1
|
Palmfeldt J. Interaction and regulation of the mitochondrial proteome - in health and disease. Expert Rev Proteomics 2025:1-15. [PMID: 39806765 DOI: 10.1080/14789450.2025.2451704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Mitochondria contain multiple pathways including energy metabolism and several signaling and synthetic pathways. Mitochondrial proteomics is highly valuable for studying diseases including inherited metabolic disorders, complex and common disorders like neurodegeneration, diabetes, and cancer, since they all to some degree have mitochondrial underpinnings. AREAS COVERED The main mitochondrial functions and pathways are outlined, and systematic protein lists are presented. The main energy metabolic pathways are as follows: iron-sulfur cluster synthesis, one carbon metabolism, catabolism of hydrogen sulfide, kynurenines and reactive oxygen species (ROS), and others, described with the aim of laying a foundation for systematic mitochondrial pathway analysis based on proteomics data. The links of the proteins and pathways to functional effects and diseases are discussed. The disease examples are focussed on inherited metabolic disorders, cancer, neurological, and cardiovascular disorders. EXPERT OPINION To elucidate the role of mitochondria in health and disease, there is a need for comprehensive proteomics analyses with stringent, systematic data treatment for proper interpretation of mitochondrial pathway data. In that way, comprehensive hypothesis-based research can be performed based on proteomics data.
Collapse
Affiliation(s)
- Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Pathology and Treatments of Alzheimer's Disease Based on Considering Changes in Brain Energy Metabolism Due to Type 2 Diabetes. Molecules 2024; 29:5936. [PMID: 39770025 PMCID: PMC11677283 DOI: 10.3390/molecules29245936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction, memory decline, and behavioral disturbance, and it is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Although various hypotheses have been proposed to explain the pathogenesis of AD, including the amyloid beta hypothesis, oxidative stress hypothesis, and abnormal phosphorylation of tau proteins, the exact pathogenic mechanisms underlying AD remain largely undefined. Furthermore, effective curative treatments are very limited. Epidemiologic studies provide convincing evidence for a significant association between type 2 diabetes and AD. Here, we showed energy metabolism using glucose, lactate, ketone bodies, and lipids as energy substrates in a normal brain, and changes in such energy metabolism due to type 2 diabetes. We also showed the influences of such altered energy metabolism due to type 2 diabetes on the pathology of AD. Furthermore, we comprehensively searched for risk factors related with type 2 diabetes for AD and showed possible therapeutic interventions based on considering risk factors and altered brain energy metabolism due to type 2 diabetes for the development of AD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | | | | | | |
Collapse
|
3
|
He Q, Zhou Y, Jin J, Tian Q, Li H, Hou B, Xie A. Association between NEK1 gene polymorphisms and the potential risk of sporadic Parkinson's disease in the Chinese Northern Han population: A case-control study. Neurosci Lett 2024; 837:137913. [PMID: 39032803 DOI: 10.1016/j.neulet.2024.137913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Parkinson's disease (PD) has been identified as a genetically influenced disease linked to various genetic loci. Previous studies have suggested that neurodegenerative illnesses, including PD, Alzheimer's disease, and Amyotrophic lateral sclerosis (ALS), may share certain genetic loci. Recently, the NEK1 gene was identified as overlapping between PD and ALS. We therefore wanted to explore the potential association between the NEK1 gene single nucleotide polymorphisms (SNPs) and the clinical features and pathophysiology of sporadic PD in a northern Chinese population. METHODS A total of 510 sporadic PD patients and 510 age- and sex-matched healthy controls (HCs) were included in this study. Two SNPs (rs4563461 and rs66509122) of the NEK1 gene were genotyped using polymerase chain reaction (PCR). And we analyzed the association between NEK1 gene polymorphisms and clinical manifestations. RESULTS Allele T (C vs. T, P = 0.018) and genotype TT (CC vs. TT: P = 0.021) of rs66509122 among PD group and HCs were significantly different. In addition, we discovered that the rs66509122 genotype TT was associated with depression in early-onset PD (EOPD) (P = 0.031) and diabetes in female PD (P = 0.032). Unfortunately, no distinct correlation of rs4563461 polymorphisms with sporadic PD susceptibility was found in either the overall group (C vs. T, P = 0.086) or other subgroups. However, the T allele of rs4563461 was significantly correlated with sleep disorders in the PD group, especially in the late-onset PD (LOPD) group and male PD group. CONCLUSION This study found that the NEK1 rs66509122 polymorphism was associated with a lower risk of sporadic PD, while T allele of rs66509122 may be a protective factor for PD. The NEK1 rs4563461 and rs66509122 polymorphisms both showed correlations with some non-motor symptoms in sporadic PD patients. Further research with a larger sample and varied ethnic groups is needed to investigate the role of NEK1 gene polymorphisms in the pathophysiology of PD.
Collapse
Affiliation(s)
- Qiqing He
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuting Zhou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianing Jin
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qing Tian
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Han Li
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Binghui Hou
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China; Cerebral Vascular Disease Institute, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
4
|
Abyadeh M, Mirshahvaladi S, Kashani SA, Paulo JA, Amirkhani A, Mehryab F, Seydi H, Moradpour N, Jodeiryjabarzade S, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: Impact of isolation methods on protein cargo. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e159. [PMID: 38947171 PMCID: PMC11212298 DOI: 10.1002/jex2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are secreted by cells and play a critical role in cell-to-cell communication. Despite the promising reports regarding their diagnostic and therapeutic potential, the utilization of EVs in the clinical setting is limited due to insufficient information about their cargo and a lack of standardization in isolation and analysis methods. Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on sucrose cushion (SU). Subsequently, we checked EV marker expression, size distribution, and morphological characterization, followed by bioinformatic analysis. The bioinformatic analysis of the proteome results revealed that these subpopulations exhibit distinct molecular and functional characteristics. The choice of isolation method impacts the proteome of isolated EVs by isolating different subpopulations of EVs. Specifically, EVs isolated through the high-speed centrifugation (HS) method exhibited a higher abundance of ribosomal and mitochondrial proteins. Functional apoptosis assays comparing isolated mitochondria with EVs isolated through different methods revealed that HS-EVs, but not other EVs, induced early apoptosis in cancer cells. On the other hand, EVs isolated using the sucrose cushion (SU) and ultracentrifugation (UC) methods demonstrated a higher abundance of proteins primarily involved in the immune response, cell-cell interactions and extracellular matrix interactions. Our analyses unveil notable disparities in proteins and associated biological functions among EV subpopulations, underscoring the importance of meticulously selecting isolation methods and resultant EV subpopulations based on the intended application.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Shahab Mirshahvaladi
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNew South WalesAustralia
| | - Fatemeh Mehryab
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of BiologyUniversity of Science and CultureTehranIran
| | | | | | - Mehdi Mirzaei
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vivek Gupta
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | |
Collapse
|
5
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
6
|
Abyadeh M, Kaya A. Application of Multiomics Approach to Investigate the Therapeutic Potentials of Stem Cell-derived Extracellular Vesicle Subpopulations for Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593647. [PMID: 38798317 PMCID: PMC11118424 DOI: 10.1101/2024.05.10.593647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) presents a complex interplay of molecular alterations, yet understanding its pathogenesis remains a challenge. In this study, we delved into the intricate landscape of proteome and transcriptome changes in AD brains compared to healthy controls, examining 788 brain samples revealing common alterations at both protein and mRNA levels. Moreover, our analysis revealed distinct protein-level changes in aberrant energy metabolism pathways in AD brains that were not evident at the mRNA level. This suggests that the changes in protein expression could provide a deeper molecular representation of AD pathogenesis. Subsequently, using a comparative proteomic approach, we explored the therapeutic potential of mesenchymal stem cell-derived extracellular vehicles (EVs), isolated through various methods, in mitigating AD-associated changes at the protein level. Our analysis revealed a particular EV-subtype that can be utilized for compensating dysregulated mitochondrial proteostasis in the AD brain. By using network biology approaches, we further revealed the potential regulators of key therapeutic proteins. Overall, our study illuminates the significance of proteome alterations in AD pathogenesis and identifies the therapeutic promise of a specific EV subpopulation with reduced pro-inflammatory protein cargo and enriched proteins to target mitochondrial proteostasis.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, 23284, USA
| |
Collapse
|
7
|
Liang Z, Zhuang H, Cao X, Ma G, Shen L. Subcellular proteomics insights into Alzheimer's disease development. Proteomics Clin Appl 2024; 18:e2200112. [PMID: 37650321 DOI: 10.1002/prca.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
Alzheimer's disease (AD), one of the most common dementias, is a neurodegenerative disease characterized by cognitive impairment and decreased judgment function. The expected number of AD patient is increasing in the context of the world's advancing medical care and increasing human life expectancy. Since current molecular mechanism studies on AD pathogenesis are incomplete, there is no specific and effective therapeutic agent. Mass spectrometry (MS)-based unbiased proteomics studies provide an effective and comprehensive approach. Many advances have been made in the study of the mechanism, diagnostic markers, and drug targets of AD using proteomics. This paper focus on subcellular level studies, reviews studies using proteomics to study AD-associated mitochondrial dysfunction, synaptic, and myelin damage, the protein composition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), changes in tissue extracellular vehicles (EVs) and exosome proteome, and the protein changes in ribosomes and lysosomes. The methods of sample separation and preparation and proteomic analysis as well as the main findings of these studies are involved. The results of these proteomics studies provide insights into the pathogenesis of AD and provide theoretical resource and direction for future research in AD, helping to identify new biomarkers and drugs targets for AD.
Collapse
Affiliation(s)
- Zhiyuan Liang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Hongbin Zhuang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
| | - Xueshan Cao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, P. R. China
| | - Liming Shen
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, P. R. China
| |
Collapse
|
8
|
Pinheiro FI, Araújo-Filho I, do Rego ACM, de Azevedo EP, Cobucci RN, Guzen FP. Hepatopancreatic metabolic disorders and their implications in the development of Alzheimer's disease and vascular dementia. Ageing Res Rev 2024; 96:102250. [PMID: 38417711 DOI: 10.1016/j.arr.2024.102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Dementia has been faced with significant public health challenges and economic burdens that urges the need to develop safe and effective interventions. In recent years, an increasing number of studies have focused on the relationship between dementia and liver and pancreatic metabolic disorders that result in diseases such as diabetes, obesity, hypertension and dyslipidemia. Previous reports have shown that there is a plausible correlation between pathologies caused by hepatopancreatic dysfunctions and dementia. Glucose, insulin and IGF-1 metabolized in the liver and pancreas probably have an important influence on the pathophysiology of the most common dementias: Alzheimer's and vascular dementia. This current review highlights recent studies aimed at identifying convergent mechanisms, such as insulin resistance and other diseases, linked to altered hepatic and pancreatic metabolism, which are capable of causing brain changes that ultimately lead to dementia.
Collapse
Affiliation(s)
- Francisco I Pinheiro
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Irami Araújo-Filho
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Department of Surgical, Federal University of Rio Grande do Norte, Natal 59010-180, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Amália C M do Rego
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Institute of Education, Research and Innovation of the Liga Norte Rio-Grandense Against Cancer
| | - Eduardo P de Azevedo
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil
| | - Ricardo N Cobucci
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil; Postgraduate Program in Science Applied to Women`s Health, Medical School, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Fausto P Guzen
- Postgraduate Program in Biotechnology, Health School, Potiguar University (UnP), Natal, RN, Brazil; Postgraduate Program in Health and Society, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil; Postgraduate Program in Physiological Sciences, Department of Biomedical Sciences, Faculty of Health Sciences, State University of Rio Grande do Norte (UERN), Mossoró, Brazil.
| |
Collapse
|
9
|
Yan T, Chen J, Wang Y, Wang Y, Zhang Y, Zhao Y. Deficiency of aldehyde dehydrogenase 2 aggravates ethanol-induced cytotoxicity in N2a cells via CaMKII/Drp1-mediated mitophagy. Food Chem Toxicol 2023; 182:114129. [PMID: 37967785 DOI: 10.1016/j.fct.2023.114129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Chronic alcohol abuse causes brain damage and has been associated with an increased risk of Alzheimer's disease. The toxic metabolite of alcohol, acetaldehyde, which is converted to acetate by aldehyde dehydrogenase 2 (ALDH2), has been shown to induce excessive mitochondrial fragmentation and dysfunction leading to neurotoxicity. However, it is still unclear how alcohol affects mitochondrial function in ALDH2-deficient cells. The present study investigated the association between abnormal mitochondrial dynamics, mitophagy and cytotoxicity in ALDH2-deficient N2a cells treated with ethanol. It was found that ethanol induced dynamin-related protein 1 (Drp1)-mediated mitochondrial fragmentation and impaired mitochondrial function, causing excessive mitophagy and cytotoxicity in ALDH2-deficient N2a cells while inducing Ca2+ influx and activating Ca2+/calmodulin-dependent protein kinase II (CaMKII). Inhibition of Ca2+ overload or CaMKII activation prevented Drp1 phosphorylation and ameliorated ethanol-induced mitophagy and cytotoxicity, indicating that Ca2+-dependent CaMKII activation was critical for mediating Drp1-dependent excessive mitochondrial fission and mitophagy in ALDH2-deficient N2a cells. The results of the present study suggested that prevention of intracellular Ca2+ overload might be beneficial for preventing neurotoxicity associated with alcohol abuse in individuals with defective ALDH2.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Jiyang Chen
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Yalin Wang
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Yinuo Wang
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Yuanqingzhi Zhang
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai 264209, Shandong, China.
| |
Collapse
|
10
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
11
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
Abyadeh M, Yadav VK, Kaya A. Common molecular signatures between coronavirus infection and Alzheimer's disease reveal targets for drug development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544970. [PMID: 37398415 PMCID: PMC10312734 DOI: 10.1101/2023.06.14.544970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cognitive decline has been reported as a common consequence of COVID-19, and studies have suggested a link between COVID-19 infection and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. To shed light on this link, we conducted an integrated genomic analysis using a novel Robust Rank Aggregation method to identify common transcriptional signatures of the frontal cortex, a critical area for cognitive function, between individuals with AD and COVID-19. We then performed various analyses, including the KEGG pathway, GO ontology, protein-protein interaction, hub gene, gene-miRNA, and gene-transcription factor interaction analyses to identify molecular components of biological pathways that are associated with AD in the brain also show similar changes in severe COVID-19. Our findings revealed the molecular mechanisms underpinning the association between COVID-19 infection and AD development and identified several genes, miRNAs, and TFs that may be targeted for therapeutic purposes. However, further research is needed to investigate the diagnostic and therapeutic applications of these findings.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vijay K. Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
13
|
Deng L, Gupta V, Abyadeh M, Chitranshi N, Pushpitha K, Wu Y, Gupta V, You Y, Paulo JA, Graham SL, Mirzaei M, Haynes PA. Oxidative Stress Induced Dysfunction of Protein Synthesis in 661W Mice Photoreceptor Cells. Proteomes 2023; 11:12. [PMID: 37092453 PMCID: PMC10123756 DOI: 10.3390/proteomes11020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Photoreceptor cells are highly susceptible to oxidative-stress-induced damage due to their high metabolic rate. Oxidative stress plays a key role in driving pathological events in several different ocular diseases, which lead to retinal degeneration and ultimately blindness. A growing number of studies have been performed to understand downstream events caused by ROS induced oxidative stress in photoreceptor cells; however, the underlying mechanisms of ROS toxicity are not fully understood. To shed light on ROS induced downstream pathological events, we employed a tandem mass tag (TMT) labelling-based quantitative mass-spectrometric approach to determine proteome changes in 661W photoreceptor cells following oxidative stress induction via the application of different concentrations of H2O2 at different time points. Overall, 5920 proteins were identified and quantified, and 450 differentially expressed proteins (DEPs) were identified, which were altered in a dose and time dependent manner in all treatment groups compared to the control group. These proteins were involved in several biological pathways, including spliceosome and ribosome response, activated glutathione metabolism, decreased ECM-receptor interaction, oxidative phosphorylation, abnormally regulated lysosome, apoptosis, and ribosome biogenesis. Our results highlighted ECM receptor interaction, oxidative phosphorylation and spliceosome pathways as the major targets of oxidative stress that might mediate vascular dysfunction and cellular senescence.
Collapse
Affiliation(s)
- Liting Deng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | | | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Kanishka Pushpitha
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Yuyi You
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
14
|
Dong X, Zhou S, Nao J. Kaempferol as a therapeutic agent in Alzheimer's disease: Evidence from preclinical studies. Ageing Res Rev 2023; 87:101910. [PMID: 36924572 DOI: 10.1016/j.arr.2023.101910] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia and seriously affects human life and health. Kaempferol (KMP) is a common flavonoid, that is mainly derived from the rhizomes of Kaempferol galanga L. and is widely found in various fruits and vegetables. Previous studies have suggested that KMP has multiple pharmacological activities. However, the anti-AD mechanism of KMP has not been elucidated. METHODS This systematic review aims to summarize the existing preclinical experiments on KMP, further confirm the therapeutic effect of KMP in an AD model, and summarize the possible mechanism by which KMP exerts anti-AD effects. Electronic databases, including PubMed, China National Knowledge Infrastructure (CNKI), Baidu Academic, and Wanfang, were searched using the keywords of 'Kaempferol,' 'KMP,' 'pharmacology,' and 'Alzheimer's disease'. RESULTS We evaluated the reliability of the 12 included studies, and the results showed that the anti-AD mechanism of KMP was reliable and that the prospect of KMP in the treatment of cognitive impairment was promising. We comprehensively assessed the neuroprotective effects of KMP in in vivo and in vitro models of AD. These studies shown that KMP ameliorated AD through several mechanisms, including its antioxidant, anti-inflammatory, anti-apoptotic, and anti-acetylcholinesterase effects. CONCLUSION KMP may exert anti-AD effects through various mechanisms and is a potential drug with broad prospects for the treatment of AD.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
15
|
TOMM40 Genetic Variants Cause Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24044085. [PMID: 36835494 PMCID: PMC9962462 DOI: 10.3390/ijms24044085] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1β, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.
Collapse
|
16
|
Peerapen P, Thongboonkerd V. Protein network analysis and functional enrichment via computational biotechnology unravel molecular and pathogenic mechanisms of kidney stone disease. Biomed J 2023; 46:100577. [PMID: 36642221 DOI: 10.1016/j.bj.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Mass spectrometry-based proteomics has been extensively applied to current biomedical research. From such large-scale identification of proteins, several computational tools have been developed for determining protein-protein interactions (PPI) network and functional significance of the identified proteins and their complex. Analyses of PPI network and functional enrichment have been widely applied to various fields of biomedical research. Herein, we summarize commonly used tools for PPI network analysis and functional enrichment in kidney stone research and discuss their applications to kidney stone disease (KSD). Such computational approach has been used mainly to investigate PPI networks and functional significance of the proteins derived from urine of patients with kidney stone (stone formers), stone matrix, Randall's plaque, renal papilla, renal tubular cells, mitochondria and immune cells. The data obtained from computational biotechnology leads to experimental validation and investigations that offer new knowledge on kidney stone formation processes. Moreover, the computational approach may also lead to defining new therapeutic targets and preventive strategies for better outcome in KSD management.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
17
|
Ahmad F, Ramamorthy S, Areeshi MY, Ashraf GM, Haque S. Isolated Mitochondrial Preparations and In organello Assays: A Powerful and Relevant Ex vivo Tool for Assessment of Brain (Patho)physiology. Curr Neuropharmacol 2023; 21:1433-1449. [PMID: 36872352 PMCID: PMC10324330 DOI: 10.2174/1570159x21666230303123555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/30/2022] [Accepted: 12/29/2022] [Indexed: 03/07/2023] Open
Abstract
Mitochondria regulate multiple aspects of neuronal development, physiology, plasticity, and pathology through their regulatory roles in bioenergetic, calcium, redox, and cell survival/death signalling. While several reviews have addressed these different aspects, a comprehensive discussion focussing on the relevance of isolated brain mitochondria and their utilities in neuroscience research has been lacking. This is relevant because the employment of isolated mitochondria rather than their in situ functional evaluation, offers definitive evidence of organelle-specificity, negating the interference from extra mitochondrial cellular factors/signals. This mini-review was designed primarily to explore the commonly employed in organello analytical assays for the assessment of mitochondrial physiology and its dysfunction, with a particular focus on neuroscience research. The authors briefly discuss the methodologies for biochemical isolation of mitochondria, their quality assessment, and cryopreservation. Further, the review attempts to accumulate the key biochemical protocols for in organello assessment of a multitude of mitochondrial functions critical for neurophysiology, including assays for bioenergetic activity, calcium and redox homeostasis, and mitochondrial protein translation. The purpose of this review is not to examine each and every method or study related to the functional assessment of isolated brain mitochondria, but rather to assemble the commonly used protocols of in organello mitochondrial research in a single publication. The hope is that this review will provide a suitable platform aiding neuroscientists to choose and apply the required protocols and tools to address their particular mechanistic, diagnostic, or therapeutic question dealing within the confines of the research area of mitochondrial patho-physiology in the neuronal perspective.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Siva Ramamorthy
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India
| | - Mohammed Y. Areeshi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
18
|
Tuo J, Peng Y, Linghu Y, Tao M, Huang S, Xu Z. Natural products regulate mitochondrial function in cognitive dysfunction-A scoping review. Front Pharmacol 2023; 14:1091879. [PMID: 36959855 PMCID: PMC10027783 DOI: 10.3389/fphar.2023.1091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Medicines from natural products can not only treat neurodegenerative diseases but also improve the cognitive dysfunction caused by treatments with western medicines. This study reviews the literature related to the regulation of mitochondrial participation in cognitive function by natural products. In this study, we focused on English articles in PubMed, Web of Science, and Google Scholar, from 15 October 2017, to 15 October 2022. Fourteen studies that followed the inclusion criteria were integrated, analyzed, and summarized. Several studies have shown that natural products can improve or reduce cognitive dysfunction by ameliorating mitochondrial dysfunction. These results suggest that natural products may serve as new therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Yan Peng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yushuang Linghu
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Tao
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shiming Huang
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Shiming Huang, ; Zucai Xu,
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
- *Correspondence: Shiming Huang, ; Zucai Xu,
| |
Collapse
|
19
|
Abyadeh M, Yadav VK, Kaya A. Common Molecular Signatures Between Coronavirus Infection and Alzheimer's Disease Reveal Targets for Drug Development. J Alzheimers Dis 2023; 95:995-1011. [PMID: 37638446 DOI: 10.3233/jad-230684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Cognitive decline is a common consequence of COVID-19, and studies suggest a link between COVID-19 and Alzheimer's disease (AD). However, the molecular mechanisms underlying this association remain unclear. OBJECTIVE To understand the potential molecular mechanisms underlying the association between COVID-19 and AD development, and identify the potential genetic targets for pharmaceutical approaches to reduce the risk or delay the development of COVID-19-related neurological pathologies. METHODS We analyzed transcriptome datasets of 638 brain samples using a novel Robust Rank Aggregation method, followed by functional enrichment, protein-protein, hub genes, gene-miRNA, and gene-transcription factor (TF) interaction analyses to identify molecular markers altered in AD and COVID-19 infected brains. RESULTS Our analyses of frontal cortex from COVID-19 and AD patients identified commonly altered genes, miRNAs and TFs. Functional enrichment and hub gene analysis of these molecular changes revealed commonly altered pathways, including downregulation of the cyclic adenosine monophosphate (cAMP) signaling and taurine and hypotaurine metabolism, alongside upregulation of neuroinflammatory pathways. Furthermore, gene-miRNA and gene-TF network analyses provided potential up- and downstream regulators of identified pathways. CONCLUSION We found that downregulation of cAMP signaling pathway, taurine metabolisms, and upregulation of neuroinflammatory related pathways are commonly altered in AD and COVID-19 pathogenesis, and may make COVID-19 patients more susceptible to cognitive decline and AD. We also identified genetic targets, regulating these pathways that can be targeted pharmaceutically to reduce the risk or delay the development of COVID-19-related neurological pathologies and AD.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| | - Vijay K Yadav
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Common wealth University, Richmond, VA, USA
| |
Collapse
|
20
|
McGovern AJ, Arevalo MA, Ciordia S, Garcia-Segura LM, Barreto GE. Respirasome Proteins Are Regulated by Sex-Hormone Interactions in the Brain. Int J Mol Sci 2022; 23:14754. [PMID: 36499081 PMCID: PMC9741126 DOI: 10.3390/ijms232314754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
The existence of sex differences in disease incidence is attributed, in part, to sex differences in metabolism. Uncovering the precise mechanism driving these differences is an extraordinarily complex process influenced by genetics, endogenous hormones, sex-specific lifetime events, individual differences and external environmental/social factors. In fact, such differences may be subtle, but across a life span, increase susceptibility to a pathology. Whilst research persists in the hope of discovering an elegant biological mechanism to underpin sex differences in disease, here, we show, for the first time, that such a mechanism may be subtle in nature but influenced by multiple sex-specific factors. A proteomic dataset was generated from a gonadectomized mouse model treated with Tibolone, a menopausal hormone therapy. Following functional enrichment analysis, we identified that Alzheimer's disease and the electron transport chain-associated pathways were regulated by sex-hormone interactions. Specifically, we identified that the expression of three respirasome proteins, NDUFA2, NDUFA7 and UQCR10, is significantly altered by compounding factors that contribute to sex differences. These proteins function in bioenergetics and produce reactive oxygen species, which are each dysregulated in many diseases with sex differences in incidence. We show sex-specific reprogrammed responses to Tibolone following gonadectomy, which primarily influence the expression of proteins contributing to metabolic pathways. This further infers that metabolic differences may underpin the observed sex differences in disease, but also that hormone therapy research now has potential in exploring sex-specific interventions to produce an effective method of prevention or treatment.
Collapse
Affiliation(s)
- Andrew J. McGovern
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| | - Maria Angeles Arevalo
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología (CNB-CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, 28002 Madrid, Spain
- CIBERFES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - George E. Barreto
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
21
|
Hunt NJ, Wahl D, Westwood LJ, Lockwood GP, Le Couteur DG, Cogger VC. Targeting the liver in dementia and cognitive impairment: Dietary macronutrients and diabetic therapeutics. Adv Drug Deliv Rev 2022; 190:114537. [PMID: 36115494 PMCID: PMC10125004 DOI: 10.1016/j.addr.2022.114537] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 01/24/2023]
Abstract
Many people living with dementia and cognitive impairment have dysfunctional mitochondrial and insulin-glucose metabolism resembling type 2 diabetes mellitus and old age. Evidence from human trials shows that nutritional interventions and anti-diabetic medicines that target nutrient-sensing pathways overcome these deficits in glucose and energy metabolism and can improve cognition and/or reduce symptoms of dementia. The liver is the main organ that mediates the systemic effects of diets and many diabetic medicines; therefore, it is an intermediate target for such dementia interventions. A challenge is the efficacy of these treatments in older age. Solutions include the targeted hepatic delivery of diabetic medicines using nanotechnologies and titration of macronutrients to optimize hepatic energy metabolism.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2008, Australia; Sydney Nano Institute, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Devin Wahl
- Department of Health and Exercise Science & Centre for Healthy Aging, Colorado State University, CO 80523, United States
| | - Lara J Westwood
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Glen P Lockwood
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - David G Le Couteur
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Victoria C Cogger
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2008, Australia; ANZAC Research Institute & Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, NSW 2139, Australia.
| |
Collapse
|
22
|
Mirzaei M, Abyadeh M, Turner AJ, Wall RV, Chick JM, Paulo JA, Gupta VK, Basavarajappa D, Chitranshi N, Mirshahvaladi SSO, You Y, Fitzhenry MJ, Amirkhani A, Haynes PA, Klistorner A, Gupta V, Graham SL. Fingolimod effects on the brain are mediated through biochemical modulation of bioenergetics, autophagy, and neuroinflammatory networks. Proteomics 2022; 22:e2100247. [PMID: 35866514 PMCID: PMC9786555 DOI: 10.1002/pmic.202100247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 12/30/2022]
Abstract
Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.
Collapse
Affiliation(s)
- Mehdi Mirzaei
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Anita J. Turner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Roshana Vander Wall
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Joel M. Chick
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Veer K. Gupta
- School of MedicineDeakin UniversityGeelongVICAustralia
| | - Devaraj Basavarajappa
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Nitin Chitranshi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Seyed Shahab Oddin Mirshahvaladi
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Yuyi You
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | | | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNSWAustralia
| | - Paul A. Haynes
- School of Natural SciencesMacquarie UniversityMacquarie ParkNSWAustralia
- Biomolecular Discovery Research CentreMacquarie UniversitySydneyNSWAustralia
| | - Alexander Klistorner
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Vivek Gupta
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| | - Stuart L. Graham
- Department of Clinical MedicineFaculty of MedicineHealth and Human SciencesMacquarie Medical SchoolMacquarie UniversityMacquarie Park, North RydeSydneyNSWAustralia
| |
Collapse
|
23
|
Recent trends of natural based therapeutics for mitochondria targeting in Alzheimer’s disease. Mitochondrion 2022; 64:112-124. [DOI: 10.1016/j.mito.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
|
24
|
Key Genes and Biochemical Networks in Various Brain Regions Affected in Alzheimer's Disease. Cells 2022; 11:cells11060987. [PMID: 35326437 PMCID: PMC8946735 DOI: 10.3390/cells11060987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most complicated progressive neurodegenerative brain disorders, affecting millions of people around the world. Ageing remains one of the strongest risk factors associated with the disease and the increasing trend of the ageing population globally has significantly increased the pressure on healthcare systems worldwide. The pathogenesis of AD is being extensively investigated, yet several unknown key components remain. Therefore, we aimed to extract new knowledge from existing data. Ten gene expression datasets from different brain regions including the hippocampus, cerebellum, entorhinal, frontal and temporal cortices of 820 AD cases and 626 healthy controls were analyzed using the robust rank aggregation (RRA) method. Our results returned 1713 robust differentially expressed genes (DEGs) between five brain regions of AD cases and healthy controls. Subsequent analysis revealed pathways that were altered in each brain region, of which the GABAergic synapse pathway and the retrograde endocannabinoid signaling pathway were shared between all AD affected brain regions except the cerebellum, which is relatively less sensitive to the effects of AD. Furthermore, we obtained common robust DEGs between these two pathways and predicted three miRNAs as potential candidates targeting these genes; hsa-mir-17-5p, hsa-mir-106a-5p and hsa-mir-373-3p. Three transcription factors (TFs) were also identified as the potential upstream regulators of the robust DEGs; ELK-1, GATA1 and GATA2. Our results provide the foundation for further research investigating the role of these pathways in AD pathogenesis, and potential application of these miRNAs and TFs as therapeutic and diagnostic targets.
Collapse
|
25
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
26
|
Lin J, Zhang K, Cao X, Zhao Y, Ullah Khan N, Liu X, Tang X, Chen M, Zhang H, Shen L. iTRAQ-Based Proteomics Analysis of Rat Cerebral Cortex Exposed to Valproic Acid before Delivery. ACS Chem Neurosci 2022; 13:648-663. [PMID: 35138800 DOI: 10.1021/acschemneuro.1c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder characterized by social and communication difficulties. Valproic acid (VPA) injection during pregnancy elicits autism-like behavior in the offspring, making it a classic animal model of ASD. However, the mechanisms involved have not yet been determined. In this study, we used iTRAQ (isobaric tags for relative and absolute quantification) proteomics analysis of the cerebral cortex of a VPA rat model (VPA group) and controls (CON group). The results showed that 79 differentially expressed proteins (DEPs) were identified between the VPA group and the CON group. Based on bioinformatics analysis, the DEPs were mainly enriched at synapses, especially glutamatergic synapses and GABAergic synapses. Some DEPs were involved in energy metabolism, thyroid hormone synthesis pathway, and Na+-K+-ATPase. Cytoskeleton and endoplasmic reticulum (ER) stress-related proteins were also involved. Some DEPs matched either the ASD gene database or previous reports on cerebral cortical transcriptome studies in VPA rat models. Dysregulation of these DEPs in the cerebral cortex of VPA rats may be responsible for autism-like behavior in rats. We also found that some DEPs were associated with neuropsychiatric disorders, implying that these diseases share common signaling pathways and mechanisms. Moreover, increased expression of DEPs was associated with energy metabolism in the cerebral cortex of VPA rats, implying that ASD may be a distinct type of mitochondrial dysfunction that requires further investigation.
Collapse
Affiliation(s)
- Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, P. R. China
| | - Kaoyuan Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Naseer Ullah Khan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen 518071, P. R. China
| | - Margy Chen
- Department of Psychology, Emory University, Atlanta, Georgia 30322, United States
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, Shenzhen 518071, P. R. China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518071, P. R. China
| |
Collapse
|
27
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
28
|
Abyadeh M, Gupta V, Gupta V, Chitranshi N, Wu Y, Amirkhani A, Meyfour A, Sheriff S, Shen T, Dhiman K, Ghasem HS, Paul AH, Stuart LG, Mirzaei M. Comparative Analysis of Aducanumab, Zagotenemab and Pioglitazone as Targeted Treatment Strategies for Alzheimer's Disease. Aging Dis 2021; 12:1964-1976. [PMID: 34881080 PMCID: PMC8612603 DOI: 10.14336/ad.2021.0719] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia that has remained a major medical, sociocultural and economical challenge globally. Previously developed treatments like anticholinesterase inhibitors (AChEIs) and N-methyl-D-aspartate receptor (NMDAR) antagonists only provide short-term symptomatic improvement and do not prevent progression. Repeated setbacks and failures over the past 25 years in AD clinical trials have hindered efforts to develop effective AD treatments. Fortunately, Aducanumab, a specific anti-amyloid β antibody, has shown promising clinical results and was recently approved by the Food and Drug Administration (FDA) through an accelerated approval pathway. This has raised hopes for AD patients; however post-approval trials are necessary to estimate the true scope of its clinical benefits. We have reviewed several AD clinical studies and summarized the experience to date with Aducanumab and two other potential AD drugs including Zagotenemab (an anti-tau antibody) and Pioglitazone (nuclear Peroxisome-Proliferator Activated Receptor γ (PPARγ) agonist). These have shown mixed results so far and the next few years will be critical to elucidate and interpret their broad long-term protective effects. A concerted effort is required to understand and strengthen the translation of pre-clinical findings from these drugs to routine clinical practice.
Collapse
Affiliation(s)
- Morteza Abyadeh
- 1Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vivek Gupta
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Veer Gupta
- 3School of Medicine, Deakin University, VIC, Australia
| | - Nitin Chitranshi
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Yunqi Wu
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Ardeshir Amirkhani
- 4Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW, Australia
| | - Anna Meyfour
- 5Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samran Sheriff
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Ting Shen
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Kunal Dhiman
- 3School of Medicine, Deakin University, VIC, Australia
| | - H Salekdeh Ghasem
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - A Haynes Paul
- 6Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - L Graham Stuart
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| | - Mehdi Mirzaei
- 2Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
29
|
Abyadeh M, Gupta V, Paulo JA, Gupta V, Chitranshi N, Godinez A, Saks D, Hasan M, Amirkhani A, McKay M, Salekdeh GH, Haynes PA, Graham SL, Mirzaei M. A Proteomic View of Cellular and Molecular Effects of Cannabis. Biomolecules 2021; 11:1411. [PMID: 34680044 PMCID: PMC8533448 DOI: 10.3390/biom11101411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabis (Cannabis sativa), popularly known as marijuana, is the most commonly used psychoactive substance and is considered illicit in most countries worldwide. However, a growing body of research has provided evidence of the therapeutic properties of chemical components of cannabis known as cannabinoids against several diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease, schizophrenia and glaucoma; these have prompted changes in medicinal cannabis legislation. The relaxation of legal restrictions and increased socio-cultural acceptance has led to its increase in both medicinal and recreational usage. Several biochemically active components of cannabis have a range of effects on the biological system. There is an urgent need for more research to better understand the molecular and biochemical effects of cannabis at a cellular level, to understand fully its implications as a pharmaceutical drug. Proteomics technology is an efficient tool to rigorously elucidate the mechanistic effects of cannabis on the human body in a cell and tissue-specific manner, drawing conclusions associated with its toxicity as well as therapeutic benefits, safety and efficacy profiles. This review provides a comprehensive overview of both in vitro and in vivo proteomic studies involving the cellular and molecular effects of cannabis and cannabis-derived compounds.
Collapse
Affiliation(s)
- Morteza Abyadeh
- ProGene Technologies Pty Ltd., Macquarie Park, Sydney, NSW 2113, Australia;
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA;
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 2600, Australia;
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Angela Godinez
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Danit Saks
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia;
| | - Ardeshir Amirkhani
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia;
| | - Matthew McKay
- Bowel Cancer and Biomarker Laboratory, Kolling Institute, Northern Clinical School, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ghasem H. Salekdeh
- Department of Molecular Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia; (G.H.S.); (P.A.H.)
| | - Paul A. Haynes
- Department of Molecular Sciences, Macquarie University, Macquarie Park, Sydney, NSW 2109, Australia; (G.H.S.); (P.A.H.)
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia; (N.C.); (A.G.); (D.S.); (S.L.G.)
| |
Collapse
|
30
|
Shandilya S, Kesari KK, Ruokolainen J. Vitamin K2 Modulates Organelle Damage and Tauopathy Induced by Streptozotocin and Menadione in SH-SY5Y Cells. Antioxidants (Basel) 2021; 10:983. [PMID: 34202933 PMCID: PMC8234639 DOI: 10.3390/antiox10060983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Vitamin K2, known for its antioxidative and anti-inflammatory properties, can act as a potent neuroprotective molecule. Despite its action against mitochondrial dysfunction, the mechanism underlying the links between the protective effects of vitamin K2 and endoplasmic reticulum (ER) stress along with basal levels of total tau protein and amyloid-beta 42 (Aβ42) has not been elucidated yet. To understand the neuroprotective effect of vitamin K2 during metabolic complications, SH-SY5Y cells were treated with streptozotocin for 24 h and menadione for 2 h in a dose-dependent manner, followed by post-treatment of vitamin K2 for 5 h. The modulating effects of vitamin K2 on cell viability, lactate dehydrogenase release, reactive oxygen species (ROS), mitochondrial membrane potential, ER stress marker (CHOP), an indicator of unfolded protein response (UPR), inositol requiring enzyme 1 (p-IRE1α), glycogen synthase kinase 3 (GSK3α/β), total tau and Aβ42 were studied. Results showed that vitamin K2 significantly reduces neuronal cell death by inhibiting cytotoxicity and ROS levels and helps in the retainment of mitochondrial membrane potential. Moreover, vitamin K2 significantly decreased the expression of CHOP protein along with the levels and the nuclear localization of p-IRE1α, thus showing its significant role in inhibiting chronic ER stress-mediated UPR and eventually cell death. In addition, vitamin K2 significantly down-regulated the expression of GSK3α/β together with the levels of total tau protein, with a petite effect on secreted Aβ42 levels. These results suggested that vitamin K2 alleviated mitochondrial damage, ER stress and tauopathy-mediated neuronal cell death, which highlights its role as new antioxidative therapeutics targeting related cellular processes.
Collapse
Affiliation(s)
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| | - Janne Ruokolainen
- Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland;
| |
Collapse
|
31
|
Sharma C, Kim S, Nam Y, Jung UJ, Kim SR. Mitochondrial Dysfunction as a Driver of Cognitive Impairment in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22094850. [PMID: 34063708 PMCID: PMC8125007 DOI: 10.3390/ijms22094850] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of age-related neurodegeneration and cognitive impairment, and there are currently no broadly effective therapies. The underlying pathogenesis is complex, but a growing body of evidence implicates mitochondrial dysfunction as a common pathomechanism involved in many of the hallmark features of the AD brain, such as formation of amyloid-beta (Aβ) aggregates (amyloid plaques), neurofibrillary tangles, cholinergic system dysfunction, impaired synaptic transmission and plasticity, oxidative stress, and neuroinflammation, that lead to neurodegeneration and cognitive dysfunction. Indeed, mitochondrial dysfunction concomitant with progressive accumulation of mitochondrial Aβ is an early event in AD pathogenesis. Healthy mitochondria are critical for providing sufficient energy to maintain endogenous neuroprotective and reparative mechanisms, while disturbances in mitochondrial function, motility, fission, and fusion lead to neuronal malfunction and degeneration associated with excess free radical production and reduced intracellular calcium buffering. In addition, mitochondrial dysfunction can contribute to amyloid-β precursor protein (APP) expression and misprocessing to produce pathogenic fragments (e.g., Aβ1-40). Given this background, we present an overview of the importance of mitochondria for maintenance of neuronal function and how mitochondrial dysfunction acts as a driver of cognitive impairment in AD. Additionally, we provide a brief summary of possible treatments targeting mitochondrial dysfunction as therapeutic approaches for AD.
Collapse
Affiliation(s)
- Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Sehwan Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Youngpyo Nam
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea;
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Korea; (S.K.); (Y.N.)
- Correspondence: ; Tel.: +82-53-950-7362; Fax: +82-53-943-2762
| |
Collapse
|