1
|
Popstoyanova D, Gerasimova A, Gentscheva G, Nikolova S, Gavrilova A, Nikolova K. Ziziphus jujuba: Applications in the Pharmacy and Food Industry. PLANTS (BASEL, SWITZERLAND) 2024; 13:2724. [PMID: 39409594 PMCID: PMC11479145 DOI: 10.3390/plants13192724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Ziziphus jujuba has been used since ancient times in traditional Eastern medicine. It is widely cultivated in numerous countries between the tropical and temperate climatic zones due to its high ecological plasticity and resilience to adverse weather. The different classes of chemical compounds contained in the plant are the reason for its medicinal properties. Research shows that every part of Ziziphus jujuba, the leaves, fruits and seeds, demonstrate therapeutic properties. This review focuses on the chemical composition in order to establish the relationship between the plant and its clinical use. Various biological effects are summarized and discussed: anticancer, anti-inflammatory, immunostimulating, antioxidant, hepatoprotective, gastrointestinal, etc. Apart from medicinal uses, the fruits of Ziziphus jujuba are edible and used in fresh and dried form. This literature review reveals possible medical applications of Ziziphus jujuba and its great potential for improving the diet of people in areas where the plant is abundant.
Collapse
Affiliation(s)
- Desislava Popstoyanova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Anelia Gerasimova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Stoyanka Nikolova
- Department of Organic Chemistry, Faculty of Chemistry, University of Plovdiv Paisii Hilendarski, 4000 Plovdiv, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University-Pleven, 5800 Pleven, Bulgaria;
| | - Krastena Nikolova
- Department of Physics and Biophysics, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| |
Collapse
|
2
|
Zhu D, Jiang N, Wang N, Zhao Y, Liu X. A Literature Review of the Pharmacological Effects of Jujube. Foods 2024; 13:193. [PMID: 38254493 PMCID: PMC10814260 DOI: 10.3390/foods13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Jujube is a plant native to China that could be used in medicine and food. Its dried fruit is a superior herb commonly used in traditional Chinese medicine formulations for its calming effect and for nourishing the blood and strengthening the spleen and stomach. Jujube contains numerous active components including polysaccharides, phenols, and triterpene acids, which show a diverse array of pharmacological activities such as neuroprotection and the prevention and treatment of cardiovascular diseases. In this paper, the research status of jujube over the past two decades has been statistically evaluated. Meanwhile, by tracking the latest research advances, the pharmacological efficacy and molecular mechanisms of jujube are exhaustively expounded to provide specific and systematic references for further research on the pharmacological effects of jujube and its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Deqi Zhu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China (N.W.); (Y.Z.)
| | - Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China (N.W.); (Y.Z.)
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China (N.W.); (Y.Z.)
| | - Xinmin Liu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China (N.W.); (Y.Z.)
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China;
| |
Collapse
|
3
|
Iqbal A, Khan RS. Snakins: antimicrobial potential and prospects of genetic engineering for enhanced disease resistance in plants. Mol Biol Rep 2023; 50:8683-8690. [PMID: 37578577 DOI: 10.1007/s11033-023-08734-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
Snakins of the Snakin/Gibberellic Acid Stimulated in Arabidopsis (GASA) family are short sequenced peptides consisting of three different regions: a C-terminal GASA domain, an N-terminal signal sequence and a variable region. The GASA domain is comprised of 12 conserved cysteine residues responsible for the structural stability of the peptide. Snakins are playing a variety of roles in response to various biotic stresses such as bacterial, fungal, and nematodes infections and abiotic stress like water scarcity, saline condition, and reactive oxygen species. These properties make snakins very effective biotechnological tools for possible therapeutic and agricultural applications. This review was attempted to highlight and summarize the antifungal and antibacterial potential of snakins, also emphasizing their sequence characteristics, distributions, expression patterns and biological activities. In addition, further details of transgene expression in various plant species for enhanced fungal and bacterial resistance is also discussed, with special emphasis on their potential applications in crop protection and combating plant pathogens.
Collapse
Affiliation(s)
- Aneela Iqbal
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Raham Sher Khan
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| |
Collapse
|
4
|
Qian M, Ismail BB, He Q, Zhang X, Yang Z, Ding T, Ye X, Liu D, Guo M. Inhibitory mechanisms of promising antimicrobials from plant byproducts: A review. Compr Rev Food Sci Food Saf 2023; 22:2523-2590. [PMID: 37070214 DOI: 10.1111/1541-4337.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Plant byproducts and waste present enormous environmental challenges and an opportunity for valorization and industrial application. Due to consumer demands for natural compounds, the evident paucity of novel antimicrobial agents against foodborne pathogens, and the urgent need to improve the arsenal against infectious diseases and antimicrobial resistance (AMR), plant byproduct compounds have attracted significant research interest. Emerging research highlighted their promising antimicrobial activity, yet the inhibitory mechanisms remain largely unexplored. Therefore, this review summarizes the overall research on the antimicrobial activity and inhibitory mechanisms of plant byproduct compounds. A total of 315 natural antimicrobials from plant byproducts, totaling 1338 minimum inhibitory concentrations (MIC) (in μg/mL) against a broad spectrum of bacteria, were identified, and a particular emphasis was given to compounds with high or good antimicrobial activity (typically <100 μg/mL MIC). Moreover, the antimicrobial mechanisms, particularly against bacterial pathogens, were discussed in-depth, summarizing the latest research on using natural compounds to combat pathogenic microorganisms and AMR. Furthermore, safety concerns, relevant legislation, consumer perspective, and current gaps in the valorization of plant byproducts-derived compounds were comprehensively discussed. This comprehensive review covering up-to-date information on antimicrobial activity and mechanisms represents a powerful tool for screening and selecting the most promising plant byproduct compounds and sources for developing novel antimicrobial agents.
Collapse
Affiliation(s)
- Mengyan Qian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Department of Food Science and Technology, Bayero University Kano, Kano, Nigeria
| | - Qiao He
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Xinhui Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Zhehao Yang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Mingming Guo
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
- Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
5
|
Yao S, Sapkota D, Hungerford JA, Kersten RD. Jujube Fruit Metabolomic Profiles Reveal Cultivar Differences and Function as Cultivar Fingerprints. PLANTS (BASEL, SWITZERLAND) 2023; 12:2313. [PMID: 37375938 DOI: 10.3390/plants12122313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Jujube is a nutritious fruit, and is high in vitamin C, fiber, phenolics, flavonoids, nucleotides, and organic acids. It is both an important food and a source of traditional medicine. Metabolomics can reveal metabolic differences between Ziziphus jujuba fruits from different jujube cultivars and growth sites. In the fall of 2022, mature fresh fruit of eleven cultivars from replicated trials at three sites in New Mexico-Leyendecker, Los Lunas, and Alcalde-were sampled from September to October for an untargeted metabolomics study. The 11 cultivars were Alcalde 1, Dongzao, Jinsi (JS), Jinkuiwang (JKW), Jixin, Kongfucui (KFC), Lang, Li, Maya, Shanxi Li, and Zaocuiwang (ZCW). Based on the LC-MS/MS analysis, there were 1315 compounds detected with amino acids and derivatives (20.15%) and flavonoids (15.44%) as dominant categories. The results reveal that the cultivar was the dominant factor in metabolite profiles, while the location was secondary. A pairwise comparison of cultivar metabolomes revealed that two pairs had fewer differential metabolites (i.e., Li/Shanxi Li and JS/JKW) than all the other pairs, highlighting that pairwise metabolic comparison can be applied for cultivar fingerprinting. Differential metabolite analysis also showed that half of drying cultivars have up-regulated lipid metabolites compared to fresh or multi-purpose fruit cultivars and that specialized metabolites vary significantly between cultivars from 35.3% (Dongzao/ZCW) to 56.7% (Jixin/KFC). An exemplary analyte matching sedative cyclopeptide alkaloid sanjoinine A was only detected in the Jinsi and Jinkuiwang cultivars. Overall, our metabolic analysis of the jujube cultivar's mature fruits provides the largest resource of jujube fruit metabolomes to date and will inform cultivar selection for nutritional and medicinal research and for fruit metabolic breeding.
Collapse
Affiliation(s)
- Shengrui Yao
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
- Sustainable Agriculture Sciences Center, New Mexico State University, Alcalde, NM 87511, USA
| | - Dikshya Sapkota
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Jordan A Hungerford
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Teixeira ID, Carvalho E, Leal EC. Green Antimicrobials as Therapeutic Agents for Diabetic Foot Ulcers. Antibiotics (Basel) 2023; 12:467. [PMID: 36978333 PMCID: PMC10044531 DOI: 10.3390/antibiotics12030467] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetic foot ulcers (DFU) are one of the most serious and devastating complications of diabetes and account for a significant decrease in quality of life and costly healthcare expenses worldwide. This condition affects around 15% of diabetic patients and is one of the leading causes of lower limb amputations. DFUs generally present poor clinical outcomes, mainly due to the impaired healing process and the elevated risk of microbial infections which leads to tissue damage. Nowadays, antimicrobial resistance poses a rising threat to global health, thus hampering DFU treatment and care. Faced with this reality, it is pivotal to find greener and less environmentally impactful alternatives for fighting these resistant microbes. Antimicrobial peptides are small molecules that play a crucial role in the innate immune system of the host and can be found in nature. Some of these molecules have shown broad-spectrum antimicrobial properties and wound-healing activity, making them good potential therapeutic compounds to treat DFUs. This review aims to describe antimicrobial peptides derived from green, eco-friendly processes that can be used as potential therapeutic compounds to treat DFUs, thereby granting a better quality of life to patients and their families while protecting our fundamental bio-resources.
Collapse
Affiliation(s)
- Ines D. Teixeira
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ermelindo C. Leal
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
7
|
Premanath R, James JP, Karunasagar I, Vaňková E, Scholtz V. Tropical plant products as biopreservatives and their application in food safety. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sharma P, Kaur J, Sharma G, Kashyap P. Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications. J Food Biochem 2022; 46:e14348. [PMID: 35945701 DOI: 10.1111/jfbc.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial resistance is a global health and development threat which is caused by the excess and prolonged usage of antimicrobial compounds in agriculture and pharmaceutical industries. Resistance of pathogenic microorganisms to the already existing drugs represent a serious risk to public health. Plant sources such as cereals, legumes, fruits and vegetables are potential substrates for the isolation of antimicrobial peptides (AMP) with broad spectrum antimicrobial activity against bacteria, fungi and viruses with novel immunomodulatory activities. Thus, in the quest of new antimicrobial agents, AMPs have recently gained interest. Therefore, AMP can be used in agriculture, pharmaceutical and food industries. This review focuses on various explored and unexplored plant based food sources of AMPs, their isolation techniques and antimicrobial mechanism of peptides. Therefore, the literature discussed in this review paper will prove beneficial the research purposes for agriculture, pharmaceutical and food industries. PRACTICAL APPLICATIONS: Isolation of antimicrobial peptides (AMPs) can be done on industrial scale. AMP isolated from food sources can be used in pharmaceutical and agriculture industries. AMP from natural sources mitigate the problem of antimicrobial resistance. AMP isolated from food products can be used as nutraceutical.
Collapse
Affiliation(s)
- Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jasleen Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Geetika Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| |
Collapse
|
9
|
Baindara P, Mandal SM. Plant-Derived Antimicrobial Peptides: Novel Preservatives for the Food Industry. Foods 2022; 11:foods11162415. [PMID: 36010415 PMCID: PMC9407122 DOI: 10.3390/foods11162415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Food spoilage is a widespread issue brought on by the undesired growth of microbes in food products. Thousands of tons of usable food or food products are wasted every day due to rotting in different parts of the world. Several food preservation techniques are employed to prevent food from rotting, including the use of natural or manufactured chemicals or substances; however, the issue persists. One strategy for halting food deterioration is the use of plant-derived antimicrobial peptides (AMPs), which have been investigated for possible bioactivities against a range of human, plant, and food pathogens. The food industry may be able to benefit from the development of synthetic AMPs, produced from plants that have higher bioactivity, better stability, and decreased cytotoxicity as a means of food preservation. In order to exploit plant-derived AMPs in various food preservation techniques, in this review, we also outline the difficulties in developing AMPs for use as commercial food preservatives. Nevertheless, as technology advances, it will soon be possible to fully explore the promise of plant-derived AMPs as food preservatives.
Collapse
Affiliation(s)
- Piyush Baindara
- Departments of Molecular Microbiology & Immunology, School of Medicine, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| | - Santi M. Mandal
- Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| |
Collapse
|
10
|
The Updated Review on Plant Peptides and Their Applications in Human Health. Int J Pept Res Ther 2022; 28:135. [PMID: 35911180 PMCID: PMC9326430 DOI: 10.1007/s10989-022-10437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
11
|
Humanizing plant-derived snakins and their encrypted antimicrobial peptides. Biochimie 2022; 199:92-111. [PMID: 35472564 DOI: 10.1016/j.biochi.2022.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022]
Abstract
Due to safety restrictions, plant-derived antimicrobial peptides (AMPs) need optimization to be consumed beyond preservatives. Herein, 175 GASA-domain-containing snakins were analyzed. Factors including charge, hydrophobicity, helicity, hydrophobic moment (μH), folding enthalpy, folding heat capacity, folding free energy, therapeutic index, allergenicity, and bitterness were considered. The most optimal snakins for oral consumption as preservatives were from Cajanus cajan, Cucumis melo, Durio zibethinus, Glycine soja, Herrania umbratica, and Ziziphus jujuba. Virtual digestion of snakins predicted ACE1 and DPPIV inhibitory as dominant effects upon oral use with antihypertensive and antidiabetic properties. To be applied as a therapeutic in parenteral administration, snakins were browsed for short 20-mer encrypted fragments that were non-toxic or with eliminated toxicity using directed mutagenesis yet retaining the AMP property. The most promising 20-mer AMPs were Mr-SNK2-1a in Morella rubra with BBB permeation, Na-SNK2-2a(C18W), and Na-SNK2-2b(C16F) from Nicotiana attenuata. These AMPs were cell-penetrating peptides (CPPs), with a charge of +6, a μH of about 0.40, and a Boman-index higher than 2.48 Kcalmol-1. Na-SNK2-2a(C18W) had putative activity against gram-negative bacteria with MIC lower than 25 μgml-1, and Na-SNK2-2b(C16F) was a potential anti-HIV with an IC50 of 3.04 μM. Other 20-mer AMPs, such as Cc-SNK1-2a from Cajanus cajan displayed an anti-HCV property with an IC50 of 13.91 μM. While Si-SNK2-3a(C17P) from Sesamum indicum was a cationic anti-angiogenic CPP targeting the acidic microenvironment of tumors, Cme-SNK2-1a(C11F) from Cucumis melo was an immunomodulator CPP applicable as a vaccine adjuvant. Because of combined mechanisms, investigating cysteine-rich peptides can nominate effective biotherapeutics.
Collapse
|
12
|
Aafi E, Shams Ardakani MR, Ahmad Nasrollahi S, Mirabzadeh Ardakani M, Samadi A, Hajimahmoodi M, Naeimifar A, Pourjabbar Z, Amiri F, Firooz A. Brightening effect of Ziziphus jujuba (jujube) fruit extract on facial skin: A randomized, double-blind, clinical study. Dermatol Ther 2022; 35:e15535. [PMID: 35460145 DOI: 10.1111/dth.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
Abstract
Ziziphus jujuba Mill. (jujube) is an invaluable medicinal plant in traditional and modern medicine. Jujube syrup is a complex of herbal extracts including Z. jujuba, Berberis vulgaris, Rhus coriaria, Prunus domestica, and Rosa damascene. The purpose of the present study was to formulate and investigate the efficacy and safety of jujube syrup on brightening of facial skin. In this randomized, double-blind, controlled clinical study, 46 participants consumed jujube syrup or placebo (23 in each group) twice a day for 8 weeks. The number of pigments, area of pigmentation, and physician's global assessment score (PGAS) were evaluated at baseline and after 8 weeks. The results showed the amounts of total phenolics and flavonoids were 81.97 ± 0.25 and 4.98 ± 1.04 mg/ml, respectively. The amounts of organic acids (gallic acid and chlorogenic acid) were quantified at 1140 ± 17.65 and 1520 ± 25.77 μg/ml, respectively. The amounts of total phenolic and flavonoids were stable under accelerated conditions. Eight weeks after treatment, the number of pigment counts reduced to 0.545 ± 0.307 compared to the placebo group. Moreover, the pigmented area and its percentages were significantly reduced to 0.556 ± 0.285 and 0.561 ± 0.288 in jujube syrup compared with placebo, respectively. Jujube syrup is efficient and safe for treating hyperpigmentation of the face.
Collapse
Affiliation(s)
- Ensiye Aafi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Shams Ardakani
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Ahmad Nasrollahi
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Mirabzadeh Ardakani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aniseh Samadi
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mannan Hajimahmoodi
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atefeh Naeimifar
- Pharmaceutical Department, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Pourjabbar
- Drug and Food Control Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Amiri
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Firooz
- Center for Research & Training in Skin Diseases & Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Liu SY, Gu B. Three new 8,4'-type oxyneolignans from the seeds of Ziziphus jujuba mill and their antitumor studies. Nat Prod Res 2022; 37:1573-1576. [PMID: 35076296 DOI: 10.1080/14786419.2021.2023144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ziziphus jujuba Mill. is a deciduous shrub, belonging to the Rhamnaceae family. Phytochemical investigation of Z. jujuba seeds showed the presence of three undescribed 8,4'-type oxyneolignans (1-3). Their structures were elucidated by comprehensive spectroscopic analyses. All isolated compounds were tested for antitumor activity against two human hepatoma cells (Hep3B and HepG2) and exhibited moderate cytotoxicity (IC50: 33.79-49.62 µM).
Collapse
Affiliation(s)
- Si-Yu Liu
- Department of Pharmacology, Xiangnan University, Chenzhou, China
| | - Bin Gu
- Department of Pharmacology, Xiangnan University, Chenzhou, China
| |
Collapse
|
14
|
Antifungal Peptides and Proteins to Control Toxigenic Fungi and Mycotoxin Biosynthesis. Int J Mol Sci 2021; 22:ijms222413261. [PMID: 34948059 PMCID: PMC8703302 DOI: 10.3390/ijms222413261] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
The global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides. Interestingly, AMPs also accomplish important biological functions other than antifungal activity, including anti-mycotoxin biosynthesis activity, which opens novel aspects for their future use in agriculture and food industry to fight mycotoxin contamination. AMPs can reach intracellular targets and exert their activity by mechanisms other than membrane permeabilization. The mechanisms through which AMPs affect mycotoxin production are varied and complex, ranging from oxidative stress to specific inhibition of enzymatic components of mycotoxin biosynthetic pathways. This review presents natural and synthetic antifungal AMPs from different origins which are effective against mycotoxin-producing fungi, and aims at summarizing current knowledge concerning their additional effects on mycotoxin biosynthesis. Antifungal AMPs properties and mechanisms of action are also discussed.
Collapse
|
15
|
Ultrafine Jujube Powder Enhances the Infiltration of Immune Cells during Anti-PD-L1 Treatment against Murine Colon Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13163987. [PMID: 34439144 PMCID: PMC8394940 DOI: 10.3390/cancers13163987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary While modulating gut microbiota using dietary intervention with natural nutrients has proven to be effective in improving the response rate of immune checkpoint inhibitors (ICIs), the underpinning mechanism is poorly understood. This work demonstrates that the oral administration of ultrafine jujube powder (JP) let to a significant alteration of gut microbiota, an increased abundance of Clostridiales, including Ruminococcaceae and Lachnospiraceae, an elevated SCFA production, an intensified infiltration of CD8+ T cells to the tumor microenvironment, and a greatly improved response of anti-PD-L1 treatment against murine colon adenocarcinoma. Moreover, the size of the JP particles had a significant impact on the abovementioned attributes. The present study demonstrates that dietary intervention with nutrients is highly effective in modulating the gut microbiota for an improved immune checkpoint blockage therapy. Abstract Whereas dietary intervention with natural nutrients plays an important role in activating the immune response and holds unprecedented application potential, the underpinning mechanism is poorly understood. The present work was dedicated to comprehensively examine the effects of ultrafine jujube powder (JP) on the gut microbiota and, consequentially, the effects associated with the response rate to anti-PD-L1 treatment against murine colon adenocarcinoma. A murine colon adenocarcinoma model with anti-PD-L1 immunotherapy was established to evaluate how dietary interventions affect the microbiota. In vitro and in vivo experiments confirmed the role of SCFAs in the immune response. Oral administration of JP greatly improves the response of anti-PD-L1 treatment against murine colon adenocarcinoma. Such an improvement is associated with the alteration of gut microbiota which leads to an increased abundance of Clostridiales, including Ruminococcaceae and Lachnospiraceae, an elevated SCFA production, and an intensified infiltration of CD8+ T cells to the tumor microenvironment. This work demonstrates that JP is particularly effective in modulating the gut microbiota for an improved immune checkpoint blockage therapy by boosting cytotoxic CD8+ T cells in tumor-infiltrating lymphocytes. The experimental findings of the present study are helpful for the development of dietary intervention methods for cancer immunotherapy using natural nutrients.
Collapse
|
16
|
Isolation and functionalities of bioactive peptides from fruits and vegetables: A reviews. Food Chem 2021; 366:130494. [PMID: 34293544 DOI: 10.1016/j.foodchem.2021.130494] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Bioactive peptides have recently gained more research attention as potential therapies for the management of bodily disorders and metabolic syndromes of delicate health importance. On another note, there is a rising trend on a global scale for the consumption and adoption of fruit and vegetables for the fulfilment of dietary and health needs. Furthermore, fruits and vegetables are being more studied as base materials for the isolation of biologically functional components and accordingly, they have been investigated for their concomitant bioactive peptides. This review focuses on isolation and bio-functional properties of bioactive peptides from fruits and vegetables. This manuscript is potential in serving as a material collection for fundamental consultancy on peptides derived from fruits and vegetables, and further canvasses the necessitation for the use of these food materials as primal matter for such.
Collapse
|
17
|
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol 2021; 11:668632. [PMID: 34195099 PMCID: PMC8238046 DOI: 10.3389/fcimb.2021.668632] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are essential drugs used to treat pathogenic bacteria, but their prolonged use contributes to the development and spread of drug-resistant microorganisms. Antibiotic resistance is a serious challenge and has led to the need for new alternative molecules less prone to bacterial resistance. Antimicrobial peptides (AMPs) have aroused great interest as potential next-generation antibiotics, since they are bioactive small proteins, naturally produced by all living organisms, and representing the first line of defense against fungi, viruses and bacteria. AMPs are commonly classified according to their sources, which are represented by microorganisms, plants and animals, as well as to their secondary structure, their biosynthesis and their mechanism of action. They find application in different fields such as agriculture, food industry and medicine, on which we focused our attention in this review. Particularly, we examined AMP potential applicability in wound healing, skin infections and metabolic syndrome, considering their ability to act as potential Angiotensin-Converting Enzyme I and pancreatic lipase inhibitory peptides as well as antioxidant peptides. Moreover, we argued about the pharmacokinetic and pharmacodynamic approaches to develop new antibiotics, the drug development strategies and the formulation approaches which need to be taken into account in developing clinically suitable AMP applications.
Collapse
Affiliation(s)
- Antonio Moretta
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Antonio Franco
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | - Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Vassallo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| |
Collapse
|
18
|
Shwaiki LN, Lynch KM, Arendt EK. Future of antimicrobial peptides derived from plants in food application – A focus on synthetic peptides. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Porras G, Chassagne F, Lyles JT, Marquez L, Dettweiler M, Salam AM, Samarakoon T, Shabih S, Farrokhi DR, Quave CL. Ethnobotany and the Role of Plant Natural Products in Antibiotic Drug Discovery. Chem Rev 2021; 121:3495-3560. [PMID: 33164487 PMCID: PMC8183567 DOI: 10.1021/acs.chemrev.0c00922] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The crisis of antibiotic resistance necessitates creative and innovative approaches, from chemical identification and analysis to the assessment of bioactivity. Plant natural products (NPs) represent a promising source of antibacterial lead compounds that could help fill the drug discovery pipeline in response to the growing antibiotic resistance crisis. The major strength of plant NPs lies in their rich and unique chemodiversity, their worldwide distribution and ease of access, their various antibacterial modes of action, and the proven clinical effectiveness of plant extracts from which they are isolated. While many studies have tried to summarize NPs with antibacterial activities, a comprehensive review with rigorous selection criteria has never been performed. In this work, the literature from 2012 to 2019 was systematically reviewed to highlight plant-derived compounds with antibacterial activity by focusing on their growth inhibitory activity. A total of 459 compounds are included in this Review, of which 50.8% are phenolic derivatives, 26.6% are terpenoids, 5.7% are alkaloids, and 17% are classified as other metabolites. A selection of 183 compounds is further discussed regarding their antibacterial activity, biosynthesis, structure-activity relationship, mechanism of action, and potential as antibiotics. Emerging trends in the field of antibacterial drug discovery from plants are also discussed. This Review brings to the forefront key findings on the antibacterial potential of plant NPs for consideration in future antibiotic discovery and development efforts.
Collapse
Affiliation(s)
- Gina Porras
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - François Chassagne
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - James T. Lyles
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Lewis Marquez
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Micah Dettweiler
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
| | - Akram M. Salam
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| | - Tharanga Samarakoon
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
| | - Sarah Shabih
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Darya Raschid Farrokhi
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
| | - Cassandra L. Quave
- Center for the Study of Human Health, Emory University, 1557 Dickey Dr., Atlanta, Georgia 30322
- Emory University Herbarium, Emory University, 1462 Clifton Rd NE, Room 102, Atlanta, Georgia 30322
- Department of Dermatology, Emory University, 615 Michael St., Whitehead 105L, Atlanta, Georgia 30322
- Molecular and Systems Pharmacology Program, Laney Graduate School, Emory University, 615 Michael St., Whitehead 115, Atlanta, Georgia 30322
| |
Collapse
|
20
|
Abstract
Three undescribed sesquineolignans, Ziziphusmps A-C (1-3) were isolated from the seeds of Ziziphus jujuba. their gross structure was identified by comprehensive spectroscopic analyses. The part relative configurations were determined by the NOESY correlation and coupling constant. All isolates were tested for their cytotoxicity against the hepatocellular carcinoma Hep3B and HepG2 cells. The results indicated that none of them exhibited obvious cytotoxicity against two hepatocellular carcinoma cell lines.
Collapse
Affiliation(s)
- Wen Mi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yue-Jiao Guo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
21
|
Parthasarathy A, Borrego EJ, Savka MA, Dobson RCJ, Hudson AO. Amino acid-derived defense metabolites from plants: A potential source to facilitate novel antimicrobial development. J Biol Chem 2021; 296:100438. [PMID: 33610552 PMCID: PMC8024917 DOI: 10.1016/j.jbc.2021.100438] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
For millennia, humanity has relied on plants for its medicines, and modern pharmacology continues to reexamine and mine plant metabolites for novel compounds and to guide improvements in biological activity, bioavailability, and chemical stability. The critical problem of antibiotic resistance and increasing exposure to viral and parasitic diseases has spurred renewed interest into drug treatments for infectious diseases. In this context, an urgent revival of natural product discovery is globally underway with special attention directed toward the numerous and chemically diverse plant defensive compounds such as phytoalexins and phytoanticipins that combat herbivores, microbial pathogens, or competing plants. Moreover, advancements in “omics,” chemistry, and heterologous expression systems have facilitated the purification and characterization of plant metabolites and the identification of possible therapeutic targets. In this review, we describe several important amino acid–derived classes of plant defensive compounds, including antimicrobial peptides (e.g., defensins, thionins, and knottins), alkaloids, nonproteogenic amino acids, and phenylpropanoids as potential drug leads, examining their mechanisms of action, therapeutic targets, and structure–function relationships. Given their potent antibacterial, antifungal, antiparasitic, and antiviral properties, which can be superior to existing drugs, phytoalexins and phytoanticipins are an excellent resource to facilitate the rational design and development of antimicrobial drugs.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Eli J Borrego
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Michael A Savka
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | - André O Hudson
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
| |
Collapse
|
22
|
Shwaiki LN, Arendt EK, Lynch KM. Plant compounds for the potential reduction of food waste - a focus on antimicrobial peptides. Crit Rev Food Sci Nutr 2021; 62:4242-4265. [PMID: 33480260 DOI: 10.1080/10408398.2021.1873733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A large portion of global food waste is caused by microbial spoilage. The modern approach to preserve food is to apply different hurdles for microbial pathogens to overcome. These vary from thermal processes and chemical additives, to the application of irradiation and modified atmosphere packaging. Even though such preservative techniques exist, loss of food to spoilage still prevails. Plant compounds and peptides represent an untapped source of potential novel natural food preservatives. Of these, antimicrobial peptides (AMPs) are very promising for exploitation. AMPs are a significant component of a plant's innate defense system. Numerous studies have demonstrated the potential application of these AMPs; however, more studies, particularly in the area of food preservation are warranted. This review examines the literature on the application of AMPs and other plant compounds for the purpose of reducing food losses and waste (including crop protection). A focus is placed on the plant defensins, their natural extraction and synthetic production, and their safety and application in food preservation. In addition, current challenges and impediments to their full exploitation are discussed.
Collapse
Affiliation(s)
- Laila N Shwaiki
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
24
|
Adjdir S, Benariba N, Adida H, Kamila G, El Haci IA, Terki M, Fekhikher Z, Benramdane H, Bekkara FA, Djaziri R. Phenolic Compounds and Antimicrobial Activity of Ziziphus jujuba Mill. Fruit from Tlemcen. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2021. [DOI: 10.51847/majjfubvan] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Su T, Han M, Cao D, Xu M. Molecular and Biological Properties of Snakins: The Foremost Cysteine-Rich Plant Host Defense Peptides. J Fungi (Basel) 2020; 6:jof6040220. [PMID: 33053707 PMCID: PMC7711543 DOI: 10.3390/jof6040220] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 12/21/2022] Open
Abstract
Plant host defense peptides (HDPs), also known as antimicrobial peptides (AMPs), are regarded as one of the most prevalent barriers elaborated by plants to combat various infective agents. Among the multiple classes of HDPs, the Snakin class attracts special concern, as they carry 12 cysteine residues, being the foremost cysteine-rich peptides of the plant HDPs. Also, their cysteines are present at very highly conserved positions and arranged in an extremely similar way among different members. Like other plant HDPs, Snakins have been shown to exhibit strong antifungal and antibacterial activity against a wide range of plant pathogens. Moreover, they display diversified biological activities in many aspects of plant growth and the development process. This review is devoted to present the general characters of the Snakin class of plant HDPs, as well as the individual features of different Snakin family members. Specifically, the sequence properties, spatial structures, distributions, expression patterns and biological activities of Snakins are described. In addition, further detailed classification of the Snakin family members, along with their possible mode of action and potential applications in the field of agronomy and pathology are discussed.
Collapse
Affiliation(s)
- Tao Su
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (D.C.); (M.X.)
- Key Laboratory of State Forestry Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Mei Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (D.C.); (M.X.)
- Correspondence: ; Tel.:+86-1589-598-9551
| | - Dan Cao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (D.C.); (M.X.)
| | - Mingyue Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (T.S.); (D.C.); (M.X.)
| |
Collapse
|
26
|
Linking collective in vitro to individual in silico peptide bioactivity through mass spectrometry (LC-Q-TOF/MS) based sequence identification: the case of black cumin protein hydrolysates. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Srivastava S, Dashora K, Ameta KL, Singh NP, El-Enshasy HA, Pagano MC, Hesham AEL, Sharma GD, Sharma M, Bhargava A. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother Res 2020; 35:256-277. [PMID: 32940412 DOI: 10.1002/ptr.6823] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022]
Abstract
There has been a spurt in the spread of microbial resistance to antibiotics due to indiscriminate use of antimicrobial agents in human medicine, agriculture, and animal husbandry. It has been realized that conventional antibiotic therapy would be less effective in the coming decades and more emphasis should be given for the development of novel antiinfective therapies. Cysteine rich peptides (CRPs) are broad-spectrum antimicrobial agents that modulate the innate immune system of different life forms such as bacteria, protozoans, fungi, plants, insects, and animals. These are also expressed in several plant tissues in response to invasion by pathogens, and play a crucial role in the regulation of plant growth and development. The present work explores the importance of CRPs as potent antimicrobial agents, which can supplement and/or replace the conventional antibiotics. Different plant parts of diverse plant species showed the presence of antimicrobial peptides (AMPs), which had significant structural and functional diversity. The plant-derived AMPs exhibited potent activity toward a range of plant and animal pathogens, protozoans, insects, and even against cancer cells. The cysteine-rich AMPs have opened new avenues for the use of plants as biofactories for the production of antimicrobials and can be considered as promising antimicrobial drugs in biotherapeutics.
Collapse
Affiliation(s)
- Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Keshav Lalit Ameta
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | | | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development (IBD), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia.,City of Scientific Research and Technology Applications (SRTA), New Burg Al Arab, Alexandria, Egypt
| | | | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, India
| | - Atul Bhargava
- Department of Botany, Mahatma Gandhi Central University, Motihari, India
| |
Collapse
|
28
|
Filiz E, Kurt F. Antimicrobial peptides Snakin/GASA gene family in sorghum (Sorghum bicolor): Genome-wide identification and bioinformatics analyses. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Acetylcholinesterase inhibitory activity of a naturally occurring peptide isolated from Boana pulchella (Anura: Hylidae) and its analogs. Amino Acids 2020; 52:387-396. [DOI: 10.1007/s00726-019-02815-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
|
30
|
Yu Z, Ji H, Shen J, Kan R, Zhao W, Li J, Ding L, Liu J. Identification and molecular docking study of fish roe-derived peptides as potent BACE 1, AChE, and BChE inhibitors. Food Funct 2020; 11:6643-6651. [DOI: 10.1039/d0fo00971g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta-secretase 1 (BACE 1) play vital roles in the development and progression of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Huizhuo Ji
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Juntong Shen
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Ruotong Kan
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Wenzhu Zhao
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Jianrong Li
- College of Food Science and Engineering
- Bohai University
- Jinzhou 121013
- P.R. China
| | - Long Ding
- College of Food Science and Engineering
- Northwest A&F University
- Yangling 712100
- P.R. China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food
- Jilin University
- Changchun 130062
- P.R. China
| |
Collapse
|
31
|
Thery T, Lynch KM, Arendt EK. Natural Antifungal Peptides/Proteins as Model for Novel Food Preservatives. Compr Rev Food Sci Food Saf 2019; 18:1327-1360. [DOI: 10.1111/1541-4337.12480] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 05/17/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Thibaut Thery
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Ireland
- Microbiome IrelandUniv. College Cork Ireland
| |
Collapse
|
32
|
Boonpa K, Tantong S, Weerawanich K, Panpetch P, Pringsulaka O, Yingchutrakul Y, Roytrakul S, Sirikantaramas S. Heterologous expression and antimicrobial activity of OsGASR3 from rice (Oryza sativa L.). JOURNAL OF PLANT PHYSIOLOGY 2018; 224-225:95-102. [PMID: 29614397 DOI: 10.1016/j.jplph.2018.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/15/2018] [Accepted: 03/24/2018] [Indexed: 05/08/2023]
Abstract
According to an in silico analysis, OsGASR3 (LOC_Os03g55290) from rice (Oryza sativa L.) was predicted to be involved in plant defense mechanisms. A semi-quantitative reverse transcription polymerase chain reaction assay revealed that OsGASR3 is highly expressed in the inflorescences of Thai jasmine rice (O. sativa L. subsp. indica 'KDML 105'). To characterize the biological activity of OsGASR3, we produced an OsGASR3-glutathione S-transferase fusion protein in Escherichia coli Rosetta-gami (DE3) cells for a final purified recombinant OsGASR3 yield of 0.65 mg/L. The purified OsGASR3 inhibited the hyphal growth of Fusarium oxysporum f.sp. cubense and Helminthosporium oryzae at a relatively low concentration (7.5 μg/mL). Furthermore, OsGASR3 exhibited in planta inhibitory activity against Xanthomonas campestris, suggesting its involvement in defense mechanisms, in addition to its previously reported functions affecting growth and development. These observations indicate that recombinant OsGASR3 may be useful for protecting agriculturally important crops against pathogenic microbes.
Collapse
Affiliation(s)
- Krissana Boonpa
- Biotechnology Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supaluk Tantong
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kamonwan Weerawanich
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Pawinee Panpetch
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Onanong Pringsulaka
- Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| | - Yodying Yingchutrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, 12120, Thailand.
| | - Sittiruk Roytrakul
- Genome Institute, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathumthani, 12120, Thailand.
| | - Supaart Sirikantaramas
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
33
|
Wang T, Wang G, Jia ZH, Pan DL, Zhang JY, Guo ZR. Transcriptome Analysis of Kiwifruit in Response to Pseudomonas syringae pv. actinidiae Infection. Int J Mol Sci 2018; 19:E373. [PMID: 29373527 PMCID: PMC5855595 DOI: 10.3390/ijms19020373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 12/03/2022] Open
Abstract
Kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae (Psa) has brought about a severe threat to the kiwifruit industry worldwide since its first outbreak in 2008. Studies on other pathovars of P. syringae are revealing the pathogenesis of these pathogens, but little about the mechanism of kiwifruit bacterial canker is known. In order to explore the species-specific interaction between Psa and kiwifruit, we analyzed the transcriptomic profile of kiwifruit infected by Psa. After 48 h, 8255 differentially expressed genes were identified, including those involved in metabolic process, secondary metabolites metabolism and plant response to stress. Genes related to biosynthesis of terpens were obviously regulated, indicating terpens may play roles in suppressing the growth of Psa. We identified 283 differentially expressed resistant genes, of which most U-box domain containing genes were obviously up regulated. Expression of genes involved in plant immunity was detected and some key genes showed differential expression. Our results suggest that Psa induced defense response of kiwifruit, including PAMP (pathogen/microbe-associated molecular patterns)-triggered immunity, effector-triggered immunity and hypersensitive response. Metabolic process was adjusted to adapt to these responses and production of secondary metabolites may be altered to suppress the growth of Psa.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Gang Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zhan-Hui Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - De-Lin Pan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Ji-Yu Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zhong-Ren Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
34
|
Meneguetti BT, Machado LDS, Oshiro KGN, Nogueira ML, Carvalho CME, Franco OL. Antimicrobial Peptides from Fruits and Their Potential Use as Biotechnological Tools-A Review and Outlook. Front Microbiol 2017; 7:2136. [PMID: 28119671 PMCID: PMC5223440 DOI: 10.3389/fmicb.2016.02136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
Bacterial resistance is a major threat to plant crops, animals and human health, and over the years this situation has increasingly spread worldwide. Due to their many bioactive compounds, plants are promising sources of antimicrobial compounds that can potentially be used in the treatment of infections caused by microorganisms. As well as stem, flowers and leaves, fruits have an efficient defense mechanism against pests and pathogens, besides presenting nutritional and functional properties due to their multifunctional molecules. Among such compounds, the antimicrobial peptides (AMPs) feature different antimicrobials that are capable of disrupting the microbial membrane and of acting in binding to intra-cytoplasmic targets of microorganisms. They are therefore capable of controlling or halting the growth of microorganisms. In summary, this review describes the major classes of AMPs found in fruits, their possible use as biotechnological tools and prospects for the pharmaceutical industry and agribusiness.
Collapse
Affiliation(s)
- Beatriz T Meneguetti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Leandro Dos Santos Machado
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Karen G N Oshiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Micaella L Nogueira
- Graduação em Ciências Biológicas, Universidade Católica Dom Bosco Campo Grande, Brazil
| | - Cristiano M E Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom BoscoCampo Grande, Brazil; Graduação em Ciências Biológicas, Universidade Católica Dom BoscoCampo Grande, Brazil
| | - Octávio L Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom BoscoCampo Grande, Brazil; Graduação em Ciências Biológicas, Universidade Católica Dom BoscoCampo Grande, Brazil; Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de BrasíliaBrasília, Brazil
| |
Collapse
|
35
|
Liu N, Yang M, Huang W, Wang Y, Yang M, Wang Y, Zhao Z. Composition, antioxidant activities and hepatoprotective effects of the water extract of Ziziphus jujuba cv. Jinsixiaozao. RSC Adv 2017. [DOI: 10.1039/c6ra27516h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this study, we aimed to evaluate the composition, antioxidant activities, and hepatoprotective effects of water extracts ofZiziphus jujubacv. Jinsixiaozao.
Collapse
Affiliation(s)
- Na Liu
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Mei Yang
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Weizhen Huang
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Yongjie Wang
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Min Yang
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Ying Wang
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences
- Shandong University
- Jinan
- P. R. China
- Shandong Engineering & Technology Research Center for Jujube Food and Drug
| |
Collapse
|
36
|
Chemical and biological assessment of Jujube ( Ziziphus jujuba )-containing herbal decoctions: Induction of erythropoietin expression in cultures. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026:254-262. [DOI: 10.1016/j.jchromb.2015.09.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/27/2015] [Accepted: 09/17/2015] [Indexed: 11/22/2022]
|
37
|
Yeung H, Squire CJ, Yosaatmadja Y, Panjikar S, López G, Molina A, Baker EN, Harris PWR, Brimble MA. Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily. Angew Chem Int Ed Engl 2016; 55:7930-3. [DOI: 10.1002/anie.201602719] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Ho Yeung
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
| | - Christopher J. Squire
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Yuliana Yosaatmadja
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
| | - Santosh Panjikar
- Australian Synchrotron; 800 Blackburn Road Clayton Victoria 3168 Australia
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA); Universidad Politécnica de Madrid (UPM); Campus Montegancedo, M-40 (Km 38) 28223-Pozuelo de Alarcón Madrid Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA); Universidad Politécnica de Madrid (UPM); Campus Montegancedo, M-40 (Km 38) 28223-Pozuelo de Alarcón Madrid Spain
| | - Edward N. Baker
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences; The University of Auckland; 23 Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland; 23 Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| |
Collapse
|
38
|
Yeung H, Squire CJ, Yosaatmadja Y, Panjikar S, López G, Molina A, Baker EN, Harris PWR, Brimble MA. Radiation Damage and Racemic Protein Crystallography Reveal the Unique Structure of the GASA/Snakin Protein Superfamily. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ho Yeung
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
| | - Christopher J. Squire
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Yuliana Yosaatmadja
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
| | - Santosh Panjikar
- Australian Synchrotron; 800 Blackburn Road Clayton Victoria 3168 Australia
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA); Universidad Politécnica de Madrid (UPM); Campus Montegancedo, M-40 (Km 38) 28223-Pozuelo de Alarcón Madrid Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA); Universidad Politécnica de Madrid (UPM); Campus Montegancedo, M-40 (Km 38) 28223-Pozuelo de Alarcón Madrid Spain
| | - Edward N. Baker
- School of Biological Sciences; The University of Auckland; 3A Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences; The University of Auckland; 23 Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences; The University of Auckland; 23 Symonds St Auckland Central 1010 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery; Thomas Building Level 2; 3A Symonds St Auckland Central 1010 New Zealand
| |
Collapse
|
39
|
Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial Peptides from Plants. Pharmaceuticals (Basel) 2015; 8:711-57. [PMID: 26580629 PMCID: PMC4695807 DOI: 10.3390/ph8040711] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/25/2022] Open
Abstract
Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms.
Collapse
Affiliation(s)
- James P Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Shujing Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Ka H Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Wei Liang Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|