1
|
Lariviere PJ, Ashraf AHMZ, Gifford I, Tanguma SL, Barrick JE, Moran NA. Virulence-linked adhesin drives mutualist colonization of the bee gut via biofilm formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618124. [PMID: 39464101 PMCID: PMC11507737 DOI: 10.1101/2024.10.14.618124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Bacterial biofilms are stable multicellular structures that can enable long term host association. Yet, the role of biofilms in supporting gut mutualism is still not fully understood. Here, we investigate Snodgrassella alvi, a beneficial bacterial symbiont of honey bees, and find that biofilm formation is required for its colonization of the bee gut. We constructed fifteen S. alvi mutants containing knockouts of genes known to promote colonization with putative roles in biofilm formation. Genes required for colonization included staA and staB, encoding trimeric autotransporter adhesins (TAAs) and mltA, encoding a lytic transglycosylase. Intriguingly, TAAs are considered virulence factors in pathogens but support mutualism by the symbiont S. alvi. In vitro, biofilm formation was reduced in ΔstaB cells and abolished in the other two mutants. Loss of staA also reduced auto-aggregation and cell-cell connections. Based on structural predictions, StaA/B are massive (>300 nm) TAAs with many repeats in their stalk regions. Further, we find that StaA/B are conserved across Snodgrassella species, suggesting that StaA/B-dependent colonization is characteristic of this symbiont lineage. Finally, staA deletion increases sensitivity to bactericidal antimicrobials, suggesting that the biofilm indirectly buffers against antibiotic stress. In all, the inability of two biofilm-deficient strains (ΔstaA and ΔmltA) to effectively mono-colonize bees indicates that S. alvi biofilm formation is required for colonization of the bee gut. We envision the bee gut system as a genetically tractable model for studying the physical basis of biofilm-mutualist-gut interactions.
Collapse
Affiliation(s)
- Patrick J. Lariviere
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - A. H. M. Zuberi Ashraf
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sylvia L. Tanguma
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
2
|
Rong Y, Liu Z, Wang H, Zhao Z. Comparison of the adherence of nontypeable haemophilus influenzae to lung epithelial cells. BMC Infect Dis 2024; 24:188. [PMID: 38347439 PMCID: PMC10863205 DOI: 10.1186/s12879-024-09085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Nontypeable Haemophilus influenzae (NTHi) plays an important role in respiratory tract infections, and adherence to lung epithelial cells is the first step in lung infections. To explore the role of NTHi in childhood lung infections, a comparative study was conducted on the adherence of strains isolated from sputum culture and bronchoalveolar lavage fluid to A549 lung epithelial cells. METHODS Haemophilus influenzae strains were obtained from the sample bank of Shenzhen Children's Hospital, and identified as NTHi via PCR detection of the capsule gene bexA. NTHi obtained from healthy children's nasopharyngeal swabs culture were selected as the control group, and a comparative study was conducted on the adherence of strains isolated from sputum culture or bronchoalveolar lavage fluid of patients to A549 cells. RESULTS The adherence bacterial counts of NTHi isolated from the nasopharyngeal cultures of healthy children to A549 cells was 58.2 CFU. In patients with lung diseases, NTHi isolated from bronchoalveolar lavage fluid was 104.3 CFU, and from sputum cultures was 115.1 CFU, both of which were significantly higher in their adherence to A549 cells compared to the strains isolated from the healthy control group. There was no significant difference in adherence between the strains isolated from sputum cultures and bronchoalveolar lavage fluid (t = 0.5217, p = 0.6033). CONCLUSION NTHi played an important role in childhood pulmonary infections by enhancing its adherence to lung epithelial cells.
Collapse
Affiliation(s)
- Yuwei Rong
- Shantou University Medicine College, Shantou University (STU), Shantou, Guangdong, 515041, China
| | - Zihao Liu
- Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China
| | - Heping Wang
- Shantou University Medicine College, Shantou University (STU), Shantou, Guangdong, 515041, China.
- Shenzhen Children's Hospital, Shenzhen, Guangdong, 518038, China.
| | - Zuguo Zhao
- Department of Microbiology, Immunology of Basical Medicine of Guangdong Medical University, Dongguan, Guangdong, 523810, China
| |
Collapse
|
3
|
Osorio-Aguilar Y, Gonzalez-Vazquez MC, Lozano-Zarain P, Martinez-Laguna Y, Baylon-Pacheco L, Rosales-Encina JL, Carabarin-Lima A, Rocha-Gracia RDC. The Enolase of the Haemophilus influenzae Mediates Binding to Collagens: An Extracellular Matrix Component. Int J Mol Sci 2023; 24:15499. [PMID: 37958487 PMCID: PMC10650631 DOI: 10.3390/ijms242115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Enolase proteins play a significant role as moonlighting proteins. In their role as surface-associated enolase, they have multiple functions as they interact with extracellular matrix proteins. Type I and III collagens are the major constituents of this extracellular matrix, and collagen is one of the targets of interaction with the enolase of many pathogens, thereby helping the colonization process and promoting the subsequent invasion of the host. This work aimed to determine the participation of non-typeable H. influenzae enolase as a collagen-binding protein. In this study, through the use of in vitro tests it was demonstrated that recombinant enolase of non-typeable H. influenzae (rNTHiENO) strongly binds to type I collagen. Using molecular docking, the residues that could take part in the interaction of non-typeable H. influenzae enolase-type I collagen (NTHiENO-Cln I) and non-typeable H. influenzae enolase-type III collagen (NTHiENO-Cln III) were identified. However, in vitro assays show that NTHiENO has a better affinity to interact with Cln I, concerning type Cln III. The interaction of NTHiENO with collagen could play a significant role in the colonization process; this would allow H. influenzae to increase its virulence factors and strengthen its pathogenesis.
Collapse
Affiliation(s)
- Yesenia Osorio-Aguilar
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (P.L.-Z.); (Y.M.-L.)
| | - Maria Cristina Gonzalez-Vazquez
- Licenciatura en Biotecnología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (M.C.G.-V.); (A.C.-L.)
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (P.L.-Z.); (Y.M.-L.)
| | - Ygnacio Martinez-Laguna
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (P.L.-Z.); (Y.M.-L.)
| | - Lidia Baylon-Pacheco
- Departamento de Infectómica y Patogenesis Molecular, CINVESTAV-IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Mexico City 07360, Mexico; (L.B.-P.); (J.L.R.-E.)
| | - Jose Luis Rosales-Encina
- Departamento de Infectómica y Patogenesis Molecular, CINVESTAV-IPN, Avenida Instituto Politécnico Nacional No. 2508, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Mexico City 07360, Mexico; (L.B.-P.); (J.L.R.-E.)
| | - Alejandro Carabarin-Lima
- Licenciatura en Biotecnología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (M.C.G.-V.); (A.C.-L.)
| | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (Y.O.-A.); (P.L.-Z.); (Y.M.-L.)
| |
Collapse
|
4
|
Chen X, Zhang H, Feng J, Zhang L, Zheng M, Luo H, Zhuo H, Xu N, Zhang X, Chen C, Qu P, Li Y. Comparative Genomic Analysis Reveals Genetic Diversity and Pathogenic Potential of Haemophilus seminalis and Emended Description of Haemophilus seminalis. Microbiol Spectr 2023; 11:e0477222. [PMID: 37382545 PMCID: PMC10434262 DOI: 10.1128/spectrum.04772-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/10/2023] [Indexed: 06/30/2023] Open
Abstract
Haemophilus seminalis is a newly proposed species that is phylogenetically related to Haemophilus haemolyticus. The distribution of H. seminalis in the human population, its genomic diversity, and its pathogenic potential are still unclear. This study reports the finding of our comparative genomic analyses of four newly isolated Haemophilus strains (SZY H8, SZY H35, SZY H36, and SZY H68) from human sputum specimens (Guangzhou, China) along with the publicly available genomes of other phylogenetically related Haemophilus species. Based on pairwise comparisons of the 16S rRNA gene sequences, the four isolates showed <98.65% sequence identity to the type strains of all known Haemophilus species but were identified as belonging to H. seminalis, based on comparable phenotypic and genotypic features. Additionally, the four isolates showed high genome-genome relatedness indices (>95% ANI values) with 17 strains that were previously identified as either "Haemophilus intermedius" or hemin (X-factor)-independent H. haemolyticus and therefore required a more detailed classification study. Phylogenetically, these isolates, along with the two previously described H. seminalis isolates (a total of 23 isolates), shared a highly homologous lineage that is distinct from the clades of the main H. haemolyticus and Haemophilus influenzae strains. These isolates present an open pangenome with multiple virulence genes. Notably, all 23 isolates have a functional heme biosynthesis pathway that is similar to that of Haemophilus parainfluenzae. The phenotype of hemin (X-factor) independence and the analysis of the ispD, pepG, and moeA genes can be used to distinguish these isolates from H. haemolyticus and H. influenzae. Based on the above findings, we propose a reclassification for all "H. intermedius" and two H. haemolyticus isolates belonging to H. seminalis with an emended description of H. seminalis. This study provides a more accurate identification of Haemophilus isolates for use in the clinical laboratory and a better understanding of the clinical significance and genetic diversity in human environments. IMPORTANCE As a versatile opportunistic pathogen, the accurate identification of Haemophilus species is a challenge in clinical practice. In this study, we characterized the phenotypic and genotypic features of four H. seminalis strains that were isolated from human sputum specimens and propose the "H. intermedius" and hemin (X-factor)-independent H. haemolyticus isolates as belonging to H. seminalis. The prediction of virulence-related genes indicates that H. seminalis isolates carry several virulence genes that are likely to play an important role in its pathogenicity. In addition, we depict that the genes ispD, pepG, and moeA can be used as biomarkers for distinguishing H. seminalis from H. haemolyticus and H. influenzae. Our findings provide some insights into the identification, epidemiology, genetic diversity, pathogenic potential, and antimicrobial resistance of the newly proposed H. seminalis.
Collapse
Affiliation(s)
- Xiaowei Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanyun Zhang
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Junhui Feng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Zhang
- Guangzhou Kingmed Center for Clinical Laboratory, Guangzhou, China
| | - Minling Zheng
- Department of Clinical Laboratory, Guangdong Women and Children Hospital, Guangzhou, China
| | - Haimin Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Huiyan Zhuo
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| | - Ning Xu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Pinghua Qu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Youqiang Li
- Department of Laboratory Medicine, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Chatziparasidis G, Kantar A, Grimwood K. Pathogenesis of nontypeable Haemophilus influenzae infections in chronic suppurative lung disease. Pediatr Pulmonol 2023. [PMID: 37133207 DOI: 10.1002/ppul.26446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/04/2023]
Abstract
The respiratory tract antimicrobial defense system is a multilayered defense mechanism that relies upon mucociliary clearance and components of both the innate and adaptive immune systems to protect the lungs from inhaled or aspirated microorganisms. One of these potential pathogens, nontypeable Haemophilus influenzae (NTHi), adopts several, multifaceted redundant strategies to successfully colonize the lower airways and establish a persistent infection. NTHi can impair mucociliary clearance, express multiple multifunctional adhesins for various cell types within the respiratory tract and evade host defenses by surviving within and between cells, forming biofilms, increasing antigenic drift, secreting proteases and antioxidants, and by host-pathogen cross-talk, impair macrophage and neutrophil function. NTHi is recognized as an important pathogen in several chronic lower respiratory disorders, such as protracted bacterial bronchitis, bronchiectasis, cystic fibrosis, and primary ciliary dyskinesia. The persistence of NTHi in human airways, including its capacity to form biofilms, results in chronic infection and inflammation, which can ultimately injure airway wall structures. The complex nature of the molecular pathogenetic mechanisms employed by NTHi is incompletely understood but improved understanding of its pathobiology will be important for developing effective therapies and vaccines, especially given the marked genetic heterogeneity of NTHi and its possession of phase-variable genes. Currently, no vaccine candidates are ready for large phase III clinical trials.
Collapse
Affiliation(s)
- Grigorios Chatziparasidis
- Paediatric Respiratory Unit, IASO Hospital, Larissa, Thessaly, Greece
- Faculty of Nursing, Thessaly University, Larissa, Greece
| | - Ahmad Kantar
- Pediatric Asthma and Cough Centre, Instituti Ospedalieri Bergamaschi, Bergamo, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Keith Grimwood
- School of Medicine and Dentistry, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Departments of Infectious Disease and Paediatrics, Gold Coast Health, Southport, Queensland, Australia
| |
Collapse
|
6
|
MB T, AF T, ALTO N. The leptospiral LipL21 and LipL41 proteins exhibit a broad spectrum of interactions with host cell components. Virulence 2021; 12:2798-2813. [PMID: 34719356 PMCID: PMC8632080 DOI: 10.1080/21505594.2021.1993427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Leptospirosis is a globally prevalent zoonotic disease, and is caused by pathogenic spirochetes from the genus Leptospira. LipL21 and LipL41 are lipoproteins expressed strongly on the outer membrane of pathogenic Leptospira spp. Many studies have shown that both proteins are interesting targets for vaccines and diagnosis. However, their role in host-pathogen interactions remains underexplored. Therefore, we evaluated the capacity of LipL21 and LipL41 to bind with glycosaminoglycans (GAGs), the cell receptors and extracellular matrix, and plasma components by ELISA. Both proteins interacted with collagen IV, laminin, E-cadherin, and elastin dose-dependently. A broad-spectrum binding to plasma components was also observed. Only LipL21 interacted with all the GAG components tested, whereas LipL41 presented a concentration-dependent binding only for chondroitin 4 sulfate. Although, both proteins have the ability to interact with fibrinogen, only LipL21 inhibited fibrin clot formation partially. Both proteins exhibited a decrease in plasminogen binding in the presence of amino caproic acid (ACA), a competitive inhibitor of lysine residues, suggesting that their binding occurs via the kringle domains of plasminogen. LipL41, but not LipL21, was able to convert plasminogen to plasmin, and recruit plasminogen from normal human serum, suggesting that the interaction of this protein with plasminogen may occur in physiological conditions. This work provides the first report demonstrating the capacity of LipL21 and LipL41 to interact with a broad range of host components, highlighting their importance in host-Leptospira interactions.
Collapse
Affiliation(s)
- Takahashi MB
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Teixeira AF
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Nascimento ALTO
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
7
|
Lipoprotein(a), an Opsonin, Enhances the Phagocytosis of Nontypeable Haemophilus influenzae by Macrophages. J Immunol Res 2021; 2021:2185568. [PMID: 34765679 PMCID: PMC8577944 DOI: 10.1155/2021/2185568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
We recently showed that both nontypeable Haemophilus influenzae (NTHi) and its surface plasminogen- (Plg-) binding proteins interact with lipoprotein(a) (Lp(a)) in a lysine-dependent manner. Because Lp(a) can be taken up by macrophages, we postulated that it serves as an opsonin to enhance phagocytosis of NTHi by macrophages. Based on colony-forming unit (CFU) counts, Lp(a) was found to increase U937 macrophage-mediated phagocytosis of NTHi49247 and NTHi49766 by 34% and 43%, respectively, after 120 min. In contrast, Lp(a) did not enhance phagocytosis of Escherichia coli BL21 or E. coli JM109, which were unable to bind to Lp(a). As with U937 macrophages, Lp(a) was capable of increasing phagocytosis of NTHi49247 by peripheral blood mononuclear cell-derived macrophages. Opsonic phagocytosis by Lp(a) was inhibited by the addition of recombinant kringle IV type 10 (rKIV10), a lysine-binding competitor; moreover, Lp(a) did not increase phagocytosis of NTHi by U937 macrophages that were pretreated with a monoclonal antibody against the scavenger receptor CD36. Taken together, our observation suggests that Lp(a) might serve as a lysine-binding opsonin to assist macrophages in rapid recognition and phagocytosis of NTHi.
Collapse
|
8
|
Correlation of adhesion molecules and non-typeable haemophilus influenzae growth in a mice coinfected model of acute inflammation. Microbes Infect 2021; 23:104839. [PMID: 34023525 DOI: 10.1016/j.micinf.2021.104839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 01/11/2023]
Abstract
Primary influenza virus (IV) infection can predispose hosts to secondary infection with Haemophilus influenzae (H. influenzae), which further increases the severity and mortality of the disease. While adhesion molecules play a key role in the host inflammatory response and H. influenzae colonization, it remains to be clarified which types of adhesion molecules are associated with H. influenzae colonization and invasion following IV infection. In this study, we established a mouse model of co-infection with influenza A virus (A/Puerto Rico/8/34, H1N1) (PR8) and non-typeable H. influenzae (NTHi) and found that sequential infection with PR8 and NTHi induced a lethal synergy in mice. This outcome may be possibly due to increased NTHi loads, greater lung damage and higher levels of cytokines. Furthermore, the protein levels of intracellular adhesion molecules-1 (ICAM-1) and Fibronectin (Fn) were significantly increased in the lungs of coinfected mice, but the levels of carcinoembryonic adhesion molecule (CEACAM)-1, CEACAM-5 and platelet-activating factor receptor (PAFr) were unaffected. Both the protein levels of ICAM-1 and Fn were positively correlated with NTHi growth. These results indicate the correlation between adhesion molecules, including ICAM-1 and Fn, and NTHi growth in secondary NTHi pneumonia following primary IV infection.
Collapse
|
9
|
Short B, Carson S, Devlin AC, Reihill JA, Crilly A, MacKay W, Ramage G, Williams C, Lundy FT, McGarvey LP, Thornbury KD, Martin SL. Non-typeable Haemophilus influenzae chronic colonization in chronic obstructive pulmonary disease (COPD). Crit Rev Microbiol 2021; 47:192-205. [PMID: 33455514 DOI: 10.1080/1040841x.2020.1863330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Haemophilus influenzae is the most common cause of bacterial infection in the lungs of chronic obstructive pulmonary disease (COPD) patients and contributes to episodes of acute exacerbation which are associated with increased hospitalization and mortality. Due to the ability of H. influenzae to adhere to host epithelial cells, initial colonization of the lower airways can progress to a persistent infection and biofilm formation. This is characterized by changes in bacterial behaviour such as reduced cellular metabolism and the production of an obstructive extracellular matrix (ECM). Herein we discuss the multiple mechanisms by which H. influenzae contributes to the pathogenesis of COPD. In particular, mechanisms that facilitate bacterial adherence to host airway epithelial cells, biofilm formation, and microbial persistence through immune system evasion and antibiotic tolerance will be discussed.
Collapse
Affiliation(s)
- Bryn Short
- University of the West of Scotland, Paisley, United Kingdom
| | - Stephen Carson
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Anna-Claire Devlin
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Anne Crilly
- University of the West of Scotland, Paisley, United Kingdom
| | - William MacKay
- University of the West of Scotland, Paisley, United Kingdom
| | - Gordon Ramage
- Glasgow Biofilm Research Group, Oral Sciences, School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, United Kingdom
| | - Craig Williams
- University of the West of Scotland, Paisley, United Kingdom
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Lorcan P McGarvey
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Keith D Thornbury
- Smooth Muscle Research Group, Dundalk Institute of Technology, Dundalk, Ireland
| | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Yakovlieva L, Ramírez-Palacios C, Marrink SJ, Walvoort MTC. Semiprocessive Hyperglycosylation of Adhesin by Bacterial Protein N-Glycosyltransferases. ACS Chem Biol 2021; 16:165-175. [PMID: 33401908 PMCID: PMC7812588 DOI: 10.1021/acschembio.0c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Processivity is an important feature
of enzyme families such as
DNA polymerases, polysaccharide synthases, and protein kinases, to
ensure high fidelity in biopolymer synthesis and modification. Here,
we reveal processive character in the family of cytoplasmic protein N-glycosyltransferases (NGTs). Through various activity
assays, intact protein mass spectrometry, and proteomics analysis,
we established that NGTs from nontypeable Haemophilus influenzae and Actinobacillus pleuropneumoniae modify an adhesin
protein fragment in a semiprocessive manner. Molecular modeling studies
suggest that the processivity arises from the shallow substrate binding
groove in NGT, which promotes the sliding of the adhesin over the
surface to allow further glycosylations without temporary dissociation.
We hypothesize that the processive character of these bacterial protein
glycosyltransferases is the mechanism to ensure multisite glycosylation
of adhesins in vivo, thereby creating the densely
glycosylated proteins necessary for bacterial self-aggregation and
adherence to human cells, as a first step toward infection.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Carlos Ramírez-Palacios
- Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
11
|
Nontypeable Haemophilus influenzae Type IV Pilus Mediates Augmented Adherence to Rhinovirus-Infected Human Airway Epithelial Cells. Infect Immun 2020; 88:IAI.00248-20. [PMID: 32540869 DOI: 10.1128/iai.00248-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Human rhinovirus (hRV) is frequently detected in the upper respiratory tract, and symptomatic infection is associated with an increased nasopharyngeal bacterial load, with subsequent development of secondary bacterial diseases. Nontypeable Haemophilus influenzae (NTHI) is a commensal bacterial species of the human nasopharynx; however, in the context of prior or concurrent upper respiratory tract viral infection, this bacterium commonly causes multiple diseases throughout the upper and lower respiratory tracts. The present study was conducted to determine the mechanism(s) by which hRV infection promotes the development of NTHI-induced diseases. We showed that hRV infection of polarized primary human airway epithelial cells resulted in increased adherence of NTHI, due in part to augmented expression of CEACAM1 and ICAM1, host cell receptors to which NTHI binds via engagement of multiple adhesins. Antibody blockade of these host cell receptors significantly reduced NTHI adherence. With a specific focus on the NTHI type IV pilus (T4P), which we have previously shown binds to ICAM1, an essential adhesin and virulence determinant, we next showed that T4P-directed antibody blockade significantly reduced NTHI adherence to hRV-infected airway cells and, further, that expression of this adhesin was required for the enhanced adherence observed. Collectively, these data provide a mechanism by which "the common cold" promotes diseases due to NTHI, and they add further support for the use of PilA (the majority subunit of T4P) as a vaccine antigen, since antibodies directed against PilA are expected to limit the notably increased bacterial load associated with hRV coinfection and thereby to prevent secondary NTHI-induced diseases of the respiratory tract.
Collapse
|
12
|
Non-Typeable Haemophilus influenzae Invade Choroid Plexus Epithelial Cells in a Polar Fashion. Int J Mol Sci 2020; 21:ijms21165739. [PMID: 32785145 PMCID: PMC7461124 DOI: 10.3390/ijms21165739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is a pathogen of the human respiratory tract causing the majority of invasive H. influenzae infections. Severe invasive infections such as septicemia and meningitis occur rarely, but the lack of a protecting vaccine and the increasing antibiotic resistance of NTHI impede treatment and emphasize its relevance as a potential meningitis causing pathogen. Meningitis results from pathogens crossing blood-brain barriers and invading the immune privileged central nervous system (CNS). In this study, we addressed the potential of NTHI to enter the brain by invading cells of the choroid plexus (CP) prior to meningeal inflammation to enlighten NTHI pathophysiological mechanisms. A cell culture model of human CP epithelial cells, which form the blood-cerebrospinal fluid barrier (BCSFB) in vivo, was used to analyze adhesion and invasion by immunofluorescence and electron microscopy. NTHI invade CP cells in vitro in a polar fashion from the blood-facing side. Furthermore, NTHI invasion rates are increased compared to encapsulated HiB and HiF strains. Fimbriae occurrence attenuated adhesion and invasion. Thus, our findings underline the role of the BCSFB as a potential entry port for NTHI into the brain and provide strong evidence for a function of the CP during NTHI invasion into the CNS during the course of meningitis.
Collapse
|
13
|
Thornton RB, Hakansson A, Hood DW, Nokso-Koivisto J, Preciado D, Riesbeck K, Richmond PC, Su YC, Swords WE, Brockman KL. Panel 7 - Pathogenesis of otitis media - a review of the literature between 2015 and 2019. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109838. [PMID: 31879085 PMCID: PMC7062565 DOI: 10.1016/j.ijporl.2019.109838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To perform a comprehensive review of the literature from July 2015 to June 2019 on the pathogenesis of otitis media. Bacteria, viruses and the role of the microbiome as well as the host response are discussed. Directions for future research are also suggested. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS PubMed was searched for any papers pertaining to OM pathogenesis between July 2015 and June 2019. If in English, abstracts were assessed individually for their relevance and included in the report. Members of the panel drafted the report based on these searches and on new data presented at the 20th International Symposium on Recent Advances in Otitis Media. CONCLUSIONS The main themes that arose in OM pathogenesis were around the need for symptomatic viral infections to develop disease. Different populations potentially having different mechanisms of pathogenesis. Novel bacterial otopathogens are emerging and need to be monitored. Animal models need to continue to be developed and used to understand disease pathogenesis. IMPLICATIONS FOR PRACTICE The findings in the pathogenesis panel have several implications for both research and clinical practice. The most urgent areas appear to be to continue monitoring the emergence of novel otopathogens, and the need to develop prevention and preventative therapies that do not rely on antibiotics and protect against the development of the initial OM episode.
Collapse
Affiliation(s)
- R B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia; School of Biomedical Sciences, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia
| | - A Hakansson
- Experimental Infection Medicine, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - D W Hood
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - J Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA; Division of Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - K Riesbeck
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - P C Richmond
- School of Medicine, Division of Paediatrics, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia; Perth Children's Hospital, Perth, Western Australia, Australia
| | - Y C Su
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - W E Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - K L Brockman
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
14
|
Tosufloxacin for Eradicating Biofilm-Forming Nontypeable Haemophilus influenzae Isolated from Intractable Acute Otitis Media. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.69583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
15
|
Insights into the population structure and pan-genome of Haemophilus influenzae. INFECTION GENETICS AND EVOLUTION 2018; 67:126-135. [PMID: 30391557 DOI: 10.1016/j.meegid.2018.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/20/2018] [Accepted: 10/30/2018] [Indexed: 12/25/2022]
Abstract
The human-restricted bacterium Haemophilus influenzae is responsible for respiratory infections in both children and adults. While colonization begins in the upper airways, it can spread throughout the respiratory tract potentially leading to invasive infections. Although the spread of H. influenzae serotype b (Hib) has been prevented by vaccination, the emergence of infections by other serotypes as well as by non-typeable isolates (NTHi) have been observed, prompting the need for novel prevention strategies. Here, we aimed to study the population structure of H. influenzae and to get some insights into its pan-genome. We studied 305H. influenzae strains, enrolling 217 publicly available genomes, as well as 88 newly sequenced H. influenzae invasive strains isolated in Portugal, spanning a 24-year period. NTHi isolates presented a core-SNP-based genetic diversity about 10-fold higher than the one observed for Hib. The analysis of key factors involved in pathogenesis, such as lipooligosaccharides, hemagglutinating pili and High Molecular Weight-adhesins, suggests that NTHi shape its virulence repertoire, either by acquisition and loss of genes or by SNP-based diversification, likely towards host immune evasion and persistence. Discreet NTHi subpopulations structures are proposed based on core-genome supported with 17 candidate genetic markers identified in the accessory genome. Additionally, this study provides two bioinformatics tools for in silico rapid identification of H. influenzae serotypes and NTHi clades previously proposed, obviating laboratory-based demanding procedures. The present study constitutes an important genomic framework that could lay way for future studies on the genetic determinants underlying invasiveness and disease and population structure of H. influenzae.
Collapse
|
16
|
Atack JM, Day CJ, Poole J, Brockman KL, Bakaletz LO, Barenkamp SJ, Jennings MP. The HMW2 adhesin of non-typeable Haemophilus influenzae is a human-adapted lectin that mediates high-affinity binding to 2-6 linked N-acetylneuraminic acid glycans. Biochem Biophys Res Commun 2018; 503:1103-1107. [PMID: 29944882 PMCID: PMC6095747 DOI: 10.1016/j.bbrc.2018.06.126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 01/02/2023]
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a human-adapted bacterial pathogen, responsible for infections of the human respiratory tract. This pathogen expresses a range of adhesins that mediate binding to host cells. Most NTHi strains can express the related adhesins HMW1 and HMW2. Expression of HMW proteins is phase-variable: changes in the length of simple-sequence repeats located in the encoding genes promoter regions results in changes in expression levels of these adhesins. HMW expression is also controlled by epigenetic regulation. HMW1 has been previously demonstrated to bind α 2-3 sialyl-lactosamine, but affinity of this interaction has not been investigated. The host receptor(s) for HMW2 is currently unknown. We hypothesized that host glycans may act as receptors for HMW2-mediated adherence. We examined the glycan-binding activity of HMW2 using glycan arrays and Surface Plasmon Resonance (SPR). These studies demonstrate that HMW2 binds 2-6 linked N-acetylneuraminic acid with high affinity. HMW2 did not bind glycan structures containing the non-human form of sialic acid, N-glycolylneuraminic acid. Thus, the specificity of HMW1 and HMW2 have complementary lectin activities that may allow NTHi distinct niches in the human host.
Collapse
Affiliation(s)
- John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Jessica Poole
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, 43205, USA
| | - Stephen J Barenkamp
- Department of Pediatrics, Saint Louis University School of Medicine, The Pediatric Research Institute, Cardinal Glennon Children's Hospital, Saint Louis, MO, 63104, USA
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|