1
|
Aziz M, Ejaz SA, Channar PA, Alkhathami AG, Qadri T, Hussain Z, Hussaain M, Ujan R. Identification of dimethyl 2,2'-((methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)-6,1phenylene))bis(oxy))diacetate (TAJ4) as antagonist of NEK-Family: a future for potential drug discovery. BMC Cancer 2024; 24:1521. [PMID: 39696038 DOI: 10.1186/s12885-024-13269-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
The purpose of the current study was to analyze and validate the existing gap in knowledge, by conducting a differential expression analysis and validation of NEK6, NEK7, and NEK9 in breast, cervical, and glioblastoma cancer and targeting these proteins through development of novel site specific inhibitor with favorable pharmacokinetic and safety profile, using open-source databases. The analysis revealed that the targeted kinases were overexpressed in all three types of cancer. Their expression was significantly linked to overall survival rates, which suggests that they play a major role in the development and progression of these cancers. After, having the prognostic importance of These findings provided a rationale for synthesizing novel compound i.e., dimethyl 2,2'-((methylenebis(2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)-6,1phenylene))bis(oxy))diacetate (TAJ4)), capable of effectively targeting these proteins using in-vitro cytotoxicity assays and comprehensive computational approaches. Then the inhibitory potential of TAJ4 was evaluated against cell lines of the respective cancers (HeLa cells, MCF-7 cells, and Vero cells). The growth inhibitory values (GI50) suggested that TAJ4 exhibited strong inhibitory potential towards MCF-7 cells (GI50 = 3.18 ± 0.11 µM) in comparison to the HeLa cell line (GI50 = 8.12 ± 0.43 µM), surpassing that of standard drugs. Furthermore, in-silico investigations, including density functional theory (DFT) calculations and molecular docking studies, revealed a substantial reactivity profile of TAJ4, with promising molecular interactions against NEK7, NEK9, TP53, NF-KAPPA-B, and caspase-3 proteins. Further investigation using in-vitro and in-vivo approaches is recommended to fully establish the therapeutic efficacy and safety profile of TAJ4.
Collapse
Affiliation(s)
- Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Pervaiz Ali Channar
- Department of Basic Science and Humanities, Faculty of Information Science Humanities, Dawood University of Engineering and Technology Karachi, Karachi, 74800, Pakistan
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O.Box 61413, Abha, 9088, Saudi Arabia
| | - Tahir Qadri
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Mumtaz Hussaain
- Department of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Rabail Ujan
- Dr. M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro, Pakistan
| |
Collapse
|
2
|
Liang M, Zhang C, Yang Y, Cui Q, Zhang J, Cui C. TransmiR v3.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res 2024:gkae1081. [PMID: 39530226 DOI: 10.1093/nar/gkae1081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
microRNAs (miRNAs) are active in various biological processes by mediating gene expression, and the full investigation of miRNA transcription is crucial for understanding the mechanisms underlying miRNA deregulation in pathological conditions. Here an updated TransmiR v3.0 database is presented with more comprehensive miRNA transcription regulation information, which contains 5095 transcription factor (TF) -miRNA regulations curated from 2285 papers and >6 million TF-miRNA regulations derived from ChIP-seq data. Currently, TransmiR v3.0 covers 3260 TFs, 4253 miRNAs and 514 433 TF-miRNA regulation pairs across 29 organisms. Additionally, motif scanning of TF loci on promoter sequences of miRNAs from multiple species is employed to predict TF-miRNA regulations, generating 284 527 predicted TF-miRNA regulations. Besides the significant growth of data volume, we also improve the annotations for TFs and miRNAs by introducing the TF family, TFBS motif, and expression profiles for several species. Moreover, the functionality of the TransmiR v3.0 online database is enhanced, including allowing batch search for flexible queries and offering more extensive disease-specific, as well as newly sex-specific TF-miRNA regulation networks in the 'Network' module. TransmiR v3.0 provides a useful resource for studying miRNA biogenesis regulation and can be freely accessed at http://www.cuilab.cn/transmir.
Collapse
Affiliation(s)
- Maodi Liang
- School of Sports Medicine, Wuhan Institute of Physical Education, No.461 Luoyu Rd. Wuchang District, WuHan 430079 Hubei Province, China
| | - Chenhao Zhang
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
| | - Yang Yang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qinghua Cui
- School of Sports Medicine, Wuhan Institute of Physical Education, No.461 Luoyu Rd. Wuchang District, WuHan 430079 Hubei Province, China
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
| | - Jun Zhang
- Medical College of Shihezi University, Bei-Er-Lu, Shihezi, Xinjiang 832000, China
| | - Chunmei Cui
- Department of Biomedical Informatics, Center for Noncoding RNA Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, 38 Xueyuan Rd, Beijing 100191, China
| |
Collapse
|
3
|
Acoba D, Reznichenko A. Kidney mRNA-protein expression correlation: what can we learn from the Human Protein Atlas? J Nephrol 2024:10.1007/s40620-024-02126-z. [PMID: 39523224 DOI: 10.1007/s40620-024-02126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The Human Protein Atlas, with more than 10 million immunohistochemical images showing tissue- and cell-specific protein expression levels and subcellular localization information, is widely used in kidney research. The Human Protein Atlas contains comprehensive data on multi-tissue transcript and protein abundance, allowing for comparisons across tissues. However, while visual and intuitive to interpret, immunohistochemistry is limited by its semi-quantitative nature. This can lead to mismatches in protein expression measurements across different platforms. METHODS We performed a comparison of the Human Protein Atlas' kidney-specific RNA sequencing and immunohistochemistry data to determine whether the mRNA and protein abundance levels are concordant. RESULTS Our study shows that there is a discordance between mRNA and protein expression in the kidney based on the Human Protein Atlas data. Using an external validation mass spectrometry dataset, we show that more than 500 proteins undetected by immunohistochemistry are robustly measured by mass spectrometry. The Human Protein Atlas transcriptome data, on the other hand, exhibit similar transcript detection levels as other kidney RNA-seq datasets. CONCLUSIONS Discordance in mRNA-protein expression could be due to both biological and technical reasons, such as transcriptional dynamics, translation rates, protein half-lives, and measurement errors. This is further complicated by the heterogeneity of the kidney tissue itself, which can increase the discordance if the cell populations or tissue compartment samples do not match. As such, shedding light on the mRNA-protein relationship of the kidney-specific Human Protein Atlas data can provide context to our scientific inferences on renal gene and protein quantification.
Collapse
Affiliation(s)
- Dianne Acoba
- Clinical Renal, Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Institut Necker Enfants-Malades (INEM), Institut National de La Santé et de La Recherche Médicale (INSERM) U1151, Université Paris Cité, Paris, France
| | - Anna Reznichenko
- Clinical Renal, Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
4
|
Wang K, Zhang R, Li C, Chen H, Lu J, Zhao H, Zhuo X. Construction and assessment of an angiogenesis-related gene signature for prognosis of head and neck squamous cell carcinoma. Discov Oncol 2024; 15:284. [PMID: 39012409 PMCID: PMC11252106 DOI: 10.1007/s12672-024-01084-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
OBJECTIVE Angiogenesis-associated genes (AAGs) play a critical role in cancer patient survival. However, there are insufficient reports on the prognostic value of AAGs in head and neck squamous cell carcinoma (HNSC). Therefore, this study aimed to investigate the correlation between AAG expression levels and survival in HNSC patients, explore the predictive value of signature genes and lay the groundwork for future in-depth research. METHODS Relevant data for HNSC were obtained from the databases. AAGs-associated signature genes linked to prognosis were screened to construct a predictive model. Further analysis was conducted to determine the functional correlation of the signature genes. RESULTS The signature genes (STC1, SERPINA5, APP, OLR1, and PDGFA) were used to construct prognostic models. Patients were divided into high-risk and low-risk groups based on the calculated risk scores. Survival analysis showed that patients in the high-risk group had a significantly lower overall survival than those in the low-risk group (P < 0.05). Therefore, this prognostic model was an independent prognostic factor for predicting HNSC. In addition, patients in the low-risk group were more sensitive to multiple anti-cancer drugs. Functional correlation analysis showed a good correlation between the characteristic genes and HNSC metastasis, invasion, and angiogenesis. CONCLUSION This study established a new prognostic model for AAGs and may guide the selection of therapeutic agents for HNSC. These genes have important functions in the tumor microenvironment; it also provides a valuable resource for the future clinical trials investigating the relationship between HNSC and AAGs.
Collapse
Affiliation(s)
- Kaiqin Wang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruizhe Zhang
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Changya Li
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Huarong Chen
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiafeng Lu
- Department of Otolaryngology, Anshun People's Hospital, Anshun, Guizhou, China
| | - Houyu Zhao
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| | - Xianlu Zhuo
- Department of Otolaryngology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Chen M, Bie L, Ying J. Cancer cell-intrinsic PD-1: Its role in malignant progression and immunotherapy. Biomed Pharmacother 2023; 167:115514. [PMID: 37716115 DOI: 10.1016/j.biopha.2023.115514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Programmed cell death protein-1 (PD-1), also called CD279, is coded by the PDCD1 gene and is constitutively expressed on the surface of immune cells. As a receptor and immune checkpoint, PD-1 can bind to programmed death ligand-1/programmed death ligand-2 (PD-L1/PD-L2) in tumor cells, leading to tumor immune evasion. Anti-PD-1 and anti-PD-L1 are important components in tumor immune therapy. PD-1 is also expressed as an intrinsic variant (iPD-1) in cancer cells where it plays important roles in malignant progression as proposed by recent studies. However, iPD-1 has received much less attention compared to PD-1 expressed on immune cells although there is an unmet medical need for fully elucidating the mechanisms of actions to achieve the best response in tumor immunotherapy. iPD-1 suppresses tumorigenesis in non-small cell lung cancer (NSCLC) and colon cancer, whereas it promotes tumorigenesis in melanoma, hepatocellular carcinoma (HCC), pancreatic ductal adenocarcinoma (PDAC), thyroid cancer (TC), glioblastoma (GBM), and triple-negative breast cancer (TNBC). In this review, we focus on the role of iPD-1 in tumorigenesis and development and its molecular mechanisms. We also deeply discuss nivolumab-based combined therapy in common tumor therapy. iPD-1 may explain the different therapeutic effects of anti-PD-1 treatment and provide critical information for use in combined anti-tumor approaches.
Collapse
Affiliation(s)
- Muhua Chen
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Lei Bie
- Department of Thoracic Surgery, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jieer Ying
- Department of Hepato-Pancreato-Biliary & Gastric Medical Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| |
Collapse
|
6
|
Chang A, Wang Y, Guo X, Sun Z, Ling J, Pan J, Zhuo X. Identification of immune-related genes in the prognosis of head and neck cancer using a novel prognostic signature model. Oral Surg Oral Med Oral Pathol Oral Radiol 2023; 136:478-489. [PMID: 37620228 DOI: 10.1016/j.oooo.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/11/2023] [Accepted: 07/02/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Increasing evidence indicates that the immune response plays a critical role in the development of head and neck cancer (HNC). We aimed to develop an immune-related gene signature and evaluate its prognostic value in patients with HNC. METHODS We retrieved an HNC cohort from The Cancer Genome Atlas database and divided the samples into high-risk and low-risk groups based on the median of the immune and stromal scores. We performed Venn and Cox analyses to identify the immune-related DEGs to use in our prognostic model. We evaluated the correlation between the model and immune-cell infiltration and validated the prognostic value of the model by applying it to 2 external HNC cohorts. RESULTS We identified 7 DEGs-CCR4, WDFY4, VCAM1, LYZ, VSIG4, XIRP1, and CMKLR1-to use in our prognostic model and validated the model by applying it to 2 external HNC cohorts. We found that risk scores based on the model could reflect the status of the tumor microenvironment and that VSIG4 might be associated with lymph node metastasis in HNC. CONCLUSIONS We developed a highly accurate immune-related prognostic 7-gene model in HNC predication, indicating that these 7 genes play critical roles in the tumor microenvironment.
Collapse
Affiliation(s)
- Aoshuang Chang
- Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Wang
- Department of Respiratory Medicine, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaopeng Guo
- Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhen Sun
- Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Junjun Ling
- Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jigang Pan
- School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xianlu Zhuo
- Affiliated Hospital, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
7
|
Du L, Bouzidi MS, Gala A, Deiter F, Billaud JN, Yeung ST, Dabral P, Jin J, Simmons G, Dossani ZY, Niki T, Ndhlovu LC, Greenland JR, Pillai SK. Human galectin-9 potently enhances SARS-CoV-2 replication and inflammation in airway epithelial cells. J Mol Cell Biol 2023; 15:mjad030. [PMID: 37127426 PMCID: PMC10668544 DOI: 10.1093/jmcb/mjad030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/17/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused a global economic and health crisis. Recently, plasma levels of galectin-9 (Gal-9), a β-galactoside-binding lectin involved in immune regulation and viral immunopathogenesis, were reported to be elevated in the setting of severe COVID-19 disease. However, the impact of Gal-9 on SARS-CoV-2 infection and immunopathology remained to be elucidated. In this study, we demonstrate that Gal-9 treatment potently enhances SARS-CoV-2 replication in human airway epithelial cells (AECs), including immortalized AECs and primary AECs cultured at the air-liquid interface. Gal-9-glycan interactions promote SARS-CoV-2 attachment and entry into AECs in an angiotensin-converting enzyme 2 (ACE2)-dependent manner, enhancing the binding of the viral spike protein to ACE2. Transcriptomic analysis revealed that Gal-9 and SARS-CoV-2 infection synergistically induced the expression of key pro-inflammatory programs in AECs, including the IL-6, IL-8, IL-17, EIF2, and TNFα signaling pathways. Our findings suggest that manipulation of Gal-9 should be explored as a therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Li Du
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Akshay Gala
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Fred Deiter
- Department of Medicine, University of California, San Francisco, CA 94143-0410, USA
- Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | | | - Stephen T Yeung
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Prerna Dabral
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Jing Jin
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Zain Y Dossani
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| | - Toshiro Niki
- Department of Immunology, Kagawa University, Kagawa 760-0016, Japan
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - John R Greenland
- Department of Medicine, University of California, San Francisco, CA 94143-0410, USA
- Veterans Affairs Health Care System, San Francisco, CA 94121, USA
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, CA 94105, USA
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA
| |
Collapse
|
8
|
Launer-Wachs S, Taub-Tabib H, Tokarev Madem J, Bar-Natan O, Goldberg Y, Shamay Y. From Centralized to Ad-Hoc Knowledge Base Construction for Hypotheses Generation. J Biomed Inform 2023; 142:104383. [PMID: 37196989 DOI: 10.1016/j.jbi.2023.104383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To demonstrate and develop an approach enabling individual researchers or small teams to create their own ad-hoc, lightweight knowledge bases tailored for specialized scientific interests, using text-mining over scientific literature, and demonstrate the effectiveness of these knowledge bases in hypothesis generation and literature-based discovery (LBD). METHODS We propose a lightweight process using an extractive search framework to create ad-hoc knowledge bases, which require minimal training and no background in bio-curation or computer science. These knowledge bases are particularly effective for LBD and hypothesis generation using Swanson's ABC method. The personalized nature of the knowledge bases allows for a somewhat higher level of noise than "public facing" ones, as researchers are expected to have prior domain experience to separate signal from noise. Fact verification is shifted from exhaustive verification of the knowledge base to post-hoc verification of specific entries of interest, allowing researchers to assess the correctness of relevant knowledge base entries by considering the paragraphs in which the facts were introduced. RESULTS We demonstrate the methodology by constructing several knowledge bases of different kinds: three knowledge bases that support lab-internal hypothesis generation: Drug Delivery to Ovarian Tumors (DDOT); Tissue Engineering and Regeneration; Challenges in Cancer Research; and an additional comprehensive, accurate knowledge base designated as a public resource for the wider community on the topic of Cell Specific Drug Delivery (CSDD). In each case, we show the design and construction process, along with relevant visualizations for data exploration, and hypothesis generation. For CSDD and DDOT we also show meta-analysis, human evaluation, and in vitro experimental evaluation. CONCLUSION Our approach enables researchers to create personalized, lightweight knowledge bases for specialized scientific interests, effectively facilitating hypothesis generation and literature-based discovery (LBD). By shifting fact verification efforts to post-hoc verification of specific entries, researchers can focus on exploring and generating hypotheses based on their expertise. The constructed knowledge bases demonstrate the versatility and adaptability of our approach to versatile research interests. The web-based platform, available at https://spike-kbc.apps.allenai.org , provides researchers with a valuable tool for rapid construction of knowledge bases tailored to their needs.
Collapse
Affiliation(s)
- Shaked Launer-Wachs
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | | | - Jennie Tokarev Madem
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Orr Bar-Natan
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yoav Goldberg
- Allen Institute for AI, Tel Aviv, Israel; Bar-Ilan University, Ramat-Gan, Israel
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Essegian DJ, Chavez V, Bustamante F, Schürer SC, Merchan JR. Cellular and molecular effects of PNCK, a non-canonical kinase target in renal cell carcinoma. iScience 2022; 25:105621. [PMID: 36465101 PMCID: PMC9713373 DOI: 10.1016/j.isci.2022.105621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/30/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Renal cell carcinoma (RCC) is a fatal disease when advanced. While immunotherapy and tyrosine kinase inhibitor-based combinations are associated with improved survival, the majority of patients eventually succumb to the disease. Through a comprehensive pan-cancer, pan-kinome analysis of the Cancer Genome Atlas (TCGA), pregnancy-upregulated non-ubiquitous calcium-calmodulin-dependent kinase (PNCK), was identified as the most differentially overexpressed kinase in RCC. PNCK overexpression correlated with tumor stage, grade and poor survival. PNCK overexpression in RCC cells was associated with increased CREB phosphorylation, increased cell proliferation, and cell cycle progression. PNCK down-regulation, conversely, was associated with the opposite, in addition to increased apoptosis. Pathway analyses in PNCK knockdown cells showed significant down-regulation of hypoxia and angiogenesis pathways, as well as the modulation of the cell cycle, DNA damage, and apoptosis pathways. These results demonstrate for the first time the biological role of PNCK, an understudied kinase, in RCC and validate PNCK as a druggable target.
Collapse
Affiliation(s)
- Derek J. Essegian
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Valery Chavez
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Floritza Bustamante
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Stephan C. Schürer
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jaime R. Merchan
- Division of Medical Oncology, Department of Medicine, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
10
|
Hu S, Hu Z, Qin J, Lin C, Jiang X. In silico analysis identifies neuropilin-1 as a potential therapeutic target for SARS-Cov-2 infected lung cancer patients. Aging (Albany NY) 2021; 13:15770-15784. [PMID: 34168096 PMCID: PMC8266340 DOI: 10.18632/aging.203159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), and is highly contagious and pathogenic. TMPRSS2 and Neuropilin-1, the key components that facilitate SARS-CoV-2 infection, are potential targets for treatment of COVID-19. Here we performed a comprehensive analysis on NRP1 and TMPRSS2 in lung to provide information for treating comorbidity of COVID-19 with lung cancer. NRP1 is widely expressed across all the human tissues while TMPRSS2 is expressed in a restricted pattern. High level of NRP1 associates with worse prognosis in multiple cancers, while high level of TMPRSS2 is associated with better survival of Lung Adenocarcinoma (LUAD). Moreover, NRP1 positively correlates with the oncogenic Cancer Associated Fibroblast (CAF), macrophage and endothelial cells infiltration, negatively correlates with infiltration of CD8+ T cell, the tumor killer cell in Lung Squamous cell carcinoma (LUSC). TMPRSS2 shows negative correlation with the oncogenic events in LUAD. RNA-seq data show that NRP1 level is slightly decreased in peripheral blood of ICU admitted COVID-19 patients, unaltered in lung, while TMPRSS2 level is significantly decreased in lung of COVID-19 patients. Our analysis suggests NRP1 as a potential therapeutic target, while sets an alert on targeting TMPRSS2 for treating comorbidity of COVID-19 and lung cancers.
Collapse
Affiliation(s)
- Song Hu
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Zheyu Hu
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Jiajia Qin
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Chuwen Lin
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Xuan Jiang
- Molecular Cancer Research Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| |
Collapse
|
11
|
Zhu M, Xiao S. Expression profiles and prognostic values of BolA family members in ovarian cancer. J Ovarian Res 2021; 14:75. [PMID: 34078439 PMCID: PMC8170995 DOI: 10.1186/s13048-021-00821-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The BOLA gene family, comprising three members, is mainly involved in regulating intracellular iron homeostasis. Emerging evidence suggests that BolA family member 2 plays a vital role in tumorigenesis and hepatic cellular carcinoma progression. However, there was less known about its role in ovarian cancer. METHODS In the present study, we investigated the expression profiles, prognostic roles, and genetic alterations of three BolA family members in patients with ovarian cancer through several public databases, containing Oncomine and Gene Expression Profiling Interactive Analysis, Human Protein Atlas, Kaplan-Meier plotter and cBioPortal. Then, we constructed the protein-protein interaction networks of BOLA proteins and their interactors by using the String database and Cytoscape software. In addition, we performed the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment by the Annotation, Visualization, and Integrated Discovery database. Finally, we explored the mechanisms underlying BolA family members' involvement in OC by using gene set enrichment analysis. RESULTS The mRNA and protein expression levels of BOLA2 and BOLA3 were heavily higher in ovarian cancer tissues than in normal ovarian tissues. Dysregulated mRNA expressions of three BolA family members were significantly associated with prognosis in overall or subgroup analysis. Moreover, genetic alterations also occurred in three BolA family members in ovarian cancer. GO analysis indicated that BolA family members might regulate the function of metal ion binding and protein disulfide oxidoreductase activity. Gene set enrichment analysis indicated that BolA family members were mainly associated with oxidative phosphorylation, proteasome, protein export, and glutathione metabolism in ovarian cancer. CONCLUSION In brief, our finding may contribute to increasing currently limited prognostic biomarkers and treatment options for ovarian cancer.
Collapse
Affiliation(s)
- Mingyang Zhu
- Department of Nursing, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China
| | - Shiqi Xiao
- Department of Nursing, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning, 110004, People's Republic of China.
| |
Collapse
|
12
|
Kuijpers TJM, Kleinjans JCS, Jennen DGJ. From multi-omics integration towards novel genomic interaction networks to identify key cancer cell line characteristics. Sci Rep 2021; 11:10542. [PMID: 34006939 PMCID: PMC8131752 DOI: 10.1038/s41598-021-90047-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 11/09/2022] Open
Abstract
Cancer is a complex disease where cancer cells express epigenetic and transcriptomic mechanisms to promote tumor initiation, progression, and survival. To extract relevant features from the 2019 Cancer Cell Line Encyclopedia (CCLE), a multi-layer nonnegative matrix factorization approach is used. We used relevant feature genes and DNA promoter regions to construct genomic interaction network to study gene-gene and gene-DNA promoter methylation relationships. Here, we identified a set of gene transcripts and methylated DNA promoter regions for different clusters, including one homogeneous lymphoid neoplasms cluster. In this cluster, we found different methylated transcription factors that affect transcriptional activation of EGFR and downstream interactions. Furthermore, the hippo-signaling pathway might not function properly because of DNA hypermethylation and low gene expression of both LATS2 and YAP1. Finally, we could identify a potential dysregulation of the CD28-CD86-CTLA4 axis. Characterizing the interaction of the epigenome and the transcriptome is vital for our understanding of cancer cell line behavior, not only for deepening insights into cancer-related processes but also for future disease treatment and drug development. Here we have identified potential candidates that characterize cancer cell lines, which give insight into the development and progression of cancers.
Collapse
Affiliation(s)
- T J M Kuijpers
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - J C S Kleinjans
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - D G J Jennen
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
13
|
Jiang W, Zhang C, Kang Y, Yu X, Pang P, Li G, Feng Y. MRPL42 is activated by YY1 to promote lung adenocarcinoma progression. J Cancer 2021; 12:2403-2411. [PMID: 33758616 PMCID: PMC7974901 DOI: 10.7150/jca.52277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 02/07/2021] [Indexed: 12/31/2022] Open
Abstract
Mammalian mitochondrial ribosomal proteins are a group of protein factors encoded by nuclear genes, responsible for the synthesis of proteins in mitochondria. As a member of mitochondrial ribosomal proteins, MRPL42 (mitochondrial ribosomal protein L42) belongs to 28S and 39S subunits. The current literature showed that its role in lung adenocarcinoma (LUAD) was not clear. We found that MRPL42 was highly expressed in early-stage LUAD tissues and cell lines, and remarkably related to the prognosis of patients. Knockdown of MRPL42 could reduce the proliferation and colonization, promote cell cycle arrest in G1/S phase, and weaken the migration and invasion ability of LUAD cells in vitro. Moreover, depletion of MRPL42 also inhibited tumor growth in vivo. Bioinformatics analysis found that YY1 may bind to the promoter region upstream of the MRPL42 gene to promote the transcription of MRPL42, which was verified by the ChIP and Dual luciferase reporter assay. QRT-PCR confirmed that knocking down YY1 could attenuate the expression of MRPL42. In summary, MRPL42 acts as an oncogene in LUAD, and its expression level is regulated by YY1.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow, University, Suzhou, Jiangsu, China
| | - Chengpeng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow, University, Suzhou, Jiangsu, China
| | - Yunteng Kang
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow, University, Suzhou, Jiangsu, China
| | - Xiaojun Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow, University, Suzhou, Jiangsu, China
| | - Pei Pang
- Department of Pathology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guangbin Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow, University, Suzhou, Jiangsu, China
| | - Yu Feng
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow, University, Suzhou, Jiangsu, China
| |
Collapse
|
14
|
The Prognostic Values of the Insulin-Like Growth Factor Binding Protein Family in Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7658782. [PMID: 33282953 PMCID: PMC7685796 DOI: 10.1155/2020/7658782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Purpose To assess the expression of insulin-like growth factor binding protein (IGFBP) family and its prognostic impact in ovarian cancer (OC) patients. Materials and Methods The mRNA expression and protein expression of individual IGFBPs in healthy ovarian samples and OC tissues were explored through Oncomine, Gene Expression Profiling Interactive Analysis, and Human Protein Atlas database. Additionally, the prognostic values of the six IGFBP members in patients with OC were evaluated by Kaplan-Meier plotter. Results IGFBP2 and IGFBP4 mRNA expression were remarkably upregulated in patients with OC. To be specific, the mRNA expression of IGFBP2 was upregulated in patients with serous ovarian cancer (SOC), while IGFBP1/3/4/5/6 mRNA levels were downregulated. In addition, the IGFBP4 protein expression was upregulated in SOC, and the IGFBP6 protein expression was upregulated in both of SOC and endometrioid ovarian cancer (EOC) tissues. High IGFBP1 mRNA levels showed favorable overall survival (OS) and progression-free survival (PFS) in all OC. Meanwhile, increased IGFBP5/6 mRNA levels revealed worsen OS and PFS in all OC patients. IGFBP4/6 mRNA levels predicted unfavorable OS and PFS only in SOC patients. Moreover, the aberrant mRNA expression of IGFBP1/2/4/5/6 was correlated with significantly prognosis in patients receiving different chemotherapeutic regimens. Conclusion This study indicates that the IGFBP family reveals distinct prognosis in patients with OC. IGFBP1/2/4/5/6 are useful prognostic predictors for chemotherapeutic effect in OC patients, and IGFBP2/4 are potential tumor markers for the diagnosis of OC.
Collapse
|
15
|
Cámara-Quílez M, Barreiro-Alonso A, Rodríguez-Bemonte E, Quindós-Varela M, Cerdán ME, Lamas-Maceiras M. Differential Characteristics of HMGB2 Versus HMGB1 and their Perspectives in Ovary and Prostate Cancer. Curr Med Chem 2020; 27:3271-3289. [PMID: 30674244 DOI: 10.2174/0929867326666190123120338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/28/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
We have summarized common and differential functions of HMGB1 and HMGB2 proteins with reference to pathological processes, with a special focus on cancer. Currently, several "omic" approaches help us compare the relative expression of these 2 proteins in healthy and cancerous human specimens, as well as in a wide range of cancer-derived cell lines, or in fetal versus adult cells. Molecules that interfere with HMGB1 functions, though through different mechanisms, have been extensively tested as therapeutic agents in animal models in recent years, and their effects are summarized. The review concludes with a discussion on the perspectives of HMGB molecules as targets in prostate and ovarian cancers.
Collapse
Affiliation(s)
- María Cámara-Quílez
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Aida Barreiro-Alonso
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Esther Rodríguez-Bemonte
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - María Quindós-Varela
- Translational Cancer Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Carretera del Pasaje s/n, 15006 A Coruña, Spain
| | - M Esperanza Cerdán
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| | - Mónica Lamas-Maceiras
- EXPRELA Group, Centro de Investigacions Cientificas Avanzadas (CICA), Departamento de Bioloxia. Facultade de Ciencias, INIBIC- Universidade da Coruna, Campus de A Zapateira, 15071, A Coruna, Spain
| |
Collapse
|
16
|
Chen P, Shen Z, Fang X, Wang G, Wang X, Wang J, Xi S. Silencing of keratin 17 by lentivirus-mediated short hairpin RNA inhibits the proliferation of PANC-1 human pancreatic cancer cells. Oncol Lett 2020; 19:3531-3541. [PMID: 32269627 PMCID: PMC7114934 DOI: 10.3892/ol.2020.11469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 01/05/2023] Open
Abstract
Keratin 17 (KRT17) has been demonstrated to be a potential biological marker for the prediction of prognosis in particular types of cancer. The aim of the present study was to investigate the molecular mechanisms underlying the function of KRT17 in the pancreatic cancer (PAC) cell line PANC-1 and the potential of KRT17 as a therapeutic target for PAC. KRT17 expression levels were analyzed using quantitative PCR and compared with histological data using bioinformatics tools in PAC samples and three human PAC cell lines. Cell proliferation was determined using an MTT assay, in addition to cell cycle distribution and apoptosis analysis using flow cytometry, colony formation assay using Giemsa staining and cell motility analysis using a Transwell migration assay. Tumor growth was evaluated in vivo in nude mice. The expression levels of a number of signaling molecules were measured to establish the potential mechanism by which silencing KRT17 expression affected PAC PANC-1 cells. Increased levels of KRT17 expression were observed in human PAC compared with normal tissues, as well as in three human PAC cell lines (MIA PaCa-2, PANC-1 and KP-3 cells) compared with the H6c7 human immortal pancreatic duct epithelial cell line. High expression levels of KRT17 in PAC samples were associated with poor overall survival (P=0.036) and disease-free survival (P=0.017). Lentivirus-mediated KRT17 silencing inhibited cell proliferation, colony formation and migration, but promoted apoptosis and resulted in cell cycle arrest in the G0/G1 phase in PANC-1 cells. In addition, KRT17 knockdown inhibited in vivo tumor growth. KRT17 knockdown induced dysregulation of ERK1/2 and upregulation of the pro-apoptotic Bcl-2 protein Bad. In conclusion, the present study demonstrated that elevated KRT17 levels are positively associated with pancreatic cancer progression; KRT17 knockdown suppressed cell growth, colony formation, migration and tumor growth, and induced apoptosis and cell cycle arrest, affecting ERK1/2/Bad signaling. Therefore, the results of the present study suggested that KRT17 may be a potential target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Zhengchao Shen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaosan Fang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Guannan Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Xiaoming Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Jun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Shihang Xi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
17
|
Guo J, Nie X, Giebler M, Mlcochova H, Wang Y, Grow EJ, Kim R, Tharmalingam M, Matilionyte G, Lindskog C, Carrell DT, Mitchell RT, Goriely A, Hotaling JM, Cairns BR. The Dynamic Transcriptional Cell Atlas of Testis Development during Human Puberty. Cell Stem Cell 2020; 26:262-276.e4. [PMID: 31928944 PMCID: PMC7298616 DOI: 10.1016/j.stem.2019.12.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/03/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
Abstract
The human testis undergoes dramatic developmental and structural changes during puberty, including proliferation and maturation of somatic niche cells, and the onset of spermatogenesis. To characterize this understudied process, we profiled and analyzed single-cell transcriptomes of ∼10,000 testicular cells from four boys spanning puberty and compared them to those of infants and adults. During puberty, undifferentiated spermatogonia sequentially expand and differentiate prior to the initiation of gametogenesis. Notably, we identify a common pre-pubertal progenitor for Leydig and myoid cells and delineate candidate factors controlling pubertal differentiation. Furthermore, pre-pubertal Sertoli cells exhibit two distinct transcriptional states differing in metabolic profiles before converging to an alternative single mature population during puberty. Roles for testosterone in Sertoli cell maturation, antimicrobial peptide secretion, and spermatogonial differentiation are further highlighted through single-cell analysis of testosterone-suppressed transfemale testes. Taken together, our transcriptional atlas of the developing human testis provides multiple insights into developmental changes and key factors accompanying male puberty.
Collapse
Affiliation(s)
- Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; The Andrology Laboratory, Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Xichen Nie
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Maria Giebler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK
| | - Hana Mlcochova
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK
| | - Yueqi Wang
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Edward J Grow
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Robin Kim
- Section of Transplantation, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Melissa Tharmalingam
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Royal Hospital for Children and Young People, Edinburgh EH91LF, UK
| | - Gabriele Matilionyte
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Royal Hospital for Children and Young People, Edinburgh EH91LF, UK
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala 751 85, Sweden
| | - Douglas T Carrell
- The Andrology Laboratory, Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Royal Hospital for Children and Young People, Edinburgh EH91LF, UK
| | - Anne Goriely
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, UK
| | - James M Hotaling
- The Andrology Laboratory, Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
18
|
Zubair H, Patel GK, Khan MA, Azim S, Zubair A, Singh S, Srivastava SK, Singh AP. Proteomic Analysis of MYB-Regulated Secretome Identifies Functional Pathways and Biomarkers: Potential Pathobiological and Clinical Implications. J Proteome Res 2020; 19:794-804. [PMID: 31928012 DOI: 10.1021/acs.jproteome.9b00641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Earlier we have shown important roles of MYB in pancreatic tumor pathobiology. To better understand the role of MYB in the tumor microenvironment and identify MYB-associated secreted biomarker proteins, we conducted mass spectrometry analysis of the secretome from MYB-modulated and control pancreatic cancer cell lines. We also performed in silico analyses to determine MYB-associated biofunctions, gene networks, and altered biological pathways. Our data demonstrated significant modulation (p < 0.05) of 337 secreted proteins in MYB-silenced MiaPaCa cells, whereas 282 proteins were differentially present in MYB-overexpressing BxPC3 cells, compared to their respective control cells. Alteration of several phenotypes such as cellular movement, cell death and survival, inflammatory response, protein synthesis, etc. was associated with MYB-induced differentially expressed proteins (DEPs) in secretomes. DEPs from MYB-silenced MiaPaCa PC cells were suggestive of the downregulation of genes primarily associated with glucose metabolism, PI3K/AKT signaling, and oxidative stress response, among others. DEPs from MYB-overexpressing BxPC3 cells suggested the enhanced release of proteins associated with glucose metabolism and cellular motility. We also observed that MYB positively regulated the expression of four proteins with potential biomarker properties, i.e., FLNB, ENO1, ITGB1, and INHBA. Mining of publicly available databases using Oncomine and UALCAN demonstrated that these genes are overexpressed in pancreatic tumors and associated with reduced patient survival. Altogether, these data provide novel avenues for future investigations on diverse biological functions of MYB, specifically in the tumor microenvironment, and could also be exploited for biomarker development.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Pathology, College of Medicine , University of South Alabama , Mobile , Alabama 36617 , United States.,Mitchell Cancer Institute , University of South Alabama , 1660 Springhill Avenue , Mobile , Alabama 36604 , United States
| | - Girijesh Kumar Patel
- Mitchell Cancer Institute , University of South Alabama , 1660 Springhill Avenue , Mobile , Alabama 36604 , United States
| | - Mohammad Aslam Khan
- Department of Pathology, College of Medicine , University of South Alabama , Mobile , Alabama 36617 , United States.,Mitchell Cancer Institute , University of South Alabama , 1660 Springhill Avenue , Mobile , Alabama 36604 , United States
| | - Shafquat Azim
- Mitchell Cancer Institute , University of South Alabama , 1660 Springhill Avenue , Mobile , Alabama 36604 , United States
| | - Asif Zubair
- Molecular and Computational Biology, School of Biological Sciences, Dornsife College of Letters, Arts and Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Seema Singh
- Department of Pathology, College of Medicine , University of South Alabama , Mobile , Alabama 36617 , United States.,Mitchell Cancer Institute , University of South Alabama , 1660 Springhill Avenue , Mobile , Alabama 36604 , United States.,Department of Biochemistry and Molecular Biology, College of Medicine , University of South Alabama , Mobile , Alabama 36688 , United States
| | - Sanjeev Kumar Srivastava
- Department of Pathology, College of Medicine , University of South Alabama , Mobile , Alabama 36617 , United States.,Mitchell Cancer Institute , University of South Alabama , 1660 Springhill Avenue , Mobile , Alabama 36604 , United States
| | - Ajay Pratap Singh
- Department of Pathology, College of Medicine , University of South Alabama , Mobile , Alabama 36617 , United States.,Mitchell Cancer Institute , University of South Alabama , 1660 Springhill Avenue , Mobile , Alabama 36604 , United States.,Department of Biochemistry and Molecular Biology, College of Medicine , University of South Alabama , Mobile , Alabama 36688 , United States
| |
Collapse
|
19
|
Blake LE, Roux J, Hernando-Herraez I, Banovich NE, Perez RG, Hsiao CJ, Eres I, Cuevas C, Marques-Bonet T, Gilad Y. A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res 2020; 30:250-262. [PMID: 31953346 PMCID: PMC7050529 DOI: 10.1101/gr.254904.119] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/02/2020] [Indexed: 01/02/2023]
Abstract
Previously published comparative functional genomic data sets from primates using frozen tissue samples, including many data sets from our own group, were often collected and analyzed using nonoptimal study designs and analysis approaches. In addition, when samples from multiple tissues were studied in a comparative framework, individuals and tissues were confounded. We designed a multitissue comparative study of gene expression and DNA methylation in primates that minimizes confounding effects by using a balanced design with respect to species, tissues, and individuals. We also developed a comparative analysis pipeline that minimizes biases attributable to sequence divergence. Thus, we present the most comprehensive catalog of similarities and differences in gene expression and DNA methylation levels between livers, kidneys, hearts, and lungs, in humans, chimpanzees, and rhesus macaques. We estimate that overall, interspecies and inter-tissue differences in gene expression levels can only modestly be accounted for by corresponding differences in promoter DNA methylation. However, the expression pattern of genes with conserved inter-tissue expression differences can be explained by corresponding interspecies methylation changes more often. Finally, we show that genes whose tissue-specific regulatory patterns are consistent with the action of natural selection are highly connected in both gene regulatory and protein–protein interaction networks.
Collapse
Affiliation(s)
- Lauren E Blake
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Julien Roux
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | | | - Nicholas E Banovich
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Raquel Garcia Perez
- Universitat Pompeu Fabra, Institute of Evolutionary Biology, 88 08003 Barcelona, Spain
| | - Chiaowen Joyce Hsiao
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Claudia Cuevas
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Tomas Marques-Bonet
- Universitat Pompeu Fabra, Institute of Evolutionary Biology, 88 08003 Barcelona, Spain.,Passeig de Lluís Companys, Catalan Institution of Research and Advanced Studies, 23 08010 Barcelona, Spain.,Barcelona Institute of Science and Technology, Centre for Genomic Regulation, 88 08003 Barcelona, Spain.,Universitat Autònoma de Barcelona, Institut Català de Paleontologia Miquel Crusafont, 08193 Barcelona, Spain
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.,Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
20
|
Chen Q, Xin A, Qu R, Zhang W, Li L, Chen J, Lu X, Gu Y, Li J, Sun X. Expression of ENPP3 in human cyclic endometrium: a novel molecule involved in embryo implantation. Reprod Fertil Dev 2019; 30:1277-1285. [PMID: 29614240 DOI: 10.1071/rd17257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 03/04/2018] [Indexed: 01/13/2023] Open
Abstract
Ectonucleotide pyrophosphatase-phosphodiesterase 3 (ENPP3), a protein detected in the human uterus, has been found to play an important role in the development and invasion of tumours. It was recently discovered that ENPP3 was upregulated during the window of implantation in the human endometrium but its functional relevance remains elusive. The objective was to determine ENPP3 expression in human endometrium and its roles in endometrial receptivity and embryo implantation. ENPP3 expression was analysed using immunohistochemistry and western blot assay. The effects of ENPP3 on embryo implantation were evaluated using a BeWo cell (a human choriocarcinoma cell line) spheroid attachment assay and BeWo cells were dual cultured with Ishikawa cells transfected with lentiviral vectors (LV5-NC or LV5-ENPP3) to mimic embryo implantation in a Transwell model. The effects of endometrial ENPP3 on factors related to endometrial receptivity were also determined. The results showed that ENPP3 was expressed in human endometrial epithelial cells and its expression levels changed during the menstrual cycle, peaking in the mid-secretory phase, corresponding to the time of embryo implantation. The overexpression of endometrial ENPP3 not only increased the embryo implantation rate but also had positive effects on the expression of factors related to endometrial receptivity in human endometrial cells. The results indicate that ENPP3 levels undergo cyclic changes in the endometrium and affect embryo adhesion and invasion via altering the expression of implantation factors in the human endometrium. Therefore, ENPP3 may play an important role in embryo implantation and may be a unique biomarker of endometrial receptivity.
Collapse
Affiliation(s)
- Qianqian Chen
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Aijie Xin
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Ronggui Qu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Wenbi Zhang
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Lu Li
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Junling Chen
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xiang Lu
- Shanghai Ji Ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yongwei Gu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Jing Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Xiaoxi Sun
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
21
|
Kumar R, Nagpal G, Kumar V, Usmani SS, Agrawal P, Raghava GPS. HumCFS: a database of fragile sites in human chromosomes. BMC Genomics 2019; 19:985. [PMID: 30999860 PMCID: PMC7402404 DOI: 10.1186/s12864-018-5330-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
Background Fragile sites are the chromosomal regions that are susceptible to breakage, and their frequency varies among the human population. Based on the frequency of fragile site induction, they are categorized as common and rare fragile sites. Common fragile sites are sensitive to replication stress and often rearranged in cancer. Rare fragile sites are the archetypal trinucleotide repeats. Fragile sites are known to be involved in chromosomal rearrangements in tumors. Human miRNA genes are also present at fragile sites. A better understanding of genes and miRNAs lying in the fragile site regions and their association with disease progression is required. Result HumCFS is a manually curated database of human chromosomal fragile sites. HumCFS provides useful information on fragile sites such as coordinates on the chromosome, cytoband, their chemical inducers and frequency of fragile site (rare or common), genes and miRNAs lying in fragile sites. Protein coding genes in the fragile sites were identified by mapping the coordinates of fragile sites with human genome Ensembl (GRCh38/hg38). Genes present in fragile sites were further mapped to DisGenNET database, to understand their possible link with human diseases. Human miRNAs from miRBase was also mapped on fragile site coordinates. In brief, HumCFS provides useful information about 125 human chromosomal fragile sites and their association with 4921 human protein-coding genes and 917 human miRNA’s. Conclusion User-friendly web-interface of HumCFS and hyper-linking with other resources will help researchers to search for genes, miRNAs efficiently and to intersect the relationship among them. For easy data retrieval and analysis, we have integrated standard web-based tools, such as JBrowse, BLAST etc. Also, the user can download the data in various file formats such as text files, gff3 files and Bed-format files which can be used on UCSC browser. Database URL:http://webs.iiitd.edu.in/raghava/humcfs/ Electronic supplementary material The online version of this article (10.1186/s12864-018-5330-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rajesh Kumar
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Gandharva Nagpal
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Vinod Kumar
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Salman Sadullah Usmani
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Piyush Agrawal
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India.,Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Gajendra P S Raghava
- Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020, India.
| |
Collapse
|
22
|
Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, Kim R, Carrell DT, Goriely A, Hotaling JM, Cairns BR. The adult human testis transcriptional cell atlas. Cell Res 2018; 28:1141-1157. [PMID: 30315278 PMCID: PMC6274646 DOI: 10.1038/s41422-018-0099-2] [Citation(s) in RCA: 402] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
Human adult spermatogenesis balances spermatogonial stem cell (SSC) self-renewal and differentiation, alongside complex germ cell-niche interactions, to ensure long-term fertility and faithful genome propagation. Here, we performed single-cell RNA sequencing of ~6500 testicular cells from young adults. We found five niche/somatic cell types (Leydig, myoid, Sertoli, endothelial, macrophage), and observed germline-niche interactions and key human-mouse differences. Spermatogenesis, including meiosis, was reconstructed computationally, revealing sequential coding, non-coding, and repeat-element transcriptional signatures. Interestingly, we identified five discrete transcriptional/developmental spermatogonial states, including a novel early SSC state, termed State 0. Epigenetic features and nascent transcription analyses suggested developmental plasticity within spermatogonial States. To understand the origin of State 0, we profiled testicular cells from infants, and identified distinct similarities between adult State 0 and infant SSCs. Overall, our datasets describe key transcriptional and epigenetic signatures of the normal adult human testis, and provide new insights into germ cell developmental transitions and plasticity.
Collapse
Affiliation(s)
- Jingtao Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.,Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT, 84122, USA
| | - Edward J Grow
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Hana Mlcochova
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - Geoffrey J Maher
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Xichen Nie
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Yixuan Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robin Kim
- Section of Transplantation, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, 84132, USA
| | - Douglas T Carrell
- Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT, 84122, USA
| | - Anne Goriely
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX39DS, UK
| | - James M Hotaling
- Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT, 84122, USA
| | - Bradley R Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
23
|
The prognostic values of the peroxiredoxins family in ovarian cancer. Biosci Rep 2018; 38:BSR20180667. [PMID: 30104402 PMCID: PMC6123065 DOI: 10.1042/bsr20180667] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose: Peroxiredoxins (PRDXs) are a family of antioxidant enzymes with six identified mammalian isoforms (PRDX1–6). PRDX expression is up-regulated in various types of solid tumors; however, individual PRDX expression, and its impact on prognostic value in ovarian cancer patients, remains unclear. Methods: PRDXs family protein expression profiles in normal ovarian tissues and ovarian cancer tissues were examined using the Human Protein Atlas database. Then, the prognostic roles of PRDX family members in several sets of clinical data (histology, pathological grades, clinical stages, and applied chemotherapy) in ovarian cancer patients were investigated using the Kaplan–Meier plotter. Results: PRDXs family protein expression in ovarian cancer tissues was elevated compared with normal ovarian tissues. Meanwhile, elevated expression of PRDX3, PRDX5, and PRDX6 mRNAs showed poorer overall survival (OS); PRDX5 and PRDX6 also predicted poor progression-free survival (PFS) for ovarian cancer patients. Furthermore, PRDX3 played significant prognostic roles, particularly in poor differentiation and late-stage serous ovarian cancer patients. Additionally, PRDX5 predicted a lower PFS in all ovarian cancer patients treated with Platin, Taxol, and Taxol+Platin chemotherapy. PRDX3 and PRDX6 also showed poor PFS in patients treated with Platin chemotherapy. Furthermore, PRDX3 and PRDX5 indicated lower OS in patients treated with these three chemotherapeutic agents. PRDX6 predicted a poorer OS in patients treated with Taxol and Taxol+Platin chemotherapy. Conclusion: These results suggest that there are distinct prognostic values of PRDX family members in patients with ovarian cancer, and that the expression of PRDX3, PRDX5, and PRDX6 mRNAs are a useful prognostic indicator in the effect of chemotherapy in ovarian cancer patients.
Collapse
|
24
|
Neely BA, Prager KC, Bland AM, Fontaine C, Gulland FM, Janech MG. Proteomic Analysis of Urine from California Sea Lions ( Zalophus californianus): A Resource for Urinary Biomarker Discovery. J Proteome Res 2018; 17:3281-3291. [PMID: 30113852 DOI: 10.1021/acs.jproteome.8b00416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Urinary markers for the assessment of kidney diseases in wild animals are limited, in part, due to the lack of urinary proteome data, especially for marine mammals. One of the most prevalent kidney diseases in marine mammals is caused by Leptospira interrogans, which is the second most common etiology linked to stranding of California sea lions ( Zalophus californianus). Urine proteins from 11 sea lions with leptospirosis kidney disease and eight sea lions without leptospirosis or kidney disease were analyzed using shotgun proteomics. In total, 2694 protein groups were identified, and 316 were differentially abundant between groups. Major urine proteins in sea lions were similar to major urine proteins in dogs and humans except for the preponderance of resistin, lysozyme C, and PDZ domain containing 1, which appear to be over-represented. Previously reported urine protein markers of kidney injury in humans and animals were also identified. Notably, neutrophil gelatinase-associated lipocalin, osteopontin, and epidermal fatty acid binding protein were elevated over 20-fold in the leptospirosis-infected sea lions. Consistent with leptospirosis infection in rodents, urinary proteins associated with the renin-angiotensin system were depressed, including neprilysin. This study represents a foundation from which to explore the clinical use of urinary protein markers in California sea lions.
Collapse
Affiliation(s)
- Benjamin A Neely
- Marine Biochemical Sciences Group , National Institute of Standards and Technology , NIST Charleston , Charleston , South Carolina 29412 , United States
| | - Katherine C Prager
- Department of Ecology and Evolutionary Biology , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Alison M Bland
- Hollings Marine Laboratory , College of Charleston , Charleston , South Carolina 29412 , United States
| | - Christine Fontaine
- The Marine Mammal Center , 2000 Bunker Road , Sausalito , California 94965 , United States
| | - Frances M Gulland
- The Marine Mammal Center , 2000 Bunker Road , Sausalito , California 94965 , United States
| | - Michael G Janech
- Hollings Marine Laboratory , College of Charleston , Charleston , South Carolina 29412 , United States
| |
Collapse
|
25
|
Wang X, Liao Z, Bai Z, He Y, Duan J, Wei L. MiR-93-5p Promotes Cell Proliferation through Down-Regulating PPARGC1A in Hepatocellular Carcinoma Cells by Bioinformatics Analysis and Experimental Verification. Genes (Basel) 2018; 9:genes9010051. [PMID: 29361788 PMCID: PMC5793202 DOI: 10.3390/genes9010051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A, formerly known as PGC-1a) is a transcriptional coactivator and metabolic regulator. Previous studies are mainly focused on the association between PPARGC1A and hepatoma. However, the regulatory mechanism remains unknown. A microRNA associated with cancer (oncomiR), miR-93-5p, has recently been found to play an essential role in tumorigenesis and progression of various carcinomas, including liver cancer. Therefore, this paper aims to explore the regulatory mechanism underlying these two proteins in hepatoma cells. Firstly, an integrative analysis was performed with miRNA–mRNA modules on microarray and The Cancer Genome Atlas (TCGA) data and obtained the core regulatory network and miR-93-5p/PPARGC1A pair. Then, a series of experiments were conducted in hepatoma cells with the results including miR-93-5p upregulated and promoted cell proliferation. Thirdly, the inverse correlation between miR-93-5p and PPARGC1A expression was validated. Finally, we inferred that miR-93-5p plays an essential role in inhibiting PPARGC1A expression by directly targeting the 3′-untranslated region (UTR) of its mRNA. In conclusion, these results suggested that miR-93-5p overexpression contributes to hepatoma development by inhibiting PPARGC1A. It is anticipated to be a promising therapeutic strategy for patients with liver cancer in the future.
Collapse
Affiliation(s)
- Xinrui Wang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Zhimin Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
- Department of Clinical Laboratory, Jinjiang Municipal Hospital, Jinjiang 362200, China.
| | - Yan He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Juan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Leyi Wei
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
26
|
Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, Murphy PJ, Wike CL, Carrell DT, Goriely A, Hotaling JM, Cairns BR. Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development. Cell Stem Cell 2017; 21:533-546.e6. [PMID: 28985528 PMCID: PMC5832720 DOI: 10.1016/j.stem.2017.09.003] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/12/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022]
Abstract
Human adult spermatogonial stem cells (hSSCs) must balance self-renewal and differentiation. To understand how this is achieved, we profiled DNA methylation and open chromatin (ATAC-seq) in SSEA4+ hSSCs, analyzed bulk and single-cell RNA transcriptomes (RNA-seq) in SSEA4+ hSSCs and differentiating c-KIT+ spermatogonia, and performed validation studies via immunofluorescence. First, DNA hypomethylation at embryonic developmental genes supports their epigenetic "poising" in hSSCs for future/embryonic expression, while core pluripotency genes (OCT4 and NANOG) were transcriptionally and epigenetically repressed. Interestingly, open chromatin in hSSCs was strikingly enriched in binding sites for pioneer factors (NFYA/B, DMRT1, and hormone receptors). Remarkably, single-cell RNA-seq clustering analysis identified four cellular/developmental states during hSSC differentiation, involving major transitions in cell-cycle and transcriptional regulators, splicing and signaling factors, and glucose/mitochondria regulators. Overall, our results outline the dynamic chromatin/transcription landscape operating in hSSCs and identify crucial molecular pathways that accompany the transition from quiescence to proliferation and differentiation.
Collapse
Affiliation(s)
- Jingtao Guo
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Edward J Grow
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Chongil Yi
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hana Mlcochova
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK
| | - Geoffrey J Maher
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Patrick J Murphy
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Candice L Wike
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Douglas T Carrell
- Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT 84122, USA
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX39DS, UK
| | - James M Hotaling
- Department of Surgery (Andrology/Urology), Center for Reconstructive Urology and Men's Health, University of Utah Health Sciences Center, Salt Lake City, UT 84122, USA
| | - Bradley R Cairns
- Howard Hughes Medical Institute, Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
27
|
Zhong W, Chen S, Qin Y, Zhang H, Wang H, Meng J, Huai L, Zhang Q, Yin T, Lei Y, Han J, He L, Sun B, Liu H, Liu Y, Zhou H, Sun T, Yang C. Doxycycline inhibits breast cancer EMT and metastasis through PAR-1/NF-κB/miR-17/E-cadherin pathway. Oncotarget 2017; 8:104855-104866. [PMID: 29285218 PMCID: PMC5739605 DOI: 10.18632/oncotarget.20418] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 01/12/2023] Open
Abstract
Doxycycline displays high efficiency for cancer therapy. However, the molecular mechanism is poorly understood. In our previous study, doxycycline was found to suppress tumor progression by directly targeting proteinase-activated receptor 1 (PAR1). In this study, microRNAs were found to be involved in PAR1-mediated anti-tumor effects of doxycycline. Among these miRNAs, miR-17 was found to promote breast cancer cell metastasis both in vivo and in vitro. Moreover, miR-17 could reverse partial doxycycline inhibition effects on breast cancer. Employing luciferase and chromatin immunoprecipitation assays, nuclear factor-kappaB (NF-κB) was found to bind miR-17 promoters. Furthermore, E-cadherin was identified as the target gene of miR-17. These results showed that miR-17 can resist the inhibitory effects of doxycycline on breast cancer epithelial–mesenchymal transformation (EMT) by targeting E-cadherin.
Collapse
Affiliation(s)
- Weilong Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300000, China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Hongzhi Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Jing Meng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Longcong Huai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Qiang Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Tingting Yin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Yueyang Lei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Lingfei He
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China
| | - Bo Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300000, China
| | - Huijuan Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300000, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300000, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300000, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300000, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300000, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300000, China
| |
Collapse
|
28
|
Khan AO, Simms VA, Pike JA, Thomas SG, Morgan NV. CRISPR-Cas9 Mediated Labelling Allows for Single Molecule Imaging and Resolution. Sci Rep 2017; 7:8450. [PMID: 28814796 PMCID: PMC5559501 DOI: 10.1038/s41598-017-08493-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/29/2017] [Indexed: 12/25/2022] Open
Abstract
Single molecule imaging approaches like dSTORM and PALM resolve structures at 10–20 nm, and allow for unique insights into protein stoichiometry and spatial relationships. However, key obstacles remain in developing highly accurate quantitative single molecule approaches. The genomic tagging of PALM fluorophores through CRISPR-Cas9 offers an excellent opportunity for generating stable cell lines expressing a defined single molecule probe at endogenous levels, without the biological disruption and variability inherent to transfection. A fundamental question is whether these comparatively low levels of expression can successfully satisfy the stringent labelling demands of super-resolution SMLM. Here we apply CRISPR-Cas9 gene editing to tag a cytoskeletal protein (α-tubulin) and demonstrate a relationship between expression level and the subsequent quality of PALM imaging, and that spatial resolutions comparable to dSTORM can be achieved with CRISPR-PALM. Our approach shows a relationship between choice of tag and the total expression of labelled protein, which has important implications for the development of future PALM tags. CRISPR-PALM allows for nanoscopic spatial resolution and the unique quantitative benefits of single molecule localization microscopy through endogenous expression, as well as the capacity for super-resolved live cell imaging.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Victoria A Simms
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy A Pike
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Steven G Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. .,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK.
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|