1
|
López-Gandul L, Lavarda G, van den Bersselaar BWL, Vantomme G, Meijer EW, Sánchez L. Supramolecular polymerization and bulk properties relationship in ester-functionalized N-annulated perylenediimides. Chem Sci 2024:d4sc03797a. [PMID: 39144454 PMCID: PMC11318647 DOI: 10.1039/d4sc03797a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
The synthesis of a series of N-annulated perylenediimides (NPDIs) 1-4 with an ester group and an alkyl spacer of different length in the peripheral chains was carried out, and the influence of the side chain architecture on the self-assembly, both in solution and in the solid state, was investigated. Solution studies evidenced that the carbonyl group plays a key role in the supramolecular organization of these derivatives, changing from an H-type isodesmic polymerization (4) to a J-type cooperative process as the spacer length decreases (1-3). On the other hand, bulk assays revealed an odd-even effect that correlates with the length of the alkyl spacer. Whereas the odd-spaced derivatives (2 and 4) organize in a disordered columnar hexagonal fashion, the even-spaced ones (1 and 3) show the formation of multiple crystalline (and liquid crystalline) structures. The results presented herein highlight the importance of side chain functionalization in the design of building blocks for in-solution and bulk purposes.
Collapse
Affiliation(s)
- Lucía López-Gandul
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Giulia Lavarda
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Luis Sánchez
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid Spain
| |
Collapse
|
2
|
Montanari J, Schwob L, Marie-Brasset A, Vinatier C, Lepleux C, Antoine R, Guicheux J, Poully JC, Chevalier F. Pilot screening of potential matrikines resulting from collagen breakages through ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:337-350. [PMID: 39115696 PMCID: PMC11341654 DOI: 10.1007/s00411-024-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Little is known regarding radiation-induced matrikines and the possible degradation of extracellular matrix following therapeutic irradiation. The goal of this study was to determine if irradiation can cut collagen proteins at specific sites, inducing potentially biologically active peptides against cartilage cells. Chondrocytes cultured as 3D models were evaluated for extracellular matrix production. Bystander molecules were analyzed in vitro in the conditioned medium of X-irradiated chondrocytes. Preferential breakage sites were analyzed in collagen polypeptide by mass spectrometry and resulting peptides were tested against chondrocytes. 3D models of chondrocytes displayed a light extracellular matrix able to maintain the structure. Irradiated and bystander chondrocytes showed a surprising radiation sensitivity at low doses, characteristic of the presence of bystander factors, particularly following 0.1 Gy. The glycine-proline peptidic bond was observed as a preferential cleavage site and a possible weakness of the collagen polypeptide after irradiation. From the 46 collagen peptides analyzed against chondrocytes culture, 20 peptides induced a reduction of viability and 5 peptides induced an increase of viability at the highest concentration between 0.1 and 1 µg/ml. We conclude that irradiation promoted a site-specific degradation of collagen. The potentially resulting peptides induce negative or positive regulations of chondrocyte growth. Taken together, these results suggest that ionizing radiation causes a degradation of cartilage proteins, leading to a functional unbalance of cartilage homeostasis after exposure, contributing to cartilage dysfunction.
Collapse
Affiliation(s)
- Juliette Montanari
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, 14000, France
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
| | - Aurélie Marie-Brasset
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, 14000, France
| | - Claire Vinatier
- Nantes Université, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Oniris, Nantes, F-44000, France
| | - Charlotte Lepleux
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, 14000, France
| | - Rodolphe Antoine
- Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, F-69622, France
| | - Jérôme Guicheux
- Nantes Université, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR 1229, Oniris, Nantes, F-44000, France
| | - Jean-Christophe Poully
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, 14000, France.
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, Bd Henri Becquerel - BP 55027, CAEN Cedex 05, F-14076, France.
| | - François Chevalier
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, Caen, 14000, France.
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, Bd Henri Becquerel - BP 55027, CAEN Cedex 05, F-14076, France.
| |
Collapse
|
3
|
Abdel-Rahman R, Abdel-Mohsen AM, Frankova J, Piana F, Kalina L, Gajdosova V, Kapralkova L, Thottappali MA, Jancar J. Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties. Biomacromolecules 2024; 25:3449-3463. [PMID: 38739908 PMCID: PMC11170955 DOI: 10.1021/acs.biomac.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Using supramolecular self-assembled nanocomposite materials made from protein and polysaccharide components is becoming more popular because of their unique properties, such as biodegradability, hierarchical structures, and tunable multifunctionality. However, the fabrication of these materials in a reproducible way remains a challenge. This study presents a new evaporation-induced self-assembly method producing layered hydrogel membranes (LHMs) using tropocollagen grafted by partially deacetylated chitin nanocrystals (CO-g-ChNCs). ChNCs help stabilize tropocollagen's helical conformation and fibrillar structure by forming a hierarchical microstructure through chemical and physical interactions. The LHMs show improved mechanical properties, cytocompatibility, and the ability to control drug release using octenidine dihydrochloride (OCT) as a drug model. Because of the high synergetic performance between CO and ChNCs, the modulus, strength, and toughness increased significantly compared to native CO. The biocompatibility of LHM was tested using the normal human dermal fibroblast (NHDF) and the human osteosarcoma cell line (Saos-2). Cytocompatibility and cell adhesion improved with the introduction of ChNCs. The extracted ChNCs are used as a reinforcing nanofiller to enhance the performance properties of tropocollagen hydrogel membranes and provide new insights into the design of novel LHMs that could be used for various medical applications, such as control of drug release in the skin and bone tissue regeneration.
Collapse
Affiliation(s)
- Rasha
M. Abdel-Rahman
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - A. M. Abdel-Mohsen
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
- Pretreatment
and Finishing of Cellulosic Based Textiles Department, Textile Industries Research Institute, National Research
Centre, 33 EL Buhouth
Street, Dokki, Giza 12622, Egypt
| | - Jana Frankova
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská, 3, 775 15, Olomouc, Czech Republic
| | - Francesco Piana
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Lukas Kalina
- Faculty
of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno 61200, Czech Republic
| | - Veronika Gajdosova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Ludmila Kapralkova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Muhammed Arshad Thottappali
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Josef Jancar
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Faculty
of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno 61200, Czech Republic
| |
Collapse
|
4
|
Piedl KN, Arcoria PJ, Etzkorn FA. Misacylation of tRNA with Ser-Pro Dipeptide for In Vitro Transcription-Translation. Curr Protoc 2024; 4:e1010. [PMID: 38516989 PMCID: PMC10963037 DOI: 10.1002/cpz1.1010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Serine-proline (Ser-Pro) backbone-modified dipeptide analogues are powerful tools to investigate the role of cis-trans isomerization in the regulation of the cell cycle and transcription. These studies have previously been limited to synthetic peptides, whose synthesis is a challenge for larger peptides due to the compounding yield loss incurred in each step. We now introduce a method for the aminoacylation of tRNA with dipeptides and dipeptide analogs to permit the installation of cis- and trans-locked Ser-Pro analogues into full-length proteins. To that end, we synthesized the 3,5-dinitrobenzyl (DNB)-activated esters of a native Ser-Pro dipeptide and its cis- and trans-locked alkene analogs. Murakami et al. created the DNB flexizyme (dFx), a ribozyme that acylates tRNA with DNB esters of amino acids to permit unnatural amino acids to be incorporated into proteins. A tRNA from yeast that recognizes the amber stop codon, along with the dFx flexizyme, were generated by in vitro transcription with T7 RNA polymerase. dFx was used to successfully catalyze the chemical misacylation of truncated amber tRNA with the Ser-Pro-DNB activated dipeptide. This method allows the introduction of non-native Ser-Pro dipeptide mimics into full-length proteins by in vitro transcription-translation. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of 3,5-dinitrobenzyl activated esters of Ser-Pro Basic Protocol 2: Preparation of truncated amber tRNA Basic Protocol 3: Acylation of amber-tRNA by the dFx flexizyme Basic Protocol 4: PAGE electrophoresis of tRNASerPro.
Collapse
Affiliation(s)
- Karla N Piedl
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia
| | - Paul J Arcoria
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia
| | | |
Collapse
|
5
|
Gahlawat S, Nanda V, Shreiber DI. Designing collagens to shed light on the multi-scale structure-function mapping of matrix disorders. Matrix Biol Plus 2024; 21:100139. [PMID: 38186852 PMCID: PMC10765305 DOI: 10.1016/j.mbplus.2023.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Collagens are the most abundant structural proteins in the extracellular matrix of animals and play crucial roles in maintaining the structural integrity and mechanical properties of tissues and organs while mediating important biological processes. Fibrillar collagens have a unique triple helix structure with a characteristic repeating sequence of (Gly-X-Y)n. Variations within the repetitive sequence can cause misfolding of the triple helix, resulting in heritable connective tissue disorders. The most common variations are single-point missense mutations that lead to the substitution of a glycine residue with a bulkier amino acid (Gly → X). In this review, we will first discuss the importance of collagen's triple helix structure and how single Gly substitutions can impact its folding, structure, secretion, assembly into higher-order structures, and biological functions. We will review the role of "designer collagens," i.e., synthetic collagen-mimetic peptides and recombinant bacterial collagen as model systems to include Gly → X substitutions observed in collagen disorders and investigate their impact on structure and function utilizing in vitro studies. Lastly, we will explore how computational modeling of collagen peptides, especially molecular and steered molecular dynamics, has been instrumental in probing the effects of Gly substitutions on structure, receptor binding, and mechanical stability across multiple length scales.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
6
|
Khattignavong E, Neshatian M, Vaez M, Guillermin A, Tauer JT, Odlyha M, Mittal N, Komarova SV, Zahouani H, Bozec L. Development of a facile method to compute collagen network pathological anisotropy using AFM imaging. Sci Rep 2023; 13:20173. [PMID: 37978303 PMCID: PMC10656449 DOI: 10.1038/s41598-023-47350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Type I collagen, a fundamental extracellular matrix (ECM) component, is pivotal in maintaining tissue integrity and strength. It is also the most prevalent fibrous biopolymer within the ECM, ubiquitous in mammalian organisms. This structural protein provides essential mechanical stability and resilience to various tissues, including tendons, ligaments, skin, bone, and dentin. Collagen has been structurally investigated for several decades, and variation to its ultrastructure by histology has been associated with several pathological conditions. The current study addresses a critical challenge in the field of collagen research by providing a novel method for studying collagen fibril morphology at the nanoscale. It offers a computational approach to quantifying collagen properties, enabling a deeper understanding of how collagen type I can be affected by pathological conditions. The application of Fast Fourier Transform (FFT) coupled with Atomic Force Microscope (AFM) imaging distinguishes not only healthy and diseased skin but also holds potential for automated diagnosis of connective tissue disorders (CTDs), contributing to both clinical diagnostics and fundamental research in this area. Here we studied the changes in the structural parameters of collagen fibrils in Ehlers Danlos Syndrome (EDS). We have used skin extracted from genetically mutant mice that exhibit EDS phenotype as our model system (Col1a1Jrt/+ mice). The collagen fibrils were analyzed by AFM based descriptive-structural parameters, coupled with a 2D Fast Fourier Transform(2D-FFT) approach that automated the analysis of AFM images. In addition, each sample was characterized based on its FFT and power spectral density. Our qualitative data showed morphological differences in collagen fibril clarity (clearness of the collagen fibril edge with their neighbouring fibri), D-banding, orientation, and linearity. We have also demonstrated that FFT could be a new tool for distinguishing healthy from tissues with CTDs by measuring the disorganization of fibrils in the matrix. We have also employed FFT to reveal the orientations of the collagen fibrils, providing clinically relevant phenotypic information on their organization and anisotropy. The result of this study can be used to develop a new automated tool for better diagnosis of CTDs.
Collapse
Affiliation(s)
- Emilie Khattignavong
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Mehrnoosh Neshatian
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Mina Vaez
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Amaury Guillermin
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Josephine T Tauer
- Shriners Hospital for Children, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Marianne Odlyha
- School of Biological Science, Birkbeck College, University of London, London, UK
| | - Nimish Mittal
- Division of Physical Medicine and Rehabilitation, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Hassan Zahouani
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
7
|
Kamml J, Ke CY, Acevedo C, Kammer DS. The influence of AGEs and enzymatic cross-links on the mechanical properties of collagen fibrils. J Mech Behav Biomed Mater 2023; 143:105870. [PMID: 37156073 PMCID: PMC11522032 DOI: 10.1016/j.jmbbm.2023.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Collagen, one of the main building blocks for various tissues, derives its mechanical properties directly from its structure of cross-linked tropocollagen molecules. The cross-links are considered to be a key component of collagen fibrils as they can change the fibrillar behavior in various ways. For instance, enzymatic cross-links (ECLs), one particular type of cross-links, are known for stabilizing the structure of the fibril and improving material properties, while cross-linking AGEs (Advanced-Glycation Endproducts) have been shown to accumulate and impair the mechanical properties of collageneous tissues. However, the reasons for whether and how a given type of cross-link improves or impairs the material properties remain unknown, and the exact relationship between the cross-link properties and density, and the fibrillar behavior is still not well understood. Here, we use coarse-grained steered molecular models to evaluate the effect of AGEs and ECLs cross-links content on the deformation and failure properties of collagen fibrils. Our simulations show that the collagen fibrils stiffen at high strain levels when the AGEs content exceeds a critical value. In addition, the strength of the fibril increases with AGEs accumulation. By analyzing the forces within the different types of cross-links (AGEs and ECLs) as well as their failure, we demonstrate that a change of deformation mechanism is at the origin of these observations. A high AGEs content reinforces force transfer through AGEs cross-links rather than through friction between sliding tropocollagen molecules, which leads to failure by breaking of bonds within the tropocollagen molecules. We show that this failure mechanism, which is associated with lower energy dissipation, results in more abrupt failure of the collagen fibril. Our results provide a direct and causal link between increased AGEs content, inhibited intra-fibrillar sliding, increased stiffness, and abrupt fibril fracture. Therefore, they explain the mechanical origin of bone brittleness as commonly observed in elderly and diabetic populations. Our findings contribute to a better understanding of the mechanisms underlying impaired tissue behavior due to elevated AGEs content and could enable targeted measures regarding the reduction of specific collagen cross-linking levels.
Collapse
Affiliation(s)
- Julia Kamml
- Institute for Building Materials, ETH Zurich, Switzerland
| | - Chun-Yu Ke
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Claire Acevedo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - David S Kammer
- Institute for Building Materials, ETH Zurich, Switzerland.
| |
Collapse
|
8
|
Wilcox KG, Kemerer GM, Morozova S. Ionic environment effects on collagen type II persistence length and assembly. J Chem Phys 2023; 158:044903. [PMID: 36725496 DOI: 10.1063/5.0131792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Collagen type II is a main structural protein in cartilage and forms fibrils. The radius of the fibrils ranges from 50 nm to a few hundred nm, and previous theoretical studies point to electrostatics and collagen elasticity (measured as the persistence length, lp) as the main origin for the self-limiting size scales. In this study, we have investigated the collagen triple helical structure and fibril size scales in pH 2 solutions with varying NaCl concentrations from 10-4 to 100 mM, at which collagen is positively charged, and in pH 7.4 solutions, with varying ionic strengths from 100 to 250 mM, at which collagen is both positively and negatively charged. Using static and dynamic light scattering, the radius of gyration (Rg), hydrodynamic radius (Rh), and second virial coefficient (A2) of collagen triple helices are determined, and lp is calculated. With increasing ionic strength, triple helical lp decreases in pH 2 solutions and increases in pH 7.4 solutions. The value ranges from 60 to 100 nm depending on the ionic environment, but at the salt concentration at which A2 is near zero, there are no net backbone interactions in solution, and the intrinsic collagen triple helix lp is determined to be 90-95 nm. Electron microscopy is used to determine the diameter of fibrils assembled in pH 7.4 conditions, and we compare lp of the collagen triple helices and fibril diameter using recent theory on fibril assembly. By better understanding collagen lp and fibril assembly, we can further understand mechanisms of biomacromolecule self-assembly.
Collapse
Affiliation(s)
- Kathryn G Wilcox
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Grace M Kemerer
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Svetlana Morozova
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
9
|
Verma N, Sharma P, Jayabal H, Dingari NN, Gupta R, Rai B. Multiscale modeling of skin mechanical Behavior: Effect of dehydrating agent on Collagen's mechanical properties. J Biomech 2022; 145:111361. [PMID: 36347117 DOI: 10.1016/j.jbiomech.2022.111361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
The dermis, second layer of human skin, is mainly responsible for mechanical response of the skin. The unique viscoelastic nature of this layer arises from the characteristic hierarchical structure of collagen at various length scales. The effect of topical formulation on skin's mechanical properties of great importance for several personal-care applications. Understanding the transport of an active ingredient across skin layer and its effects on the structure of collagen assembly is crucial for successful design of these applications. In this study, we report a multiscale modelling framework mimicking the skin's mechanical behavior. The framework captures the details from the nanoscale (tropocollagen) to microscale (fibers). At first, atomistic molecular dynamics simulations (MDS) of tropocollagen (TC) molecules of various lengths (∼100 nm) were performed to obtain the molecular modulus of TC. The stress-strain response data obtained from these simulations, were utilized in macroscopic models of fibrils and fibers. The modulus obtained from the mentioned framework was in good agreement with earlier reported experimental data. Further, we have utilized this framework to show the effect of dehydrating agent on skin's mechanical response. The hydration effect is utilized in many anti-ageing strategies to improve the overall mechanical property of skin. We showed that on incorporation of hydrating agent, the collagen structure changes significantly at molecular scale which effects the overall response of the skin at macroscopic scale. The reported multiscale framework can further be explored to gain insights into interlinked properties of collagen at much larger scales without extensive molecular simulations and detailed experiments.
Collapse
Affiliation(s)
- Nitu Verma
- Physical Sciences Research Area, TCS Research, Pune 411013, India
| | - Paramveer Sharma
- Physical Sciences Research Area, TCS Research, Pune 411013, India
| | | | | | - Rakesh Gupta
- Physical Sciences Research Area, TCS Research, Pune 411013, India.
| | - Beena Rai
- Physical Sciences Research Area, TCS Research, Pune 411013, India
| |
Collapse
|
10
|
Meganathan I, Pachaiyappan M, Aarthy M, Radhakrishnan J, Mukherjee S, Shanmugam G, You J, Ayyadurai N. Recombinant and genetic code expanded collagen-like protein as a tailorable biomaterial. MATERIALS HORIZONS 2022; 9:2698-2721. [PMID: 36189465 DOI: 10.1039/d2mh00652a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Collagen occurs in nature with a dedicated triple helix structure and is the most preferred biomaterial in commercialized medical products. However, concerns on purity, disease transmission, and the reproducibility of animal derived collagen restrict its applications and warrants alternate recombinant sources. The expression of recombinant collagen in different prokaryotic and eukaryotic hosts has been reported with varying degrees of success, however, it is vital to elucidate the structural and biological characteristics of natural collagen. The recombinant production of biologically functional collagen is restricted by its high molecular weight and post-translational modification (PTM), especially the hydroxylation of proline to hydroxyproline. Hydroxyproline plays a key role in the structural stability and higher order self-assembly to form fibrillar matrices. Advancements in synthetic biology and recombinant technology are being explored for improving the yield and biomimicry of recombinant collagen. It emerges as reliable, sustainable source of collagen, promises tailorable properties and thereby custom-made protein biomaterials. Remarkably, the evolutionary existence of collagen-like proteins (CLPs) has been identified in single-cell organisms. Interestingly, CLPs exhibit remarkable ability to form stable triple helical structures similar to animal collagen and have gained increasing attention. Strategies to expand the genetic code of CLPs through the incorporation of unnatural amino acids promise the synthesis of highly tunable next-generation triple helical proteins required for the fabrication of smart biomaterials. The review outlines the importance of collagen, sources and diversification, and animal and recombinant collagen-based biomaterials and highlights the limitations of the existing collagen sources. The emphasis on genetic code expanded tailorable CLPs as the most sought alternate for the production of functional collagen and its advantages as translatable biomaterials has been highlighted.
Collapse
Affiliation(s)
- Ilamaran Meganathan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mohandass Pachaiyappan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Mayilvahanan Aarthy
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
| | - Janani Radhakrishnan
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Smriti Mukherjee
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
| | - Ganesh Shanmugam
- Division of Organic and Bio-organic Chemistry, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jingjing You
- Save Sight Institute, Sydney Medical School, University of Sydney, Australia
| | - Niraikulam Ayyadurai
- Division of Biochemistry and Biotechnology, Council of Scientific and Industrial Research (CSIR) - CLRI, Chennai, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Discovering design principles of collagen molecular stability using a genetic algorithm, deep learning, and experimental validation. Proc Natl Acad Sci U S A 2022; 119:e2209524119. [PMID: 36161946 DOI: 10.1073/pnas.2209524119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collagen is the most abundant structural protein in humans, providing crucial mechanical properties, including high strength and toughness, in tissues. Collagen-based biomaterials are, therefore, used for tissue repair and regeneration. Utilizing collagen effectively during materials processing ex vivo and subsequent function in vivo requires stability over wide temperature ranges to avoid denaturation and loss of structure, measured as melting temperature (Tm). Although significant research has been conducted on understanding how collagen primary amino acid sequences correspond to Tm values, a robust framework to facilitate the design of collagen sequences with specific Tm remains a challenge. Here, we develop a general model using a genetic algorithm within a deep learning framework to design collagen sequences with specific Tm values. We report 1,000 de novo collagen sequences, and we show that we can efficiently use this model to generate collagen sequences and verify their Tm values using both experimental and computational methods. We find that the model accurately predicts Tm values within a few degrees centigrade. Further, using this model, we conduct a high-throughput study to identify the most frequently occurring collagen triplets that can be directly incorporated into collagen. We further discovered that the number of hydrogen bonds within collagen calculated with molecular dynamics (MD) is directly correlated to the experimental measurement of triple-helical quality. Ultimately, we see this work as a critical step to helping researchers develop collagen sequences with specific Tm values for intended materials manufacturing methods and biomedical applications, realizing a mechanistic materials by design paradigm.
Collapse
|
12
|
Khare E, Gonzalez-Obeso C, Kaplan DL, Buehler MJ. CollagenTransformer: End-to-End Transformer Model to Predict Thermal Stability of Collagen Triple Helices Using an NLP Approach. ACS Biomater Sci Eng 2022; 8:4301-4310. [PMID: 36149671 DOI: 10.1021/acsbiomaterials.2c00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Collagen is one of the most important structural proteins in biology, and its structural hierarchy plays a crucial role in many mechanically important biomaterials. Here, we demonstrate how transformer models can be used to predict, directly from the primary amino acid sequence, the thermal stability of collagen triple helices, measured via the melting temperature Tm. We report two distinct transformer architectures to compare performance. First, we train a small transformer model from scratch, using our collagen data set featuring only 633 sequence-to-Tm pairings. Second, we use a large pretrained transformer model, ProtBERT, and fine-tune it for a particular downstream task by utilizing sequence-to-Tm pairings, using a deep convolutional network to translate natural language processing BERT embeddings into required features. Both the small transformer model and the fine-tuned ProtBERT model have similar R2 values of test data (R2 = 0.84 vs 0.79, respectively), but the ProtBERT is a much larger pretrained model that may not always be applicable for other biological or biomaterials questions. Specifically, we show that the small transformer model requires only 0.026% of the number of parameters compared to the much larger model but reaches almost the same accuracy for the test set. We compare the performance of both models against 71 newly published sequences for which Tm has been obtained as a validation set and find reasonable agreement, with ProtBERT outperforming the small transformer model. The results presented here are, to our best knowledge, the first demonstration of the use of transformer models for relatively small data sets and for the prediction of specific biophysical properties of interest. We anticipate that the work presented here serves as a starting point for transformer models to be applied to other biophysical problems.
Collapse
Affiliation(s)
- Eesha Khare
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | | | - David L Kaplan
- Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States.,Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Cederlund AA, Aspden RM. Walking on water: revisiting the role of water in articular cartilage biomechanics in relation to tissue engineering and regenerative medicine. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220364. [PMID: 35919975 PMCID: PMC9346369 DOI: 10.1098/rsif.2022.0364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The importance, and the difficulty, of generating biosynthetic articular cartilage is widely recognized. Problems arise from obtaining sufficient stiffness, toughness and longevity in the material and integration of new material into existing cartilage and bone. Much work has been done on chondrocytes and tissue macromolecular components while water, which comprises the bulk of the tissue, is largely seen as a passive component; the ‘solid matrix’ is believed to be the main load-bearing element most of the time. Water is commonly seen as an inert filler whose restricted flow through the tissue is believed to be sufficient to generate the properties measured. We propose that this model should be turned on its head. Water comprises 70–80% of the matrix and has a bulk modulus considerably greater than that of cartilage. We suggest that the macromolecular components structure the water to support the loads applied. Here, we shall examine the structure and organization of the main macromolecules, collagen, aggrecan and hyaluronan, and explore how water interacts with their polyelectrolyte nature. This may inform the biosynthetic process by identifying starting points to enable developing tissue properties to guide the cells into producing the appropriate macromolecular composition and structure.
Collapse
Affiliation(s)
- Anna A Cederlund
- Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Richard M Aspden
- Aberdeen Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
14
|
Goh R, Yoshida E, Schaible E, Behrens R, Monnier CA, Killingsworth B, Kong KW, Hiew SH, Miserez A, Hoon S, Waite JH. Nanolattice-Forming Hybrid Collagens in Protective Shark Egg Cases. Biomacromolecules 2022; 23:2878-2890. [PMID: 35748755 DOI: 10.1021/acs.biomac.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanoscopic structural control with long-range ordering remains a profound challenge in nanomaterial fabrication. The nanoarchitectured egg cases of elasmobranchs rely on a hierarchically ordered latticework for their protective function─serving as an exemplary system for nanoscale self-assembly. Although the proteinaceous precursors are known to undergo intermediate liquid crystalline phase transitions before being structurally arrested in the final nanolattice architecture, their sequences have so far remained unknown. By leveraging RNA-seq and proteomic techniques, we identified a cohort of nanolattice-forming proteins comprising a collagenous midblock flanked by domains typically associated with innate immunity and network-forming collagens. Structurally homologous proteins were found in the genomes of other egg-case-producing cartilaginous fishes, suggesting a conserved molecular self-assembly strategy. The identity and stabilizing role of cross-links were subsequently elucidated using mass spectrometry and in situ small-angle X-ray scattering. Our findings provide a new design approach for protein-based liquid crystalline elastomers and the self-assembly of nanolattices.
Collapse
Affiliation(s)
- Rubayn Goh
- Materials Department, University of California, Santa Barbara, California 93106, United States.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 136834, Singapore
| | - Eric Yoshida
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rachel Behrens
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Christophe A Monnier
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
| | - Bradley Killingsworth
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, United States
| | - Kiat Whye Kong
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Shu Hui Hiew
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore.,School of Biological Sciences, NTU, Singapore 637551, Singapore
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore.,School of Biological Sciences, NTU, Singapore 637551, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - J Herbert Waite
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Nanda R, Hazan S, Sauer K, Aladin V, Keinan-Adamsky K, Corzilius B, Shahar R, Zaslansky P, Goobes G. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes. Acta Biomater 2022; 144:195-209. [PMID: 35331939 DOI: 10.1016/j.actbio.2022.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Bone is a fascinating biomaterial composed mostly of type-I collagen fibers as an organic phase, apatite as an inorganic phase, and water molecules residing at the interfaces between these phases. They are hierarchically organized with minor constituents such as non-collagenous proteins, citrate ions and glycosaminoglycans into a composite structure that is mechanically durable yet contains enough porosity to accommodate cells and blood vessels. The nanometer scale organization of the collagen fibrous structure and the mineral constituents in bone were recently extensively scrutinized. However, molecular details at the lowest hierarchical level still need to be unraveled to better understand the exact atomic-level arrangement of all these important components in the context of the integral structure of the bone. In this report, we unfold some of the molecular characteristics differentiating between two load-bearing (cleithrum) bones, one from sturgeon fish, where the matrix contains osteocytes and one from pike fish where the bone tissue is devoid of these bone cells. Using enhanced solid-state NMR measurements, we underpin disparities in the collagen fibril structure and dynamics, the mineral phases, the citrate content at the organic-inorganic interface and water penetrability in the two bones. These findings suggest that different strategies are undertaken in the erection of the mineral-organic interfaces in various bones characterized by dissimilar osteogenesis or remodeling pathways and may have implications for the mechanical properties of the particular bone. STATEMENT OF SIGNIFICANCE: Bone boasts unique interactions between collagen fibers and mineral phases through interfaces holding together this bio-composite structure. Over evolution, fish have gone from mineralizing their bones aided by certain bone cells called osteocytes, like tetrapod, to mineralization without these cells. Here, we report atomic level differences in collagen fiber cross linking and organization, porosity of the mineral phases and content of citrate molecules at the bio-mineral interface in bones from modern versus ancient fish. The dissimilar structural features may suggest disparate mechanical properties for the two bones. Fundamental level understanding of the organic and inorganic components in bone and the interfacial interactions holding them together is essential for successful bone repair and for treating better tissue pathologies.
Collapse
|
16
|
Chan NJ, Lentz S, Gurr PA, Scheibel T, Qiao GG. Mimicry of silk utilizing synthetic polypeptides. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Guo J, Zhu S, Chen H, Zheng Z, Pang J. Ultrasound-assisted solubilization of calcium from micrometer-scale ground fish bone particles. Food Sci Nutr 2022; 10:712-722. [PMID: 35282006 PMCID: PMC8907711 DOI: 10.1002/fsn3.2696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/07/2021] [Accepted: 11/21/2021] [Indexed: 12/28/2022] Open
Abstract
In order to promote the extraction of biological calcium from fish bone, ultrasonication was used to process micrometer-scale fish bone particles (MFPs) and investigate the mechanism of action in relation to bone structure. With ultrasonication treatment (300 W, 60°C, 2 h), the content of calcium release increased by 25.6%. Calcium release reached 94.0% of total calcium after 24-h treatment. The surface of the MFPs was significantly damaged by ultrasound-induced cavitation, resulting in holes and separation of the layered structure. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis demonstrated that the crystalline structure of hydroxyapatite was disrupted, the triple helical structure of mineralized collagen fibrils (MCFs) was loosened, and hydrogen bonding in collagen decreased, facilitating the release of hydroxyapatite crystals. Thus, ultrasonication may be a practical alternative to nanomilling for industrial processing of waste fish bones to produce soluble calcium as an ingredient in calcium supplements and supplemented foods.
Collapse
Affiliation(s)
- Juanjuan Guo
- College of Oceanology and Food Sciences Quanzhou Normal University Quanzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University) Fujian Province University Quanzhou China
| | - Siliang Zhu
- College of Oceanology and Food Sciences Quanzhou Normal University Quanzhou China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Hongbin Chen
- College of Oceanology and Food Sciences Quanzhou Normal University Quanzhou China
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University) Fujian Province University Quanzhou China
| | - Zongping Zheng
- College of Oceanology and Food Sciences Quanzhou Normal University Quanzhou China
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University) Fujian Province University Quanzhou China
| | - Jie Pang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
18
|
Mouss MEL, Merzouki T, Rekik A, Hambli R. Multiscale approach incorporating tropocollagen scale to assess the effect of molecular age-related modifications on elastic constants of cortical bone based on finite element and homogenization methods. J Mech Behav Biomed Mater 2022; 128:105130. [DOI: 10.1016/j.jmbbm.2022.105130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
19
|
Valera JS, Arima H, Naranjo C, Saito T, Suda N, Gómez R, Yagai S, Sánchez L. Biasing the Hierarchy Motifs of Nanotoroids: from 1D Nanotubes to 2D Porous Networks. Angew Chem Int Ed Engl 2022; 61:e202114290. [PMID: 34822210 PMCID: PMC9299728 DOI: 10.1002/anie.202114290] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/12/2022]
Abstract
Hierarchical organization of self-assembled structures into superstructures is omnipresent in Nature but has been rarely achieved in synthetic molecular assembly due to the absence of clear structural rules. We herein report on the self-assembly of scissor-shaped azobenzene dyads which form discrete nanotoroids that further organize into 2D porous networks. The steric demand of the peripheral aliphatic units diminishes the trend of the azobenzene dyad to constitute stackable nanotoroids in solution, thus affording isolated (unstackable) nanotoroids upon cooling. Upon drying, these nanotoroids organize at graphite surface to form well-defined 2D porous networks. The photoirradiation with UV and visible light enabled reversible dissociation and reconstruction of nanotoroids through the efficient trans↔cis isomerization of azobenzene moieties in solution.
Collapse
Affiliation(s)
- Jorge S. Valera
- Dpto. Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria, s/n28040MadridSpain
| | - Hironari Arima
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Cristina Naranjo
- Dpto. Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria, s/n28040MadridSpain
| | - Takuho Saito
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Natsuki Suda
- Division of Advanced Science and EngineeringGraduate School of Science and EngineeringChiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Rafael Gómez
- Dpto. Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria, s/n28040MadridSpain
| | - Shiki Yagai
- Department of Applied Chemistry and BiotechnologyGraduate School of EngineeringChiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
- Institute for Global Prominent Research (IGPR)Chiba University1–33, Yayoi-cho, Inage-kuChiba263-8522Japan
| | - Luis Sánchez
- Dpto. Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense de MadridCiudad Universitaria, s/n28040MadridSpain
| |
Collapse
|
20
|
Valera JS, Arima H, Naranjo C, Saito T, Suda N, Gómez R, Yagai S, Sánchez L. Biasing the Hierarchy Motifs of Nanotoroids: from 1D Nanotubes to 2D Porous Networks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jorge S. Valera
- Dpto. Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria, s/n 28040 Madrid Spain
| | - Hironari Arima
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Cristina Naranjo
- Dpto. Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria, s/n 28040 Madrid Spain
| | - Takuho Saito
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Natsuki Suda
- Division of Advanced Science and Engineering Graduate School of Science and Engineering Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Rafael Gómez
- Dpto. Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria, s/n 28040 Madrid Spain
| | - Shiki Yagai
- Department of Applied Chemistry and Biotechnology Graduate School of Engineering Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Institute for Global Prominent Research (IGPR) Chiba University 1–33, Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Luis Sánchez
- Dpto. Química Orgánica Facultad de Ciencias Químicas Universidad Complutense de Madrid Ciudad Universitaria, s/n 28040 Madrid Spain
| |
Collapse
|
21
|
Tuusa J, Kokkonen N, Tasanen K. BP180/Collagen XVII: A Molecular View. Int J Mol Sci 2021; 22:12233. [PMID: 34830116 PMCID: PMC8623354 DOI: 10.3390/ijms222212233] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
BP180 is a type II collagenous transmembrane protein and is best known as the major autoantigen in the blistering skin disease bullous pemphigoid (BP). The BP180 trimer is a central component in type I hemidesmosomes (HD), which cause the adhesion between epidermal keratinocytes and the basal lamina, but BP180 is also expressed in several non-HD locations, where its functions are poorly characterized. The immunological roles of intact and proteolytically processed BP180, relevant in BP, have been subject to intensive research, but novel functions in cell proliferation, differentiation, and aging have also recently been described. To better understand the multiple physiological functions of BP180, the focus should return to the protein itself. Here, we comprehensively review the properties of the BP180 molecule, present new data on the biochemical features of its intracellular domain, and discuss their significance with regard to BP180 folding and protein-protein interactions.
Collapse
Affiliation(s)
| | | | - Kaisa Tasanen
- PEDEGO Research Unit, Department of Dermatology, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 8000, FI-90014 Oulu, Finland; (J.T.); (N.K.)
| |
Collapse
|
22
|
ColGen: An end-to-end deep learning model to predict thermal stability of de novo collagen sequences. J Mech Behav Biomed Mater 2021; 125:104921. [PMID: 34758444 DOI: 10.1016/j.jmbbm.2021.104921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/21/2021] [Indexed: 11/22/2022]
Abstract
Collagen is the most abundant structural protein in humans, with dozens of sequence variants accounting for over 30% of the protein in an animal body. The fibrillar and hierarchical arrangements of collagen are critical in providing mechanical properties with high strength and toughness. Due to this ubiquitous role in human tissues, collagen-based biomaterials are commonly used for tissue repairs and regeneration, requiring chemical and thermal stability over a range of temperatures during materials preparation ex vivo and subsequent utility in vivo. Collagen unfolds from a triple helix to a random coil structure during a temperature interval in which the midpoint or Tm is used as a measure to evaluate the thermal stability of the molecules. However, finding a robust framework to facilitate the design of a specific collagen sequence to yield a specific Tm remains a challenge, including using conventional molecular dynamics modeling. Here we propose a de novo framework to provide a model that outputs the Tm values of input collagen sequences by incorporating deep learning trained on a large data set of collagen sequences and corresponding Tm values. By using this framework, we are able to quickly evaluate how mutations and order in the primary sequence affect the stability of collagen triple helices. Specifically, we confirm that mutations to glycines, mutations in the middle of a sequence, and short sequence lengths cause the greatest drop in Tm values.
Collapse
|
23
|
Willaert RG, Kayacan Y, Devreese B. The Flo Adhesin Family. Pathogens 2021; 10:pathogens10111397. [PMID: 34832553 PMCID: PMC8621652 DOI: 10.3390/pathogens10111397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
The first step in the infection of fungal pathogens in humans is the adhesion of the pathogen to host tissue cells or abiotic surfaces such as catheters and implants. One of the main players involved in this are the expressed cell wall adhesins. Here, we review the Flo adhesin family and their involvement in the adhesion of these yeasts during human infections. Firstly, we redefined the Flo adhesin family based on the domain architectures that are present in the Flo adhesins and their functions, and set up a new classification of Flo adhesins. Next, the structure, function, and adhesion mechanisms of the Flo adhesins whose structure has been solved are discussed in detail. Finally, we identified from Pfam database datamining yeasts that could express Flo adhesins and are encountered in human infections and their adhesin architectures. These yeasts are discussed in relation to their adhesion characteristics and involvement in infections.
Collapse
Affiliation(s)
- Ronnie G. Willaert
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-2629-1846
| | - Yeseren Kayacan
- Research Group Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium;
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Bart Devreese
- Alliance Research Group VUB-UGent NanoMicrobiology (NAMI), 1050 Brussels, Belgium;
- International Joint Research Group VUB-EPFL NanoBiotechnology & NanoMedicine (NANO), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Laboratory for Microbiology, Gent University (UGent), 9000 Gent, Belgium
| |
Collapse
|
24
|
Collagen Bioinks for Bioprinting: A Systematic Review of Hydrogel Properties, Bioprinting Parameters, Protocols, and Bioprinted Structure Characteristics. Biomedicines 2021; 9:biomedicines9091137. [PMID: 34572322 PMCID: PMC8468019 DOI: 10.3390/biomedicines9091137] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/27/2021] [Indexed: 01/01/2023] Open
Abstract
Bioprinting is a modern tool suitable for creating cell scaffolds and tissue or organ carriers from polymers that mimic tissue properties and create a natural environment for cell development. A wide range of polymers, both natural and synthetic, are used, including extracellular matrix and collagen-based polymers. Bioprinting technologies, based on syringe deposition or laser technologies, are optimal tools for creating precise constructs precisely from the combination of collagen hydrogel and cells. This review describes the different stages of bioprinting, from the extraction of collagen hydrogels and bioink preparation, over the parameters of the printing itself, to the final testing of the constructs. This study mainly focuses on the use of physically crosslinked high-concentrated collagen hydrogels, which represents the optimal way to create a biocompatible 3D construct with sufficient stiffness. The cell viability in these gels is mainly influenced by the composition of the bioink and the parameters of the bioprinting process itself (temperature, pressure, cell density, etc.). In addition, a detailed table is included that lists the bioprinting parameters and composition of custom bioinks from current studies focusing on printing collagen gels without the addition of other polymers. Last but not least, our work also tries to refute the often-mentioned fact that highly concentrated collagen hydrogel is not suitable for 3D bioprinting and cell growth and development.
Collapse
|
25
|
Peptides and Peptidomimetics as Inhibitors of Enzymes Involved in Fibrillar Collagen Degradation. MATERIALS 2021; 14:ma14123217. [PMID: 34200889 PMCID: PMC8230458 DOI: 10.3390/ma14123217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
Collagen fibres degradation is a complex process involving a variety of enzymes. Fibrillar collagens, namely type I, II, and III, are the most widely spread collagens in human body, e.g., they are responsible for tissue fibrillar structure and skin elasticity. Nevertheless, the hyperactivity of fibrotic process and collagen accumulation results with joints, bone, heart, lungs, kidneys or liver fibroses. Per contra, dysfunctional collagen turnover and its increased degradation leads to wound healing disruption, skin photoaging, and loss of firmness and elasticity. In this review we described the main enzymes participating in collagen degradation pathway, paying particular attention to enzymes degrading fibrillar collagen. Therefore, collagenases (MMP-1, -8, and -13), elastases, and cathepsins, together with their peptide and peptidomimetic inhibitors, are reviewed. This information, related to the design and synthesis of new inhibitors based on peptide structure, can be relevant for future research in the fields of chemistry, biology, medicine, and cosmeceuticals.
Collapse
|
26
|
Li J, Cheng JH, Teng ZJ, Sun ZZ, He XY, Wang P, Shi M, Song XY, Chen XL, Zhang YZ, Tian X, Zhang XY. Taxonomic and Enzymatic Characterization of Flocculibacter collagenilyticus gen. nov., sp. nov., a Novel Gammaproteobacterium With High Collagenase Production. Front Microbiol 2021; 12:621161. [PMID: 33786038 PMCID: PMC8005334 DOI: 10.3389/fmicb.2021.621161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Collagens from marine animals are an important component of marine organic nitrogen. Collagenase-producing bacteria and their collagenases play important roles in collagen degradation and organic nitrogen recycling in the ocean. However, only a few collagenase-producing marine bacteria have been so far discovered. Here, we reported the isolation and characterization of a collagenase-secreting bacterium, designated strain SM1988T, isolated from a green alga Codium fragile sample. Strain SM1988T is a Gram-negative, aerobic, oxidase-, and catalase-positive, unipolar flagellated, and rod-shaped bacterium capable of hydrolyzing casein, gelatin and collagens. Phylogenetic analysis revealed that strain SM1988T formed a distinct phylogenetic lineage along with known genera within the family Pseudoalteromonadaceae, with 16S rRNA gene sequence similarity being less than 93.3% to all known species in the family. Based on the phylogenetic, genomic, chemotaxonomic and phenotypic data, strain SM1988T was considered to represent a novel species in a novel genus in the family Pseudoalteromonadaceae, for which the name Flocculibacter collagenilyticus gen. nov., sp. nov. is proposed, with the type strain being SM1988T (= MCCC 1K04279T = KCTC 72761T). Strain SM1988T showed a high production of extracellular collagenases, which had high activity against both bovine collagen and codfish collagen. Biochemical tests combined with genome and secretome analyses indicated that the collagenases secreted by strain SM1988T are serine proteases from the MEROPS S8 family. These data suggest that strain SM1988T acts as an important player in marine collagen degradation and recycling and may have a promising potential in collagen resource utilization.
Collapse
Affiliation(s)
- Jian Li
- College of Life Science and Technology, Xinjiang University, Urumqi, China.,State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Zhong-Zhi Sun
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan He
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Peng Wang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xinmin Tian
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Institute of Marine Science and Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
27
|
Abid U, Gill YQ, Irfan MS, Umer R, Saeed F. Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers. Int J Biol Macromol 2021; 181:1-29. [PMID: 33744249 DOI: 10.1016/j.ijbiomac.2021.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Renewable resources including polycarbohydrates, lignin, proteins, and polyacids are the intrinsically valuable class of materials that are naturally available in great quantities. Their utilization as green additives and reinforcing bio-fillers, in substitution of environmentally perilous petroleum-based fillers, for developing high-performance green rubber blends and composites is presently a highly tempting option. Blending of these renewable materials with elastomers is not straight-forward and research needs to exploit the high functionality of carbohydrates and other natural materials as proper physicochemical interactions are essential. Correlating and understanding the structural properties of lignin, carbohydrates, polyacids, and other biopolymers, before their incorporation in elastomers, is a potential approach towards the development of green elastomers for value-added applications. Promising properties i.e., biodegradability, biocompatibility, morphological characteristics, high mechanical properties, thermal stability, sustainability, and various other characteristics along with recent advancements in the development of green elastomers are reviewed in this paper. Structures, viability, interactions, properties, and use of most common natural polycarbohydrates (chitosan and starch), lignin, and proteins (collagen and gelatin) for elastomer modification are extensively reviewed. Challenges in commercialization, applications, and future perspectives of green elastomers are also discussed. Sustainability analysis of green elastomers is accomplished to elaborate their cost-effectiveness and environmental friendliness.
Collapse
Affiliation(s)
- Umer Abid
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| | - Yasir Qayyum Gill
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| | - Muhammad Shafiq Irfan
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan; Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Farhan Saeed
- Department of Polymer and Process Engineering, University of Engineering and Technology, G. T. Road, PO Box 54890, Lahore, Pakistan.
| |
Collapse
|
28
|
Adamiak K, Lewandowska K, Sionkowska A. The Infuence of Salicin on Rheological and Film-Forming Properties of Collagen. Molecules 2021; 26:molecules26061661. [PMID: 33809811 PMCID: PMC8002410 DOI: 10.3390/molecules26061661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Collagen films are widely used as adhesives in medicine and cosmetology. However, its properties require modification. In this work, the influence of salicin on the properties of collagen solution and films was studied. Collagen was extracted from silver carp skin. The rheological properties of collagen solutions with and without salicin were characterized by steady shear tests. Thin collagen films were prepared by solvent evaporation. The structure of films was researched using infrared spectroscopy. The surface properties of films were investigated using Atomic Force Microscopy (AFM). Mechanical properties were measured as well. It was found that the addition of salicin modified the roughness of collagen films and their mechanical and rheological properties. The above-mentioned parameters are very important in potential applications of collagen films containing salicin.
Collapse
Affiliation(s)
- Katarzyna Adamiak
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
- WellU sp.z.o.o, Wielkopolska 280, 81-531 Gdynia, Poland
| | - Katarzyna Lewandowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland; (K.A.); (K.L.)
- Correspondence: ; Tel.: +48-56-6114547
| |
Collapse
|
29
|
Koudrina A, McConnell EM, Zurakowski JA, Cron GO, Chen S, Tsai EC, DeRosa MC. Exploring the Unique Contrast Properties of Aptamer-Gadolinium Conjugates in Magnetic Resonance Imaging for Targeted Imaging of Thrombi. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9412-9424. [PMID: 33395250 DOI: 10.1021/acsami.0c16666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Objective: An important clinical question in the determination of the extent of thrombosis-related vascular conditions is the identification of blood clot location. Fibrin is a major molecular constituent of blood clots and can, therefore, be utilized in molecular imaging. In this proof-of-concept study, we sought to prepare a fibrin-targeting magnetic resonance imaging contrast agent, using a Gd(III)-loaded fibrinogen aptamer (FA) chelate conjugate (Gd(III)-NOTA-FA) (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetic acid), to endow the ability to specifically accumulate at the location of blood clots, thereby enhancing contrast capabilities. Methods: The binding affinity of FA for fibrin was confirmed by fluorescence microscopy and microscale thermophoresis. The preparation and effective loading of the chelate-aptamer conjugates were confirmed by mass spectrometry and a xylenol orange colorimetric test. Longitudinal and transverse relaxivities and the effects of target binding were assessed using T1- and T2-map sequences at 7 T. T1- and T2-weighted images were acquired after blood clots were treated with Gd(III)-NOTA-FA. Collagen was used as the protein control, while an unrelated aptamer sequence, FB139, was used as the aptamer control. Results: FA demonstrated a high affinity and selectivity toward the polymeric protein, with a Kd of 16.6 nM, confirming an avidity over fibrinogen. The longitudinal (r1) and transverse (r2) relaxivities of Gd(III)-NOTA-FA demonstrated that conjugation to the long aptamer strand shortened T1 relaxation times and increased T2 relaxation times (3.04 and 38.7 mM-1 s-1, respectively). These effects were amplified by binding to the fibrin target (1.73 and 46.5 mM-1 s-1, respectively). In vitro studies with thrombin-polymerized human blood (clots) in whole blood showed an unexpected enhancement of signal intensity (hyperintense) produced exclusively at the location of the clot during the T2-weighted scan, while the presence of fibrinogen within a whole blood pool resulted in T1 signal intensity enhancement throughout the pool. This is advantageous, as simply reversing the type of a scan from a typical T1-weighted to a T2-weighted would allow to selectively highlight the location of blood clots. Conclusions: Gd(III)-NOTA-FA can be used for molecular imaging of thrombi, through fibrin-targeted delivery of contrast to the location of blood clots in T2-weighted scans.
Collapse
Affiliation(s)
- Anna Koudrina
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Erin M McConnell
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4L8, Canada
| | - Joseph A Zurakowski
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Greg O Cron
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
- Department of Radiology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Suzan Chen
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Eve C Tsai
- The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | - Maria C DeRosa
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
30
|
Ouellette JN, Drifka CR, Pointer KB, Liu Y, Lieberthal TJ, Kao WJ, Kuo JS, Loeffler AG, Eliceiri KW. Navigating the Collagen Jungle: The Biomedical Potential of Fiber Organization in Cancer. Bioengineering (Basel) 2021; 8:17. [PMID: 33494220 PMCID: PMC7909776 DOI: 10.3390/bioengineering8020017] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Recent research has highlighted the importance of key tumor microenvironment features, notably the collagen-rich extracellular matrix (ECM) in characterizing tumor invasion and progression. This led to great interest from both basic researchers and clinicians, including pathologists, to include collagen fiber evaluation as part of the investigation of cancer development and progression. Fibrillar collagen is the most abundant in the normal extracellular matrix, and was revealed to be upregulated in many cancers. Recent studies suggested an emerging theme across multiple cancer types in which specific collagen fiber organization patterns differ between benign and malignant tissue and also appear to be associated with disease stage, prognosis, treatment response, and other clinical features. There is great potential for developing image-based collagen fiber biomarkers for clinical applications, but its adoption in standard clinical practice is dependent on further translational and clinical evaluations. Here, we offer a comprehensive review of the current literature of fibrillar collagen structure and organization as a candidate cancer biomarker, and new perspectives on the challenges and next steps for researchers and clinicians seeking to exploit this information in biomedical research and clinical workflows.
Collapse
Affiliation(s)
- Jonathan N. Ouellette
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
| | - Cole R. Drifka
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
| | - Kelli B. Pointer
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
| | - Tyler J Lieberthal
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
| | - W John Kao
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
- Department of Industrial and Manufacturing Systems Engineering, Faculty of Engineering, University of Hong Kong, Pokfulam, Hong Kong
| | - John S. Kuo
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Agnes G. Loeffler
- Department of Pathology, MetroHealth Medical Center, Cleveland, OH 44109, USA;
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (J.N.O.); (C.R.D.); (T.J.L.); (W.J.K.)
- Laboratory for Optical and Computational Instrumentation, Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA; (K.B.P.); (Y.L.)
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
31
|
Nash A, Noh SY, Birch HL, de Leeuw NH. Lysine-arginine advanced glycation end-product cross-links and the effect on collagen structure: A molecular dynamics study. Proteins 2020; 89:521-530. [PMID: 33320391 PMCID: PMC8048459 DOI: 10.1002/prot.26036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/27/2020] [Accepted: 12/12/2020] [Indexed: 11/16/2022]
Abstract
The accumulation of advanced glycation end‐products is a fundamental process that is central to age‐related decline in musculoskeletal tissues and locomotor system function and other collagen‐rich tissues. However, although computational studies of advanced glycation end‐product cross‐links could be immensely valuable, this area remains largely unexplored given the limited availability of structural parameters for the derivation of force fields for Molecular Dynamics simulations. In this article, we present the bonded force constants, atomic partial charges and geometry of the arginine‐lysine cross‐links DOGDIC, GODIC, and MODIC. We have performed in vacuo Molecular Dynamics simulations to validate their implementation against quantum mechanical frequency calculations. A DOGDIC advanced glycation end‐product cross‐link was then inserted into a model collagen fibril to explore structural changes of collagen and dynamics in interstitial water. Unlike our previous studies of glucosepane, our findings suggest that intra‐collagen DOGDIC cross‐links furthers intra‐collagen peptide hydrogen‐bonding and does not promote the diffusion of water through the collagen triple helices.
Collapse
Affiliation(s)
- Anthony Nash
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sang Young Noh
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Helen L Birch
- Department of Orthopaedics and Musculoskeletal Science, Stanmore Campus, University College London, London, UK
| | | |
Collapse
|
32
|
Physicochemical characterization and self-assembly of human amniotic membrane and umbilical cord collagen: A comparative study. Int J Biol Macromol 2020; 165:2920-2933. [PMID: 33098903 DOI: 10.1016/j.ijbiomac.2020.10.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 02/03/2023]
Abstract
The diverse application of collagen has created a need to discover renewable and economical sources with prevailing/improved physico-chemical properties. To address this scenario, the present study has extracted collagen from Human Amniotic Membrane (AM) and Umbilical cord, which are treated as medical waste and compared its physico-chemical properties. Collagen was extracted by pepsin solubilization using various salt concentrations (1 M, 2 M and 4 M). Umbilical Cord Collagen (UC) yield was 10% higher than Amniotic Membrane Collagen (AC). UC reported 58% higher sulphated glycosaminoglycan content than AC. Electrophoretic pattern of AC and UC in both disulphide bond reducing and non-reducing conditions showed bands corresponding to collagen type I, III, IV, V and XV. Collagen morphology was examined using SEM and the amino acid content was quantified by HPLC and LC-MS/MS. Triple helicity was confirmed by CD and FTIR spectra. Thermal transition temperature of AC and UC was found equivalent to animal collagen. Self-assembly, fibril morphology and spatial alignment was studied using AFM and DLS. Biocompatibility was analyzed using 3T3 fibroblast cells. In conclusion, UC with higher yield, presented with better physico-chemical, structural and biological properties than AC could serve as an efficient alternative to the existing animal collagen for diverse applications.
Collapse
|
33
|
Abstract
Anaplerosis and the associated mitochondrial metabolite transporters generate unique cytosolic metabolic signaling molecules that can regulate insulin release from pancreatic β-cells. It has been shown that mitochondrial metabolites, transported by the citrate carrier (CIC), dicarboxylate carrier (DIC), oxoglutarate carrier (OGC), and mitochondrial pyruvate carrier (MPC) play a vital role in the regulation of glucose-stimulated insulin secretion (GSIS). Metabolomic studies on static and biphasic insulin secretion, suggests that several anaplerotic derived metabolites, including α-ketoglutarate (αKG), are strongly associated with nutrient regulated insulin secretion. Support for a role of αKG in the regulation of insulin secretion comes from studies looking at αKG dependent enzymes, including hypoxia-inducible factor-prolyl hydroxylases (PHDs) in clonal β-cells, and rodent and human islets. This review will focus on the possible link between defective anaplerotic-derived αKG, PHDs, and the development of type 2 diabetes (T2D).
Collapse
Affiliation(s)
- M. Hoang
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
| | - J. W. Joseph
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada
- CONTACT J. W. Joseph School of Pharmacy, University of Waterloo, Kitchener, ONN2G1C5, Canada
| |
Collapse
|
34
|
Silva SS, Gomes JM, Rodrigues LC, Reis RL. Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Mar Drugs 2020; 18:E346. [PMID: 32629815 PMCID: PMC7401240 DOI: 10.3390/md18070346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 01/05/2023] Open
Abstract
Marine resources have considerable potential to develop high-value materials for applications in different fields, namely pharmaceutical, environmental, and biomedical. Despite that, the lack of solubility of marine-derived polymers in water and common organic solvents could restrict their applications. In the last years, ionic liquids (ILs) have emerged as platforms able to overcome those drawbacks, opening many routes to enlarge the use of marine-derived polymers as biomaterials, among other applications. From this perspective, ILs can be used as an efficient extraction media for polysaccharides from marine microalgae and wastes (e.g., crab shells, squid, and skeletons) or as solvents to process them in different shapes, such as films, hydrogels, nano/microparticles, and scaffolds. The resulting architectures can be applied in wound repair, bone regeneration, or gene and drug delivery systems. This review is focused on the recent research on the applications of ILs as processing platforms of biomaterials derived from marine polymers.
Collapse
Affiliation(s)
- Simone S. Silva
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Joana M. Gomes
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Luísa C. Rodrigues
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
35
|
Jiang Y, Zhang M, Yin T, Du H, Xiong S, Cao L, Liu R. Small‐size effect on physicochemical properties of micronized fish bone during heating. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Jiang
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Mengling Zhang
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Tao Yin
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Hongying Du
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Shanbai Xiong
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Ministry of Education Wuhan P.R. China
| | - Liwei Cao
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
| | - Ru Liu
- College of Food Science and Technology Huazhong Agricultural University National R & D Branch Center for Conventional Freshwater Fish Processing Wuhan P.R. China
- Key Laboratory of Environment Correlative Dietology Huazhong Agricultural University Ministry of Education Wuhan P.R. China
| |
Collapse
|
36
|
Kim D, Han SA, Kim JH, Lee JH, Kim SW, Lee SW. Biomolecular Piezoelectric Materials: From Amino Acids to Living Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906989. [PMID: 32103565 DOI: 10.1002/adma.201906989] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Biomolecular piezoelectric materials are considered a strong candidate material for biomedical applications due to their robust piezoelectricity, biocompatibility, and low dielectric property. The electric field has been found to affect tissue development and regeneration, and the piezoelectric properties of biological materials in the human body are known to provide electric fields by pressure. Therefore, great attention has been paid to the understanding of piezoelectricity in biological tissues and its building blocks. The aim herein is to describe the principle of piezoelectricity in biological materials from the very basic building blocks (i.e., amino acids, peptides, proteins, etc.) to highly organized tissues (i.e., bones, skin, etc.). Research progress on the piezoelectricity within various biological materials is summarized, including amino acids, peptides, proteins, and tissues. The mechanisms and origin of piezoelectricity within various biological materials are also covered.
Collapse
Affiliation(s)
- Daeyeong Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sang A Han
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Jung Ho Kim
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Ju-Hyuck Lee
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Sang-Woo Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, Republic of Korea
| | - Seung-Wuk Lee
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
37
|
Wu WQ, Peng S, Song ZY, Lin S. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv Transl Res 2020; 9:920-934. [PMID: 30877625 DOI: 10.1007/s13346-019-00627-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myocardial infarction (MI) remains one of the leading cause of mortality over the world. However, current treatments are more palliative than curative, which only stall the progression of the disease, but not reverse the disease. While stem cells or bioactive molecules therapy is promising, the limited survival and engraftment of bioactive agent due to a hostile environment is a bottleneck for MI treatment. In order to maximize the utility of stem cells and bioactive molecules for myocardial repair and regeneration, various types of biomaterials have been developed. Among them, collagen-based biomaterial is widely utilized for cardiac tissue engineering and regeneration due to its optimal physical and chemical properties. In this review, we summarize the properties of collagen-based biomaterial. Then, we discuss collagen-based biomaterial currently being applied to treat MI alone, or together with stem cells and/or bioactive molecules. Finally, the delivery system of collagen-based biomaterial will also be discussed.
Collapse
Affiliation(s)
- Wei-Qiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China. .,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Keiraville, NSW, 2522, Australia.
| |
Collapse
|
38
|
Houacine C, Yousaf SS, Khan I, Khurana RK, Singh KK. Potential of Natural Biomaterials in Nano-scale Drug Delivery. Curr Pharm Des 2019; 24:5188-5206. [PMID: 30657035 DOI: 10.2174/1381612825666190118153057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The usage of natural biomaterials or naturally derived materials intended for interface with biological systems has steadily increased in response to the high demand of amenable materials, which are suitable for purpose, biocompatible and biodegradable. There are many naturally derived polymers which overlap in terms of purpose as biomaterials but are equally diverse in their applications. METHODS This review examines the applications of the following naturally derived polymers; hyaluronic acid, silk fibroin, chitosan, collagen and tamarind polysaccharide (TSP); further focusing on the biomedical applications of each as well as emphasising on individual novel applications. RESULTS Each of the polymers was found to demonstrate a wide variety of successful biomedical applications fabricated as wound dressings, scaffolds, matrices, films, sponges, implants or hydrogels to suit the therapeutic need. Interestingly, blending and amelioration of polymer structures were the two selection strategies to modify the functionality of the polymers to suit the purpose. Further, these polymers have shown promise to deliver small molecule drugs, proteins and genes as nano-scale delivery systems. CONCLUSION The review highlights the range of applications of the aforementioned polymers as biomaterials. Hyaluronic acid, silk fibroin, chitosan, collagen and TSP have been successfully utilised as biomaterials in the subfields of implant enhancement, wound management, drug delivery, tissue engineering and nanotechnology. Whilst there are a number of associated advantages (i.e. biodegradability, biocompatibility, non-toxic, nonantigenic as well as amenability) the selected disadvantages of each individual polymer provide significant scope for their further exploration and overcoming challenges like feasibility of mass production at a relatively low cost.
Collapse
Affiliation(s)
- Chahinez Houacine
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Sakib Saleem Yousaf
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moore University, Liverpool, United Kingdom
| | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| |
Collapse
|
39
|
ZHOU HY, ZHANG YL, LIN SJ, XUE YP, ZHENG YG. Optimization of extraction process for efficient imino acids recovery and purification from low-value sea cucumber. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hai-Yan ZHOU
- Zhejiang University of Technology, China; Zhejiang University of Technology, China
| | - Ya-Li ZHANG
- Zhejiang University of Technology, China; Zhejiang University of Technology, China
| | - Sai-Jun LIN
- Zhejiang University of Technology, China; Zhejiang University of Technology, China; Hangzhou Institute for Food and Drug Control, China
| | - Ya-Ping XUE
- Zhejiang University of Technology, China; Zhejiang University of Technology, China
| | - Yu-Guo ZHENG
- Zhejiang University of Technology, China; Zhejiang University of Technology, China
| |
Collapse
|
40
|
Xu S, Gu M, Wu K, Li G. Unraveling the Role of Hydroxyproline in Maintaining the Thermal Stability of the Collagen Triple Helix Structure Using Simulation. J Phys Chem B 2019; 123:7754-7763. [PMID: 31418574 DOI: 10.1021/acs.jpcb.9b05006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermal stability of collagen has an important effect on its practical applications. Many believe that hydroxyproline (Hyp) improves the structural stability of collagen molecules. In this study, for the first time, a method of building natural collagen molecular models was described. We constructed a collagen model with typical triple-helix structure and calculated the hydrogen bond energy between collagen α chains. The calculated hydrogen bond energy was consistent with the experimental results of differential scanning calorimetry. After the calculation simulation, we verified that the hydrogen bond energy between collagen chains was positively correlated with Hyp content in the models and an increased Hyp content in the model was beneficial in improving the thermal resistance of the structure. In addition, we found that thermal unfolding did not occur simultaneously along the entire molecule but started in the regions with less Hyp content. This study provides a collagen model with a natural collagen amino acid sequence, which will be helpful for further investigation of the physical and chemical properties of natural collagen.
Collapse
Affiliation(s)
| | | | - Kun Wu
- School of Materials and Environmental Protection , Chengdu Textile College , Chengdu 610065 , P. R. China
| | | |
Collapse
|
41
|
Abstract
PURPOSE OF THE REVIEW Osteoarthritis (OA) is a multifactorial and progressive disease affecting whole synovial joint. The extract pathogenic mechanisms and diagnostic biomarkers of OA remain unclear. In this article, we review the studies related to metabolomics of OA, discuss the biomarkers as a tool for early OA diagnosis. Furthermore, we examine the major studies on the application of metabolomics methodology in the complex context of OA and create a bridge from findings in basic science to their clinical utility. RECENT FINDINGS Recently, the tissue metabolomics signature permits a view into transitional phases between the healthy and OA joint. Both nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry-based metabolomics approaches have been used to interrogate the metabolic alterations that may indicate the complex progression of OA. Specifically, studies on alterations pertaining to lipids, glucose, and amino acid metabolism have aided in the understanding of the complex pathogenesis of OA. The discovery of identified metabolites could be important for diagnosis and staging of OA, as well as for the assessment of efficacy of new drugs.
Collapse
|
42
|
Mehrotra S, Chowdhary Z, Rastogi T. Evaluation and comparison of hydroxyapatite crystals with collagen fibrils bone graft alone and in combination with guided tissue regeneration membrane. J Indian Soc Periodontol 2019; 23:234-241. [PMID: 31143004 PMCID: PMC6519101 DOI: 10.4103/jisp.jisp_386_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The combination of collagen in bone grafts is being used because of its properties that accentuate the degree of regeneration. Furcation involvement poses challenge to the prognosis of a tooth, the use of bone grafts and a combination of grafts and membranes have proved to be beneficial in the treatment of furcation defects. Thus, the aim of the present study was to clinically evaluate and compare the effectiveness of collagen fiber bone graft with and without a membrane in the treatment of mandibular Grade II furcation defects. MATERIALS AND METHODS A clinical split-mouth randomized control trial, which included ten patients having bilateral mandibular Grade II furcation defects, was randomly assigned to Group I, treated with bone graft of hydroxyapatite with collagen fibers, and Group II, treated with bone graft of hydroxyapatite with collagen fibers and guided tissue regeneration membrane of polyglycolide and polylactide copolymer, respectively. The clinical measurements were recorded at baseline and 6 months after surgery; and plaque and gingival index were recorded at baseline and at 3 and 6 months after surgery. The data obtained was statistically evaluated. RESULTS The overall results showed that the treatment procedures demonstrated statistically significant reduction in probing pocket depth, vertical defect fill, and horizontal depth of furcation, with a gain in clinical attachment level. On comparison of both the groups, Group II showed superior results with a statistically significant difference in all parameters except in gingival recession. CONCLUSION The findings of the study demonstrated superior clinical results obtained with hydroxyapatite with collagen fibers, used in combination with polyglycolide and polylactide copolymer as compared to used alone in the treatment of Grade II furcation defects.
Collapse
Affiliation(s)
- Shalabh Mehrotra
- Department of Periodontology, Teerthanker Mahaveer Dental College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Zoya Chowdhary
- Department of Periodontology, Indira Gandhi Government Dental College, Jammu, Jammu and Kashmir, India
| | | |
Collapse
|
43
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
44
|
Lucarini M, Sciubba F, Capitani D, Di Cocco ME, D'Evoli L, Durazzo A, Delfini M, Lombardi Boccia G. Role of catechin on collagen type I stability upon oxidation: a NMR approach. Nat Prod Res 2019; 34:53-62. [PMID: 30821504 DOI: 10.1080/14786419.2019.1570509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The study focuses on the understanding, at molecular level, the mechanism of interaction between protein and flavonoids. Collagen and catechin interactions were investigated by NMR in solution and solid state. The effect of catechin on the stability of collagen to oxidation was also explored. Collagen was treated with two concentrations of catechin solutions. Oxidation was carried out by incubation of collagen solution with three oxidation systems: Fe(II)/H2O2, Cu(II)/H2O2, and NaOCl/H2O2. The effects of oxidation systems were evaluated by high resolution 1 D and 2 D proton spectroscopy and solid state NMR (13C CP MAS) experiments. Interactions between collagen and catechin preferentially occur between catechin B ring and the amino acids Pro and Hyp of collagen. Results showed that both iron and copper oxidation systems were able to interact with collagen by site specific attack. Moreover, catechin protects collagen proline from oxidation by metal/H2O2 systems, preventing copper and iron approach to collagene molecule;this behaviour was more evident for the copper/H2O2 system.
Collapse
Affiliation(s)
| | - Fabio Sciubba
- Department of Chemistry, "Sapienza" University of Rome, Rome, Italy
| | - Donatella Capitani
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council (CNR), Monterotondo (RM), Italy
| | | | - Laura D'Evoli
- CREA - Research Centre for Food and Nutrition, Rome, Italy
| | | | - Maurizio Delfini
- Department of Chemistry, "Sapienza" University of Rome, Rome, Italy
| | | |
Collapse
|
45
|
Modulating the collagen triple helix formation by switching: Positioning effects of depsi-defects on the assembly of [Gly-Pro-Pro]7 collagen mimetic peptides. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Simon P, Grüner D, Worch H, Pompe W, Lichte H, El Khassawna T, Heiss C, Wenisch S, Kniep R. First evidence of octacalcium phosphate@osteocalcin nanocomplex as skeletal bone component directing collagen triple-helix nanofibril mineralization. Sci Rep 2018; 8:13696. [PMID: 30209287 PMCID: PMC6135843 DOI: 10.1038/s41598-018-31983-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/29/2018] [Indexed: 01/27/2023] Open
Abstract
Tibia trabeculae and vertebrae of rats as well as human femur were investigated by high-resolution TEM at the atomic scale in order to reveal snapshots of the morphogenetic processes of local bone ultrastructure formation. By taking into account reflections of hydroxyapatite for Fourier filtering the appearance of individual alpha-chains within the triple-helix clearly shows that bone bears the feature of an intergrowth composite structure extending from the atomic to the nanoscale, thus representing a molecular composite of collagen and apatite. Careful Fourier analysis reveals that the non-collagenous protein osteocalcin is present directly combined with octacalcium phosphate. Besides single spherical specimen of about 2 nm in diameter, osteocalcin is spread between and over collagen fibrils and is often observed as pearl necklace strings. In high-resolution TEM, the three binding sites of the γ-carboxylated glutamic acid groups of the mineralized osteocalcin were successfully imaged, which provide the chemical binding to octacalcium phosphate. Osteocalcin is attached to the collagen structure and interacts with the Ca-sites on the (100) dominated hydroxyapatite platelets with Ca-Ca distances of about 9.5 Å. Thus, osteocalcin takes on the functions of Ca-ion transport and suppression of hydroxyapatite expansion.
Collapse
Affiliation(s)
- Paul Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187, Dresden, Germany.
| | - Daniel Grüner
- Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, IEK-2, 52425, Jülich, Germany
| | - Hartmut Worch
- Institute of Materials Science, Technical University of Dresden, Helmholtzstr. 7, 01069, Dresden, Germany
| | - Wolfgang Pompe
- Institute of Materials Science, Technical University of Dresden, Helmholtzstr. 7, 01069, Dresden, Germany
| | - Hannes Lichte
- Institute of Structure Physics, Technical University of Dresden, Zum Triebenberg 50, 01328, Dresden Zaschendorf, Germany
| | - Thaqif El Khassawna
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Aulweg 128, Giessen, 35392, Germany
| | - Christian Heiss
- Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University of Giessen, Aulweg 128, Giessen, 35392, Germany
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital of Giessen-Marburg, Giessen, Germany
| | - Sabine Wenisch
- Clinic of Small animals, c/o Institute of Veterinary Anatomy, Justus-Liebig University of Giessen, Giessen, Germany
| | - Rüdiger Kniep
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187, Dresden, Germany
| |
Collapse
|
47
|
Moriarty N, Parish CL, Dowd E. Primary tissue for cellular brain repair in Parkinson's disease: Promise, problems and the potential of biomaterials. Eur J Neurosci 2018; 49:472-486. [PMID: 29923311 DOI: 10.1111/ejn.14051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/19/2022]
Abstract
The dopamine precursor, levodopa, remains the "gold standard" treatment for Parkinson's disease, and, although it provides superlative efficacy in the early stages of the disease, its long-term use is limited by the development of severe motor side effects and a significant abating of therapeutic efficacy. Therefore, there remains a major unmet clinical need for the development of effective neuroprotective, neurorestorative or neuroreparatory therapies for this condition. The relatively selective loss of dopaminergic neurons from the nigrostriatal pathway makes Parkinson's disease an ideal candidate for reparative cell therapies, wherein the dopaminergic neurons that are lost in the condition are replaced through direct cell transplantation into the brain. To date, this approach has been developed, validated and clinically assessed using dopamine neuron-rich foetal ventral mesencephalon grafts which have been shown to survive and reinnervate the denervated brain after transplantation, and to restore motor function. However, despite long-term symptomatic relief in some patients, significant limitations, including poor graft survival and the impact this has on the number of foetal donors required, have prevented this therapy being more widely adopted as a restorative approach for Parkinson's disease. Injectable biomaterial scaffolds have the potential to improve the delivery, engraftment and survival of these grafts in the brain through provision of a supportive microenvironment for cell adhesion, growth and immune shielding. This article will briefly review the development of primary cell therapies for brain repair in Parkinson's disease and will consider the emerging literature which highlights the potential of using injectable biomaterial hydrogels in this context.
Collapse
Affiliation(s)
- Niamh Moriarty
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
48
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
49
|
|
50
|
Van Duong H, Chau TTL, Dang NTT, Nguyen DV, Le SL, Ho TS, Vu TP, Tran TTV, Nguyen TD. Self-aggregation of water-dispersible nanocollagen helices. Biomater Sci 2018; 6:651-660. [DOI: 10.1039/c7bm01141e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The self-aggregation of water-dispersible native collagen nanofibrils has been investigated to generate hierarchical networks with structural variation from helicity to layering.
Collapse
Affiliation(s)
- Hau Van Duong
- Department of Chemistry
- Hue University of Agriculture and Forestry
- Hue University
- Hue 530000
- Vietnam
| | - Trang The Lieu Chau
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Nhan Thi Thanh Dang
- Department of Chemistry
- Hue University of Education
- Hue University
- Hue 530000
- Vietnam
| | - Duc Van Nguyen
- Faculty of Agronomy
- Hue University of Agriculture and Forestry
- Hue 530000
- Vietnam
| | - Son Lam Le
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Thang Sy Ho
- Department of Natural Resource and Environment
- Dong Thap University
- Dong Thap 870000
- Vietnam
| | - Tuyen Phi Vu
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- National Institute of Information and Communications Strategy
| | - Thi Thi Van Tran
- Department of Chemistry
- Hue University of Sciences
- Hue University
- Hue 530000
- Vietnam
| | - Thanh-Dinh Nguyen
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| |
Collapse
|