effects, implicating important cosmeceutical applications.
Collapse
Affiliation(s)
- Eliana Spilioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, M. Asias 75, 11527, Athens, Greece
| | - Margarita Vargiami
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, M. Asias 75, 11527, Athens, Greece
| | - Sophia Letsiou
- Scientific Affairs Department, APIVITA SA, Industrial Park of Markopoulo Mesogaias, 19003, Athens, Greece
| | - Konstantinos Gardikis
- Scientific Affairs Department, APIVITA SA, Industrial Park of Markopoulo Mesogaias, 19003, Athens, Greece
| | - Varvara Sygouni
- Department of Chemical Engineering, University of Patras and FORTH-ICEHT Patras, 26504, Patras, Greece
| | - Petros Koutsoukos
- Department of Chemical Engineering, University of Patras and FORTH-ICEHT Patras, 26504, Patras, Greece
| | - Ioanna Chinou
- Laboratory of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, University of Athens, Panepistimioupolis, 15771, Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, M. Asias 75, 11527, Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, M. Asias 75, 11527, Athens, Greece.
- Department of Clinical Biochemistry, Medical School, University Hospital "Attiko", National and Kapodistrian University of Athens, 1 Rimini, Chaidari, 12462, Athens, Greece.
| |
Collapse
|