1
|
Ling SF, Yap CF, Nair N, Bluett J, Morgan AW, Isaacs JD, Wilson AG, Hyrich KL, Barton A, Plant D. A proteomics study of rheumatoid arthritis patients on etanercept identifies putative biomarkers associated with clinical outcome measures. Rheumatology (Oxford) 2024; 63:1015-1021. [PMID: 37389432 PMCID: PMC10986807 DOI: 10.1093/rheumatology/kead321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
OBJECTIVES Biologic DMARDs (bDMARDs) are widely used in patients with RA, but response to bDMARDs is heterogeneous. The objective of this work was to identify pretreatment proteomic biomarkers associated with RA clinical outcome measures in patients starting bDMARDs. METHODS Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) was used to generate spectral maps of sera from patients with RA before and after 3 months of treatment with the bDMARD etanercept. Protein levels were regressed against RA clinical outcome measures, i.e. 28-joint DAS (DAS28) and its subcomponents and DAS28 <2.6 (i.e. remission). The proteins with the strongest evidence for association were analysed in an independent, replication dataset. Finally, subnetwork analysis was carried out using the Disease Module Detection algorithm and biological plausibility of identified proteins was assessed by enrichment analysis. RESULTS A total of 180 patients with RA were included in the discovery dataset and 58 in the validation dataset from a UK-based prospective multicentre study. Ten individual proteins were found to be significantly associated with RA clinical outcome measures. The association of T-complex protein 1 subunit η with DAS28 remission was replicated in an independent cohort. Subnetwork analysis of the 10 proteins from the regression analysis identified the ontological theme, with the strongest associations being with acute phase and acute inflammatory responses. CONCLUSION This longitudinal study of 180 patients with RA commencing etanercept has identified several putative protein biomarkers of treatment response to this drug, one of which was replicated in an independent cohort.
Collapse
Affiliation(s)
- Stephanie F Ling
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Chuan Fu Yap
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Nisha Nair
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - James Bluett
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ann W Morgan
- School of Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- NIHR In Vitro Diagnostic Co-operative, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
- Musculoskeletal Unit, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle-upon-Tyne, UK
| | - Anthony G Wilson
- School of Medicine and Medical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Kimme L Hyrich
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- NIHR Biomedical Research Centre Manchester, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
2
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
3
|
Zeng L, Yu G, Yang K, He Q, Hao W, Xiang W, Long Z, Chen H, Tang X, Sun L. Exploring the mechanism of Celastrol in the treatment of rheumatoid arthritis based on systems pharmacology and multi-omics. Sci Rep 2024; 14:1604. [PMID: 38238321 PMCID: PMC10796403 DOI: 10.1038/s41598-023-48248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
To explore the molecular network mechanism of Celastrol in the treatment of rheumatoid arthritis (RA) based on a novel strategy (integrated systems pharmacology, proteomics, transcriptomics and single-cell transcriptomics). Firstly, the potential targets of Celastrol and RA genes were predicted through the database, and the Celastrol-RA targets were obtained by taking the intersection. Then, transcriptomic data and proteomic data of Celastrol treatment of RA were collected. Subsequently, Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were imported into Metascape for enrichment analysis, and related networks were constructed. Finally, the core targets of Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were mapped to synoviocytes of RA mice to find potential cell populations for Celastrol therapy. A total of 195 Celastrol-RA targets, 2068 differential genes, 294 differential proteins were obtained. The results of enrichment analysis showed that these targets, genes and proteins were mainly related to extracellular matrix organization, TGF-β signaling pathway, etc. The results of single cell sequencing showed that the main clusters of these targets, genes, and proteins could be mapped to RA synovial cells. For example, Mmp9 was mainly distributed in Hematopoietic cells, especially in Ptprn+fibroblast. The results of molecular docking also suggested that Celastrol could stably combine with molecules predicted by network pharmacology. In conclusion, this study used systems pharmacology, transcriptomics, proteomics, single-cell transcriptomics to reveal that Celastrol may regulate the PI3K/AKT signaling pathway by regulating key targets such as TNF and IL6, and then play an immune regulatory role.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
| |
Collapse
|
4
|
Motta F, Tonutti A, Isailovic N, Ceribelli A, Costanzo G, Rodolfi S, Selmi C, De Santis M. Proteomic aptamer analysis reveals serum biomarkers associated with disease mechanisms and phenotypes of systemic sclerosis. Front Immunol 2023; 14:1246777. [PMID: 37753072 PMCID: PMC10518467 DOI: 10.3389/fimmu.2023.1246777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Background Systemic sclerosis (SSc) is an autoimmune connective tissue disease that affects multiple organs, leading to elevated morbidity and mortality with limited treatment options. The early detection of organ involvement is challenging as there is currently no serum marker available to predict the progression of SSc. The aptamer technology proteomic analysis holds the potential to correlate SSc manifestations with serum proteins up to femtomolar concentrations. Methods This is a two-tier study of serum samples from women with SSc (including patients with interstitial lung disease - ILD - at high-resolution CT scan) and age-matched healthy controls (HC) that were first analyzed with aptamer-based proteomic analysis for over 1300 proteins. Proposed associated proteins were validated by ELISA first in an independent cohort of patients with SSc and HC, and selected proteins subject to further validation in two additional cohorts. Results The preliminary aptamer-based proteomic analysis identified 33 proteins with significantly different concentrations in SSc compared to HC sera and 9 associated with SSc-ILD, including proteins involved in extracellular matrix formation and cell-cell adhesion, angiogenesis, leukocyte recruitment, activation, and signaling. Further validations in independent cohorts ultimately confirmed the association of specific proteins with early SSc onset, specific organ involvement, and serum autoantibodies. Conclusions Our multi-tier proteomic analysis identified serum proteins discriminating patients with SSc and HC or associated with different SSc subsets, disease duration, and manifestations, including ILD, skin involvement, esophageal disease, and autoantibodies.
Collapse
Affiliation(s)
- Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Natasa Isailovic
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Angela Ceribelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Giovanni Costanzo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Stefano Rodolfi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Rheumatology and Clinical Immunology, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
5
|
Maciel-Fiuza MF, Muller GC, Campos DMS, do Socorro Silva Costa P, Peruzzo J, Bonamigo RR, Veit T, Vianna FSL. Role of gut microbiota in infectious and inflammatory diseases. Front Microbiol 2023; 14:1098386. [PMID: 37051522 PMCID: PMC10083300 DOI: 10.3389/fmicb.2023.1098386] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host’s immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host’s immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.
Collapse
Affiliation(s)
- Miriãn Ferrão Maciel-Fiuza
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Guilherme Cerutti Muller
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Daniel Marques Stuart Campos
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Perpétua do Socorro Silva Costa
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Department of Nursing, Universidade Federal do Maranhão, Imperatriz, Brazil
| | - Juliano Peruzzo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Renan Rangel Bonamigo
- Dermatology Service of Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Pathology, Universidade Federal De Ciências Da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Veit
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Sales Luiz Vianna
- Postgraduate Program in Genetics and Molecular Biology, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Instituto Nacional de Genética Médica Populacional, Porto Alegre, Brazil
- Genomics Medicine Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine, Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- *Correspondence: Fernanda Sales Luiz Vianna,
| |
Collapse
|
6
|
Galita G, Sarnik J, Brzezinska O, Budlewski T, Dragan G, Poplawska M, Majsterek I, Poplawski T, Makowska JS. Polymorphisms in DNA Repair Genes and Association with Rheumatoid Arthritis in a Pilot Study on a Central European Population. Int J Mol Sci 2023; 24:ijms24043804. [PMID: 36835215 PMCID: PMC9964492 DOI: 10.3390/ijms24043804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, multifactorial autoimmune disease characterized by chronic arthritis, a tendency to develop joint deformities, and involvement of extra-articular tissues. The risk of malignant neoplasms among patients with RA is the subject of ongoing research due to the autoimmune pathogenesis that underlies RA, the common etiology of rheumatic disease and malignancies, and the use of immunomodulatory therapy, which can alter immune system function and thus increase the risk of malignant neoplasms. This risk can also be increased by impaired DNA repair efficiency in individuals with RA, as reported in our recent study. Impaired DNA repair may reflect the variability in the genes that encode DNA repair proteins. The aim of our study was to evaluate the genetic variation in RA within the genes of the DNA damage repair system through base excision repair (BER), nucleotide excision repair (NER), and the double strand break repair system by homologous recombination (HR) and non-homologous end joining (NHEJ). We genotyped a total of 28 polymorphisms in 19 genes encoding DNA repair-related proteins in 100 age- and sex-matched RA patients and healthy subjects from Central Europe (Poland). Polymorphism genotypes were determined using the Taq-man SNP Genotyping Assay. We found an association between the RA occurrence and rs25487/XRCC1, rs7180135/RAD51, rs1801321/RAD51, rs963917/RAD51B, rs963918/RAD51B, rs2735383/NBS1, rs132774/XRCC6, rs207906/XRCC5, and rs861539/XRCC3 polymorphisms. Our results suggest that polymorphisms of DNA damage repair genes may play a role in RA pathogenesis and may be considered as potential markers of RA.
Collapse
Affiliation(s)
- Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
- Doctoral Study in Molecular Genetics, Cytogenetics and Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Olga Brzezinska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Tomasz Budlewski
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Grzegorz Dragan
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Marta Poplawska
- Biobank, Department of Immunology and Allergy, Medical University of Lodz, 92-213 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Joanna S. Makowska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
- Correspondence:
| |
Collapse
|
7
|
Jiang Y, Zhong S, He S, Weng J, Liu L, Ye Y, Chen H. Biomarkers (mRNAs and non-coding RNAs) for the diagnosis and prognosis of rheumatoid arthritis. Front Immunol 2023; 14:1087925. [PMID: 36817438 PMCID: PMC9929281 DOI: 10.3389/fimmu.2023.1087925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, diagnostic and therapeutic approaches for rheumatoid arthritis (RA) have continued to improve. However, in the advanced stages of the disease, patients are unable to achieve long-term clinical remission and often suffer from systemic multi-organ damage and severe complications. Patients with RA usually have no overt clinical manifestations in the early stages, and by the time a definitive diagnosis is made, the disease is already at an advanced stage. RA is diagnosed clinically and with laboratory tests, including the blood markers C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) and the autoantibodies rheumatoid factor (RF) and anticitrullinated protein antibodies (ACPA). However, the presence of RF and ACPA autoantibodies is associated with aggravated disease, joint damage, and increased mortality, and these autoantibodies have low specificity and sensitivity. The etiology of RA is unknown, with the pathogenesis involving multiple factors and clinical heterogeneity. The early diagnosis, subtype classification, and prognosis of RA remain challenging, and studies to develop minimally invasive or non-invasive biomarkers in the form of biofluid biopsies are becoming more common. Non-coding RNA (ncRNA) molecules are composed of long non-coding RNAs, small nucleolar RNAs, microRNAs, and circular RNAs, which play an essential role in disease onset and progression and can be used in the early diagnosis and prognosis of RA. In this review of the diagnostic and prognostic approaches to RA disease, we provide an overview of the current knowledge on the subject, focusing on recent advances in mRNA-ncRNA as diagnostic and prognostic biomarkers from the biofluid to the tissue level.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuxin Zhong
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Shenghua He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanling Weng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijin Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Ye
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Department of Radiology, GuangzhouPanyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
| |
Collapse
|
8
|
Ruiz-Romero C, Fernández-Puente P, González L, Illiano A, Lourido L, Paz R, Quaranta P, Perez-Pampín E, González A, Blanco FJ, Calamia V. Association of the serological status of rheumatoid arthritis patients with two circulating protein biomarkers: A useful tool for precision medicine strategies. Front Med (Lausanne) 2022; 9:963540. [PMID: 36388911 PMCID: PMC9651940 DOI: 10.3389/fmed.2022.963540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/03/2022] [Indexed: 08/27/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and presence of systemic autoantibodies, with a great clinical and molecular heterogeneity. Rheumatoid Factor (RF) and anti-citrullinated protein antibodies (ACPA) are routinely used for the diagnosis of RA. However, additional serological markers are needed to improve the clinical management of this disease, allowing for better patient stratification and the desirable application of precision medicine strategies. In the present study, we investigated those systemic molecular changes that are associated with the RF and ACPA status of RA patients. To achieve this objective, we followed a proteomic biomarker pipeline from the discovery phase to validation. First, we performed an iTRAQ-based quantitative proteomic experiment on serum samples from the RA cohort of the Hospital of Santiago de Compostela (CHUS). In this discovery phase, serum samples from the CHUS cohort were pooled according to their RF/ACPA status. Shotgun analysis revealed that, in comparison with the double negative group (RF-/ACPA-), the abundance of 12 proteins was altered in the RF+/ACPA+ pool, 16 in the RF+/ACPA- pool and 10 in the RF-/ACPA+ pool. Vitamin D binding protein and haptoglobin were the unique proteins increased in all the comparisons. For the verification phase, 80 samples from the same cohort were analyzed individually. To this end, we developed a Multiple Reaction Monitoring (MRM) method that was employed in a comprehensive targeted analysis with the aim of verifying the results obtained in the discovery phase. Thirty-one peptides belonging to 12 proteins associated with RF and/or ACPA status were quantified by MRM. In a final validation phase, the serum levels of alpha-1-acid glycoprotein 1 (A1AG1), haptoglobin (HPT) and retinol-binding protein 4 (RET4) were measured by immunoassays in the RA cohort of the Hospital of A Coruña (HUAC). The increase of two of these putative biomarkers in the double seropositive group was validated in 260 patients from this cohort (p = 0.009 A1AG1; p = 0.003 HPT). The increased level of A1AG1 showed association with RF rather than ACPA (p = 0.023), whereas HPT showed association with ACPA rather than RF (p = 0.013). Altogether, this study has allowed a further classification of the RA seropositive patients into two novel clusters: RF+A1AG+ and ACPA+HPT+. The determination of A1AG1 and HPT in serum would provide novel information useful for RA patient stratification, which could facilitate the effective implementation of personalized medicine in routine clinical practice.
Collapse
Affiliation(s)
- Cristina Ruiz-Romero
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Patricia Fernández-Puente
- Centro de Investigaciones Científicas Avanzadas (CICA), Universidad de A Coruña (UDC), A Coruña, Spain
| | - Lucía González
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Anna Illiano
- CEINGE—Advanced Biotechnology, Naples, Italy
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Lucía Lourido
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Rocío Paz
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Patricia Quaranta
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| | - Eva Perez-Pampín
- Laboratorio de Investigación 10 and Rheumatology Unit, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Antonio González
- Laboratorio de Investigación 10 and Rheumatology Unit, Instituto de Investigación Sanitaria (IDIS), Hospital Clínico Universitario de Santiago (CHUS), Santiago de Compostela, Spain
| | - Francisco J. Blanco
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Universidade da Coruña (UDC), A Coruña, Spain
| | - Valentina Calamia
- Unidad de Proteómica, Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Universidade da Coruña (UDC), A Coruña, Spain
| |
Collapse
|
9
|
Hu C, Dai Z, Xu J, Zhao L, Xu Y, Li M, Yu J, Zhang L, Deng H, Liu L, Zhang M, Huang J, Wu L, Chen G. Proteome Profiling Identifies Serum Biomarkers in Rheumatoid Arthritis. Front Immunol 2022; 13:865425. [PMID: 35603148 PMCID: PMC9120366 DOI: 10.3389/fimmu.2022.865425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) causes serious disability and productivity loss, and there is an urgent need for appropriate biomarkers for diagnosis, treatment assessment, and prognosis evaluation. To identify serum markers of RA, we performed mass spectrometry (MS)-based proteomics, and we obtained 24 important markers in normal and RA patient samples using a random forest machine learning model and 11 protein-protein interaction (PPI) network topological analysis methods. Markers were reanalyzed using additional proteomics datasets, immune infiltration status, tissue specificity, subcellular localization, correlation analysis with disease activity-based diagnostic indications, and diagnostic receiver-operating characteristic analysis. We discovered that ORM1 in serum is significantly differentially expressed in normal and RA patient samples, which is positively correlated with disease activity, and is closely related to CD56dim natural killer cell, effector memory CD8+T cell, and natural killer cell in the pathological mechanism, which can be better utilized for future research on RA. This study supplies a comprehensive strategy for discovering potential serum biomarkers of RA and provides a different perspective for comprehending the pathological mechanism of RA, identifying potential therapeutic targets, and disease management.
Collapse
Affiliation(s)
- Congqi Hu
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhao Dai
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia Xu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianyu Zhao
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Xu
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meilin Li
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Yu
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Zhang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Deng
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijuan Liu
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingying Zhang
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiarong Huang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Linping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences (CAS), Guangzhou, China
| | - Guangxing Chen
- Department of Rheumatology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Ren X, Geng M, Xu K, Lu C, Cheng Y, Kong L, Cai Y, Hou W, Lu Y, Aihaiti Y, Xu P. Quantitative Proteomic Analysis of Synovial Tissue Reveals That Upregulated OLFM4 Aggravates Inflammation in Rheumatoid Arthritis. J Proteome Res 2021; 20:4746-4757. [PMID: 34496567 DOI: 10.1021/acs.jproteome.1c00399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tandem mass tag (TMT)-coupled liquid chromatography coupled with tandem mass spectrometry is a powerful method to investigate synovial tissue protein profiles in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Protein was isolated from synovial tissue samples of 22 patients and labeled with a TMT kit. Over 500 proteins were identified as the differential expression protein on comparing RA and OA synovial tissue, including 239 upregulated and 271 downregulated proteins. Data are available via ProteomeXchange with identifier PXD027703. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority participated in the developmental processes and protein processing in the endoplasmic reticulum. Olfactomedin 4 (OLFM4), a secreted glycoprotein, in joint inflammation of RA was explored. OLFM4 was upregulated in RA synovial tissue samples. In fibroblast-like synoviocytes (FLS), inflammation cytokines, TNF-α, interleukin (IL)-1β, and LPS can upregulate OLFM4. After OLFM4 knockdown under TNF-α stimulation, RA FLS proliferation was inhibited and the expression of CXCL9, CXCL11, and MMP-1 was decreased. Overall, the RA synovial tissue protein expression profile by proteomic analysis shows some unique targets in RA pathophysiology, and OLFM4 in FLS plays an important role in RA joint inflammation. OLFM4 can be a promising therapeutic target in RA synovial tissue.
Collapse
Affiliation(s)
- Xiaoyu Ren
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Manman Geng
- Precision Medicine Institute, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, P. R. China.,National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an 710004, Shaanxi, P. R. China
| | - Ke Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Yuanyuan Cheng
- Precision Medicine Institute, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an 710061, P. R. China.,National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an 710004, Shaanxi, P. R. China
| | - Linbo Kong
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Weikun Hou
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Yufeng Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710054, P. R. China
| |
Collapse
|
11
|
Tan W, Qiu Y, Chen N, Gao J, Liang J, Liu Y, Zhao D. The intervention of intestinal Wnt/β-catenin pathway alters inflammation and disease severity of CIA. Immunol Res 2021; 69:323-333. [PMID: 34037945 DOI: 10.1007/s12026-021-09190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022]
Abstract
Autoreactive T cell is one of the leading causes of immunological tolerance defects in the chronic inflammatory lesions of rheumatoid arthritis (RA). There have been several extracellular signals and intracellular pathways reported in regulating this process but largely remain unknown yet. In this study, we explored the roles of intestinal Wnt/β-catenin on disease severity during collagen-induced arthritis model (CIA), an animal model of RA. We first testified the activity pattern Wnt/β-catenin shifted by intragastric administration of LiCl and DKK-1 in the intestine by real-time PCR and WB analysis. The arthritis scores showing the disease severity in the DKK-1 group was significantly ameliorated compared with the control group at the late stage of the disease, while in the LiCl group, the scores were significantly elevated which was consistent with pathology score analysis of H&E staining. Next, ELISA was performed and showed that TNF-α and IL-17 in the LiCl group were significantly higher than that of the control group. IL-10 in the DKK-1 group was significantly higher than that in the LiCl-1 group and control group, P < 0.05. Flow cytometry of spleen T cells differentiation ratio showed that: Th1 from the DKK-1 and LiCl groups and Th17 from the LiCl group was significantly different from that of the blank model group, P < 0.05. Finally, we explored the effects of intestinal Wnt/β-catenin on T cell differentiation regulator ROR-γt and TCF1 and found that both transcription factors were up-regulated in the LiCl group. Together, these data suggested the pro-information role of Wnt/β-catenin pathway from the intestine in the CIA mouse, implying its use as a potential therapeutic target for the treatment of inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Weixing Tan
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
- Air Force Health Care Center for Special Services, Hangzhou, China
| | - Yang Qiu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Chen
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jie Gao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jingjing Liang
- Department of Endocrinology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yu Liu
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Dongbao Zhao
- Department of Rheumatology and Immunology, Changhai Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
12
|
Korlepara V, Kumar N, Banerjee S. Gut Microbiota And Inflammatory Disorders. Curr Drug Targets 2021; 23:156-169. [PMID: 34165407 DOI: 10.2174/1389450122666210623125603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
The gut has been colonized with bacteria, fungi, viruses, archaea, eukarya. The human and bacterial cells are found in a 1:1 ratio, while the variance in the diversity of gut microbiota may result in Dysbiosis. Gut dysbiosis may result in various pathological manifestations. Beneficial gut microbiota may synthesize short-chain fatty acids like acetate, butyrate, propionate, while -gram-negative organisms are the primary source of LPS, a potent pro-inflammatory mediator. Both gut microbiota and microbial products may be involved in immunomodulation as well as inflammation. Prebiotics and probiotics are being explored as therapeutic agents against various inflammatory and autoimmune disorders. Here we discuss the molecular mechanisms involved in gut bacteria-mediated modulation of various inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Vamsi Korlepara
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Naveen Kumar
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
13
|
Role of Intestinal Microbiota on Gut Homeostasis and Rheumatoid Arthritis. J Immunol Res 2021; 2021:8167283. [PMID: 34195296 PMCID: PMC8203374 DOI: 10.1155/2021/8167283] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/29/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that is immune mediated. Patients typically present with synovial inflammation, which gradually deteriorates to investigate severe cartilage and bone damage, affecting an individual's ability to perform basic tasks and impairing the quality of life. When evaluated against healthy controls, patients with RA have notable variations within the constituents of the gut microbiota. The human gastrointestinal tract mucosa is colonized by trillions of commensal microbacteria, which are key actors in the initiation, upkeep, and operation of the host immune system. Gut microbiota dysbiosis can adversely influence the immune system both locally and throughout the host, thus predisposing the host to a number of pathologies, including RA. Proximal intestinal immunomodulatory cells, situated in specific locales within the intestine, are a promising intermediary through which the gastrointestinal microbiota can influence the pathogenesis and progression of RA. In the early stages of the disease, the microbiota appear to differ from those present in healthy controls. This difference may reflect potential autoimmune mechanisms. Research studies evaluating intestinal microbiota have demonstrated that RA is associated with a bacterial population growth or with a decline when judged against control groups. The aim of this review is to examine the studies that connect intestinal dysbiosis with the autoimmune pathways implicated in the pathogenesis of RA.
Collapse
|
14
|
Bay-Jensen AC, Siebuhr AS, Damgaard D, Drobinski P, Thudium C, Mortensen J, Nielsen CH. Objective and noninvasive biochemical markers in rheumatoid arthritis: where are we and where are we going? Expert Rev Proteomics 2021; 18:159-175. [PMID: 33783300 DOI: 10.1080/14789450.2021.1908892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects approximately 1% of the adult population. RA is multi-factorial, and as such our understanding of the molecular pathways involved in the disease is currently limited. An increasing number of studies have suggested that several molecular phenotypes (i.e. endotypes) of RA exist, and that different endotypes respond differently to various treatments. Biochemical markers may be an attractive means for achieving precision medicine, as they are objective and easily obtainable. AREAS COVERED We searched recent publications on biochemical markers in RA as either diagnostic or prognostic markers, or as markers of disease activity. Here, we provide a narrative overview of different classes of markers, such as autoantibodies, citrulline products, markers of tissue turnover and cytokines, that have been tested in clinical cohorts or trials including RA patients. EXPERT OPINION Although many biochemical markers have been identified and tested, few are currently being used in clinical practice. As more treatment options are becoming available, the need for precision medicine tools that can aid physicians and patients in choosing the right treatment is growing.
Collapse
Affiliation(s)
- Anne C Bay-Jensen
- ImmunoScience, Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Anne Sofie Siebuhr
- ImmunoScience, Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Dres Damgaard
- Center for Rheumatolology and Spine Diseases, Institute for Inflammation Research, University of Copenhagen, Copenhagen Ø, Denmark
| | - Patryk Drobinski
- ImmunoScience, Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Christian Thudium
- ImmunoScience, Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Joachim Mortensen
- ImmunoScience, Nordic Bioscience Biomarkers and Research, Herlev, Denmark
| | - Claus H Nielsen
- Center for Rheumatolology and Spine Diseases, Institute for Inflammation Research, University of Copenhagen, Copenhagen Ø, Denmark
| |
Collapse
|
15
|
Contribution of Multiplex Immunoassays to Rheumatoid Arthritis Management: From Biomarker Discovery to Personalized Medicine. J Pers Med 2020; 10:jpm10040202. [PMID: 33142977 PMCID: PMC7712300 DOI: 10.3390/jpm10040202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a multifactorial, inflammatory and progressive autoimmune disease that affects approximately 1% of the population worldwide. RA primarily involves the joints and causes local inflammation and cartilage destruction. Immediate and effective therapies are crucial to control inflammation and prevent deterioration, functional disability and unfavourable progression in RA patients. Thus, early diagnosis is critical to prevent joint damage and physical disability, increasing the chance of achieving remission. A large number of biomarkers have been investigated in RA, although only a few have made it through the discovery and validation phases and reached the clinic. The single biomarker approach mostly used in clinical laboratories is not sufficiently accurate due to its low sensitivity and specificity. Multiplex immunoassays could provide a more complete picture of the disease and the pathways involved. In this review, we discuss the latest proposed protein biomarkers and the advantages of using protein panels for the clinical management of RA. Simultaneous analysis of multiple proteins could yield biomarker signatures of RA subtypes to enable patients to benefit from personalized medicine.
Collapse
|
16
|
Proteome Alterations in Equine Osteochondrotic Chondrocytes. Int J Mol Sci 2019; 20:ijms20246179. [PMID: 31817880 PMCID: PMC6940994 DOI: 10.3390/ijms20246179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 01/07/2023] Open
Abstract
Osteochondrosis is a failure of the endochondral ossification that affects developing joints in humans and several animal species. It is a localized idiopathic joint disorder characterized by focal chondronecrosis and growing cartilage retention, which can lead to the formation of fissures, subchondral bone cysts, or intra-articular fragments. Osteochondrosis is a complex multifactorial disease associated with extracellular matrix alterations and failure in chondrocyte differentiation, mainly due to genetic, biochemical, and nutritional factors, as well as traumas. This study describes the main proteomic alterations occurring in chondrocytes isolated from osteochondrotic cartilage fragments. A comparative analysis performed on equine osteochondrotic and healthy chondrocytes showed 26 protein species as differentially represented. In particular, quantitative changes in the extracellular matrix, cytoskeletal and chaperone proteins, and in cell adhesion and signaling molecules were observed in osteochondrotic cells, compared to healthy controls. Functional group analysis annotated most of these proteins in “growth plate and cartilage development”, while others were included in “glycolysis and gluconeogenesis”, “positive regulation of protein import”, “cell–cell adhesion mediator activity”, and “mitochondrion nucleoid”. These results may help to clarify some chondrocyte functional alterations that may play a significant role in determining the onset and progression of equine osteochondrosis and, being related, of human juvenile osteochondrosis.
Collapse
|
17
|
Heydari-Kamjani M, Demory Beckler M, Kesselman MM. Reconsidering the Use of Minocycline in the Preliminary Treatment Regime of Rheumatoid Arthritis. Cureus 2019; 11:e5351. [PMID: 31608186 PMCID: PMC6783212 DOI: 10.7759/cureus.5351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Strong epidemiologic, clinical, and basic science studies have identified a number of factors that may lead to rheumatoid arthritis (RA) onset and progression, particularly involving the complex interplay between genomics, environmental risk factors, the breakdown of immune self-tolerance, and microbiome dysbiosis. A chronic state of inflammation established by infectious agents has long been suspected to set the stage for the development of RA. The purpose of this article is to review the contribution of the gut, lung, and oral microbiomes to the pathogenesis of RA and consider the importance of supplementing the preliminary treatment regime of RA patients with antibiotics, in particular, minocycline. Minocycline has been used in the treatment of RA due to its bacteriostatic, as well as immunomodulatory and anti-inflammatory properties. Ultimately, a short course of antibiotic treatment with minocycline may eliminate pathogenic organisms contributing to the development and progression of RA.
Collapse
Affiliation(s)
- Milad Heydari-Kamjani
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Michelle Demory Beckler
- Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, USA
| |
Collapse
|
18
|
Ke CY, Lu GM, Sun WJ, Zhang XL. High efficiency and fast separation of active proteins by HIC chromatographic pie with sub-2 μm polymer packings. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:110-116. [DOI: 10.1016/j.jchromb.2017.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 11/17/2022]
|
19
|
Intestinal Dysbiosis and Rheumatoid Arthritis: A Link between Gut Microbiota and the Pathogenesis of Rheumatoid Arthritis. J Immunol Res 2017; 2017:4835189. [PMID: 28948174 PMCID: PMC5602494 DOI: 10.1155/2017/4835189] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/17/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Characterization and understanding of gut microbiota has recently increased representing a wide research field, especially in autoimmune diseases. Gut microbiota is the major source of microbes which might exert beneficial as well as pathogenic effects on human health. Intestinal microbiome's role as mediator of inflammation has only recently emerged. Microbiota has been observed to differ in subjects with early rheumatoid arthritis compared to controls, and this finding has commanded this study as a possible autoimmune process. Studies with intestinal microbiota have shown that rheumatoid arthritis is characterized by an expansion and/or decrease of bacterial groups as compared to controls. In this review, we present evidence linking intestinal dysbiosis with the autoimmune mechanisms involved in the development of rheumatoid arthritis.
Collapse
|