1
|
Xiang J, Tian SQ, Wang SW, Liu YL, Li H, Peng B. Pyruvate Abundance Confounds Aminoglycoside Killing of Multidrug-Resistant Bacteria via Glutathione Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0554. [PMID: 39697188 PMCID: PMC11654824 DOI: 10.34133/research.0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
To explore whether the metabolic state reprogramming approach may be used to explore previously unknown metabolic pathways that contribute to antibiotic resistance, especially those that have been neglected in previous studies, pyruvate reprogramming was performed to reverse the resistance of multidrug-resistant Edwardsiella tarda. Surprisingly, we identified a pyruvate-regulated glutathione system that occurs by boosting glycine, serine, and threonine metabolism. Moreover, cysteine and methionine metabolism played a key role in this reversal. This process involved pyruvate-depressed glutathione and pyruvate-promoted glutathione oxidation, which was attributed to the elevated glutathione peroxidase and depressed glutathione reductase that was inhibited by glycine. This regulation inhibited reactive oxygen species (ROS) degradation and thereby elevated ROS to eliminate E. tarda. Loss of metB, gpx, and gor of the metabolic pathways increased and decreased resistance, respectively, both in vitro and in vivo, thereby supporting the hypothesis of a pyruvate-cysteine-glutathione system/glycine-ROS metabolic pathway. The role of this metabolic pathway in drug resistance and reprogramming reversal was demonstrated in laboratory-evolved gentamicin-resistant E. tarda and other clinically isolated multidrug- and carbapenem-resistant pathogens. Thus, we reveal a less studied antibiotic resistance metabolic pathway along with the mechanisms involved in its reversal.
Collapse
Affiliation(s)
- Jiao Xiang
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Si-qi Tian
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Shi-wen Wang
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
| | - Ying-li Liu
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hui Li
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, Guangdong Province Key Laboratory for Pharmaceutical Functional Genes,
School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Niyangoda D, Muayad M, Tesfaye W, Bushell M, Ahmad D, Samarawickrema I, Sinclair J, Kebriti S, Maida V, Thomas J. Cannabinoids in Integumentary Wound Care: A Systematic Review of Emerging Preclinical and Clinical Evidence. Pharmaceutics 2024; 16:1081. [PMID: 39204426 PMCID: PMC11359183 DOI: 10.3390/pharmaceutics16081081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
This systematic review critically evaluates preclinical and clinical data on the antibacterial and wound healing properties of cannabinoids in integument wounds. Comprehensive searches were conducted across multiple databases, including CINAHL, Cochrane library, Medline, Embase, PubMed, Web of Science, and LILACS, encompassing records up to May 22, 2024. Eighteen studies met the inclusion criteria. Eleven were animal studies, predominantly utilizing murine models (n = 10) and one equine model, involving 437 animals. The seven human studies ranged from case reports to randomized controlled trials, encompassing 92 participants aged six months to ninety years, with sample sizes varying from 1 to 69 patients. The studies examined the effects of various cannabinoid formulations, including combinations with other plant extracts, crude extracts, and purified and synthetic cannabis-based medications administered topically, intraperitoneally, orally, or sublingually. Four animal and three human studies reported complete wound closure. Hemp fruit oil extract, cannabidiol (CBD), and GP1a resulted in complete wound closure in twenty-three (range: 5-84) days with a healing rate of 66-86% within ten days in animal studies. One human study documented a wound healing rate of 3.3 cm2 over 30 days, while three studies on chronic, non-healing wounds reported an average healing time of 54 (21-150) days for 17 patients by oral oils with tetrahydrocannabinol (THC) and CBD and topical gels with THC, CBD, and terpenes. CBD and tetrahydrocannabidiol demonstrated significant potential in reducing bacterial loads in murine models. However, further high-quality research is imperative to fully elucidate the therapeutic potential of cannabinoids in the treatment of bacterial skin infections and wounds. Additionally, it is crucial to delineate the impact of medicinal cannabis on the various phases of wound healing. This study was registered in PROSPERO (CRD42021255413).
Collapse
Affiliation(s)
- Dhakshila Niyangoda
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Mohammed Muayad
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| | - Wubshet Tesfaye
- School of Pharmacy, Faculty of Health and Behavioural Sciences, University of Queensland, Queensland, QLD 4072, Australia;
| | - Mary Bushell
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| | - Danish Ahmad
- School of Medicine and Psychology, Australian National University, Canberra, ACT 2601, Australia;
| | | | - Justin Sinclair
- Australian Natural Therapeutics Group, Byron Bay, NSW 2481, Australia;
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Shida Kebriti
- Eczanes Pharmaceuticals, Rydalmere, NSW 2116, Australia;
| | - Vincent Maida
- Temerity Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Hospice Vaughan, Woodbridge, ON L4H 3G7, Canada
| | - Jackson Thomas
- Faculty of Health, University of Canberra, Canberra, ACT 2617, Australia; (D.N.); (M.M.); (M.B.)
| |
Collapse
|
3
|
Yeo HH, Jao YH, Yang FW, Kuo MH, Lee MH, Shiau CW, Chiu HC, Su JC. Discovery of N,N'-diarylurea molecules with activity against multidrug-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2024; 357:e2400047. [PMID: 38687910 DOI: 10.1002/ardp.202400047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
The emergence and global spread of methicillin-resistant Staphylococcus aureus (MRSA) pose a serious threat to public health, underscoring the urgent need for novel antibacterial interventions. Here, we screened 18 newly synthesized N,N'-diarylurea derivatives to identify compounds with activity against MRSA. Our investigations led to the discovery of a small molecule, SCB-24, which exhibited promising antimicrobial activity against MRSA USA300. Notably, SCB-24 demonstrated high activity even in the presence of 10% fetal bovine serum and showed excellent selectivity for bacterial over mammalian cells. SCB-24 also showed potent activity against various MRSA strains, including those resistant to second- and third-line antibiotics. Importantly, the efficacy of SCB-24 was inferior to that of vancomycin in MRSA-infected Galleria mellonella larvae. Overall, our findings suggest that SCB-24 has great potential as a new therapeutic for multidrug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Hui-Hui Yeo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsuan Jao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fan-Wei Yang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Hsuan Kuo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meng-Hsuan Lee
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Wei Shiau
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jung-Chen Su
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Strich JR, Mishuk A, Diao G, Lawandi A, Li W, Demirkale CY, Babiker A, Mancera A, Swihart BJ, Walker M, Yek C, Neupane M, De Jonge N, Warner S, Kadri SS. Assessing Clinician Utilization of Next-Generation Antibiotics Against Resistant Gram-Negative Infections in U.S. Hospitals : A Retrospective Cohort Study. Ann Intern Med 2024; 177:559-572. [PMID: 38639548 DOI: 10.7326/m23-2309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND The U.S. antibiotic market failure has threatened future innovation and supply. Understanding when and why clinicians underutilize recently approved gram-negative antibiotics might help prioritize the patient in future antibiotic development and potential market entry rewards. OBJECTIVE To determine use patterns of recently U.S. Food and Drug Administration (FDA)-approved gram-negative antibiotics (ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, plazomicin, eravacycline, imipenem-relebactam-cilastatin, and cefiderocol) and identify factors associated with their preferential use (over traditional generic agents) in patients with gram-negative infections due to pathogens displaying difficult-to-treat resistance (DTR; that is, resistance to all first-line antibiotics). DESIGN Retrospective cohort. SETTING 619 U.S. hospitals. PARTICIPANTS Adult inpatients. MEASUREMENTS Quarterly percentage change in antibiotic use was calculated using weighted linear regression. Machine learning selected candidate variables, and mixed models identified factors associated with new (vs. traditional) antibiotic use in DTR infections. RESULTS Between quarter 1 of 2016 and quarter 2 of 2021, ceftolozane-tazobactam (approved 2014) and ceftazidime-avibactam (2015) predominated new antibiotic usage whereas subsequently approved gram-negative antibiotics saw relatively sluggish uptake. Among gram-negative infection hospitalizations, 0.7% (2551 [2631 episodes] of 362 142) displayed DTR pathogens. Patients were treated exclusively using traditional agents in 1091 of 2631 DTR episodes (41.5%), including "reserve" antibiotics such as polymyxins, aminoglycosides, and tigecycline in 865 of 1091 episodes (79.3%). Patients with bacteremia and chronic diseases had greater adjusted probabilities and those with do-not-resuscitate status, acute liver failure, and Acinetobacter baumannii complex and other nonpseudomonal nonfermenter pathogens had lower adjusted probabilities of receiving newer (vs. traditional) antibiotics for DTR infections, respectively. Availability of susceptibility testing for new antibiotics increased probability of usage. LIMITATION Residual confounding. CONCLUSION Despite FDA approval of 7 next-generation gram-negative antibiotics between 2014 and 2019, clinicians still frequently treat resistant gram-negative infections with older, generic antibiotics with suboptimal safety-efficacy profiles. Future antibiotics with innovative mechanisms targeting untapped pathogen niches, widely available susceptibility testing, and evidence demonstrating improved outcomes in resistant infections might enhance utilization. PRIMARY FUNDING SOURCE U.S. Food and Drug Administration; NIH Intramural Research Program.
Collapse
Affiliation(s)
- Jeffrey R Strich
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Ahmed Mishuk
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Guoqing Diao
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC (G.D.)
| | - Alexander Lawandi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland (A.L., N.D.J.)
| | - Willy Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Department of Pharmacy, Clinical Center, National Institutes of Health, Bethesda, Maryland (W.L.)
| | - Cumhur Y Demirkale
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Ahmed Babiker
- Division of Infectious Diseases, Emory University, Atlanta, Georgia (A.B.)
| | - Alex Mancera
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Bruce J Swihart
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Morgan Walker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Christina Yek
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Maniraj Neupane
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Nathaniel De Jonge
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland (A.L., N.D.J.)
| | - Sarah Warner
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| | - Sameer S Kadri
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda; and Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland (J.R.S., A.Mishuk, C.Y.D., A.Mansera, B.J.S., M.W., C.Y., M.N., S.W., S.S.K.)
| |
Collapse
|
5
|
Aruhomukama D, Nakabuye H. Investigating the evolution and predicting the future outlook of antimicrobial resistance in sub-saharan Africa using phenotypic data for Klebsiella pneumoniae: a 12-year analysis. BMC Microbiol 2023; 23:214. [PMID: 37553587 PMCID: PMC10408162 DOI: 10.1186/s12866-023-02966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is a major public health challenge, particularly in sub-Saharan Africa (SSA). This study aimed to investigate the evolution and predict the future outlook of AMR in SSA over a 12-year period. By analysing the trends and patterns of AMR, the study sought to enhance our understanding of this pressing issue in the region and provide valuable insights for effective interventions and control measures to mitigate the impact of AMR on public health in SSA. RESULTS The study found that general medicine patients had the highest proportion of samples with AMR. Different types of samples showed varying levels of AMR. Across the studied locations, the highest resistance was consistently observed against ceftaroline (ranging from 68 to 84%), while the lowest resistance was consistently observed against ceftazidime avibactam, imipenem, meropenem, and meropenem vaborbactam (ranging from 92 to 93%). Notably, the predictive analysis showed a significant increasing trend in resistance to amoxicillin-clavulanate, cefepime, ceftazidime, ceftaroline, imipenem, meropenem, piperacillin-tazobactam, and aztreonam over time. CONCLUSIONS These findings suggest the need for coordinated efforts and interventions to control and prevent the spread of AMR in SSA. Targeted surveillance based on local resistance patterns, sample types, and patient populations is crucial for effective monitoring and control of AMR. The study also highlights the urgent need for action, including judicious use of antibiotics and the development of alternative treatment options to combat the growing problem of AMR in SSA.
Collapse
Affiliation(s)
- Dickson Aruhomukama
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda.
| | - Hellen Nakabuye
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
6
|
Davies H, Russell J, Varghese A, Holmes H, Soares MO, Woods B, Puig-Peiro R, Evans S, Tierney R, Mealing S, Sculpher M, Robotham JV. Developing a Modeling Framework for Quantifying the Health and Cost Implications of Antibiotic Resistance for Surgical Procedures. MDM Policy Pract 2023; 8:23814683231152885. [PMID: 36755742 PMCID: PMC9900655 DOI: 10.1177/23814683231152885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/26/2022] [Indexed: 02/07/2023] Open
Abstract
Background. Antimicrobial resistance (AMR) is a global public health threat. The wider implications of AMR, such as the impact of antibiotic resistance (ABR) on surgical procedures, are yet to be quantified. The objective of this study was to produce a conceptual modeling framework to provide a basis for estimating the current and potential future consequences of ABR for surgical procedures in England. Design. A framework was developed using literature-based evidence and structured expert elicitation. This was applied to populations undergoing emergency repair of the neck of the femur and elective colorectal resection surgery. Results. The framework captures the implications of increasing ABR by allowing for higher rates of surgical site infection (SSI) as the effectiveness of antibiotic prophylaxis wanes and worsened outcomes following SSIs to reflect reduced antibiotic treatment effectiveness. The expert elicitation highlights the uncertainty in quantifying the impact of ABR, reflected in the results. A hypothetical SSI rate increase of 14% in a person undergoing emergency repair of the femur could increase costs by 39% (-2% to 108% credible interval [CI]) and decrease quality-adjusted life-years by 11% (0.4% to 62% CI) over 15 y. Conclusions. The modeling framework is a starting point for addressing the implication of ABR on the outcomes and costs of surgeries. Due to clinical uncertainty highlighted in the expert elicitation process, the numerical outputs of the case studies should not be focused on but rather the framework itself, illustration of the evidence gaps, the benefit of expert elicitation in quantifying parameters with limited data, and the potential magnitude of the impact of ABR on surgical procedures. Implications. The framework can be used to support research surrounding the health and cost burden of ABR in England. Highlights The modeling framework is a starting point for assessing the health and cost impacts of antibiotic resistance on surgeries in England.Formulating a framework and synthesizing evidence to parameterize data gaps provides targets for future research.Once data gaps are addressed, this modeling framework can be used to feed into overall estimates of the health and cost burden of antibiotic resistance and evaluate control policies.
Collapse
Affiliation(s)
- Heather Davies
- Davies H. MSc, York Health Economics
Consortium Ltd, Enterprise House, Heslington, York, North Yorkshire YO10 5NQ,
UK; ()
| | - Joel Russell
- York Health Economics Consortium Ltd (YHEC),
York, North Yorkshire, UK
| | - Angel Varghese
- York Health Economics Consortium Ltd (YHEC),
York, North Yorkshire, UK
| | - Hayden Holmes
- York Health Economics Consortium Ltd (YHEC),
York, North Yorkshire, UK
| | - Marta O. Soares
- Centre for Health Economics, University of
York, York. North Yorkshire, UK
| | - B. Woods
- Centre for Health Economics, University of
York, York. North Yorkshire, UK
| | - Ruth Puig-Peiro
- Office for Health Improvement and Disparities,
Department of Health and Social Care, UK
| | - Stephanie Evans
- Modelling and Evaluations Unit, HCAI & AMR,
UK Health Security Agency
| | - Rory Tierney
- Office for Health Improvement and Disparities,
Department of Health and Social Care, UK
| | - Stuart Mealing
- York Health Economics Consortium Ltd (YHEC),
York, North Yorkshire, UK
| | - Mark Sculpher
- Centre for Health Economics, University of
York, York. North Yorkshire, UK
| | - Julie V. Robotham
- Modelling and Evaluations Unit, HCAI &
AMR, UK Health Security Agency
| |
Collapse
|
7
|
Guan Y, Lin M, Shen P, Zou Z. Alanine-mediated P cycle boosting enhances the killing efficiency of kasugamycin on antibiotic-resistant Xanthomonas oryzae. Front Microbiol 2023; 14:1160702. [PMID: 37143533 PMCID: PMC10151481 DOI: 10.3389/fmicb.2023.1160702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
The outbreak of Bacterial blight (BB) caused by Xanthomonas oryzae (Xoo) generates substantial economic losses to agricultural production. Antibiotics application is a valuable measure to control this bacterial disease. However, microbial antibiotic resistance dramatically reduced antibiotic effectiveness. Identifying the resistance mechanism of Xoo to antibiotics and restoring antibiotic susceptibility is one of the crucial ways to solve this problem. This study employed a GC-MS-based metabolomic approach to reveal the differential metabolomics between a kasugamycin-susceptible Xoo strain (Z173-S) and a kasugamycin-resistant strain (Z173-RKA). The metabolic mechanism of kasugamycin (KA) resistance in Xoo by GC-MS showed that the downregulation of the pyruvate cycle (P cycle) is a crucial feature of Z173-RKA resistance to KA. This conclusion was confirmed by the decreased enzyme activities and the related gene transcriptional level in the P cycle. Furfural (an inhibitor of pyruvate dehydrogenase) can effectively inhibit the P cycle and increase the resistance of Z173-RKA to KA. Moreover, exogenous alanine can reduce the resistance of Z173-RKA to KA by promoting the P cycle. Our work seems to be the first exploration of the mechanism of KA resistance in Xoo by GC-MS-based metabonomics approach. These results provide a new idea for developing metabolic regulation to address KA resistance in Xoo.
Collapse
|
8
|
Lin HC, Wu YL, Hsu CY, Lin MY, Chen LH, Shiau CW, Chiu HC. Discovery of antipsychotic loxapine derivatives against intracellular multidrug-resistant bacteria. RSC Med Chem 2022; 13:1361-1366. [PMID: 36439974 PMCID: PMC9667769 DOI: 10.1039/d2md00182a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 08/13/2023] Open
Abstract
The emergence and spread of multidrug-resistant bacteria highlight the need for new antibacterial interventions. A screening of 24 newly synthesized dibenzoxazepines identified a small molecule compound, SW14, with potent inhibitory activity against intracellular multidrug-resistant and fluoroquinolone-resistant strains of S. typhimurium in macrophages and epithelial cells. Moreover, intra-macrophagic Salmonella typhi, Yersinia enterocolitica, and Listeria monocytogenes and methicillin-resistant Staphylococcus aureus are also susceptible to SW14. Overall, our findings suggest that SW14 has a broad-spectrum activity against intracellular bacteria.
Collapse
Affiliation(s)
- Hsueh-Chun Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan
| | - Yi-Lun Wu
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 11221 Taiwan
| | - Cheng-Yun Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan
| | - Man-Yi Lin
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 11221 Taiwan
| | - Ling-Han Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University Taipei 11221 Taiwan
| | - Hao-Chieh Chiu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University Taipei 10048 Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University Taipei 10021 Taiwan
| |
Collapse
|
9
|
Palmer ME, Andrews LJ, Abbey TC, Dahlquist AE, Wenzler E. The importance of pharmacokinetics and pharmacodynamics in antimicrobial drug development and their influence on the success of agents developed to combat resistant gram negative pathogens: A review. Front Pharmacol 2022; 13:888079. [PMID: 35959440 PMCID: PMC9359604 DOI: 10.3389/fphar.2022.888079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
A deep understanding of an antimicrobial’s critical pharmacokinetic and pharmacodynamic properties is crucial towards optimizing its use in patients and bolstering the drug development program. With the growing threat of antimicrobial resistance and decline in antimicrobial development, the advancement of complex and rigorous pharmacokinetic and pharmacodynamic studies over a short time span has renewed confidence in the value of pharmacokinetic and pharmacodynamic studies and allowed it to become fundamental component of a robust drug development program with high chances of successful approval. In addition, recent guidance by various regulatory bodies have reinforced that a strong and dedicated focus on pharmacokinetics and pharmacodynamics throughout research and development lead to the use of an optimized dosing regimen in Phase 3 trials, improving the probability of drug approval. The objective of this review is to demonstrate the importance of pharmacokinetic and pharmacodynamic studies in the drug development decision-making process by highlighting the developments in pharmacokinetic and pharmacodynamic methods and discuss the role of pharmacokinetic and pharmacodynamic studies in antimicrobial successes and failures.
Collapse
|
10
|
Giedraitiene A, Pereckaite L, Bredelyte-Gruodiene E, Virgailis M, Ciapiene I, Tatarunas V. CTX-M-producing Escherichia coli strains: resistance to temocillin, fosfomycin, nitrofurantoin and biofilm formation. Future Microbiol 2022; 17:789-802. [PMID: 35549350 DOI: 10.2217/fmb-2021-0202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: ESBL-producing and bacterial biofilms-forming Escherichia coli are associated with antimicrobial treatment failure. This study aimed to investigate the phenotypic resistance mechanisms of CTX-M E. coli against old antibiotics - cell wall synthesis inhibitors temocillin, nitrofurantoin and fosfomycin. Materials & Methods: Susceptibility to old antibiotics testing was performed using disk diffusion method, biofilm formation was evaluated spectrophotometrically, and PCR was used for the determination of CTX-M type. Results & conclusion: Temocillin was active against nearly 93%, nitrofurantoin and fosfomycin, respectively, 91.7% and 98.6% of tested E. coli. Thus, it demonstrated to be a good alternative therapeutic option against ESBL infections. Bacteria resistant to old antibiotics had CTX-M-15 or CTX-M-15, TEM-1 and OXA-1 combinations. No significant association was found between CTX-M E. coli resistance to temocillin, nitrofurantoin and fosfomycin; however, the level of biofilm formation was found as not affected by the type of CTX-M β-lactamases.
Collapse
Affiliation(s)
- Agne Giedraitiene
- Institute of Microbiology & Virology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Laura Pereckaite
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| | | | - Marius Virgailis
- Institute of Microbiology & Virology, Lithuanian University of Health Sciences, Kaunas, LT-50162, Lithuania
| | - Ieva Ciapiene
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| | - Vacis Tatarunas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, LT-50161, Lithuania
| |
Collapse
|
11
|
Kebriaei R, Lev KL, Shah RM, Stamper KC, Holger DJ, Morrisette T, Kunz Coyne AJ, Lehman SM, Rybak MJ. Eradication of Biofilm-Mediated Methicillin-Resistant Staphylococcus aureus Infections In Vitro: Bacteriophage-Antibiotic Combination. Microbiol Spectr 2022; 10:e0041122. [PMID: 35348366 PMCID: PMC9045164 DOI: 10.1128/spectrum.00411-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/04/2022] [Indexed: 12/30/2022] Open
Abstract
Bacterial biofilms are difficult to eradicate and can complicate many infections by forming on tissues and medical devices. Phage+antibiotic combinations (PAC) may be more active on biofilms than either type of agent alone, but it is difficult to predict which PAC regimens will be reliably effective. To establish a method for screening PAC combinations against Staphylococcus aureus biofilms, we conducted biofilm time-kill analyses (TKA) using various combinations of phage Sb-1 with clinically relevant antibiotics. We determined the activity of PAC against biofilm versus planktonic bacteria and investigated the emergence of resistance during (24 h) exposure to PAC. As expected, fewer treatment regimens were effective against biofilm than planktonic bacteria. In experiments with isogenic strain pairs, we also saw less activity of PACs against DNS-VISA mutants versus their respective parentals. The most effective treatment against both biofilm and planktonic bacteria was the phage+daptomycin+ceftaroline regimen, which met our stringent definition of bactericidal activity (>3 log10 CFU/mL reduction). With the VISA-DNS strain 8015 and DNS strain 684, we detected anti-biofilm synergy between Sb-1 and DAP in the phage+daptomycin regimen (>2 log10 CFU/mL reduction versus best single agent). We did not observe any bacterial resensitization to antibiotics following treatment, but phage resistance was avoided after exposure to PAC regimens for all tested strains. The release of bacterial membrane vesicles tended to be either unaffected or reduced by the various treatment regimens. Interestingly, phage yields from certain biofilm experiments were greater than from similar planktonic experiments, suggesting that Sb-1 might be more efficiently propagated on biofilm. IMPORTANCE Biofilm-associated multidrug-resistant infections pose significant challenges for antibiotic therapy. The extracellular polymeric matrix of biofilms presents an impediment for antibiotic diffusion, facilitating the emergence of multidrug-resistant populations. Some bacteriophages (phages) can move across the biofilm matrix, degrade it, and support antibiotic penetration. However, little is known about how phages and their hosts interact in the biofilm environment or how different phage+antibiotic combinations (PACs) impact biofilms in comparison to the planktonic state of bacteria, though scattered data suggest that phage+antibiotic synergy occurs more readily under biofilm-like conditions. Our results demonstrated that phage Sb-1 can infect MRSA strains both in biofilm and planktonic states and suggested PAC regimens worthy of further investigation as adjuncts to antibiotics.
Collapse
Affiliation(s)
- Razieh Kebriaei
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Katherine L Lev
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Rahi M Shah
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle C Stamper
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Dana J Holger
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Taylor Morrisette
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Susan M Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
12
|
Zhang F, Zhong C, Yao J, Zhang J, Zhang T, Li B, Gou S, Ni J. Antimicrobial peptides–antibiotics combination: An effective strategy targeting drug‐resistant Gram‐negative bacteria. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fangyan Zhang
- School of Pharmacy Lanzhou University Lanzhou China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Chao Zhong
- School of Pharmacy Lanzhou University Lanzhou China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Jia Yao
- The First Hospital Lanzhou University Lanzhou China
| | - Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | | | - Beibei Li
- School of Pharmacy Lanzhou University Lanzhou China
| | - Sanhu Gou
- School of Pharmacy Lanzhou University Lanzhou China
| | - Jingman Ni
- School of Pharmacy Lanzhou University Lanzhou China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences Lanzhou University Lanzhou China
- State Key Laboratory of Quality Research in Chinese Medicine Macau University of Science and Technology Taipa Macao China
| |
Collapse
|
13
|
Iskandar K, Murugaiyan J, Hammoudi Halat D, Hage SE, Chibabhai V, Adukkadukkam S, Roques C, Molinier L, Salameh P, Van Dongen M. Antibiotic Discovery and Resistance: The Chase and the Race. Antibiotics (Basel) 2022; 11:182. [PMID: 35203785 PMCID: PMC8868473 DOI: 10.3390/antibiotics11020182] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
The history of antimicrobial resistance (AMR) evolution and the diversity of the environmental resistome indicate that AMR is an ancient natural phenomenon. Acquired resistance is a public health concern influenced by the anthropogenic use of antibiotics, leading to the selection of resistant genes. Data show that AMR is spreading globally at different rates, outpacing all efforts to mitigate this crisis. The search for new antibiotic classes is one of the key strategies in the fight against AMR. Since the 1980s, newly marketed antibiotics were either modifications or improvements of known molecules. The World Health Organization (WHO) describes the current pipeline as bleak, and warns about the scarcity of new leads. A quantitative and qualitative analysis of the pre-clinical and clinical pipeline indicates that few antibiotics may reach the market in a few years, predominantly not those that fit the innovative requirements to tackle the challenging spread of AMR. Diversity and innovation are the mainstays to cope with the rapid evolution of AMR. The discovery and development of antibiotics must address resistance to old and novel antibiotics. Here, we review the history and challenges of antibiotics discovery and describe different innovative new leads mechanisms expected to replenish the pipeline, while maintaining a promising possibility to shift the chase and the race between the spread of AMR, preserving antibiotic effectiveness, and meeting innovative leads requirements.
Collapse
Affiliation(s)
- Katia Iskandar
- Department of Mathématiques Informatique et Télécommunications, Université Toulouse III, Paul Sabatier, INSERM, UMR 1295, 31000 Toulouse, France
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon;
- Faculty of Pharmacy, Lebanese University, Beirut 6573, Lebanon
| | - Jayaseelan Murugaiyan
- Department of Biological Sciences, SRM University–AP, Amaravati 522502, India; (J.M.); (S.A.)
| | - Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Beirut 1103, Lebanon
| | - Said El Hage
- Faculty of Medicine, Lebanese University, Beirut 6573, Lebanon;
| | - Vindana Chibabhai
- Division of Clinical Microbiology and Infectious Diseases, School of Pathology, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Microbiology Laboratory, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa
| | - Saranya Adukkadukkam
- Department of Biological Sciences, SRM University–AP, Amaravati 522502, India; (J.M.); (S.A.)
| | - Christine Roques
- Laboratoire de Génie Chimique, Department of Bioprocédés et Systèmes Microbiens, Université Paul Sabtier, Toulouse III, UMR 5503, 31330 Toulouse, France;
| | - Laurent Molinier
- Department of Medical Information, Centre Hospitalier Universitaire, INSERM, UMR 1295, Université Paul Sabatier Toulouse III, 31000 Toulouse, France;
| | - Pascale Salameh
- INSPECT-LB: Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban, Beirut 6573, Lebanon;
- Faculty of Medicine, Lebanese University, Beirut 6573, Lebanon;
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia 2408, Cyprus
| | | |
Collapse
|
14
|
Amiss AS, von Pein JB, Webb JR, Condon ND, Harvey PJ, Phan MD, Schembri MA, Currie BJ, Sweet MJ, Craik DJ, Kapetanovic R, Henriques ST, Lawrence N. Modified horseshoe crab peptides target and kill bacteria inside host cells. Cell Mol Life Sci 2021; 79:38. [PMID: 34971427 PMCID: PMC11071844 DOI: 10.1007/s00018-021-04041-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/14/2022]
Abstract
Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two β-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.
Collapse
Affiliation(s)
- Anna S Amiss
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jessica R Webb
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, 0811, Australia
| | - Nicholas D Condon
- Australian Cancer Research Foundation/Institute for Molecular Bioscience Cancer Biology Imaging Facility, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, 0811, Australia
- Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, NT, 0811, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, BS, Switzerland.
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland University of Technology, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, 4102, Australia.
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Sandy-Hodgetts K, Andersen CA, Al-Jalodi O, Serena L, Teimouri C, Serena TE. Uncovering the high prevalence of bacterial burden in surgical site wounds with point-of-care fluorescence imaging. Int Wound J 2021; 19:1438-1448. [PMID: 34962067 PMCID: PMC9493216 DOI: 10.1111/iwj.13737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/01/2021] [Indexed: 01/21/2023] Open
Abstract
Detection of bacterial burden within or near surgical wounds is critical to reducing the occurrence of surgical site infection (SSI). A distinct lack of reliable methods to identify postoperative bioburden has forced reliance on clinical signs and symptoms of infection (CSS). As a result, infection management has been reactive, rather than proactive. Fluorescence imaging of bacterial burden (FL) is positioned to potentially flip that paradigm. This post hoc analysis evaluated 58 imaged and biopsied surgical site wounds from the multi‐centre fluorescence imaging assessment and guidance clinical trial. Diagnostic accuracy measures of CSS and FL were evaluated. A reader study investigated the impact of advanced image interpretation experience on imaging sensitivity. Forty‐four of fifty‐eight surgical site wounds (75.8%) had bacterial loads >104 CFU/g (median = 3.11 × 105 CFU/g); however, only 3 of 44 were CSS positive (sensitivity of 6.8%). FL improved sensitivity of bacterial detection by 5.7‐fold compared with CSS alone (P = .0005). Sensitivity improved by 11.3‐fold over CSS among clinicians highly experienced with FL interpretation (P < .0001). Surgical sites that reach the stage of referral to a wound specialist frequently harbour asymptomatic high bacterial loads that delay healing and increase infection risk. Advanced imaging of pathological bacterial burden improves surgical site monitoring and may reduce the rate of SSIs.
Collapse
Affiliation(s)
- Kylie Sandy-Hodgetts
- School of Biomedical Sciences, Pathology and Laboratory Science, University of Western Australia, Perth, Western Australia, Australia.,Centre for Molecular Medicine & Innovative Therapeutics, Murdoch University, Murdoch, Western Australia, Australia
| | - Charles A Andersen
- Wound Care Clinic, Madigan Army Medical Center, Joint Base Lewis-McChord, Renton, Washington, USA
| | - Omar Al-Jalodi
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| | - Laura Serena
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| | | | - Thomas E Serena
- SerenaGroup Research Foundation, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
Effect of Imipenem and Amikacin Combination against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111429. [PMID: 34827367 PMCID: PMC8615098 DOI: 10.3390/antibiotics10111429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic nosocomial pathogen associated with high morbidity and mortality rates. Combination of antibiotics has been found to combat multi-drug resistant or extensively drug resistance P. aeruginosa. In this study we investigate the in vitro and in vivo effect of amikacin and imipenem combination against resistant P. aeruginosa. The checkerboard technique and time-killing curve have been performed for in vitro studies showed synergistic effect for combination. A peritonitis mouse model has been used for evaluation of the therapeutic efficacy of this combination which confirmed this synergistic effect. The in vitro and in vivo techniques showed synergistic interaction between tested drugs with fractional inhibitory concentration indices (FICIs) of ≤0.5. Conventional PCR and quantitative real-time PCR techniques were used in molecular detection of bla IMP and aac(6')-Ib as 35.5% and 42.2% of P. aeruginosa harbored bla IMP and aac(6')-Ib respectively. Drug combination viewed statistically significant reduction in bacterial counts (p value < 0.5). The lowest bla IMP and aac(6')-Ib expression was observed after treatment with 0.25 MIC of imipenem + 0.5 MIC of amikacin. Morphological changes in P. aeruginosa isolates were detected by scanning electron microscope (SEM) showing cell shrinkage and disruption in the outer membrane of P. aeruginosa that were more prominent with combination therapy than with monotherapy.
Collapse
|
17
|
He S, Leanse LG, Feng Y. Artificial intelligence and machine learning assisted drug delivery for effective treatment of infectious diseases. Adv Drug Deliv Rev 2021; 178:113922. [PMID: 34461198 DOI: 10.1016/j.addr.2021.113922] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
In the era of antimicrobial resistance, the prevalence of multidrug-resistant microorganisms that resist conventional antibiotic treatment has steadily increased. Thus, it is now unquestionable that infectious diseases are significant global burdens that urgently require innovative treatment strategies. Emerging studies have demonstrated that artificial intelligence (AI) can transform drug delivery to promote effective treatment of infectious diseases. In this review, we propose to evaluate the significance, essential principles, and popular tools of AI in drug delivery for infectious disease treatment. Specifically, we will focus on the achievements and key findings of current research, as well as the applications of AI on drug delivery throughout the whole antimicrobial treatment process, with an emphasis on drug development, treatment regimen optimization, drug delivery system and administration route design, and drug delivery outcome prediction. To that end, the challenges of AI in drug delivery for infectious disease treatments and their current solutions and future perspective will be presented and discussed.
Collapse
Affiliation(s)
- Sheng He
- Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Leon G Leanse
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Yanfang Feng
- Massachusetts General Hospital, Harvard Medical School, Harvard University, Boston, MA, USA.
| |
Collapse
|
18
|
Khan MA, Khan S, Kazi M, Alshehri SM, Shahid M, Khan SU, Hussain Z, Sohail M, Shafique M, Hamid HA, Kamran M, Elhissi A, Wasim M, Thu HE. Norfloxacin Loaded Lipid Polymer Hybrid Nanoparticles for Oral Administration: Fabrication, Characterization, In Silico Modelling and Toxicity Evaluation. Pharmaceutics 2021; 13:pharmaceutics13101632. [PMID: 34683925 PMCID: PMC8540086 DOI: 10.3390/pharmaceutics13101632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/18/2021] [Accepted: 09/26/2021] [Indexed: 12/04/2022] Open
Abstract
Norfloxacin (NOR), widely employed as an anti-bacterial drug, has poor oral bioavailability. Nano based drug delivery systems are widely used to overcome the existing oral bioavailability challenges. Lipid–Polymer Hybrid Nanoparticles (LPHNs) exhibit the distinctive advantages of both polymeric and liposomes nanoparticles, while excluding some of their disadvantages. In the current study, NOR loaded LPHNs were prepared, and were solid amorphous in nature, followed by in vitro and in vivo evaluation. The optimized process conditions resulted in LPHNs with the acceptable particle size 121.27 nm, Polydispersity Index (PDI) of 0.214 and zeta potential of −32 mv. The addition of a helper lipid, oleic acid, and polymers, ethyl cellulose, substantially increased the encapsulation efficiency (EE%) (65% to 97%). In vitro study showed a sustained drug release profile (75% within 12 h) for NOR LPHNs. The optimized NOR LPHNs showed a significant increase (p < 0.05) in bioavailability compared to the commercial product. From the acute toxicity study, the LD50 value was found to be greater than 1600 mg/kg. The molecular modelling studies substantiated the experimental results with the best combination of polymers and surfactants that produced highly stable LPHNs. Therefore, LPHNs proved to be a promising system for the delivery of NOR, as well as for other antibiotics and hydrophobic drugs.
Collapse
Affiliation(s)
- Muhammad Asghar Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan; (M.A.K.); (H.A.H.); (M.K.)
| | - Shahzeb Khan
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan; (M.A.K.); (H.A.H.); (M.K.)
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of Kawazulu Natal, Durban X54001, South Africa
- Correspondence: ; Tel.: +0092-345-9492-869
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (S.M.A.)
| | - Sultan M. Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.K.); (S.M.A.)
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar 25000, Pakistan;
| | - Shafi Ullah Khan
- Department of Pharmacy, Abasyn University Peshawar, Peshawar 25000, Pakistan;
| | - Zahid Hussain
- Department of Pharmaceutics & Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University Abbottabad Campus, Abbottabad 45550, Pakistan; (M.S.); (M.W.)
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy-Boys, Al-Dawadmi Campus, Shaqra University, Shaqra, Riyadh 11451, Saudi Arabia;
| | - Hajra Afeera Hamid
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan; (M.A.K.); (H.A.H.); (M.K.)
| | - Mahwish Kamran
- Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan; (M.A.K.); (H.A.H.); (M.K.)
| | - Abdelbary Elhissi
- College of Pharmacy, QU Health and Office of VP for Research and Graduate Studies, Qatar University, Doha 2713, Qatar;
| | - Muhammad Wasim
- Department of Pharmacy, COMSATS University Abbottabad Campus, Abbottabad 45550, Pakistan; (M.S.); (M.W.)
| | - Hnin Ei Thu
- Research and Innovation Department, Lincolon University College, Petaling Jaya 47301, Malaysia;
- Innoscience Research Institute, Subang Jaya 47650, Malaysia
| |
Collapse
|
19
|
Amiss AS, Henriques ST, Lawrence N. Antimicrobial peptides provide wider coverage for targeting drug‐resistant bacterial pathogens. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anna S. Amiss
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
- School of Biomedical Sciences Queensland University of Technology, Translational Research Institute Brisbane Queensland Australia
| | - Nicole Lawrence
- Institute for Molecular Bioscience The University of Queensland Brisbane Queensland Australia
| |
Collapse
|
20
|
Bacteriophage Technology and Modern Medicine. Antibiotics (Basel) 2021; 10:antibiotics10080999. [PMID: 34439049 PMCID: PMC8388951 DOI: 10.3390/antibiotics10080999] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
The bacteriophage (or phage for short) has been used as an antibacterial agent for over a century but was abandoned in most countries after the discovery and broad use of antibiotics. The worldwide emergence and high prevalence of antimicrobial-resistant (AMR) bacteria have led to a revival of interest in the long-forgotten antibacterial therapy with phages (phage therapy) as an alternative approach to combatting AMR bacteria. The rapid progress recently made in molecular biology and genetic engineering has accelerated the generation of phage-related products with superior therapeutic potentials against bacterial infection. Nowadays, phage-based technology has been developed for many purposes, including those beyond the framework of antibacterial treatment, such as to suppress viruses by phages, gene therapy, vaccine development, etc. Here, we highlighted the current progress in phage engineering technology and its application in modern medicine.
Collapse
|
21
|
Ajingi YS, Muhammad A, Khunrae P, Rattanarojpong T, Pattanapanyasat K, Sutthibutpong T, Jongruja N. Antibacterial Potential of a Novel Peptide from the Consensus Sequence of Dermaseptin Related Peptides Secreted by Agalychnis annae. Curr Pharm Biotechnol 2021; 22:1216-1227. [PMID: 33081682 DOI: 10.2174/1389201021666201020161428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The consistently increasing reports of bacterial resistance and the reemergence of bacterial epidemics have inspired the health and scientific community to discover new molecules with antibacterial potential continuously. Frog-skin secretions constitute bioactive compounds essential for finding new biopharmaceuticals. The exact antibacterial characterization of dermaseptin related peptides derived from Agalychnis annae, is limited. The resemblance in their conserved and functionally linked genomes indicates an unprecedented opportunity to obtain novel bioactive compounds. OBJECTIVE In this study, we derived a novel peptide sequence and determined its antibacterial potentials. METHODS Consensus sequence strategy was used to design the novel and active antibacterial peptide named 'AGAAN' from skin secretions of Agalychnis annae. The in-vitro activities of the novel peptide against some bacterial strains were investigated. Time kill studies, DNA retardation, cytotoxicity, betagalactosidase, and molecular computational studies were conducted. RESULTS AGAAN inhibited P. aeruginosa, E. faecalis, and S. typhimurium at 20 μM concentration. E. coli and S. aureus were inhibited at 25 μM, and lastly, B. subtilis at 50 μM. Kinetics of inactivation against exponential and stationary growing bacteria was found to be rapid within 1-5 hours of peptide exposure, depending on time and concentration. The peptide displayed weak hemolytic activity between 0.01%-7.31% at the antibacterial concentrations. AGAAN efficiently induced bacterial membrane damage with subsequent cell lysis. The peptide's DNA binding shows that it also targets intracellular DNA by retarding its movement. Our in-silico molecular docking analysis displayed a strong affinity to the bacterial cytoplasmic membrane. CONCLUSION AGAAN exhibits potential antibacterial properties that could be used to combat bacterial resistance.
Collapse
Affiliation(s)
- Ya'u Sabo Ajingi
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Auwal Muhammad
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
22
|
Plastoquinone analogs: a potential antimicrobial lead structure intensely suppressing Staphylococcus epidermidis and Candida albicans growth. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02772-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Huang N, Chen T, Chen L, Zhang Y, Lin Y, Zheng X, Zhou T, Chen L. In vitro Activity of Meropenem-Vaborbactam versus Other Antibiotics Against Carbapenem-Resistant Escherichia coli from Southeastern China. Infect Drug Resist 2021; 14:2499-2507. [PMID: 34234477 PMCID: PMC8255899 DOI: 10.2147/idr.s315384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/12/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aimed to evaluate the in vitro activity of meropenem-vaborbactam (MVB) against a collection of carbapenem-resistant Escherichia coli (CREC) isolates and to compare the activity with other antibiotics with regard to different separation sites, carbapenem-resistant mechanisms, and sequence types (STs). Methods A total of 58 CREC strains were used as the experimental strains from the First Affiliated Hospital of Wenzhou Medical University in southeastern China. The minimum inhibitory concentrations of MVB, ceftazidime-avibactam, and tigecycline against all the experimental strains were determined by the microdilution broth method. Results MVB exhibited higher antimicrobial activity (83% susceptibility) than that of other antibiotics, except for colistin and tigecycline. The susceptibility of CREC strains towards MVB varied with regard to carbapenem-resistant mechanisms and STs, especially in Klebsiella pneumoniae carbapenemase (KPC)-positive isolates and ST8 isolates. Conclusion MVB exhibited considerably high activity against KPC-producing and ST8 CREC isolates. It has the great potential to be an alternative for the treatment of infections caused by CREC after determining the type of carbapenemase, the susceptibility to MVB and/or STs.
Collapse
Affiliation(s)
- Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Liqiong Chen
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- Department of Medical Lab Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang Province, People's Republic of China
| |
Collapse
|
24
|
Chen L, Yu K, Chen L, Zheng X, Huang N, Lin Y, Jia H, Liao W, Cao J, Zhou T. Synergistic Activity and Biofilm Formation Effect of Colistin Combined with PFK-158 Against Colistin-Resistant Gram-Negative Bacteria. Infect Drug Resist 2021; 14:2143-2154. [PMID: 34135604 PMCID: PMC8200155 DOI: 10.2147/idr.s309912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The emergence of colistin resistance among Gram-negative bacteria (GNB) poses a serious public health threat. Therefore, it is necessary to enhance the antibacterial activity of colistin through the combination with other drugs. In this study, we demonstrated the synergistic activity and the possible synergy mechanism of colistin with PFK-158 against colistin-resistant GNB, including non-fermenting bacteria and Enterobacteriaceae. Patients and Methods Thirty-one colistin-resistant GNB, including Pseudomonas aeruginosa (n = 9), Acinetobacter baumannii (n = 5), Escherichia coli (n = 8) and Klebsiella pneumoniae (n = 9), were collected as the experimental strains and the minimum inhibitory concentrations (MICs) of colistin, other routine antimicrobial agents and PFK-158 against all strains were determined by the broth microdilution method. The synergistic activity of colistin with PFK-158 was assessed by the checkerboard assay and time-kill assay. The biofilm formation assay and scanning electron microscopy were used to demonstrate the biofilm formation effect of colistin with PFK-158 against colistin-resistant GNB. Results The results of the checkerboard assay showed that when colistin was used in combination with PFK-158, synergistic activity was observed against the 31 colistin-resistant GNB. The time-kill assay presented a significant killing activity of colistin with PFK-158 against the 9 colistin-resistant GNB selected randomly, including Pseudomonas aeruginosa (n = 6), Acinetobacter baumannii (n = 1), Escherichia coli (n = 1), and Klebsiella pneumoniae (n = 1). The biofilm formation assay and scanning electron microscopjihy showed that colistin with PFK-158 can effectively suppress the formation of biofilm and reduce the cell arrangement density of biofilm against most experimental strains. Conclusion The results of the performed experiments suggest that the combination of colistin and PFK-158 may be a potential new choice as a new antibiofilm group for the treatment of infections caused by the colistin-resistant GNB.
Collapse
Affiliation(s)
- Liqiong Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Kaihang Yu
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Lijiang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Huaiyu Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Wenli Liao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianming Cao
- Department of Medical Laboratory Science, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
25
|
Abd-Allah IM, El-Housseiny GS, Yahia IS, Aboshanab KM, Hassouna NA. Rekindling of a Masterful Precedent; Bacteriophage: Reappraisal and Future Pursuits. Front Cell Infect Microbiol 2021; 11:635597. [PMID: 34136415 PMCID: PMC8201069 DOI: 10.3389/fcimb.2021.635597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance is exuberantly becoming a deleterious health problem world-wide. Seeking innovative approaches is necessary in order to circumvent such a hazard. An unconventional fill-in to antibiotics is bacteriophage. Bacteriophages are viruses capable of pervading bacterial cells and disrupting their natural activity, ultimately resulting in their defeat. In this article, we will run-through the historical record of bacteriophage and its correlation with bacteria. We will also delineate the potential of bacteriophage as a therapeutic antibacterial agent, its supremacy over antibiotics in multiple aspects and the challenges that could arise on the way to its utilization in reality. Pharmacodynamics, pharmacokinetics and genetic engineering of bacteriophages and its proteins will be briefly discussed as well. In addition, we will highlight some of the in-use applications of bacteriophages, and set an outlook for their future ones. We will also overview some of the miscellaneous abilities of these tiny viruses in several fields other than the clinical one. This is an attempt to encourage tackling a long-forgotten hive. Perhaps, one day, the smallest of the creatures would be of the greatest help.
Collapse
Affiliation(s)
- Israa M. Abd-Allah
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghadir S. El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim S. Yahia
- Research Center for Advanced Materials Science (RCAMS), Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Semiconductor Lab., Metallurgical Lab, Physics Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia A. Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Boyd NK, Teng C, Frei CR. Brief Overview of Approaches and Challenges in New Antibiotic Development: A Focus On Drug Repurposing. Front Cell Infect Microbiol 2021; 11:684515. [PMID: 34079770 PMCID: PMC8165386 DOI: 10.3389/fcimb.2021.684515] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Drug repurposing, or identifying new uses for existing drugs, has emerged as an alternative to traditional drug discovery processes involving de novo synthesis. Drugs that are currently approved or under development for non-antibiotic indications may possess antibiotic properties, and therefore may have repurposing potential, either alone or in combination with an antibiotic. They might also serve as "antibiotic adjuvants" to enhance the activity of certain antibiotics.
Collapse
Affiliation(s)
- Natalie K Boyd
- College of Pharmacy, The University of Texas at Austin, San Antonio, TX, United States.,Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Chengwen Teng
- Department of Clinical Pharmacy and Outcomes Sciences, College of Pharmacy, The University of South Carolina, Columbia, SC, United States
| | - Christopher R Frei
- College of Pharmacy, The University of Texas at Austin, San Antonio, TX, United States.,Long School of Medicine, University of Texas Health San Antonio, San Antonio, TX, United States.,Research Department, South Texas Veterans Health Care System, San Antonio, TX, United States.,Pharmacy Department, University Health System, San Antonio, TX, United States
| |
Collapse
|
27
|
Cai Y, Bing W, Xu X, Zhang Y, Chen Z, Gu Z. Topographical nanostructures for physical sterilization. Drug Deliv Transl Res 2021; 11:1376-1389. [PMID: 33543396 DOI: 10.1007/s13346-021-00906-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 01/24/2023]
Abstract
The development in nanobiotechnology provides an in-depth understanding of cell-surface interactions at the nanoscale level. Particularly, several surface features have shown the ability to interrogate the bacterial behavior and fate. In the past decade, the mechanical and physical sterilization has attracted considerable attention, as paradigms of such do not rely on chemical substances to damage or kill bacteria, whereas it is associated with natural living organisms or synthetic materials. Of note, such antibacterial scenario does not cause bacterial resistance, as the morphology of nanometer can directly cause bacterial death through physical and mechanical interactions. In this review, we provide an overview of recently developed technologies of leveraging topographical nanofeatures for physical sterilization. We mainly discuss the development of various morphologic nanostructures, and colloidal nanostructures show casing the capacity of "mechanical sterilization." Mechanically sterilized nanostructures can penetrate or cut through bacterial membranes. In addition, surface morphology, such as mechanical bactericidal nanoparticles and nanoneedles, can cause damage to the membrane of microorganisms, leading to cell lysis and death. Although the research in the field of mechanical sterilization is still in infancy, the effect of these nanostructure morphologies on sterilization has shown remarkable antibacterial potential, which could provide a new toolkit for anti-infection and antifouling applications. The mechanical and physical sterilization has attracted considerable attention, as paradigms of such do not rely on chemical substances to damage or kill bacteria. Moreover, such antibacterial scenario does not cause bacterial resistance, as the morphology of nanometer can directly cause bacterial death through physical and mechanical interactions. In this review, we focus on the advanced development of various morphologic nanostructures and colloidal nanostructures that show the capacity of "mechanical sterilization."
Collapse
Affiliation(s)
- Yujie Cai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, 130012, Changchun, People's Republic of China.,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, 130012, Changchun, People's Republic of China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, 130012, Changchun, People's Republic of China. .,Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, 130012, Changchun, People's Republic of China.
| | - Xiao Xu
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, 350108, Fuzhou, People's Republic of China
| | - Yuqi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China
| | - Zhaowei Chen
- Institute of Food Safety and Environment Monitoring, College of Chemistry, Fuzhou University, 350108, Fuzhou, People's Republic of China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
28
|
Islam MM. Bacterial resistance to antibiotics: access, excess, and awareness in Bangladesh. Expert Rev Anti Infect Ther 2020; 19:973-981. [PMID: 33353447 DOI: 10.1080/14787210.2021.1865804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Antibiotic resistance is a substantial cause of mortality, morbidity burden in Bangladesh. In this perspective piece, the problem of antibiotic resistance has been analyzed by critically evaluating literature data, and based on the author's experience.Areas covered: The underlying causes of this resistance are numerous including irrational and inappropriate use of antibiotics aggravated by aggressive marketing, over-the-counter dispensing, prescribing by the unqualified providers, lack of awareness in the general population, and inadequate implementation of relevant regulations.Expert opinion: Although Bangladesh is making some progress toward containing antibiotic resistance, the pace of this progress is insufficient. Public awareness is crucial for the full implementation of the regulations. Given that it is more a social than a medical problem, the health sector is unable to tackle the problem on its own. An integrated approach is required that identifies the roles and relative importance of each sector (human, animal, and environment). A set of recommendations has been provided for the government to act.
Collapse
Affiliation(s)
- M Mofizul Islam
- Department of Public Health, School of Psychology and Public Health, College of Science, Health & Engineering, La Trobe University, Bundoora, Vic, Australia
| |
Collapse
|
29
|
Powers MJ, Simpson BW, Trent MS. The Mla pathway in Acinetobacter baumannii has no demonstrable role in anterograde lipid transport. eLife 2020; 9:56571. [PMID: 32880370 PMCID: PMC7500953 DOI: 10.7554/elife.56571] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The asymmetric outer membrane (OM) of Gram-negative bacteria functions as a selective permeability barrier to the environment. Perturbations to OM lipid asymmetry sensitize the cell to antibiotics. As such, mechanisms involved in lipid asymmetry are fundamental to our understanding of OM lipid homeostasis. One such mechanism, the Maintenance of lipid asymmetry (Mla) pathway has been proposed to extract mislocalized glycerophospholipids from the outer leaflet of the OM and return them to the inner membrane (IM). Work on this pathway in Acinetobacter baumannii support conflicting models for the directionality of the Mla system being retrograde (OM to IM) or anterograde (IM to OM). Here, we show conclusively that A. baumannii mla mutants exhibit no defects in anterograde transport. Furthermore, we identify an allele of the GTPase obgE that is synthetically sick in the absence of Mla; providing another link between cell envelope homeostasis and stringent response.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States.,Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, United States
| | - Brent W Simpson
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, United States.,Department of Microbiology, College of Arts and Sciences, University of Georgia, Athens, United States
| |
Collapse
|
30
|
Numao N, Fujiwara R, Uehara S, Yasuoka S, Fujiwara M, Komai Y, Yuasa T, Yamamoto S, Fukui I, Yonese J. Intraoperative Only versus Extended Duration Use of Antimicrobial Prophylaxis for Infectious Complications in Radical Cystectomy with Intestinal Urinary Diversion. Urol Int 2020; 104:954-959. [PMID: 32814326 DOI: 10.1159/000509881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/02/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In spite of the high incidence of infectious complications (ICs), appropriate duration of antimicrobial prophylaxis (AMP) for radical cystectomy (RC) with intestinal urinary diversion (IUD) has not been established. We compared the incidence of ICs after RC with IUD in patients using only intraoperative AMP or extended duration AMP. Risk factors for ICs were also investigated. PATIENTS AND METHODS One hundred twenty-three consecutive patients who underwent RC with IUD were divided into 2 groups based on the AMP duration (intraoperative only vs. extended duration for a median of 3 days). Between the groups, the incidence of ICs was compared. Risk factors for ICs were investigated in multivariate analysis. RESULTS The IC rate was 44%. No significant difference was found in the rate of ICs between the groups. The IC rate was significantly higher in patients with lower estimated glomerular filtration rate (eGFR). Rates of ICs were 60 and 38% in patients with eGFR of less than 60 and equal or more than 60 mL/min/1.73 m2, respectively. CONCLUSIONS Our result indicates that AMP that is administered more than intraoperatively may be excessive in RC with IUD. Patients with a lower eGFR should be particularly cared for postoperative ICs.
Collapse
Affiliation(s)
- Noboru Numao
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan,
| | - Ryo Fujiwara
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sho Uehara
- Department of Urology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shotaro Yasuoka
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Motohiro Fujiwara
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yoshinobu Komai
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takeshi Yuasa
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Shinya Yamamoto
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Iwao Fukui
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Junji Yonese
- Department of Genitourinary Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
31
|
Chen T, Xu W, Yu K, Zeng W, Xu C, Cao J, Zhou T. In Vitro Activity of Ceftazidime-Avibactam Alone and in Combination with Amikacin Against Colistin-Resistant Gram-Negative Pathogens. Microb Drug Resist 2020; 27:401-409. [PMID: 32721272 DOI: 10.1089/mdr.2019.0463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aims: Colistin became the critical treatment option for multidrug-resistant Gram-negative bacteria (GNB); however, resistance to colistin is increasingly being reported among clinical isolates. New therapy strategies should be considered nowadays. The aim of this study was to investigate the in vitro activity of a novel β-lactam/β-lactamases inhibitor ceftazidime-avibactam (CZA) alone and in combination with amikacin against colistin-resistant Gram-negative pathogens. Results: Among all the colistin-resistant GNB strains, 30.4% (21/69) were resistant to CZA, which was similar to the resistance rate of 25.4% (35/138) in colistin-susceptible strains (p > 0.05), displaying a relatively lower resistance rate compared with other antimicrobial agents (except amikacin). A majority of CZA-resistant GNB isolates (33/56) produced NDM carbapenemase. The fractional inhibitory concentration index method revealed synergistic (47.6%, 10/21) or additive (52.4%, 11/21) effects of CZA in combination with amikacin against colistin- and CZA-resistant GNB isolates, wherein the synergistic activity was found against all tested Klebsiella pneumoniae isolates (four) and Pseudomonas aeruginosa isolates (two). The time-killing curve assay verified the synergistic activity of CZA and amikacin in K. pneumoniae (FK2778) and P. aeruginosa (TL2294). The susceptible breakpoint index values showed that CZA in combination with amikacin reduced the MIC to less than the susceptibility breakpoint among 71.4% (15/21) of all tested strains. Conclusion: CZA may be a new alternative for colistin-resistant Gram-negative infections and pending clinical studies combining CZA with amikacin should be considered against these pathogens, particularly for K. pneumoniae and P. aeruginosa.
Collapse
Affiliation(s)
- Tao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenya Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaihang Yu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunquan Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Wang M, Ma B, Ni Y, Xue X, Li M, Meng J, Luo X, Fang C, Hou Z. Restoration of the Antibiotic Susceptibility of Methicillin-Resistant Staphylococcus aureus and Extended-Spectrum β-Lactamases Escherichia coli Through Combination with Chelerythrine. Microb Drug Resist 2020; 27:337-341. [PMID: 32721267 DOI: 10.1089/mdr.2020.0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug resistance poses a severe threat to public health and urgently requires new solutions. The natural product chelerythrine (CHE) is a benzophenanthridine alkaloid with antimicrobial potential. In this study, CHE was effective against seven gram-positive bacterial strains, and the minimum inhibitory concentrations (MICs) ranged from 2 to 4 μg/mL. By contrast, CHE showed inferior antibacterial activities against 11 gram-negative strains, and the MICs varied from 16 to 256 μg/mL. We also determined the synergistic/additive effects of combining CHE with nine currently used antibiotics. CHE restored the antibacterial efficacy of the antibiotics against methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamases producing Escherichia coli. This study suggests that the combination of CHE with conventional antibiotics may be a promising strategy to combat infections caused by multidrug-resistant organisms.
Collapse
Affiliation(s)
- Mingzhi Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Bo Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaoyan Xue
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Mingkai Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Jingru Meng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Xiaoxing Luo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Chao Fang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
33
|
Kong X, Wei B, Yu C, Guan X, Ma W, Liu G, Yang C, Nan F. Design, Synthesis and Biological Evaluation of Bengamide Analogues as
ClpP
Activators. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xue‐Qing Kong
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Bing‐Yan Wei
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Chen‐Xi Yu
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Xiang‐Na Guan
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Wei‐Ping Ma
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Gang Liu
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Cai‐Guang Yang
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Fa‐Jun Nan
- Chinese National Center for Drug Screening, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, No. 39, Science and Technology Avenue, High‐tech Industrial Development Zone Yantai Shandong 264000 China
| |
Collapse
|
34
|
Bioactivity of Spongian Diterpenoid Scaffolds from the Antarctic Sponge Dendrilla antarctica. Mar Drugs 2020; 18:md18060327. [PMID: 32586020 PMCID: PMC7344659 DOI: 10.3390/md18060327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
The Antarctic sponge Dendrilla antarctica is rich in defensive terpenoids with promising antimicrobial potential. Investigation of this demosponge has resulted in the generation of a small chemical library containing diterpenoid secondary metabolites with bioactivity in an infectious disease screening campaign focused on Leishmania donovani, Plasmodium falciparum, and methicillin-resistant Staphylococcus aureus (MRSA) biofilm. In total, eleven natural products were isolated, including three new compounds designated dendrillins B-D (10-12). Chemical modification of abundant natural products led to three semisynthetic derivatives (13-15), which were also screened. Several compounds showed potency against the leishmaniasis parasite, with the natural products tetrahydroaplysulphurin-1 (4) and dendrillin B (10), as well as the semisynthetic triol 15, displaying single-digit micromolar activity and low mammalian cytotoxicity. Triol 15 displayed the best profile against the liver-stage malaria parasites, while membranolide (5) and dendrillin C (11) were strong hits against MRSA biofilm cultures.
Collapse
|
35
|
Limban C, Chifiriuc MC, Caproiu MT, Dumitrascu F, Ferbinteanu M, Pintilie L, Stefaniu A, Vlad IM, Bleotu C, Marutescu LG, Nuta DC. New Substituted Benzoylthiourea Derivatives: From Design to Antimicrobial Applications. Molecules 2020; 25:E1478. [PMID: 32218209 PMCID: PMC7180980 DOI: 10.3390/molecules25071478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
The increasing threat of antimicrobial resistance to all currently available therapeutic agents has urged the development of novel antimicrobials. In this context, a series of new benzoylthiourea derivatives substituted with one or more fluorine atoms and with the trifluoromethyl group have been tested, synthesized, and characterized by IR, NMR, CHNS and crystal X-ray diffraction. The molecular docking has provided information regarding the binding affinity and the orientation of the new compounds to Escherichia coli DNA gyrase B. The docking score predicted the antimicrobial activity of the studied compounds, especially against E. coli, which was further demonstrated experimentally against planktonic and biofilm embedded bacterial and fungal cells. The compounds bearing one fluorine atom on the phenyl ring have shown the best antibacterial effect, while those with three fluorine atoms exhibited the most intensive antifungal activity. All tested compounds exhibited antibiofilm activity, correlated with the trifluoromethyl substituent, most favorable in para position.
Collapse
Affiliation(s)
- Carmen Limban
- Department of Pharmaceutical Chemistry, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.L.); (I.M.V.); (D.C.N.)
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania;
| | - Miron Teodor Caproiu
- The Organic Chemistry Center of Romanian Academy “C. D. Neniţescu”, 060023 Bucharest, Romania; (M.T.C.); (F.D.)
| | - Florea Dumitrascu
- The Organic Chemistry Center of Romanian Academy “C. D. Neniţescu”, 060023 Bucharest, Romania; (M.T.C.); (F.D.)
| | - Marilena Ferbinteanu
- Inorganic Chemistry Department, Faculty of Chemistry, University of Bucharest, 020462 Bucharest, Romania;
| | - Lucia Pintilie
- National Institute of Chemical-Pharmaceutical Research & Development, 031299 Bucharest, Romania; (L.P.); (A.S.)
| | - Amalia Stefaniu
- National Institute of Chemical-Pharmaceutical Research & Development, 031299 Bucharest, Romania; (L.P.); (A.S.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.L.); (I.M.V.); (D.C.N.)
| | - Coralia Bleotu
- Stefan S. Nicolau Institute of Virology, Mihai Bravu 285, Bucharest, 030304, Romania;
| | - Luminita Gabriela Marutescu
- Department of Microbiology, Faculty of Biology & Research Institute of the University of Bucharest (ICUB), University of Bucharest, 060101 Bucharest, Romania;
| | - Diana Camelia Nuta
- Department of Pharmaceutical Chemistry, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania; (C.L.); (I.M.V.); (D.C.N.)
| |
Collapse
|
36
|
Ma Y, Wang C, Li Y, Li J, Wan Q, Chen J, Tay FR, Niu L. Considerations and Caveats in Combating ESKAPE Pathogens against Nosocomial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901872. [PMID: 31921562 PMCID: PMC6947519 DOI: 10.1002/advs.201901872] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/04/2019] [Indexed: 05/19/2023]
Abstract
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are among the most common opportunistic pathogens in nosocomial infections. ESKAPE pathogens distinguish themselves from normal ones by developing a high level of antibiotic resistance that involves multiple mechanisms. Contemporary therapeutic strategies which are potential options in combating ESKAPE bacteria need further investigation. Herein, a broad overview of the antimicrobial research on ESKAPE pathogens over the past five years is provided with prospective clinical applications.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Chen‐Yu Wang
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Yuan‐Yuan Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Jing Li
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Qian‐Qian Wan
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Ji‐Hua Chen
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
| | - Franklin R. Tay
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| | - Li‐Na Niu
- State Key Laboratory of Military StomatologyNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical University145 Changle West RoadXi'anShaanxi710032P. R. China
- The Graduate SchoolAugusta University1430, John Wesley Gilbert DriveAugustaGA30912‐1129USA
| |
Collapse
|
37
|
Iskandar K, Sartelli M, Tabbal M, Ansaloni L, Baiocchi GL, Catena F, Coccolini F, Haque M, Labricciosa FM, Moghabghab A, Pagani L, Hanna PA, Roques C, Salameh P, Molinier L. Highlighting the gaps in quantifying the economic burden of surgical site infections associated with antimicrobial-resistant bacteria. World J Emerg Surg 2019; 14:50. [PMID: 31832084 PMCID: PMC6868735 DOI: 10.1186/s13017-019-0266-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are the pillar of surgery from prophylaxis to treatment; any failure is potentially a leading cause for increased morbidity and mortality. Robust data on the burden of SSI especially those due to antimicrobial resistance (AMR) show variable rates between countries and geographical regions but accurate estimates of the incidence of surgical site infections (SSI) due to AMR and its related global economic impact are yet to be determined. Quantifying the burden of SSI treatment is an incentive to sensitize governments, healthcare systems, and the society to invest in quality improvement and sustainable development. However in the absence of a unified epidemiologically sound infection definition of SSI and a well-designed global surveillance system, the end result is a lack of accurate and reliable data that limits the comparability of estimates between countries and the possibility of tracking changes to inform healthcare professionals about the appropriateness of implemented infection prevention and control strategies. This review aims to highlight the reported gaps in surveillance methods, epidemiologic data, and evidence-based SSI prevention practices and in the methodologies undertaken for the evaluation of the economic burden of SSI associated with AMR bacteria. If efforts to tackle this problem are taken in isolation without a global alliance and data is still lacking generalizability and comparability, we may see the future as a race between the global research efforts for the advancement in surgery and the global alarming reports of the increased incidence of antimicrobial-resistant pathogens threatening to undermine any achievement.
Collapse
Affiliation(s)
- Katia Iskandar
- INSERM, UMR 1027, Université Paul Sabatier Toulouse III, Toulouse, France
- Epidemiologie Clinique et Toxicologie, INSPECT-LB: Institut National de Sante Publique, Beirut, Lebanon
| | | | - Marwan Tabbal
- Department of Surgery, Clinique du Levant Hospital, Beirut, Lebanon
| | - Luca Ansaloni
- Department of Surgery, Bufalini Hospital, Cesena, Italy
| | - Gian Luca Baiocchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Fausto Catena
- Department of Emergency Surgery, Parma MaggioreHospital, Parma, Italy
| | - Federico Coccolini
- General, Emergency and Trauma Surgery, Cisanello University Hospital, Pisa, Italy
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, UniversitiPertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| | | | - Ayad Moghabghab
- Department of Anesthesiology and Reanimation, Lebanese Canadian Hospital, Beirut, Lebanon
| | - Leonardo Pagani
- Infectious Diseases Unit, Bolzano Central Hospital, Bolzano, Italy
| | | | - Christine Roques
- Laboratoire de Génie Chimique (UMR 5503), Département Bioprocédés et Systèmes Microbiens, Université de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Pascale Salameh
- Epidemiologie Clinique et Toxicologie, INSPECT-LB: Institut National de Sante Publique, Beirut, Lebanon
- Faculty of Pharmacy, Lebanese University, Beirut, Lebanon
| | - Laurent Molinier
- Département d’Information Médicale, Centre Hospitalier Universitaire, Toulouse, F-31000 France
- INSERM, UMR 1027, Université Paul Sabatier Toulouse III, Toulouse, France
| |
Collapse
|
38
|
Peng B, Li H, Peng X. Proteomics approach to understand bacterial antibiotic resistance strategies. Expert Rev Proteomics 2019; 16:829-839. [PMID: 31618606 DOI: 10.1080/14789450.2019.1681978] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Introduction: The understanding of novel antibiotic resistance mechanisms is essential to develop strategies against antibiotic-resistant pathogens, which has become an urgent task due to the worldwide emergence of antibiotic resistance. Areas covered: In this review, the authors summarize the recent progress on antibiotic resistance caused by lab-evolved bacteria and clinical multidrug-resistant bacterial pathogens from the proteomics perspective. Expert opinion: Proteomics provides a new platform for a comprehensive understanding of change in protein pathways that are engaged in antibiotics resistance, which is different from a genetic view that focuses on the role of an individual gene or protein. Further work is required to understand why and how the involved pathways are integrated for surviving antibiotic-mediated killing, to use other OMICs for better comprehension of antibiotic resistance mechanisms, and to develop reprogramming proteomics, which reverts an 'antibiotic resistance proteome' to an 'antibiotic sensitive or antibiotic sensitive-like' proteome, for the control of antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University , Guangzhou , People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai , People's Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University , Guangzhou , People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai , People's Republic of China
| | - Xuanxian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, School of Life Sciences, Sun Yat-sen University , Guangzhou , People's Republic of China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology , Qingdao , People's Republic of China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai , People's Republic of China
| |
Collapse
|
39
|
Ghaffar I, Imran M, Perveen S, Kanwal T, Saifullah S, Bertino MF, Ehrhardt CJ, Yadavalli VK, Shah MR. Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110111. [PMID: 31546392 DOI: 10.1016/j.msec.2019.110111] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/23/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022]
Abstract
Multiple drug resistant (MDR) has become a major issue in developing countries. MDR bacterial infections lead to significant increase in morbidity, mortality and cost of prolonged treatments. Therefore, designing of strategies for improving the antimicrobial potential of the therapeutic agents are highly required. Metal organic frameworks (MOFs) are highly tunable hybrid material, consist of metal ions linked together by organic bridging ligands have been used as an efficient drug delivery carrier because of their biodegradability, low toxicity and structure integrity upon loading and functionalizing process. Current study was based on the synthesis of chitosan coated MOFs with enhanced contact with S. aureus cell surface. Chitosan is deacetylated derivative of chitin and capable for non-bonding interaction with negatively charged bacterial cell leading to enhanced contact of MOFs with S. aureus. Chitosan coated MOFs were characterized with various techniques such as atomic force microscopy, scanning electron microscopy, DLS, FT-IR, TGA, DSC and Powder X-ray diffraction. They were also studied for their efficacy on resistant S. aureus, results revealed that Vancomycin bactericidal activity significantly increased upon loading in chitosan coated MOFs and caused increased inhibition of resistant S. aureus. AFM analysis of S. aureus strains clearly revealed complete distortion of morphology by treating with chitosan modified drug loaded MOFs. Findings of the current study suggest the potential of chitosan coated MOFs for reversing bacterial resistance against Vancomycin and provide new perspectives for improved antibiotic therapy of infections associated with MDR.
Collapse
Affiliation(s)
- Iqra Ghaffar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| | - Muhammad Imran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan; Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Samina Perveen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| | - Tasmina Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| | - Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan
| | - Massimo F Bertino
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Christopher J Ehrhardt
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Vamsi K Yadavalli
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan.
| |
Collapse
|
40
|
The Anthelmintic Drug Niclosamide Synergizes with Colistin and Reverses Colistin Resistance in Gram-Negative Bacilli. Antimicrob Agents Chemother 2019; 63:AAC.02574-18. [PMID: 30917988 DOI: 10.1128/aac.02574-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
There is an urgent need for new therapies to overcome antimicrobial resistance especially in Gram-negative bacilli (GNB). Repurposing old U.S. Food and Drug Administration-approved drugs as complementary agents to existing antibiotics in a synergistic combination presents an attractive strategy. Here, we demonstrate that the anthelmintic drug niclosamide selectively synergized with the lipopeptide antibiotic colistin against colistin-susceptible but more importantly against colistin-resistant GNB, including clinical isolates that harbor the mcr-1 gene. Breakpoints for colistin susceptibility in resistant Gram-negative bacilli were reached in the presence of 1 μg/ml (3 μM) niclosamide. Reversal of colistin resistance was also observed in combinations of niclosamide and polymyxin B. Enhanced bacterial killing was evident for the combination, in comparison to colistin monotherapy, against resistant Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Enterobacter cloacae Accumulating evidence in the literature, along with our results, strongly suggests the potential for the combination of niclosamide and colistin to treat colistin-resistant Gram-negative bacillary infections. Our finding is significant since colistin is an antibiotic of last resort for multidrug-resistant Gram-negative bacterial infections that are nonresponsive to conventional treatments. With the recent global dissemination of plasmid-encoded colistin resistance, the addition of niclosamide to colistin therapy may hold the key to overcome colistin resistance.
Collapse
|
41
|
Ahmed I, Rabbi MB, Sultana S. Antibiotic resistance in Bangladesh: A systematic review. Int J Infect Dis 2019; 80:54-61. [DOI: 10.1016/j.ijid.2018.12.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/28/2018] [Accepted: 12/15/2018] [Indexed: 12/31/2022] Open
|
42
|
Abstract
Antibiotic resistance is arguably the biggest current threat to global health. An increasing number of infections are becoming harder or almost impossible to treat, carrying high morbidity, mortality, and financial cost. The therapeutic use of bacteriophages, viruses that infect and kill bacteria, is well suited to be part of the multidimensional strategies to combat antibiotic resistance. Although phage therapy was first implemented almost a century ago, it was brought to a standstill after the successful introduction of antibiotics. Now, with the rise of antibiotic resistance, phage therapy is experiencing a well-deserved rebirth. Among the admittedly vast literature recently published on this topic, this review aims to provide a forward-looking perspective on phage therapy and its role in modern society. We cover the key points of the antibiotic resistance crisis and then explain the biological and evolutionary principles that support the use of phages, their interaction with the immune system, and a comparison with antibiotic therapy. By going through up-to-date reports and, whenever possible, human clinical trials, we examine the versatility of phage therapy. We discuss conventional approaches as well as novel strategies, including the use of phage-antibiotic combinations, phage-derived enzymes, exploitation of phage resistance mechanisms, and phage bioengineering. Finally, we discuss the benefits of phage therapy beyond the clinical perspective, including opportunities for scientific outreach and effective education, interdisciplinary collaboration, cultural and economic growth, and even innovative use of social media, making the case that phage therapy is more than just an alternative to antibiotics.
Collapse
|
43
|
Abstract
In this issue of Molecular Cell, Pantel et al. (2018) identify and synthetically optimize a novel ribosome-targeting antimicrobial from a potentially rich new source of bioactive natural products.
Collapse
|
44
|
Susceptibility of Virulent Yersinia pestis Bacteria to Predator Bacteria in the Lungs of Mice. Microorganisms 2018; 7:microorganisms7010002. [PMID: 30577606 PMCID: PMC6351954 DOI: 10.3390/microorganisms7010002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
Multi-drug resistant bacterial infections are a serious threat to global public health. Changes in treatment modalities and prudent use of antibiotics can assist in reducing the threat, but new approaches are also required for untreatable cases. The use of predatory bacteria, such as Bdellovibriobacteriovorus, is among the novel approaches being considered as possible therapeutics for antibiotic resistant and/or unidentified bacterial infections. Previous studies have examined the feasibility of using predatory bacteria to reduce colony-forming units (CFUs) in the lungs of rats exposed to lethal doses of Klebsiella pneumoniae; here we apply the approach to the Tier 1 select agent Yersinia pestis, and show that three doses of B. bacteriovorus introduced every six hours reduces the number of CFUs of Y. pestis in the lungs of inoculated mice by 86% after 24 h of infection. These experiments further demonstrate that predatory bacteria may serve to combat Gram negative bacterial infections, including those considered potential bioweapon agents, in the future.
Collapse
|
45
|
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11:1645-1658. [PMID: 30349322 PMCID: PMC6188119 DOI: 10.2147/idr.s173867] [Citation(s) in RCA: 1241] [Impact Index Per Article: 177.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The advent of multidrug resistance among pathogenic bacteria is imperiling the worth of antibiotics, which have previously transformed medical sciences. The crisis of antimicrobial resistance has been ascribed to the misuse of these agents and due to unavailability of newer drugs attributable to exigent regulatory requirements and reduced financial inducements. Comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms, resistance mechanisms, and antimicrobial agents. Multidisciplinary approaches are required across health care settings as well as environment and agriculture sectors. Progressive alternate approaches including probiotics, antibodies, and vaccines have shown promising results in trials that suggest the role of these alternatives as preventive or adjunct therapies in future.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan.,College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ruman Farooq Alvi
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Usman Qamar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,
| |
Collapse
|
46
|
Hijazi S, Visaggio D, Pirolo M, Frangipani E, Bernstein L, Visca P. Antimicrobial Activity of Gallium Compounds on ESKAPE Pathogens. Front Cell Infect Microbiol 2018; 8:316. [PMID: 30250828 PMCID: PMC6139391 DOI: 10.3389/fcimb.2018.00316] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/20/2018] [Indexed: 12/22/2022] Open
Abstract
ESKAPE bacteria are a major cause of multidrug-resistant infections, and new drugs are urgently needed to combat these pathogens. Given the importance of iron in bacterial physiology and pathogenicity, iron uptake and metabolism have become attractive targets for the development of new antibacterial drugs. In this scenario, the FDA-approved iron mimetic metal Gallium [Ga(III)] has been successfully repurposed as an antimicrobial drug. Ga(III) disrupts ferric iron-dependent metabolic pathways, thereby inhibiting microbial growth. This work provides the first comparative assessment of the antibacterial activity of Ga(NO3)3 (GaN), Ga(III)-maltolate (GaM), and Ga(III)-protoporphyrin IX (GaPPIX), belonging to the first-, second- and third-generation of Ga(III) formulations, respectively, on ESKAPE species, including reference strains and multidrug-resistant (MDR) clinical isolates. In addition to the standard culture medium Mueller Hinton broth (MHB), iron-depleted MHB (DMHB) and RPMI-1640 supplemented with 10% human serum (HS) (RPMI-HS) were also included in Ga(III)-susceptibility tests, because of their different nutrient and iron contents. All ESKAPE species were resistant to all Ga(III) compounds in MHB and DMHB (MIC > 32 μM), except Staphylococcus aureus and Acinetobacter baumannii, which were susceptible to GaPPIX. Conversely, the antibacterial activity of GaN and GaM was very evident in RPMI-HS, in which the low iron content and the presence of HS better mimic the in vivo environment. In RPMI-HS about 50% of the strains were sensitive (MIC < 32) to GaN and GaM, both compounds showing a similar spectrum of activity, although GaM was more effective than GaN. In contrast, GaPPIX lost its antibacterial activity in RPMI-HS likely due to the presence of albumin, which binds GaPPIX and counteracts its inhibitory effect. We also demonstrated that the presence of multiple heme-uptake systems strongly influences GaPPIX susceptibility in A. baumannii. Interestingly, GaN and GaM showed only a bacteriostatic effect, whereas GaPPIX exerted a bactericidal activity on susceptible strains. Altogether, our findings raise hope for the future development of Ga(III)-based compounds in the treatment of infections caused by multidrug-resistant ESKAPE pathogens.
Collapse
Affiliation(s)
- Sarah Hijazi
- Department of Science, Roma Tre University, Rome, Italy
| | | | - Mattia Pirolo
- Department of Science, Roma Tre University, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
47
|
Development of a broad spectrum glycoconjugate vaccine to prevent wound and disseminated infections with Klebsiella pneumoniae and Pseudomonas aeruginosa. PLoS One 2018; 13:e0203143. [PMID: 30188914 PMCID: PMC6126813 DOI: 10.1371/journal.pone.0203143] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae (KP) and Pseudomonas aeruginosa (PA) are important human pathogens that are associated with a range of infection types, including wound and disseminated infections. Treatment has been complicated by rising rates of antimicrobial resistance. Immunoprophylactic strategies are not constrained by antimicrobial resistance mechanisms. Vaccines against these organisms would be important public health tools, yet they are not available. KP surface O polysaccharides (OPS) are protective antigens in animal models of infection. Similarly, PA flagellin (Fla), the major subunit of the flagellar filament, is required for virulence and is a target of protective antibodies in animal models. We report herein the development of a combined KP and PA glycoconjugate vaccine comprised of the four most common KP OPS types associated with human infections (O1, O2, O3, O5), chemically linked to the two Fla types of PA (FlaA, FlaB). Conjugation of KP OPS to PA Fla enhanced anti-polysaccharide immune responses and produced a formulation that generated antibody titers to the four KP OPS types and both PA Fla antigens in rabbits. Passive transfer of vaccine-induced rabbit antisera reduced the bacterial burden and protected mice against fatal intravenous KP infection. Mice passively transferred with conjugate-induced antisera were also protected against PA infection after thermal injury with a FlaB-expressing isolate, but not a FlaA isolate. Taken together, these promising preclinical results provide important proof-of-concept for a broad spectrum human vaccine to prevent KP and PA infections.
Collapse
|
48
|
Almaaytah A, Albalas Q, Alzoubi KH. In vivo antimicrobial activity of the hybrid peptide H4: a follow-up study. Infect Drug Resist 2018; 11:1383-1386. [PMID: 30214259 PMCID: PMC6128283 DOI: 10.2147/idr.s175594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The consistent upsurge in antimicrobial resistance globally is threatening the world population with the prospect of facing the post-antibiotic era. Dry pipelines and a drastic decrease of antimicrobial drug development accompany this rise in antimicrobial resistance. Governments and health authorities are calling for the development of novel classes of antimicrobial agents that would tackle this problem. Antimicrobial peptides represent a promising group of molecules for antimicrobial drug development due to their potency and rapid mode of killing. However, several obstacles, such as high mammalian cell toxicity and lack of target selectivity, have challenged the development of such agents. Methods We have recently designed a novel hybrid peptide named H4 that exhibits potent antimicrobial activity and low toxicity in vitro. In order to confirm the potential therapeutic efficacy and safety of the peptide, we evaluated the in vivo activity and toxicity of H4 against Staphylococcus aureus peritonitis mice model. Results Our results indicate that H4 is highly potent in eradicating bacterial infections in vivo with an effective dose50 value of 4.55±0.89 mg/kg. Additionally, the acute systemic toxicity results indicate that the peptide exhibits a high therapeutic index with no significant negative effects on the function of major body organs. Conclusion H4 is a novel hybrid peptide with great potential for antimicrobial drug development.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan,
| | - Qosay Albalas
- Department of Medicinal Chemistry and Pharmacognosy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
49
|
Mohapatra DP, Debata NK, Singh SK. Extensively drug-resistant and pandrug-resistant Gram-negative bacteria in a tertiary-care hospital in Eastern India: A 4-year retrospective study. J Glob Antimicrob Resist 2018; 15:246-249. [PMID: 30144638 DOI: 10.1016/j.jgar.2018.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/29/2018] [Accepted: 08/14/2018] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Bacteria resistant to different classes of antimicrobial agents are a major threat to humanity and risk leading the world towards the return of the pre-antimicrobial era. This study was undertaken to detect the incidence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria in a tertiary-care hospital in Bhubaneswar, Odisha, India. METHODS Positive bacterial cultures from different clinical samples were identified using a VITEK®2 compact system and the antimicrobial susceptibility profile of different Gram-negative bacteria was analysed. RESULTS A total of 2489 clinical samples were collected and processed for culture during the period January 2013 to April 2017. Of 1103 pure bacterial cultures, 690 (62.6%) were Gram-negative bacteria. The antimicrobial susceptibility profile of Gram-negative bacterial strains revealed that 41.3% (n=285) were XDR and 8.1% (n=56) were PDR. Rates of colistin and tigecycline resistance were 16% and 51.9%, respectively. CONCLUSION This situation demands regular surveillance of antimicrobial resistance of Gram-negative bacteria and implementation of an efficient infection control programme.
Collapse
Affiliation(s)
- Debi Prasad Mohapatra
- Department of Microbiology, Institute of Medical Sciences, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Nagen Kumar Debata
- Department of Microbiology, Institute of Medical Sciences, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Santosh Kumar Singh
- Department of Biotechnology, ARKA Jain University, Gamharia, Jamshedpur 832108, Jharkhand, India.
| |
Collapse
|
50
|
Kumar S, Saini V, Maurya IK, Sindhu J, Kumari M, Kataria R, Kumar V. Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: Potential standalone or adjuvant antimicrobial agents. PLoS One 2018; 13:e0196016. [PMID: 29672633 PMCID: PMC5908142 DOI: 10.1371/journal.pone.0196016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/04/2018] [Indexed: 12/26/2022] Open
Abstract
The control of antimicrobial resistance (AMR) seems to have come to a dead end. The major consequences of the use and abuse of antibacterial drugs are the development of resistant strains due to genetic mutability of both pathogenic and nonpathogenic microorganisms. We, herein, report the synthesis, characterization and biological activities of coumarin-thiazole-pyrazole (CTP) molecular hybrids with an effort to explore and overcome the increasing antimicrobial resistance. The compounds were characterized by analyzing their IR, Mass, 1H and13C NMR spectral data and elemental analysis. The in vitro antimicrobial activity of the synthesized compounds was investigated against various pathogenic strains; the results obtained were further explained with the help of DFT and molecular orbital calculations. Compound 1b and 1f displayed good antimicrobial activity and synergistic effects when used with kanamycin and amphotericin B. Furthermore, in vitro cytotoxicity of compounds 1b and 1f were studied against HeLa cells (cervical cancer cell) and Hek-293 cells. The results of molecular docking study were used to better rationalize the action and prediction of the binding modes of these compounds.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarhs, India
| | - Vikram Saini
- Department of Biotechnology, AIIMS- New Delhi, Delhi, India
| | - Indresh K. Maurya
- Department of Microbial Biotechnology, Panjab University, Chandigarh, India
| | | | - Mukesh Kumari
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ramesh Kataria
- Department of Chemistry & Centre of Advance Studies in Chemistry, Panjab University, Chandigarhs, India
- * E-mail: (RK); (VK)
| | - Vinod Kumar
- Department of Chemistry, M. M. University, Mullana-Ambala, India
- * E-mail: (RK); (VK)
| |
Collapse
|