1
|
Fujita K, Isozumi N, Zhu Q, Matsubayashi M, Taniguchi T, Arakawa H, Shirasaka Y, Mori E, Tamai I. Unique Binding Sites of Uricosuric Agent Dotinurad for Selective Inhibition of Renal Uric Acid Reabsorptive Transporter URAT1. J Pharmacol Exp Ther 2024; 390:99-107. [PMID: 38670801 DOI: 10.1124/jpet.124.002096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Dotinurad was developed as a uricosuric agent, inhibiting urate (UA) reabsorption through the UA transporter URAT1 in the kidneys. Due to its high selectivity for URAT1 among renal UA transporters, we investigated the mechanism underlying this selectivity by identifying dotinurad binding sites specific to URAT1. Dotinurad was docked to URAT1 using AutoDock4, utilizing the AlphaFold2-predicted structure. The inhibitory effects of dotinurad on wild-type and mutated URAT1 at the predicted binding sites were assessed through URAT1-mediated [14C]UA uptake in Xenopus oocytes. Nine amino acid residues in URAT1 were identified as dotinurad-binding sites. Sequence alignment with UA-transporting organic anion transporters (OATs) revealed that H142 and R487 were unique to URAT1 among renal UA-transporting OATs. For H142, IC50 values of dotinurad increased to 62, 55, and 76 nM for mutated URAT1 (H142A, H142E, and H142R, respectively) compared with 19 nM for the wild type, indicating that H142 contributes to URAT1-selective interaction with dotinurad. H142 was predicted to interact with the phenyl-hydroxyl group of dotinurad. The IC50 of the hydroxyl group methylated dotinurad (F13141) was 165 μM, 8420-fold higher than dotinurad, suggesting the interaction of H142 and the phenyl-hydroxyl group by forming a hydrogen bond. Regarding R487, URAT1-R487A exhibited a loss of activity. Interestingly, the URAT1-H142A/R487A double mutant restored UA transport activity, with the IC50 value of dotinurad for the mutant (388 nM) significantly higher than that for H142A (73.5 nM). These results demonstrate that H142 and R487 of URAT1 determine its selectivity for dotinurad, a uniqueness observed only in URAT1 among UA-transporting OATs. SIGNIFICANCE STATEMENT: Dotinurad selectively inhibits the urate reabsorption transporter URAT1 in renal urate-transporting organic ion transporters (OATs). This study demonstrates that dotinurad interacts with H142 and R487 of URAT1, located in the extracellular domain and unique among OATs when aligning amino acid sequences. Mutations in these residues reduce affinity of dotinurad for URAT1, confirming their role in conferring selective inhibition. Additionally, the interaction between dotinurad and URAT1 involving H142 is found to mediate hydrogen bonding.
Collapse
Affiliation(s)
- Kazuki Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Noriyoshi Isozumi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Qiunan Zhu
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Masaya Matsubayashi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Tetsuya Taniguchi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Yoshiyuki Shirasaka
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Eiichiro Mori
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan (K.F., Q.Z., H.A., Y.S., I.T.); Department of Future Basic Medicine (N.I., E.M.) and V-iCliniX Laboratory (E.M.), Nara Medical University, Kashihara, Japan; and Research Laboratories 2, Fuji Yakuhin Co., Ltd., Nishi-Ward, Saitama, Japan (M.M., T.T.)
| |
Collapse
|
2
|
Yang S, Liu H, Fang XM, Yan F, Zhang Y. Signaling pathways in uric acid homeostasis and gout: From pathogenesis to therapeutic interventions. Int Immunopharmacol 2024; 132:111932. [PMID: 38560961 DOI: 10.1016/j.intimp.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1β to bioactive IL-1β. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.
Collapse
Affiliation(s)
- Shuangling Yang
- School of Health Sciences, Guangzhou Xinhua University, Guangzhou, Guangdong 510520, China
| | - Haimei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, China.
| | - Fuman Yan
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China; Issue 12(th) of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi‑Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China.
| |
Collapse
|
3
|
Yang B, Xin M, Liang S, Xu X, Cai T, Dong L, Wang C, Wang M, Cui Y, Song X, Sun J, Sun W. New insight into the management of renal excretion and hyperuricemia: Potential therapeutic strategies with natural bioactive compounds. Front Pharmacol 2022; 13:1026246. [PMID: 36483739 PMCID: PMC9723165 DOI: 10.3389/fphar.2022.1026246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/26/2022] [Indexed: 10/05/2023] Open
Abstract
Hyperuricemia is the result of increased production and/or underexcretion of uric acid. Hyperuricemia has been epidemiologically associated with multiple comorbidities, including metabolic syndrome, gout with long-term systemic inflammation, chronic kidney disease, urolithiasis, cardiovascular disease, hypertension, rheumatoid arthritis, dyslipidemia, diabetes/insulin resistance and increased oxidative stress. Dysregulation of xanthine oxidoreductase (XOD), the enzyme that catalyzes uric acid biosynthesis primarily in the liver, and urate transporters that reabsorb urate in the renal proximal tubules (URAT1, GLUT9, OAT4 and OAT10) and secrete urate (ABCG2, OAT1, OAT3, NPT1, and NPT4) in the renal tubules and intestine, is a major cause of hyperuricemia, along with variations in the genes encoding these proteins. The first-line therapeutic drugs used to lower serum uric acid levels include XOD inhibitors that limit uric acid biosynthesis and uricosurics that decrease urate reabsorption in the renal proximal tubules and increase urate excretion into the urine and intestine via urate transporters. However, long-term use of high doses of these drugs induces acute kidney disease, chronic kidney disease and liver toxicity. Therefore, there is an urgent need for new nephroprotective drugs with improved safety profiles and tolerance. The current systematic review summarizes the characteristics of major urate transporters, the mechanisms underlying the pathogenesis of hyperuricemia, and the regulation of uric acid biosynthesis and transport. Most importantly, this review highlights the potential mechanisms of action of some naturally occurring bioactive compounds with antihyperuricemic and nephroprotective potential isolated from various medicinal plants.
Collapse
Affiliation(s)
- Bendong Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Meiling Xin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Shufei Liang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiaoxue Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Tianqi Cai
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Ling Dong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chao Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Meng Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Yuting Cui
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xinhua Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Shandong Qingyujiangxing Biotechnology Co., Ltd., Zibo, China
| | - Jinyue Sun
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenlong Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Shandong Qingyujiangxing Biotechnology Co., Ltd., Zibo, China
| |
Collapse
|
4
|
Chang YS, Lin CY, Liu TY, Huang CM, Chung CC, Chen YC, Tsai FJ, Chang JG, Chang SJ. Polygenic risk score trend and new variants on chromosome 1 are associated with male gout in genome-wide association study. Arthritis Res Ther 2022; 24:229. [PMID: 36221101 PMCID: PMC9552457 DOI: 10.1186/s13075-022-02917-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Gout is a highly hereditary disease, but not all those carrying well-known risk variants have developing gout attack even in hyperuricemia status. We performed a genome-wide association study (GWAS) and polygenic risk score (PRS) analysis to illustrate the new genetic architectures of gout and asymptomatic hyperuricemia (AH). Methods GWAS was performed to identify variants associated with gout/AH compared with normouricemia. The participants were males, enrolled from the Taiwan Biobank and China Medical University, and divided into discovery (n=39,594) and replication (n=891) cohorts for GWAS. For PRS analysis, the discovery cohort was grouped as base (n=21,814) and target (n=17,780) cohorts, and the score was estimated by grouping the polymorphisms into protective or not for the phenotypes in the base cohort. Results The genes ABCG2 and SLC2A9 were found as the major genetic factors governing gouty and AH, and even in those carrying the rs2231142 (ABCG2) wild-genotype. Surprisingly, variants on chromosome 1, such as rs7546668 (DNAJC16), rs10927807 (AGMAT), rs9286836 (NUDT17), rs4971100 (TRIM46), rs4072037 (MUC1), and rs2974935 (MTX1), showed significant associations with gout in both discovery and replication cohorts (all p-values < 1e−8). Concerning the PRS, the rates of gout and AH increased with increased quartile PRS in those SNPs having risk effects on the phenotypes; on the contrary, gout/AH rates decreased with increased quartile PRS in those protective SNPs. Conclusions We found new variants on chromosome 1 significantly relating to gout, and PRS predicts the risk of developing gout/AH more robustly based on the SNPs’ effect types on the trait. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02917-4.
Collapse
Affiliation(s)
- Ya-Sian Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Yu Lin
- Graduate Institute of Clinical Medical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.,Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Ting-Yuan Liu
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chung-Ming Huang
- Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan.,Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chin-Chun Chung
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chia Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Jan-Gowth Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Graduate Institute of Integrated Medicine, College of Medicine, China Medical University, Taichung, Taiwan.
| | - Shun-Jen Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, China Medical University, Taichung, Taiwan. .,Department of Kinesiology, Health and Leisure Studies, National University of Kaohsiung, No. 700, Kaohsiung University Road, Nanzih District, 81148, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Jenkins C, Hwang JH, Kopp JB, Winkler CA, Cho SK. Review of Urate-Lowering Therapeutics: From the Past to the Future. Front Pharmacol 2022; 13:925219. [PMID: 36081938 PMCID: PMC9445164 DOI: 10.3389/fphar.2022.925219] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
We reviewed all currently available ULT, as well as any medications in development using following databases: United States Food and Drug Administration (FDA), European Medicines Agency (EMA), Japanese Pharmaceutical and Medical Devices Agency (PMDA), and ClinicalTrials.gov. We identified a total of 36 drugs, including 10 approved drugs, 17 in clinical testing phases, and 9 in preclinical developmental phases. The 26 drugs currently undergoing testing and development include 5 xanthine oxidase inhibitors, 14 uricosurics, 6 recombinant uricases, and one with multiple urate-lowering mechanisms of action. Herein, we reviewed the benefit and risk of each drug summarizing currently available drugs. New trials of uricosuric agents are underway to develop the new indication. New drugs are going on to improve the potency of recombinant uricase and to develop the new route administration of such as oral formulation. This review will provide valuable information on the properties, indications, and limitations of ULTs.
Collapse
Affiliation(s)
- Christopher Jenkins
- Department of Internal Medicine, University of Connecticut Health Center, Farmington, CT, United States
- Department of Internal Medicine, The Hospital of Central Connecticut, New Britain, CT, United States
| | - Jennifer H. Hwang
- Department of Internal Medicine, University of Connecticut Health Center, Farmington, CT, United States
- Department of Internal Medicine, The Hospital of Central Connecticut, New Britain, CT, United States
| | - Jeffrey B. Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cheryl A. Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, United States
| | - Sung Kweon Cho
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, United States
- Department of Pharmacology, Ajou University School of Medicine, Suwon, South Korea
- *Correspondence: Sung Kweon Cho,
| |
Collapse
|
6
|
Natsuko PD, Laura SC, Denise CC, Lucio VR, Carlos AS, Fausto SM, Ambar LM. Differential gene expression of ABCG2, SLC22A12, IL-1β, and ALPK1 in peripheral blood leukocytes of primary gout patients with hyperuricemia and their comorbidities: a case-control study. Eur J Med Res 2022; 27:62. [PMID: 35505381 PMCID: PMC9063158 DOI: 10.1186/s40001-022-00684-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Background The ABCG2, SLC22A12, and ALPK1 genes have been strongly associated with dysfunction of urate metabolism in patients with gout, but it is unknown how these transporters are expressed in patients with acute or chronic gout. Our objectives were to: (a) analyze the gene expression of urate transporters and of inflammation genes in peripheral blood from gout patients and controls; (b) determine whether the metabolic profile of gout patients can influence the gene expression profile and the expression of urate transporters, ABCG2 and SLC22A12, and inflammation molecules, ALPK1 and IL-1β, in peripheral blood leukocytes from gout patients; (c) compare them with their metabolic profile and the gene expression of people without gout and without hyperuricemia. Methods A total of 36 chronic and acute patients and 52 controls were recruited, and ABCG2, SLC22A12, IL-1β, and ALPK1 gene expression was evaluated by quantitative real-time PCR. Correlations of gene expression with clinical and laboratory parameters of patients were also analyzed. Results IL-1β was significantly increased in peripheral blood mononuclear cells (PBMCs) of patients compared with their polymorphonuclear leukocytes white blood cells (PMNLs, p < 0.05). A significant increase in ABCG2 and IL-1β was found in PMNLs from patients compared to controls (p < 0.05). Correlations of gene expression in patients were found with levels of serum uric acid (sUA), serum creatinine, C-reactive protein (CRP), triglycerides, body mass index (BMI), kidney disease, hypertension, and metabolic syndrome. Conclusions Our data suggest that leukocytes of patients respond to the presence of hyperuricemia and comorbidities, expressing ABCG2 and IL-1β genes differentially compared to normouricemic and nondisease states. Hyperuricemia, dyslipidemia, and obesity probably stimulate the differential gene expression of peripheral blood leukocytes (neutrophils and monocytes), even in an asymptomatic state.
Collapse
Affiliation(s)
- Paniagua-Díaz Natsuko
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México
| | - Sanchez-Chapul Laura
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México
| | - Clavijo-Cornejo Denise
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitación, Mexico City, Mexico., Instituto Nacional de Rehabilitación - "Luis Guillermo Ibarra Ibarra". Tlalpan, Ciudad de México, México
| | - Ventura-Ríos Lucio
- Laboratorio de Ultrasonido Musculoesquelético Articular, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Tlalpan, Ciudad de México, México
| | - Aguilar-Salinas Carlos
- Unidad de investigación de enfermedades metabólicas, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán. Tlalpan, Ciudad de Mexico, México
| | - Sanchez-Muñoz Fausto
- Department of immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, 14080, Tlalpan, Ciduad de México, México
| | - López-Macay Ambar
- Laboratorio de Enfermedades Neuromusculares, Instituto Nacional de Rehabilitación, Guillermo Ibarra Ibarra. Calzada Mexico-Xochimilco 289, Colonia Arenal de Guadalupe, División Neurociencias, CP, 143898, Ciudad de México, México.
| |
Collapse
|
7
|
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins (Basel) 2022; 14:toxins14030177. [PMID: 35324674 PMCID: PMC8949274 DOI: 10.3390/toxins14030177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.
Collapse
|
8
|
Dai H, Lv S, Qiao Z, Wang K, Zhou X, Bao C, Zhang S, Fu X, Li W. The Active Components of Sunflower ( Helianthus annuus L.) Calathide and the Effects on Urate Nephropathy Based on COX-2/PGE2 Signaling Pathway and the Urate Transporter URAT1, ABCG2, and GLUT9. Front Nutr 2022; 8:769555. [PMID: 35083262 PMCID: PMC8784607 DOI: 10.3389/fnut.2021.769555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/10/2021] [Indexed: 01/16/2023] Open
Abstract
The sunflower (Helianthus annuus L.) calathide is gradually used as an alternative treatment for hyperuricemia; nevertheless, evidence regarding its main components and therapeutic capacity for urate nephropathy is lacking. Identification of sunflower calathide aqueous extract (SCE) was rapidly done by UPLC-ESI-Q-Orbitrap, and 32 water-soluble compounds with a comprehensive score >80 were discovered. Besides, yeast extract was administrated to induce high UA levels and hyperuricemic renal injury. We found that SCE treatment not only decreased UA levels to a comparable degree as allopurinol and benzbromarone, but also reduced the BUN levels and participated in kidney injury repair induced by uric acid. Moreover, it regulated the expression of URAT1 and ABCG2, especially inhibiting the GLUT9 in the normal kidney. Results were multifacetedly evaluated with a view to suggesting a possible mechanism of action as compared with those of allopurinol and benzbromarone by western blotting, H&E staining, and immunohistochemistry. However, the H&E staining showed histological changes in model, benzbromarone, and allopurinol groups rather than SCE treatments, and at the same time, the uric acid was identified as a cause of renal damage. The antiinflammatory effects and the regulations of COX-2/PGE2 signaling pathway were revealed on the LPS-induced RAW264.7 cells, indicating that the SCE not only increased cellular proliferation but also downregulated the COX-2, PGE2, NO, and IFN-γ cytokines in the RAW264.7 cells. To conclude, the SCE acts on urate transporters and contributes to prevent urate nephropathy via alleviating inflammatory process involving COX-2/PGE2 signaling pathway. It is available to develop SCE as food supplemental applications for hyperuricemia and nephritic inflammation.
Collapse
Affiliation(s)
- Huining Dai
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Shuai Lv
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Zi'an Qiao
- School of Life Sciences, Jilin University, Changchun, China
| | - Kaiyu Wang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Xipeng Zhou
- Jilin Province Medical Device Inspection Institute, Changchun, China
| | - Chunyang Bao
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Shitao Zhang
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Xueqi Fu
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| | - Wannan Li
- Edmond H. Fischer Signal Transduction Laboratory, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
9
|
Cao L, Zhao T, Xue Y, Xue L, Chen Y, Quan F, Xiao Y, Wan W, Han M, Jiang Q, Lu L, Zou H, Zhu X. The Anti-Inflammatory and Uric Acid Lowering Effects of Si-Miao-San on Gout. Front Immunol 2022; 12:777522. [PMID: 35069549 PMCID: PMC8769502 DOI: 10.3389/fimmu.2021.777522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background Si-Miao-San (SMS) is a well-known traditional Chinese medicine. This study aims to evaluate the anti-inflammatory effects of SMS on gouty arthritis and its potential mechanism of action. Methods The effects and mechanism of SMS were evaluated in monosodium urate (MSU)-treated mice or macrophages. The expression of cytokines and PI3K/Akt was analyzed using real-time PCR and Western blotting analyses. Macrophage polarization was assessed with immunofluorescence assays, real-time PCR, and Western blotting. Mass spectrometry was used to screen the active ingredients of SMS. Results Pretreatment with SMS ameliorated MSU-induced acute gouty arthritis in mice with increased PI3K/Akt activation and M2 macrophage polarization in the joint tissues. In vitro, SMS treatment significantly inhibited MSU-triggered inflammatory response, increased p-Akt and Arg-1 expression in macrophages, and promoted M2 macrophage polarization. These effects of SMS were inhibited when PI3K/Akt activation was blocked by LY294002 in the macrophages. Moreover, SMS significantly reduced serum uric acid levels in the hyperuricemia mice. Using mass spectrometry, the plant hormones ecdysone and estrone were detected as the potentially effective ingredients of SMS. Conclusion SMS ameliorated MSU-induced gouty arthritis and inhibited hyperuricemia. The anti-inflammatory mechanism of SMS may exert anti-inflammatory effects by promoting M2 polarization via PI3K/Akt signaling. Ecdysone and estrone might be the potentially effective ingredients of SMS. This research may provide evidence for the application of SMS in the treatment of gout.
Collapse
Affiliation(s)
- Ling Cao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Tianyi Zhao
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Luan Xue
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueying Chen
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Quan
- Department of Rheumatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Xiao
- Institute of Spacecraft Equipment, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Man Han
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Quan Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Zhao L, Li Y, Yao D, Sun R, Liu S, Chen X, Lin C, Huang J, Wang J, Li G. Pharmacological Basis for Use of a Novel Compound in Hyperuricemia: Anti-Hyperuricemic and Anti-Inflammatory Effects. Front Pharmacol 2021; 12:772504. [PMID: 34819865 PMCID: PMC8607230 DOI: 10.3389/fphar.2021.772504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Background: The prevalence of hyperuricemia is considered high worldwide. Hyperuricemia occurs due to decreased excretion of uric acid, increased synthesis of uric acid, or a combination of both mechanisms. There is growing evidence that hyperuricemia is associated with a decline of renal function. Purpose: This study is aimed at investigating the effects of the novel compound on lowering the serum uric acid level and alleviating renal inflammation induced by high uric acid in hyperuricemic mice. Methods: Hyperuricemic mice model was induced by potassium oxonate and used to evaluate the effects of the novel compound named FxUD. Enzyme-linked immunosorbent assay was used to detect the related biochemical markers. Hematoxylin-eosin (HE) staining was applied to observe pathological changes. The mRNA expression levels were tested by qRT-PCR. The protein levels were determined by Western blot. In parallel, human proximal renal tubular epithelial cells (HK-2) derived from normal kidney was used to further validate the anti-inflammatory effects in vitro. Results: FxUD administration significantly decreased serum uric acid levels, restored the kidney function parameters, and improved the renal pathological injury. Meanwhile, treatment with FxUD effectively inhibited serum and liver xanthine oxidase (XOD) levels. Reversed expression alterations of renal inflammatory cytokines, urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) were observed in hyperuricemic mice. Western blot results illustrated FxUD down-regulated protein levels of inflammasome components. Further studies showed that FxUD inhibited the activation of NF-κB signaling pathway in the kidney of hyperuricemic mice. In parallel, the anti-inflammatory effect of FxUD was also confirmed in HK-2. Conclusion: Our study reveals that FxUD exhibits the anti-hyperuricemic and anti-inflammatory effects through regulating hepatic XOD and renal urate reabsorption transporters, and suppressing NF-κB/NLRP3 pathway in hyperuricemia. The results provide the evidence that FxUD may be potential for the treatment of hyperuricemia with kidney inflammation.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yihang Li
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, China
| | - Dahong Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, China
| | - Ran Sun
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Shifang Liu
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
| | - Xi Chen
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jian Huang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Guang Li
- Yunnan Branch, Institute of Medicinal Plant, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong, China
- Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong, China
| |
Collapse
|
11
|
Interaction of Alcohol Consumption and ABCG2 rs2231142 Variant Contributes to Hyperuricemia in a Taiwanese Population. J Pers Med 2021; 11:jpm11111158. [PMID: 34834509 PMCID: PMC8618280 DOI: 10.3390/jpm11111158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background: ABCG2 rs2231142 is an important genetic factor that contributes to the development of gout and hyperuricemia (HUA). Epidemiologic studies have demonstrated that lifestyle risk factors of HUA (e.g., alcohol consumption) and genetic predisposition (e.g., ABCG2 gene) together, contribute to enhanced serum uric acid levels. However, the interaction between ABCG2 rs2231142, alcohol consumption, and HUA in the Taiwanese population is still unclear. Therefore, this study investigated whether the risk of HUA is associated with ABCG2 rs2231142 variants and how this is affected by alcohol consumption. Method: study subjects were selected from the participants of the Taiwan Biobank database. Overall, 114,540 participants aged 30 to 70 years were enrolled in this study. The interaction between ABCG2 rs2231142, alcohol consumption, and serum uric acid (sUA) levels was analyzed by multiple logistic regression models. Results: the prevalence of HUA was 32.7% and 4.4 % in the male and female populations, respectively. In the whole study population, the minor T allele of ABCG2 rs2231142 was significantly associated with HUA risk, and the occurrence of HUA was high in TT genotype and TG genotype. The risk of HUA was significantly increased by the combined association of ABCG2 rs2231142 and alcohol consumption for TG/TT genotype compared to the GG genotype (wild-type genotype), especially among women. Conclusion: the ABCG2 rs2231142 is a crucial genetic locus for sUA levels in the Taiwanese population and our findings revealed that alcohol consumption combined with the ABCG2 rs2231142 risk allele contributes to increased HUA risk.
Collapse
|
12
|
Sun C, Lin S, Li Z, Liu H, Liu Y, Wang K, Zhu T, Li G, Yin B, Wan R. iTRAQ-based quantitative proteomic analysis reveals the toxic mechanism of diclofenac sodium on the kidney of broiler chicken. Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109129. [PMID: 34229076 DOI: 10.1016/j.cbpc.2021.109129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
Diclofenac sodium (DS) is one of the nonsteroidal anti-inflammatory drugs (NSAIDs), which exhibits potent toxicity to birds. To search the molecular mechanism of DS induced nephrotoxicity in broiler chicken, 20 apparently healthy 30-day old broiler chickens were separated randomly into two groups (n = 10): Group A was kept as control while DS was administered at the dose rate of 10 mg/kg body weight in group B through oral gavage. Kidney samples were collected, and the proteins were identified and quantified by iTRAQ. 434 differentially expressed proteins (DEPs) were screened, including 277 up-regulated DEPs and 157 down-regulated DEPs. The functional annotation and classification results indicated that DEPs were significantly enriched in apoptosis and metabolism-related pathways via GO and KEGG analysis. Compared with the control group, the most significant enrichment pathways are "ribosome", "metabolic pathways" and "protein processing in endoplasmic reticulum". Based on the proteomic results and relevant literature, some DEPs that potentially related to the toxicity of DS were screened. The mRNA transcript levels of these DEPs were characterized by qRT-PCR, and the results showed that Slc22a7, Gatm, Glud1, Agxt2 and Gldc were significantly down-regulated, while Gsl, Gpt2 and Asns were significantly up-regulated. We speculate that the toxic mechanism of DS to chicken might be that it induces kidney cell apoptosis, interferes with purine metabolism and inhibits the expression of OAT2. The current study provides a reference for elucidating the nephrotoxic mechanism of diclofenac sodium to broiler chicken from the molecular perspective.
Collapse
Affiliation(s)
- Chuanxi Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China; Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Shuqian Lin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China; Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, Shandong, China
| | - Zhen Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China; Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Huazheng Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China
| | - Yixin Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China
| | - Keke Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China
| | - Tianyi Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China
| | - Guiming Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China; Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, Shandong, China
| | - Bin Yin
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China; Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Jinan 250100, Shandong, China.
| | - Renzhong Wan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271001, Shandong, China.
| |
Collapse
|
13
|
Shin D, Lee KW. Dietary Acid Load Is Positively Associated with the Incidence of Hyperuricemia in Middle-Aged and Older Korean Adults: Findings from the Korean Genome and Epidemiology Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910260. [PMID: 34639563 PMCID: PMC8508478 DOI: 10.3390/ijerph181910260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Hyperuricemia has been associated with a number of chronic diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Dietary acid load plays a key role in regulating uric acid levels. We hypothesized that potential renal acid load (PRAL) and net endogenous acid production (NEAP) score would be positively associated with the incidence of hyperuricemia. Data from the Health Examinees study, a part of the Korean Genome and Epidemiology Study were used. The PRAL and NEAP scores were calculated to evaluate the dietary acid load. Hyperuricemia was defined as follows: >7.0 mg/dL and >6.0 mg/dL of serum uric acid levels in men and women, respectively. Multivariable Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the incidence of hyperuricemia. We identified 2500 new cases of hyperuricemia during a mean follow-up of 5.0 years (223,552 person years). The participants in the highest quartiles of the PRAL and NEAP score had 21% (HR: 1.21, 95% CI: 1.07–1.35, p for trend <0.0001) and 17% (HR: 1.17, 95% CI: 1.04–1.31, p for trend <0.0001) higher risks for hyperuricemia, respectively, than those in the lowest quartiles, after adjusting for covariates. In this prospective cohort study, a higher dietary acid load was positively associated with a higher incidence of hyperuricemia in Korean adults. This suggests that an alkaline diet may be an effective strategy to reduce the future risk of elevated uric acid levels.
Collapse
Affiliation(s)
- Dayeon Shin
- Department of Food and Nutrition, Inha University, Incheon 22212, Korea;
| | - Kyung Won Lee
- Department of Home Economics Education, Korea National University of Education, Cheongju 28173, Korea
- Correspondence: ; Tel.: +82-43-230-3746
| |
Collapse
|
14
|
Mandal AK, Leask MP, Estiverne C, Choi HK, Merriman TR, Mount DB. Genetic and Physiological Effects of Insulin on Human Urate Homeostasis. Front Physiol 2021; 12:713710. [PMID: 34408667 PMCID: PMC8366499 DOI: 10.3389/fphys.2021.713710] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Insulin and hyperinsulinemia reduce renal fractional excretion of urate (FeU) and play a key role in the genesis of hyperuricemia and gout, via uncharacterized mechanisms. To explore this association further we studied the effects of genetic variation in insulin-associated pathways on serum urate (SU) levels and the physiological effects of insulin on urate transporters. We found that urate-associated variants in the human insulin (INS), insulin receptor (INSR), and insulin receptor substrate-1 (IRS1) loci associate with the expression of the insulin-like growth factor 2, IRS1, INSR, and ZNF358 genes; additionally, we found genetic interaction between SLC2A9 and the three loci, most evident in women. We also found that insulin stimulates the expression of GLUT9 and increases [14C]-urate uptake in human proximal tubular cells (PTC-05) and HEK293T cells, transport activity that was effectively abrogated by uricosurics or inhibitors of protein tyrosine kinase (PTK), PI3 kinase, MEK/ERK, or p38 MAPK. Heterologous expression of individual urate transporters in Xenopus oocytes revealed that the [14C]-urate transport activities of GLUT9a, GLUT9b, OAT10, OAT3, OAT1, NPT1 and ABCG2 are directly activated by insulin signaling, through PI3 kinase (PI3K)/Akt, MEK/ERK and/or p38 MAPK. Given that the high-capacity urate transporter GLUT9a is the exclusive basolateral exit pathway for reabsorbed urate from the renal proximal tubule into the blood, that insulin stimulates both GLUT9 expression and urate transport activity more than other urate transporters, and that SLC2A9 shows genetic interaction with urate-associated insulin-signaling loci, we postulate that the anti-uricosuric effect of insulin is primarily due to the enhanced expression and activation of GLUT9.
Collapse
Affiliation(s)
- Asim K. Mandal
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Megan P. Leask
- Biochemistry Department, University of Otago, Dunedin, New Zealand
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, AL, United States
| | - Christopher Estiverne
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hyon K. Choi
- Division of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Tony R. Merriman
- Biochemistry Department, University of Otago, Dunedin, New Zealand
- Division of Rheumatology and Clinical Immunology, University of Alabama, Birmingham, AL, United States
| | - David B. Mount
- Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Renal Division, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Ganguly S, Finkelstein D, Shaw TI, Michalek RD, Zorn KM, Ekins S, Yasuda K, Fukuda Y, Schuetz JD, Mukherjee K, Schuetz EG. Metabolomic and transcriptomic analysis reveals endogenous substrates and metabolic adaptation in rats lacking Abcg2 and Abcb1a transporters. PLoS One 2021; 16:e0253852. [PMID: 34255797 PMCID: PMC8277073 DOI: 10.1371/journal.pone.0253852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 06/14/2021] [Indexed: 12/21/2022] Open
Abstract
Abcg2/Bcrp and Abcb1a/Pgp are xenobiotic efflux transporters limiting substrate permeability in the gastrointestinal system and brain, and increasing renal and hepatic drug clearance. The systemic impact of Bcrp and Pgp ablation on metabolic homeostasis of endogenous substrates is incompletely understood. We performed untargeted metabolomics of cerebrospinal fluid (CSF) and plasma, transcriptomics of brain, liver and kidney from male Sprague Dawley rats (WT) and Bcrp/Pgp double knock-out (dKO) rats, and integrated metabolomic/transcriptomic analysis to identify putative substrates and perturbations in canonical metabolic pathways. A predictive Bayesian machine learning model was used to predict in silico those metabolites with greater substrate-like features for either transporters. The CSF and plasma levels of 169 metabolites, nutrients, signaling molecules, antioxidants and lipids were significantly altered in dKO rats, compared to WT rats. These metabolite changes suggested alterations in histidine, branched chain amino acid, purine and pyrimidine metabolism in the dKO rats. Levels of methylated and sulfated metabolites and some primary bile acids were increased in dKO CSF or plasma. Elevated uric acid levels appeared to be a primary driver of changes in purine and pyrimidine biosynthesis. Alterations in Bcrp/Pgp dKO CSF levels of antioxidants, precursors of neurotransmitters, and uric acid suggests the transporters may contribute to the regulation of a healthy central nervous system in rats. Microbiome-generated metabolites were found to be elevated in dKO rat plasma and CSF. The altered dKO metabolome appeared to cause compensatory transcriptional change in urate biosynthesis and response to lipopolysaccharide in brain, oxidation-reduction processes and response to oxidative stress and porphyrin biosynthesis in kidney, and circadian rhythm genes in liver. These findings present insight into endogenous functions of Bcrp and Pgp, the impact that transporter substrates, inhibitors or polymorphisms may have on metabolism, how transporter inhibition could rewire drug sensitivity indirectly through metabolic changes, and identify functional Bcrp biomarkers.
Collapse
Affiliation(s)
- Samit Ganguly
- Cancer & Developmental Biology Track, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Timothy I. Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | | | - Kimberly M. Zorn
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina, United States of America
| | - Kazuto Yasuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yu Fukuda
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - John D. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kamalika Mukherjee
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Erin G. Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
16
|
The Role of ABCG2 in the Pathogenesis of Primary Hyperuricemia and Gout-An Update. Int J Mol Sci 2021; 22:ijms22136678. [PMID: 34206432 PMCID: PMC8268734 DOI: 10.3390/ijms22136678] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Urate homeostasis in humans is a complex and highly heritable process that involves i.e., metabolic urate biosynthesis, renal urate reabsorption, as well as renal and extrarenal urate excretion. Importantly, disturbances in urate excretion are a common cause of hyperuricemia and gout. The majority of urate is eliminated by glomerular filtration in the kidney followed by an, as yet, not fully elucidated interplay of multiple transporters involved in the reabsorption or excretion of urate in the succeeding segments of the nephron. In this context, genome-wide association studies and subsequent functional analyses have identified the ATP-binding cassette (ABC) transporter ABCG2 as an important urate transporter and have highlighted the role of single nucleotide polymorphisms (SNPs) in the pathogenesis of reduced cellular urate efflux, hyperuricemia, and early-onset gout. Recent publications also suggest that ABCG2 is particularly involved in intestinal urate elimination and thus may represent an interesting new target for pharmacotherapeutic intervention in hyperuricemia and gout. In this review, we specifically address the involvement of ABCG2 in renal and extrarenal urate elimination. In addition, we will shed light on newly identified polymorphisms in ABCG2 associated with early-onset gout.
Collapse
|
17
|
Vora B, Brackman DJ, Zou L, Garcia-Cremades M, Sirota M, Savic RM, Giacomini KM. Oxypurinol pharmacokinetics and pharmacodynamics in healthy volunteers: Influence of BCRP Q141K polymorphism and patient characteristics. Clin Transl Sci 2021; 14:1431-1443. [PMID: 33931953 PMCID: PMC8301548 DOI: 10.1111/cts.12992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
The missense variant, breast cancer resistance protein (BCRP) p.Q141K, which encodes a reduced function BCRP, has been linked to poor response to allopurinol. Using a multifaceted approach, we aimed to characterize the relationship(s) between BCRP p.Q141K, the pharmacokinetics (PK) and pharmacodynamics (PD) of oxypurinol (the active metabolite of allopurinol), and serum uric acid (SUA) levels. A prospective clinical study (NCT02956278) was conducted in which healthy volunteers were given a single oral dose of 300 mg allopurinol followed by intensive blood sampling. Data were analyzed using noncompartmental analysis and population PK/PD modeling. Additionally, electronic health records were analyzed to investigate whether clinical inhibitors of BCRP phenocopied the effects of the p.Q141K variant with respect to SUA. Subjects homozygous for p.Q141K had a longer half‐life (34.2 ± 12.2 h vs. 19.1 ± 1.42 h) of oxypurinol. The PK/PD model showed that women had a 24.8% lower volume of distribution. Baseline SUA was affected by p.Q141K genotype and renal function; that is, it changed by 48.8% for every 1 mg/dl difference in serum creatinine. Real‐world data analyses showed that patients prescribed clinical inhibitors of BCRP have higher SUA levels than those that have not been prescribed inhibitors of BCRP, consistent with the idea that BCRP inhibitors phenocopy the effects of p.Q141K on uric acid levels. This study identified important covariates of oxypurinol PK/PD that could affect its efficacy for the treatment of gout as well as a potential side effect of BCRP inhibitors on increasing uric acid levels, which has not been described previously.
Collapse
Affiliation(s)
- Bianca Vora
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Deanna J Brackman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Maria Garcia-Cremades
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.,Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17:515-542. [PMID: 33749483 DOI: 10.1080/17425255.2021.1899159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The solute carrier (SLC) and the ATP-binding cassette (ABC) transporter superfamilies play essential roles in the disposition of small molecules (endogenous metabolites, uremic toxins, drugs) in the blood, kidney, liver, intestine, and other organs. In chronic kidney disease (CKD), the loss of renal function is associated with altered function of remote organs. As renal function declines, many molecules accumulate in the plasma. Many studies now support the view that ABC and SLC transporters as well as drug metabolizing enzymes (DMEs) in renal and non-renal tissues are directly or indirectly affected by the presence of various types of uremic toxins, including those derived from the gut microbiome; this can lead to aberrant inter-organ communication. AREAS COVERED Here, the expression, localization and/or function of various SLC and ABC transporters as well as DMEs in the kidney and other organs are discussed in the context of CKD and systemic pathophysiology. EXPERT OPINION According to the Remote Sensing and Signaling Theory (RSST), a transporter and DME-centric network that optimizes local and systemic metabolism maintains homeostasis in the steady state and resets homeostasis following perturbations due to renal dysfunction. The implications of this view for pharmacotherapy of CKD are also discussed.
Collapse
Affiliation(s)
- Adriana M Torres
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ankur V Dnyanmote
- Department of Pediatrics, IWK Health Centre - Dalhousie University, 5850 University Ave, Halifax, NS, B3K 6R8, Canada
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| | - Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
19
|
Pierzynowska K, Deshpande A, Mosiichuk N, Terkeltaub R, Szczurek P, Salido E, Pierzynowski S, Grujic D. Oral Treatment With an Engineered Uricase, ALLN-346, Reduces Hyperuricemia, and Uricosuria in Urate Oxidase-Deficient Mice. Front Med (Lausanne) 2020; 7:569215. [PMID: 33330529 PMCID: PMC7732547 DOI: 10.3389/fmed.2020.569215] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Limitations in efficacy and/or tolerance of currently available urate-lowering therapies (ULTs), such as oral xanthine oxidase inhibitors, uricosurics, and intravenous uricase agents contribute to the development of refractory gout. Renal excretion is the major route of uric acid elimination, but the intestinal tract plays an increasingly recognized role in urate homeostasis, particularly in chronic kidney disease (CKD) in which the renal elimination of urate is impaired. We targeted intestinal degradation of urate in vivo with ALLN-346, an orally administered, engineered urate oxidase, optimized for proteolytic stability, and activity in the gut. We tested ALLN-346 in uricase/urate oxidase deficient mice (URKO mice) with severe hyperuricemia, hyperuricosuria, and uric acid crystalline obstructive nephropathy. A total of 55 male and female URKO mice were used in the two consecutive studies. These seminal, proof-of-concept studies aimed to explore both short- (7-day) and long-term (19-day) effects of ALLN-346 on the reduction of plasma and urine urate. In both the 7- and 19-day studies, ALLN-346 oral therapy resulted in the normalization of urine uric acid excretion and a significant reduction of hyperuricemia by 44 and 28% when therapy was given with food over 24 h or was limited for up to 6 h, respectively. Fractional excretion of uric acid (FEUA) was normalized with ALLN-346 therapy. Oral enzyme therapy with engineered urate oxidase (ALLN-346) designed to degrade urate in the intestinal tract has the potential to reduce hyperuricemia and the renal burden of filtered urate in patients with hyperuricemia and gout with and without CKD.
Collapse
Affiliation(s)
- Kateryna Pierzynowska
- Department of Animal Physiology, Kielanowski Institute of Animal Nutrition and Physiology Polish Academy of Sciences, Jabłonna, Poland.,Department of Biology, Lund University, Lund, Sweden.,SGP+Group, Trelleborg, Sweden
| | | | - Nadiia Mosiichuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Robert Terkeltaub
- VA Medical Center, University of California, San Diego, La Jolla, CA, United States
| | - Paulina Szczurek
- Department of Animal Nutrition and Feed Sciences, National Research Institute of Animal Production, Balice, Poland
| | - Eduardo Salido
- Hospital Universitario de Canarias, Universidad La Laguna & Center for Rare Diseases (CIBERER), Tenerife, Spain
| | - Stefan Pierzynowski
- Department of Biology, Lund University, Lund, Sweden.,SGP+Group, Trelleborg, Sweden.,Department of Biology, Institute Rural Medicine, Lublin, Poland
| | | |
Collapse
|
20
|
Nagy T, Tóth Á, Telbisz Á, Sarkadi B, Tordai H, Tordai A, Hegedűs T. The transport pathway in the ABCG2 protein and its regulation revealed by molecular dynamics simulations. Cell Mol Life Sci 2020; 78:2329-2339. [PMID: 32979053 PMCID: PMC7966132 DOI: 10.1007/s00018-020-03651-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/01/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Atomic-level structural insight on the human ABCG2 membrane protein, a pharmacologically important transporter, has been recently revealed by several key papers. In spite of the wealth of structural data, the pathway of transmembrane movement for the large variety of structurally different ABCG2 substrates and the physiological lipid regulation of the transporter has not been elucidated. The complex molecular dynamics simulations presented here may provide a breakthrough in understanding the steps of the substrate transport process and its regulation by cholesterol. Our analysis revealed drug binding cavities other than the central binding site and delineated a putative dynamic transport pathway for substrates with variable structures. We found that membrane cholesterol accelerated drug transport by promoting the closure of cytoplasmic protein regions. Since ABCG2 is present in all major biological barriers and drug-metabolizing organs, influences the pharmacokinetics of numerous clinically applied drugs, and plays a key role in uric acid extrusion, this information may significantly promote a reliable prediction of clinically important substrate characteristics and drug-drug interactions.
Collapse
Affiliation(s)
- Tamás Nagy
- Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37-47, 1094, Budapest, Hungary
| | - Ágota Tóth
- Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37-47, 1094, Budapest, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117, Budapest, Hungary
| | - Balázs Sarkadi
- Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37-47, 1094, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37-47, 1094, Budapest, Hungary
| | - Attila Tordai
- Department of Transfusion Medicine, Semmelweis University, Nagyvarad ter 4, 1089, Budapest, Hungary
| | - Tamás Hegedűs
- Department of Biophysics and Radiation Biology, Semmelweis University, Tuzolto u. 37-47, 1094, Budapest, Hungary.
| |
Collapse
|
21
|
Wada S, Matsunaga N, Tamai I. Mathematical modeling analysis of hepatic uric acid disposition using human sandwich-cultured hepatocytes. Drug Metab Pharmacokinet 2020; 35:432-440. [PMID: 32807664 DOI: 10.1016/j.dmpk.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Uric acid is biosynthesized from purine by xanthine oxidase (XO) mainly in the liver and is excreted into urine and feces. Although several transporters responsible for renal and intestinal handling of uric acid have been reported, information on hepatic transporters is limited. In the present study, we studied quantitative contribution of transporters for hepatic handling of uric acid by mathematical modeling analysis in human sandwich-cultured hepatocytes (hSCH). Stable isotope-labeled hypoxanthine, hypoxanthine-13C2,15N (HX), was incubated with hSCH and formed 13C2,15N-labeled xanthine (XA) and uric acid (UA) were measured by LC-MS/MS time dependently. Rate constants for metabolism and efflux and uptake transport across sinusoidal and bile canalicular membranes of HX, XA and UA were estimated in the presence of inhibitors of XO and uric acid transporters. An XO inhibitor allopurinol significantly decreased metabolisms of HX and XA. Efflux into bile canalicular lumen was negligible and sinusoidal efflux was considered main efflux pathway of formed UA. Transporter inhibition study highlighted that GLUT9 strongly and MRP4 intermediately contribute to the sinusoidal efflux of UA with minor contribution of NPT1/4. Modeling analysis developed in the present study should be useful for quantitative prediction of uric acid disposition in liver.
Collapse
Affiliation(s)
- Sho Wada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
22
|
Sekiya M, Matsuda T, Yamamoto Y, Furuta Y, Ohyama M, Murayama Y, Sugano Y, Ohsaki Y, Iwasaki H, Yahagi N, Yatoh S, Suzuki H, Shimano H. Deciphering genetic signatures by whole exome sequencing in a case of co-prevalence of severe renal hypouricemia and diabetes with impaired insulin secretion. BMC MEDICAL GENETICS 2020; 21:91. [PMID: 32375679 PMCID: PMC7201978 DOI: 10.1186/s12881-020-01031-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/22/2020] [Indexed: 11/21/2022]
Abstract
Background Renal hypouricemia (RHUC) is a hereditary disorder where mutations in SLC22A12 gene and SLC2A9 gene cause RHUC type 1 (RHUC1) and RHUC type 2 (RHUC2), respectively. These genes regulate renal tubular reabsorption of urates while there exist other genes counterbalancing the net excretion of urates including ABCG2 and SLC17A1. Urate metabolism is tightly interconnected with glucose metabolism, and SLC2A9 gene may be involved in insulin secretion from pancreatic β-cells. On the other hand, a myriad of genes are responsible for the impaired insulin secretion independently of urate metabolism. Case presentation We describe a 67 year-old Japanese man who manifested severe hypouricemia (0.7 mg/dl (3.8–7.0 mg/dl), 41.6 μmol/l (226–416 μmol/l)) and diabetes with impaired insulin secretion. His high urinary fractional excretion of urate (65.5%) and low urinary C-peptide excretion (25.7 μg/day) were compatible with the diagnosis of RHUC and impaired insulin secretion, respectively. Considering the fact that metabolic pathways regulating urates and glucose are closely interconnected, we attempted to delineate the genetic basis of the hypouricemia and the insulin secretion defect observed in this patient using whole exome sequencing. Intriguingly, we found homozygous Trp258* mutations in SLC22A12 gene causing RHUC1 while concurrent mutations reported to be associated with hyperuricemia were also discovered including ABCG2 (Gln141Lys) and SLC17A1 (Thr269Ile). SLC2A9, that also facilitates glucose transport, has been implicated to enhance insulin secretion, however, the non-synonymous mutations found in SLC2A9 gene of this patient were not dysfunctional variants. Therefore, we embarked on a search for causal mutations for his impaired insulin secretion, resulting in identification of multiple mutations in HNF1A gene (MODY3) as well as other genes that play roles in pancreatic β-cells. Among them, the Leu80fs in the homeobox gene NKX6.1 was an unreported mutation. Conclusion We found a case of RHUC1 carrying mutations in SLC22A12 gene accompanied with compensatory mutations associated with hyperuricemia, representing the first report showing coexistence of the mutations with opposed potential to regulate urate concentrations. On the other hand, independent gene mutations may be responsible for his impaired insulin secretion, which contains novel mutations in key genes in the pancreatic β-cell functions that deserve further scrutiny.
Collapse
Affiliation(s)
- Motohiro Sekiya
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takaaki Matsuda
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Yamamoto
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yasuhisa Furuta
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Mariko Ohyama
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuki Murayama
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Sugano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoshinori Ohsaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
23
|
Mehmood A, Zhao L, Ishaq M, Usman M, Zad OD, Hossain I, Raka RN, Naveed M, Zhao L, Wang C, Nadeem M. Uricostatic and uricosuric effect of grapefruit juice in potassium oxonate-induced hyperuricemic mice. J Food Biochem 2020; 44:e13213. [PMID: 32347580 DOI: 10.1111/jfbc.13213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/23/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022]
Abstract
The aim of this study was to examine the preventive action of grapefruit juice (GFJ) against potassium oxonate-induced hyperuricemic mice. The results showed that GFJ significantly (p < .05) inhibit the serum and hepatic xanthine oxidase enzyme, lower uric acid level, serum creatinine, uromodulin, and blood urea nitrogen levels to normal and lower inflammation related genes IL-1β, caspase-1, NLRP3, and ASC. Furthermore, histopathology analysis revealed that GFJ markedly improve the renal and intestinal morphology. The mRNA expression of urate transporter 1, glucose transporter 9 were downregulated, whereas ATP-binding cassette transporter (ABCG2) was upregulated in the GFJ-treated group. The results of immunohistochemistry revealed that the ABCG2 protein expression in the small and large intestine was significantly upregulated after the GFJ administration. These results suggested that GFJ can be used as a urate lowering agent and future mechanistic studies should be conducted. PRACTICAL APPLICATIONS: The results of current study indicated that utilization of GFJ as an anti-hyperuricemic agent for the treatment of hyperuricemia. This article will be very valuable for all those peoples which are directly or indirectly linked with this disease.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Ishaq
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Oumeddour Dounya Zad
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Imam Hossain
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Rifat Nowshin Raka
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Naveed
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Lei Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
24
|
Effects and Mechanisms of Dendrobium officinalis Six Nostrum for Treatment of Hyperuricemia with Hyperlipidemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2914019. [PMID: 32308702 PMCID: PMC7149358 DOI: 10.1155/2020/2914019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
Objectives. Hyperuricemia (HUA) is a disease caused by increased production of uric acid (UA) or reduced excretion of UA in the body. Results of an epidemiological survey show that 60% of patients with HUA have hyperlipidemia (HPA). Dendrobium officinalis (DOF) six nostrum (DOS) is based on the theory of traditional Chinese medicine for the transformation of the traditional Chinese nostrum Si Miao Wan. In this article, we aim to discuss the efficacy and mechanism of DOS in reducing UA and regulating lipid metabolism. The rat model of HUA with HPA was induced by potassium oxonate (PO) combined with high-fat sorghum feed. We monitored the serum UA and blood lipids. Liver xanthine oxidase (XOD), adenosine deaminase (ADA), lipoprotein lipase (LPL), and fatty acid-binding protein (FABP1) activities were measured by enzyme-linked immunosorbent assay (ELISA) after the last administration of DOS. We performed a histopathological examination of rat kidney and intestine. Immunohistochemistry (IHC) was used to detect the expression of renal inflammatory proteins NLRP3 / Caspase-1 and intestinal inflammatory proteins TLR4 / NLRP3. We used western blot for measurement of liver hypoxanthine-guanine phosphoribosyl transferase (HPRT1) protein expression and renal PDZ domain protein kidney 1 (PDZK1) protein expression. DOS administration significantly reduced serum UA, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) level, and improved liver steatosis in the model rat. At the same time, DOS treatment effectively inhibited liver XOD and ADA, increased the level of liver HPRT1, and reduced the production of UA. Additional studies had shown that DOS can restore normal UA excretion function in the intestine and kidney and regulated liver lipids metabolism. IHC and histopathological sections showed that DOS reduced the level of kidney, intestinal inflammatory body (NLRP3, Caspase-1, and TLR4), improved inflammation of the kidney and intestinal tract in rats. DOS is a promising drug that can effectively reduce serum UA and lipid level in the model rat. The mechanism of action may be related to inhibition of UA production, promotion of UA excretion, regulation of lipids metabolism, and anti-inflammatory response.
Collapse
|
25
|
Morimoto C, Tamura Y, Asakawa S, Kuribayashi-Okuma E, Nemoto Y, Li J, Murase T, Nakamura T, Hosoyamada M, Uchida S, Shibata S. ABCG2 expression and uric acid metabolism of the intestine in hyperuricemia model rat. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:744-759. [PMID: 31983315 DOI: 10.1080/15257770.2019.1694684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To elucidate roles of the intestine in uric acid (UA) metabolism, we examined ABCG2 expression, tissue UA content and xanthine oxidoreductase (XOR) activity in different intestinal segments. Male SD rats were assigned to control group or oxonic acid-induced hyperuricemia (HUA) group. In control rats, ABCG2 was present both in villi and crypts in each segment. Tissue UA content and XOR activity were relatively high in duodenum and jejunum. However, in HUA rats, tissue UA content was significantly elevated in the ileum, whereas it remained unaltered in other segments. Moreover, ABCG2 expression in the HUA group was upregulated both in the villi and crypts of the ileum. These data indicate that the ileum may play an important role in the extra-renal UA excretion.
Collapse
Affiliation(s)
- Chikayuki Morimoto
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshifuru Tamura
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shinichiro Asakawa
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Emiko Kuribayashi-Okuma
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshikazu Nemoto
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Jinping Li
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takayo Murase
- Pharmacological Study Group, Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Takashi Nakamura
- Pharmacological Study Group, Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho, Mie, Japan
| | - Makoto Hosoyamada
- Department of Human Physiology and Pathology, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.,Department of Health Care, Teikyo Heisei University, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Karimian Pour N, Piquette-Miller M. Dysregulation of renal transporters in a rodent model of viral Infection. Int Immunopharmacol 2020; 80:106135. [PMID: 31951958 DOI: 10.1016/j.intimp.2019.106135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023]
Abstract
Inflammation elicited by viral mimetic poly I:C has been shown to impose changes in the expression of drug transporters in the placenta and maternal liver in rats at term pregnancy. This was associated with altered drug disposition in the mother and fetus. Renal transporters play an important role in the elimination of several drugs taken by pregnant women. We examined the impact of poly I:C on the expression of renal transporters in pregnant rats at term. Pregnant Sprague-Dawley rats received single intraperitoneal dose of either poly I:C (5 mg/kg) or saline at gestation day 18 (n = 8/group). Animals were euthanized 24 h after the injection. The mRNA and protein expression of pro-inflammatory cytokines and transporters were measured by qRT-PCR and western blot. Poly I:C caused a fourfold increase in the mRNA of IL-6 in the kidney. As compared to saline controls, the mRNA expression of Mrp2, Bcrp, Octn1, Oat1, Oat2, Oat3, Urat1, Oatp4c1, and Pept2 was downregulated, whereas the Ent1 mRNA was increased. Protein expression of Bcrp, Urat1 and Pept2 were significantly decreased. While there was a trend towards reduced Mrp2, Oat2 and Oat3 protein expression, this did not reach significance. Poly I:C did not impact mRNA levels of Mdr1a, Mdr1b, Mrp4, Oct1, Oct2, Oct3, Octn2, Mate1, Ent2 or Pept1. Viral-induced inflammation mediates significant changes in the expression of several key drug transporters in the kidney of pregnant rats. Many clinically important drugs are substrates for these transporters. Therefore, inflammation-mediated alterations in transporter expression could affect their maternal and fetal disposition.
Collapse
Affiliation(s)
- Navaz Karimian Pour
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
27
|
Rozanski M, Studzian M, Pulaski L. Direct Measurement of Kinetic Parameters of ABCG2-Dependent Transport of Natural Flavonoids Using a Fluorogenic Substrate. J Pharmacol Exp Ther 2019; 371:309-319. [DOI: 10.1124/jpet.119.261347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022] Open
|
28
|
Lee YS, Sung YY, Yuk HJ, Son E, Lee S, Kim JS, Kim DS. Anti-hyperuricemic effect of Alpinia oxyphylla seed extract by enhancing uric acid excretion in the kidney. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152975. [PMID: 31181404 DOI: 10.1016/j.phymed.2019.152975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/15/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Alpinia oxyphylla is a well-known traditional medicine used in China and Korea to treat intestinal disorders, urosis, diuresis, and chronic glomerulonephritis. PURPOSE We investigated the anti-hyperuricemic effects of Alpinia oxyphylla seed extract (AE), and the underlying mechanisms of action through in vitro and in vivo studies. METHODS We evaluated levels of uric acid in the serum and urine, the expression of renal urate transport proteins, and levels of inflammatory cytokines in potassium oxonate (PO)-induced hyperuricemic rats. Xanthine oxidase activity was analyzed in vitro, while cellular uric acid uptake was assessed in oocytes expressing the human urate transporter 1 (hURAT1). Moreover, the main components of AE were analyzed using UPLC. RESULTS In PO-induced hyperuricemic rats, 200 and 400 mg/kg of AE significantly decreased levels of uric acid in serum, while 400 mg/kg of AE increased uric acid levels in urine. AE did not inhibit xanthine oxidase in vitro; however, 1, 10, and 100 μg/ml of AE significantly decreased uric acid uptake into oocytes expressing hURAT1. Furthermore, 400 mg/kg of AE increased levels of organic anion transporter (OAT) 1 protein, while 200 and 400 mg/kg of AE decreased the protein content of urate transporter, URAT1 and inflammatory cytokines in the kidneys. Nootkatone was identified as one the main chemical components in AE from UPLC analysis. CONCLUSIONS These findings suggest that AE exerts anti-hyperuricemic and uricosuric effects, which are related to the promotion of uric acid excretion via enhanced secretion and inhibition of uric acid reabsorption in the kidneys. Thus, AE may be a potential treatment for hyperuricemia and gout.
Collapse
Affiliation(s)
- Young-Sil Lee
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Dajeon 34054, Republic of Korea
| | - Yoon-Young Sung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Dajeon 34054, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Dajeon 34054, Republic of Korea
| | - Eunjung Son
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Dajeon 34054, Republic of Korea
| | - SeonJoo Lee
- R&D Research innovation Team, Kwangdong Pharm Co., Ltd. 271, Digital-ro, Guro-gu, Seoul 08387, Republic of Korea
| | - Jin Soo Kim
- R&D Research innovation Team, Kwangdong Pharm Co., Ltd. 271, Digital-ro, Guro-gu, Seoul 08387, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Dajeon 34054, Republic of Korea.
| |
Collapse
|
29
|
Development of precision medicine approaches based on inter-individual variability of BCRP/ ABCG2. Acta Pharm Sin B 2019; 9:659-674. [PMID: 31384528 PMCID: PMC6664102 DOI: 10.1016/j.apsb.2019.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Precision medicine is a rapidly-developing modality of medicine in human healthcare. Based on each patient׳s unique characteristics, more accurate dosages and drug selection can be made to achieve better therapeutic efficacy and less adverse reactions in precision medicine. A patient׳s individual parameters that affect drug transporter action can be used to develop a precision medicine guidance, due to the fact that therapeutic efficacy and adverse reactions of drugs can both be affected by expression and function of drug transporters on the cell membrane surface. The purpose of this review is to summarize unique characteristics of human breast cancer resistant protein (BCRP) and the genetic variability in the BCRP encoded gene ABCG2 in the development of precision medicine. Inter-individual variability of BCRP/ABCG2 can impact choices and outcomes of drug treatment for several diseases, including cancer chemotherapy. Several factors have been implicated in expression and function of BCRP, including genetic, epigenetic, physiologic, pathologic, and environmental factors. Understanding the roles of these factors in controlling expression and function of BCRP is critical for the development of precision medicine based on BCRP-mediated drug transport.
Collapse
Key Words
- 3′-UTR, 3′-untranslated region
- 5-aza-C, 5-aza-2′-deoxycytidine
- ABCG2, ATP-binding cassette subfamily G member 2
- ALL, acute lymphocytic leukemia
- AML, acute myeloid leukemia
- AUC, area under curve
- BCRP
- BCRP, breast cancer resistant protein
- Epigenetics
- FTC, fumitremorgin C
- Gene polymorphisms
- H3K4me3, histone H3 lysine 4 trimethylation
- H3K9me3, histone H3 lysine 9 trimethylation
- H3S10P, histone H3 serine 10 phosphorylation
- HDAC, histone deacetylase
- HIF-1α, hypoxia inducible factor 1 subunit alpha
- HIV-1, human immunodeficiency virus type-1
- HMG-CoA, β-hydroxy-β-methyl-glutaryl-coenzyme A
- MDR, multidrug resistance
- MDR1, multidrug resistance 1
- NBD, nucleotide binding domain
- P-gp, P-glycoprotein
- Physiologic factors
- Precision medicine
- RISC, RNA-induced silencing complex
- SNP, Single nucleotide polymorphism
- TKI, tyrosine kinase inhibitor
- Tat, transactivator protein
- miRNA, microRNA
- siRNA, small RNA interference
Collapse
|
30
|
Le Vée M, Bacle A, Jouan E, Lecureur V, Potin S, Fardel O. Induction of multidrug resistance-associated protein 3 expression by diesel exhaust particle extract in human bronchial epithelial BEAS-2B cells. Toxicol In Vitro 2019; 58:60-68. [PMID: 30898553 DOI: 10.1016/j.tiv.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Diesel exhaust particles (DEPs) are common environmental air pollutants known to impair expression and activity of drug detoxifying proteins, including hepatic ATP-binding cassette (ABC) drug transporters. The present study was designed to determine whether organic DEP extract (DEPe) may also target ABC drug transporters in bronchial cells. DEPe (10 μg/mL) was demonstrated to induce mRNA and protein expression of the multidrug resistance-associated protein (MRP) 3 in cultured bronchial epithelial BEAS-2B cells, whereas mRNA levels of other MRPs, multidrug resistance gene 1 or breast cancer resistance protein were unchanged, reduced or not detected. DEPe also increased MRP3 mRNA expression in normal human bronchial epithelial cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway by AhR antagonist or AhR silencing, as well as the silencing of nuclear-factor-E2-related factor 2 (Nrf2) repressed DEPe-mediated MRP3 induction. This underlines the implication of the AhR and Nrf2 signaling cascades in DEPe-mediated MRP3 regulation. DEPe was additionally demonstrated to directly inhibit MRP activity in BEAS-2B cells, in a concentration-dependent manner. Taken together, these data indicate that DEPs may impair expression and activity of MRPs, notably MRP3, in human bronchial cells, which may have consequences in terms of lung barrier and toxicity for humans exposed to diesel pollution.
Collapse
Affiliation(s)
- Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Pharmacie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Valérie Lecureur
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Pharmacie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
31
|
Zhao T, Lv X, Cao L, Guo M, Zheng S, Xue Y, Zou H, Wan W, Zhu X. Renal excretion is a cause of decreased serum uric acid during acute gout. Int J Rheum Dis 2019; 21:1723-1727. [PMID: 30345643 DOI: 10.1111/1756-185x.13348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIMS To evaluate the fluctuation of serum uric acid (SUA) during acute gout (AG) and explore its potential mechanisms. METHODS Data such as SUA, urinary uric acid and 24-hour uric acid urinary excretion were collected from 126 patients diagnosed with gout and were analyzed. RESULTS Serum uric acid was negatively correlated with age in gout patients, and significantly elevated in patients aged ≤50 years. Twenty-four-hour uric acid urinary excretion was affected by SUA, creatinine clearance, age, body mass index and urine volume. In contrast, clearance of uric acid and fractional excretion of uric acid (FEur) were more stable. SUA was significantly downregulated during acute attacks. Of the AG patients, 34.92% had detected SUA <420 μmol/L. Clearance of uric acid and FEur were notably increased in patients during acute attacks, especially in patients with SUA <420 μmol/L. CONCLUSION This study demonstrated that the level of SUA was remarkably upregulated in young gout patients. Therefore, early onset of gout should be considered of great importance. SUA was downregulated during acute gouty arthritis, which might be associated with increased urinary excretion of uric acid.
Collapse
Affiliation(s)
- Tianyi Zhao
- Division of Rheumatology, Huashan Hospital, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiaoxi Lv
- Division of Rheumatology, Huashan Hospital, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Ling Cao
- Division of Rheumatology, Huashan Hospital, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Meizhu Guo
- Division of Rheumatology, Baoshan Integrated Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Shucong Zheng
- Division of Rheumatology, Huashan Hospital, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Hejian Zou
- Division of Rheumatology, Huashan Hospital, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiaoxia Zhu
- Division of Rheumatology, Huashan Hospital, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Shen H, Scialis RJ, Lehman-McKeeman L. Xenobiotic Transporters in the Kidney: Function and Role in Toxicity. Semin Nephrol 2019; 39:159-175. [DOI: 10.1016/j.semnephrol.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
34
|
Wang S, Fang Y, Yu X, Guo L, Zhang X, Xia D. The flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. ameliorates renal oxidative stress and inflammation in uric acid nephropathy rats through promoting uric acid excretion. Biomed Pharmacother 2018; 111:162-168. [PMID: 30579255 DOI: 10.1016/j.biopha.2018.12.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022] Open
Abstract
Uric acid metabolic disorder is considered to be the main pathogenesis of uric acid nephropathy (UN). Smilax glabra Roxb. is a traditional Chinese herb which has been used in the treatment of gout, but the mechanism was unclear. In this study, we investigated the protective effects of the flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. (SGF) on uric acid nephropathy rats and its underlying mechanisms of promoting uric acid excretion. Sprague Dawley (SD) rats were induced by high purine diet (yeast pellets + adenine) for 5 weeks. Rats were orally treated with SGF or allopurinol daily. The biochemical parameters and enzymes in different treated rats were determined by commercial kits. Kidney pathology was visualized using optical microscopy and electron microscopy. Renal inflammatory factors were detected by ELISA. Renal fibrosis factors and uric acid transporters were analyzed by real time RT-PCR and western blot. The results showed that SGF significantly improved kidney function. Histopathologic examination revealed that urate-induced renal damage was markedly reversed by SGF. Meanwhile, SGF treatment was also found to significantly inhibit renal oxidative stress. SGF treatment obviously suppressed the inflammatory factors of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), cyclooxygenase-2 (COX-2) and the profibrotic factors of basic fibroblast growth factor (bFGF), transforming growth factor-β1 (TGF-β1) expression in UN rats. Moreover, SGF either significantly inhibited uric acid production or promoted uric acid excretion in UN rats. The mechanism of SGF promoting uric acid excretion was related to its increase of ATP-binding cassette transporter G2 (ABCG2), organic anion transporter 1 (OAT1), organic anion transporters 2 (OCT2) and organic cation/carnitine transporters 2 (OCTN2) expression. In conclusion, SGF could ameliorate renal oxidative stress and inflammation in UN rats through promoting uric acid excretion.
Collapse
Affiliation(s)
- Siwei Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Department of Central Laboratory, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou, 324000, China; Department of Pharmacy, Affiliated Quzhou Central Hospital, Zhejiang Chinese Medical University, Quzhou, 324000, China
| | - Yuejuan Fang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, 310053, China
| | - Lu Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaoxi Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Daozong Xia
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
35
|
Zhao H, Huang Y, Shi J, Dai Y, Wu L, Zhou H. ABCC10 Plays a Significant Role in the Transport of Gefitinib and Contributes to Acquired Resistance to Gefitinib in NSCLC. Front Pharmacol 2018; 9:1312. [PMID: 30515095 PMCID: PMC6256088 DOI: 10.3389/fphar.2018.01312] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/29/2018] [Indexed: 11/25/2022] Open
Abstract
Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (EGFR-TKI), is used clinically as first-line therapy in patients with advanced non-small cell lung cancer (NSCLC) with EGFR activating mutations, but the inevitable development of acquired resistance limits its efficacy. In up to 30–40% of NSCLC cases, the mechanism underlying acquired resistance remains unknown. ATP-binding cassette (ABC) transporters are a family of membrane proteins that can significantly influence the bioavailability of numerous drugs, and have confirmed to play an essential role in multidrug resistance (MDR) in cancer chemotherapy. However, their role in acquired resistance to gefitnib in NSCLC has not been well studied. Here, through RNA sequencing (RNA-Seq) technology we assessed the differentially expressed ABC transporters in gefitinib-sensitive (PC9 and H292) and gefitinib-resistant (PC9/GR and H292/GR) NSCLC cells, with ABCC10 identified as a transporter of interest. Both ABCC10 mRNA and protein were significantly increased in acquired gefitinib-resistant NSCLC cells, independent of EGFR mutation status. In vitro transport assay showed that ABCC10 could actively efflux gefitinib, with an efflux ratio (ER) of 7.8. Further results from in vitro cell line models and in vivo xenograft models showed that overexpression of ABCC10 led to a reduction in gefitinib sensitivity through decreasing the intracellular gefitinib accumulation. Our data suggest that ABCC10 has an important role in acquired resistance to gefitinib in NSCLC, which can serve as a novel predictive marker and a potential therapeutic target in gefitinib treatment.
Collapse
Affiliation(s)
- Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Yutang Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jingjing Shi
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yi Dai
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lanxiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Honghao Zhou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, China
| |
Collapse
|
36
|
Jing J, Ekici AB, Sitter T, Eckardt KU, Schaeffner E, Li Y, Kronenberg F, Köttgen A, Schultheiss UT. Genetics of serum urate concentrations and gout in a high-risk population, patients with chronic kidney disease. Sci Rep 2018; 8:13184. [PMID: 30181573 PMCID: PMC6123425 DOI: 10.1038/s41598-018-31282-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 08/14/2018] [Indexed: 12/22/2022] Open
Abstract
We evaluated genetics of hyperuricemia and gout, their interaction with kidney function and medication intake in chronic kidney disease (CKD) patients. Genome-wide association studies (GWAS) of urate and gout were performed in 4941 CKD patients in the German Chronic Kidney Disease (GCKD) study. Effect estimates of 26 known urate-associated population-based single nucleotide polymorphisms (SNPs) were examined. Interactions of urate-associated variants with urate-altering medications and clinical characteristics of gout were evaluated. Genome-wide significant associations with serum urate and gout were identified for known loci at SLC2A9 and ABCG2, but not for novel loci. Effects of the 26 known SNPs were of similar magnitude in CKD patients compared to population-based individuals, except for SNPs at ABCG2 that showed greater effects in CKD. Gene-medication interactions were not significant when accounting for multiple testing. Associations with gout in specific joints were significant for SLC2A9 rs12498742 in wrists and midfoot joints. Known genetic variants in SLC2A9 and ABCG2 were associated with urate and gout in a CKD cohort, with effect sizes for ABCG2 significantly greater in CKD compared to the general population. CKD patients are at high risk of gout due to reduced kidney function, diuretics intake and genetic predisposition, making treatment to target challenging.
Collapse
Affiliation(s)
- Jiaojiao Jing
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Sitter
- Department of Nephrology and Hypertension, Ludwig-Maximilians University, Munich, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité, University-Medicine, Berlin, Germany
| | - Elke Schaeffner
- Institute of Public Health, Charité, University-Medicine, Berlin, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Renal Division, Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
37
|
Yasujima T, Murata C, Mimura Y, Murata T, Ohkubo M, Ohta K, Inoue K, Yuasa H. Urate transport function of rat sodium-dependent nucleobase transporter 1. Physiol Rep 2018; 6:e13714. [PMID: 29845779 PMCID: PMC5974720 DOI: 10.14814/phy2.13714] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/19/2018] [Accepted: 04/26/2018] [Indexed: 11/29/2022] Open
Abstract
Sodium-dependent nucleobase transporter 1 (SNBT1) is a nucleobase-specific transporter identified in our recent study. In an attempt to search for its potential substrates other than nucleobases in this study, we could successfully find urate, a metabolic derivative of purine nucleobases, as a novel substrate, as indicated by its specific Na+ -dependent and saturable transport, with a Michaelis constant of 433 μmol/L, by rat SNBT1 (rSNBT1) stably expressed in Madin-Darby canine kidney II cells. However, urate uptake was observed only barely in the everted tissue sacs of the rat small intestine, in which rSNBT1 operates for nucleobase uptake. These findings suggested that urate undergoes a futile cycle, in which urate transported into epithelial cells is immediately effluxed back by urate efflux transporters, in the small intestine. In subsequent attempts to examine that possibility, such a futile urate cycle was demonstrated in the human embryonic kidney 293 cell line as a model cell system, where urate uptake induced by transiently introduced rSNBT1 was extensively reduced by the co-introduction of rat breast cancer resistance protein (rBCRP), a urate efflux transporter present in the small intestine. However, urate uptake was not raised in the presence of Ko143, a BCRP inhibitor, in the everted intestinal tissue sacs, suggesting that some other transporter might also be involved in urate efflux. The newly found urate transport function of SNBT1, together with the suggested futile urate cycle in the small intestine, should be of interest for its evolutional and biological implications, although SNBT1 is genetically deficient in humans.
Collapse
Affiliation(s)
- Tomoya Yasujima
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Chihiro Murata
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Yoshihisa Mimura
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Tomoaki Murata
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Masahiko Ohkubo
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| | - Kinya Ohta
- College of PharmacyKinjo Gakuin UniversityNagoyaJapan
| | - Katsuhisa Inoue
- Department of BiopharmaceuticsSchool of PharmacyTokyo University of Pharmacy and Life SciencesTokyoJapan
| | - Hiroaki Yuasa
- Department of BiopharmaceuticsGraduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
| |
Collapse
|
38
|
Ottilie S, Goldgof GM, Cheung AL, Walker JL, Vigil E, Allen KE, Antonova-Koch Y, Slayman CW, Suzuki Y, Durrant JD. Two inhibitors of yeast plasma membrane ATPase 1 (ScPma1p): toward the development of novel antifungal therapies. J Cheminform 2018; 10:6. [PMID: 29464421 PMCID: PMC5820243 DOI: 10.1186/s13321-018-0261-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/10/2018] [Indexed: 01/07/2023] Open
Abstract
Given that many antifungal medications are susceptible to evolved resistance, there is a need for novel drugs with unique mechanisms of action. Inhibiting the essential proton pump Pma1p, a P-type ATPase, is a potentially effective therapeutic approach that is orthogonal to existing treatments. We identify NSC11668 and hitachimycin as structurally distinct antifungals that inhibit yeast ScPma1p. These compounds provide new opportunities for drug discovery aimed at this important target.![]()
Collapse
Affiliation(s)
- Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gregory M Goldgof
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.,Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Andrea L Cheung
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jennifer L Walker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Edgar Vigil
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kenneth E Allen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yevgeniya Antonova-Koch
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Carolyn W Slayman
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
39
|
Bircsak KM, Moscovitz JE, Wen X, Archer F, Yuen PYS, Mohammed M, Memon N, Weinberger BI, Saba LM, Vetrano AM, Aleksunes LM. Interindividual Regulation of the Breast Cancer Resistance Protein/ ABCG2 Transporter in Term Human Placentas. Drug Metab Dispos 2018; 46:619-627. [PMID: 29386232 DOI: 10.1124/dmd.117.079228] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/25/2018] [Indexed: 01/16/2023] Open
Abstract
The breast cancer resistance protein (BCRP/ABCG2) is a maternally-facing efflux transporter that regulates the placental disposition of chemicals. Transcription factors and gene variants are important regulatory factors that influence transporter expression. In this study, we sought to identify the genetic and transcriptional mechanisms underlying the interindividual expression of BCRP mRNA and protein across 137 term placentas from uncomplicated pregnancies. Placental expression of BCRP and regulatory transcription factor mRNAs was measured using multiplex-branched DNA analysis. BCRP expression and ABCG2 genotypes were determined using Western blot and Fluidigm Biomark genetic analysis, respectively. Placentas were obtained from a racially and ethnically diverse population, including Caucasian (33%), African American (14%), Asian (14%), Hispanic (15%), and mixed (16%) backgrounds, as well as unknown origins (7%). Between placentas, BCRP mRNA and protein varied up to 47-fold and 14-fold, respectively. In particular, BCRP mRNA correlated significantly with known transcription factor mRNAs, including nuclear factor erythroid 2-related factor 2 and aryl hydrocarbon receptor. Somewhat surprisingly, single-nucleotide polymorphisms (SNPs) in the ABCG2 noncoding regions were not associated with variation in placental BCRP mRNA or protein. Instead, the coding region polymorphism (C421A/Q141K) corresponded with 40%-50% lower BCRP protein in 421C/A and 421A/A placentas compared with wild types (421C/C). Although BCRP protein and mRNA expression weakly correlated (r = 0.25, P = 0.040), this relationship was absent in individuals expressing the C421A variant allele. Study results contribute to our understanding of the interindividual regulation of BCRP expression in term placentas and may help to identify infants at risk for increased fetal exposure to chemicals due to low expression of this efflux protein.
Collapse
Affiliation(s)
- Kristin M Bircsak
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Jamie E Moscovitz
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Faith Archer
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Poi Yu Sofia Yuen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Moiz Mohammed
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Naureen Memon
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Barry I Weinberger
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Laura M Saba
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Anna M Vetrano
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy (K.M.B., J.E.M., X.W., L.M.A.), Environmental and Occupational Health Sciences Institute (L.M.A.), and Lipid Center (L.M.A.), Rutgers, The State University of New Jersey, Piscataway, New Jersey; Department of Pediatrics, Rutgers University Robert Wood Johnson Medical School, New Brunswick, New Jersey (F.A., P.Y.S.Y., M.M., N.M., A.M.V.); Hofstra Northwell School of Medicine, Cohen Children's Medical Center of New York, New Hyde Park, New York (B.I.W.); and Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado (L.M.S.)
| |
Collapse
|
40
|
Karwur FF, Pujiastuti DR. Review Article: URIC ACID HOMEOSTASIS AND DISTURBANCES. FOLIA MEDICA INDONESIANA 2017. [DOI: 10.20473/fmi.v53i4.7164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This review examined the homeostasis of uric acid in human body and analyzed recent studies of the affecting major variables. Normal uric acid concentration in male is 3.5-7.2 mg/dL and in female is 2.6-6 mg/dL. Daily turnover of normal uric acid ranges from 498-1392 mg/day, miscible pool is 767-1650 mg, reabsorption is 8064 mg/day, renal excretion is 262-620 mg/day and intestine 186-313 mg/day. The dynamics of uric acid is influenced by factors of food, drink, age, history of disease, and genetic. High purine dietary consumption increases blood uric acid by 1-2 mg/dL, 213-290 g/day fructose drinks increases 0.52-1.7 mg/dL, 1.5 g/kgBW sucrose increases 0.61 mg/dL, and 10-20 ml/kgBW beer increases 0.50-0.92 mg/dL. The ABCG2 gene plays a role in bringing uric acid out of the body by 114.31-162.73 mg/dL, SLC2A9 of 5.43-20.17 mg/dL, and SLC22A12 of 5.77-6.71 mg/dL. The data described the homeostasis of uric acid and the magnitude of the impact of environmental (consumption of food, beverages, and lifestyle) and genetic factors. Understanding uric acid homeostasis and its disturbances is important in managing diseases as a consequence of hyperuricemia and hypouryscemia
Collapse
|
41
|
Brackman DJ, Giacomini KM. Reverse Translational Research of ABCG2 (BCRP) in Human Disease and Drug Response. Clin Pharmacol Ther 2017; 103:233-242. [PMID: 29023674 DOI: 10.1002/cpt.903] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 12/12/2022]
Abstract
Reverse translational research takes a bedside-to-bench approach, using sophisticated basic research to explain the biological mechanisms behind observed clinical data. For transporters, which play a role in human disease and drug response, this approach offers a distinct advantage over the typical translational research, which often falters due to inadequate in vitro and preclinical animal models. Research on ABCG2, which encodes the Breast Cancer Resistance Protein, has benefited immensely from a reverse translational approach due to its broad implications for disease susceptibility and both therapeutic and adverse drug response. In this review, we describe the success of reverse translational research for ABCG2 and opportunities for further studies.
Collapse
Affiliation(s)
- Deanna J Brackman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Institute of Human Genetics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
42
|
Abstract
Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers.
Collapse
Affiliation(s)
- Anton Ivanyuk
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland.
| | - Françoise Livio
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Jérôme Biollaz
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| | - Thierry Buclin
- Division of Clinical Pharmacology, Lausanne University Hospital (CHUV), Bugnon 17, 1011, Lausanne, Switzerland
| |
Collapse
|
43
|
Nishihashi K, Kawashima K, Nomura T, Urakami-Takebayashi Y, Miyazaki M, Takano M, Nagai J. Cobalt Chloride Induces Expression and Function of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Renal Proximal Tubular Epithelial Cell Line HK-2. Biol Pharm Bull 2017; 40:82-87. [PMID: 28049953 DOI: 10.1248/bpb.b16-00684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human breast cancer resistance protein (BCRP/ABCG2), a member of the ATP-binding cassette transporter family, is a drug transporter restricting absorption and enhancing excretion of many compounds including anticancer drugs. The cis-regulatory elements in the BCRP promoter include a hypoxia response element, i.e., the DNA binding site for hypoxia-inducible factor-1 (HIF-1). In this study, we investigated the effect of cobalt chloride, a chemical inducer of HIF-1α, on the expression and function of BCRP in human renal proximal tubular cell line HK-2. Cobalt chloride treatment significantly increased the mRNA expression of not only glucose transporter 1 (GLUT1), a typical HIF-1 target gene mRNA, but also ABCG2 mRNA in HK-2 cells. The BCRP inhibitor Ko143-sensitive accumulation of BCRP substrates such as Hoechst33342 and mitoxantrone was significantly enhanced by cobalt chloride treatment. In addition, treatment with cobalt chloride significantly increased the Ko143-sensitive accumulation of fluorescein isothiocyanate-labeled methotrexate in HK-2 cells. Furthermore, cobalt chloride treatment attenuated the cytotoxicity induced by mitoxantrone and methotrexate, which might be, at least in part, due to the increase in BCRP-mediated transport activity via HIF-1 activation. These findings indicate that HIF-1 activation protects renal proximal tubular cells against BCRP substrate-induced cytotoxicity by enhancing the expression and function of BCRP in renal proximal tubular cells.
Collapse
Affiliation(s)
- Katsuki Nishihashi
- Laboratory of Pharmaceutics, Osaka University of Pharmaceutical Sciences
| | | | | | | | | | | | | |
Collapse
|
44
|
Tarapcsák S, Szalóki G, Telbisz Á, Gyöngy Z, Matúz K, Csősz É, Nagy P, Holb IJ, Rühl R, Nagy L, Szabó G, Goda K. Interactions of retinoids with the ABC transporters P-glycoprotein and Breast Cancer Resistance Protein. Sci Rep 2017; 7:41376. [PMID: 28145501 PMCID: PMC5286421 DOI: 10.1038/srep41376] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/20/2016] [Indexed: 01/16/2023] Open
Abstract
Retinoids – derivatives of vitamin A – are important cell permeant signaling molecules that regulate gene expression through activation of nuclear receptors. P-glycoprotein (Pgp) and ABCG2 are plasma membrane efflux transporters affecting the tissue distribution of numerous structurally unrelated lipophilic compounds. In the present work we aimed to study the interaction of the above ABC transporters with retinoid derivatives. We have found that 13-cis-retinoic acid, retinol and retinyl-acetate inhibited the Pgp and ABCG2 mediated substrate transport as well as the substrate stimulated ATPase activity of these transporters. Interestingly, 9-cis-retinoic acid and ATRA (all-trans retinoic acid), both are stereoisomers of 13-cis-retinoic acid, did not have any effect on the transporters’ activity. Our fluorescence anisotropy measurements revealed that 13-cis-retinoic acid, retinol and retinyl-acetate selectively increase the viscosity and packing density of the membrane. Thus, the mixed-type inhibition of both transporters by retinol and ABCG2 by 13-cis-retinoic acid may be the collective result of direct interactions of these retinoids with the substrate binding site(s) and of indirect interactions mediated by their membrane rigidifying effects.
Collapse
Affiliation(s)
- Szabolcs Tarapcsák
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Gábor Szalóki
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Ágnes Telbisz
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, H-1117 Magyar tudósok körútja 2, P.O.B. 286, Hungary
| | - Zsuzsanna Gyöngy
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Péter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Imre J Holb
- Institute of Horticulture, University of Debrecen, Debrecen, H-4015 Böszörményi út 138, P.O.B. 400, Hungary.,Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, H-1525 Hermann Ottó út 15, P.O.B. 525, Hungary
| | - Ralph Rühl
- MTA-DE, Public Health Research Group of the Hungarian Academy of Sciences, Faculty of Public Health, University of Debrecen, Debrecen, H-4028 Kassai út 26, P.O.B. 400, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Gábor Szabó
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| | - Katalin Goda
- Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, H-4002 Egyetem tér 1, P.O.B. 400, Hungary
| |
Collapse
|
45
|
Xu X, Li C, Zhou P, Jiang T. Uric acid transporters hiding in the intestine. PHARMACEUTICAL BIOLOGY 2016; 54:3151-3155. [PMID: 27563755 DOI: 10.1080/13880209.2016.1195847] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 04/19/2016] [Accepted: 05/24/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Hyperuricaemia is known as an abnormally increased uric acid level in the blood. Although it was observed many years ago, since uric acid excretion via the intestine pathway accounted for approximately one-third of total elimination of uric acid, the molecular mechanism of 'extra-renal excretion' was poorly understood until the finding of uric acid transporters. OBJECTIVE The objective of this study was to gather all information related to uric acid transporters in the intestine and present this information as a comprehensive and systematic review article. METHODS A literature search was performed from various databases (e.g., Medline, Science Direct, Springer Link, etc.). The key terms included uric acid, transporter and intestine. The period for the search is from the 1950s to the present. The bibliographies of papers relating to the review subject were also searched for further relevant references. RESULTS The uric acid transporters identified in the intestine are discussed in this review. The solute carrier (SLC) transporters include GLUT9, MCT9, NPT4, NPT homolog (NPT5) and OAT10. The ATP binding cassette (ABC) transporters include ABCG2 (BCRP), MRP2 and MRP4. Bacterial transporter YgfU is a low-affinity and high-capacity transporter for uric acid. CONCLUSION The present review may be helpful for further our understanding of hyperuricaemia and be of value in designing future studies on novel therapeutic pathways.
Collapse
Affiliation(s)
- Xianxiang Xu
- a School of Biomedical Sciences, Huaqiao University , Quanzhou , China
- b Institute of Chinese Meteria Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Canghai Li
- b Institute of Chinese Meteria Medica, China Academy of Chinese Medical Sciences , Beijing , China
| | - Pan Zhou
- a School of Biomedical Sciences, Huaqiao University , Quanzhou , China
| | - Tingliang Jiang
- b Institute of Chinese Meteria Medica, China Academy of Chinese Medical Sciences , Beijing , China
| |
Collapse
|
46
|
Mechanism of high affinity inhibition of the human urate transporter URAT1. Sci Rep 2016; 6:34995. [PMID: 27713539 PMCID: PMC5054527 DOI: 10.1038/srep34995] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/22/2016] [Indexed: 01/05/2023] Open
Abstract
Gout is caused by elevated serum urate levels, which can be treated using inhibitors of the uric acid transporter, URAT1. We exploited affinity differences between the human and rat transporters to map inhibitor binding sites in URAT1. Human-rat transporter chimeras revealed that human URAT1 serine-35, phenylalanine-365 and isoleucine-481 are necessary and sufficient to provide up to a 100-fold increase in affinity for inhibitors. Moreover, serine-35 and phenylalanine-365 are important for high-affinity interaction with the substrate urate. A novel URAT1 binding assay provides support for direct interaction with these amino acids; thus, current clinically important URAT1 inhibitors likely bind the same site in URAT1. A structural model suggests that these three URAT1 residues are in close proximity potentially projecting within the channel. Our results indicate that amino acids from several transmembrane segments functionally cooperate to form a high-affinity URAT1 inhibitor binding site that, when occupied, prevents substrate interactions.
Collapse
|
47
|
Wang M, Zhao J, Zhang N, Chen J. Astilbin improves potassium oxonate-induced hyperuricemia and kidney injury through regulating oxidative stress and inflammation response in mice. Biomed Pharmacother 2016; 83:975-988. [PMID: 27522260 DOI: 10.1016/j.biopha.2016.07.025] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 02/06/2023] Open
Abstract
Astilbin is a flavonoid compound derived from the rhizome of Smilax china L. The effects and possible molecular mechanisms of astilbin on potassium oxonate-induced hyperuricemia mice were investigated in this study. Different dosages of astilbin (5, 10, and 20mg/kg) were administered to induce hyperuricemic mice. The results demonstrated that the serum uric acid (Sur) level was significantly decreased by increasing the urinary uric acid (Uur) level and fractional excretion of urate (FEUA) with astilbin, related with suppressing role in meditation of Glucose transporter 9 (GLUT9), Human urate transporter 1 (URAT1) expression and up-regulation of ABCG2, Organic anion transporter 1/3 (OAT1/3) and Organic cation transporter 1 (OCT1). In addition, kidney function parameters, including serum creatinine (Scr) and blood urea nitrogen (BUN) were restored in astilbin-treated hyperuricemic rats. Further investigation indicated that astilbin prevented the renal damage against the expression of Thioredoxin-interacting protein (TXNIP) and its related inflammation signal pathway, including NLR pyrin domain-containing 3/Nuclear factor κB (NLRP3/NF-κB), which is associated with the up-regulation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), and also presented a renal protective role by suppression oxidative stress. Moreover, astilbin inhibited activation of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) cascade and over-expression of suppressor of cytokine signaling 3 (SOCS3) in the kidneys of potassium oxonate-induced mice. These findings provide potent evidence and therapeutic strategy for astilbin as a safe and promising compound in the development of a disease-modifying drug due to its function against hyperuricaemia and renal injury induced by potassium oxonate.
Collapse
Affiliation(s)
- Ming Wang
- Department of Urology, The second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, PR China
| | - Jing Zhao
- TCM Pharmacy, Zhaohui Community Health Service Center, Hangzhou 310000, Zhejiang Province, PR China
| | - Nan Zhang
- Department of Urology, The second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, PR China
| | - Jianghua Chen
- Kidney Disease Center, First Affiliated Hospital, College of Medicine,Zhejiang University, Hangzhou 310000, Zhejiang Province, PR China.
| |
Collapse
|
48
|
Wang J, Zhu XX, Liu L, Xue Y, Yang X, Zou HJ. SIRT1 prevents hyperuricemia via the PGC-1α/PPARγ-ABCG2 pathway. Endocrine 2016; 53:443-52. [PMID: 27022940 DOI: 10.1007/s12020-016-0896-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/08/2016] [Indexed: 11/30/2022]
Abstract
Silent information regulator T1 (SIRT1) plays several key roles in the regulation of lipid and glucose homoeostasis. In this study, we investigated the potential role of SIRT1 in hyperuricemia and explored possible mechanisms. Significant hyperuricemia was detected in C57BL/6 mice treated with oxonate and yeast polysaccharide. Resveratrol (RSV), a specific SIRT1 activator, was administered to the mice. SIRT1 suppressed the increased serum uric acid level but up-regulated the expression of urate transporter ATP-binding cassette subfamily G member 2 (ABCG2) in the ileum of hyperuricemic mice. In a human colon carcinoma cell line, SIRT1 promoted ABCG2 production through the deacetylation of peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α), which then activated the effectors of PPARγ. Interestingly, the SIRT1-induced up-regulation of ABCG2 was significantly inhibited when PGC-1α or PPARγ was blocked by siRNA transfection. Our data demonstrated that SIRT1 and its activator, RSV, have clear anti-hyperuricemia functions in this mouse model. One possible mechanism is the activation of ABCG2 in the ileum through the PGC-1α/PPARγ pathway.
Collapse
Affiliation(s)
- Juan Wang
- Division of Rheumatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai, 200040, China
| | - Xiao-Xia Zhu
- Division of Rheumatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Rheumatology, Immunology and Allergy, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai, 200040, China.
| | - Lei Liu
- Division of Rheumatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai, 200040, China
| | - Yu Xue
- Division of Rheumatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai, 200040, China
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai, 200040, China
| | - He-Jian Zou
- Division of Rheumatology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Rheumatology, Immunology and Allergy, Huashan Hospital, Shanghai Medical College, Fudan University, No. 12, Middle Wulumuqi Road, Shanghai, 200040, China.
| |
Collapse
|
49
|
Liu X, Li S, Peng W, Feng S, Feng J, Mahboob S, Al-Ghanim KA, Xu P. Genome-Wide Identification, Characterization and Phylogenetic Analysis of ATP-Binding Cassette (ABC) Transporter Genes in Common Carp (Cyprinus carpio). PLoS One 2016; 11:e0153246. [PMID: 27058731 PMCID: PMC4825979 DOI: 10.1371/journal.pone.0153246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/27/2016] [Indexed: 12/16/2022] Open
Abstract
The ATP-binding cassette (ABC) gene family is considered to be one of the largest gene families in all forms of prokaryotic and eukaryotic life. Although the ABC transporter genes have been annotated in some species, detailed information about the ABC superfamily and the evolutionary characterization of ABC genes in common carp (Cyprinus carpio) are still unclear. In this research, we identified 61 ABC transporter genes in the common carp genome. Phylogenetic analysis revealed that they could be classified into seven subfamilies, namely 11 ABCAs, six ABCBs, 19 ABCCs, eight ABCDs, two ABCEs, four ABCFs, and 11 ABCGs. Comparative analysis of the ABC genes in seven vertebrate species including common carp, showed that at least 10 common carp genes were retained from the third round of whole genome duplication, while 12 duplicated ABC genes may have come from the fourth round of whole genome duplication. Gene losses were also observed for 14 ABC genes. Expression profiles of the 61 ABC genes in six common carp tissues (brain, heart, spleen, kidney, intestine, and gill) revealed extensive functional divergence among the ABC genes. Different copies of some genes had tissue-specific expression patterns, which may indicate some gene function specialization. This study provides essential genomic resources for future studies in common carp.
Collapse
Affiliation(s)
- Xiang Liu
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
- Department of Aquaculture, College of Animal Sciences, Shanxi Agriculture University, Taigu, Shanxi, China
| | - Shangqi Li
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Wenzhu Peng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Shuaisheng Feng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Jianxin Feng
- Henan Academy of Fishery Sciences, Zhengzhou, China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Zoology, GC University, Faisalabad, Pakistan
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Peng Xu
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
- College of Ocean & Earth Science, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
50
|
Bhatnagar V, Richard EL, Wu W, Nievergelt CM, Lipkowitz MS, Jeff J, Maihofer AX, Nigam SK. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin Kidney J 2016; 9:444-53. [PMID: 27274832 PMCID: PMC4886906 DOI: 10.1093/ckj/sfw010] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/26/2016] [Indexed: 01/13/2023] Open
Abstract
Background In the setting of chronic kidney disease (CKD), altered extra-renal urate handling may be necessary to regulate plasma uric acid. The Remote Sensing and Signaling Hypothesis (Nigam S. What do drug transporters really do? Nat Rev Drug Discov 2015; 14: 29–44) suggests that multispecific solute carrier (SLC) and ATP-binding cassette (ABC) drug transporters in different tissues are part of an inter-organ communication system that maintains levels of urate and other metabolites after organ injury. Methods Data from the Chronic Renal Insufficiency Cohort (CRIC; n = 3598) were used to study associations between serum uric acid and single nucleotide polymorphisms (SNPs) on the following uric acid transporters: ABCG2 (BRCP), SLC22A6 (OAT1), SLC22A8 (OAT3), SLC22A10 (OAT5), SLC22A11 (OAT4), SLC22A12 (URAT1), SLC22A13 (OAT10), SLC17A1-A3 (NPTs), SLC2A9 (GLUT9), ABCC2 (MRP2) and ABCC4 (MRP4). Regression models, controlling for principal components age, gender and renal function, were run separately for those of European (EA) and African ancestry (AA), and P-values corrected for multiple comparisons. A twin cohort with participants of EA and normal renal function was used for comparison. Results Among those of EA in CRIC, statistically significant signals were observed for SNPs in ABCG2 (rs4148157; beta-coefficient = 0.68; P = 4.78E-13) and SNPs in SLC2A9 (rs13125646; beta-coefficient = −0.30; P = 1.06E-5). Among those of AA, the strongest (but not statistically significant) signals were observed for SNPs in SLC2A9, followed by SNPs in ABCG2. In the twin study (normal renal function), only SNPs in SLC2A9 were significant (rs4481233; beta-coefficient=−0.45; P = 7.0E-6). In CRIC, weaker associations were also found for SLC17A3 (NPT4) and gender-specific associations found for SLC22A8 (OAT3), SLC22A11 (OAT4), and ABCC4 (MRP4). Conclusions In patients of EA with CKD (CRIC cohort), we found striking associations between uric acid and SNPs on ABCG2, a key transporter of uric acid by intestine. Compared with ABCG2, SLC2A9 played a much less significant role in this subset of patients with CKD. SNPs in other SLC (e.g. SLC22A8 or OAT3) and ABC (e.g. ABCC4 or MRP4) genes appear to make a weak gender-dependent contribution to uric acid homeostasis in CKD. As renal urate transport is affected in the setting of declining kidney function, extra-renal ABCG2 appears to play a compensatory role—a notion consistent with animal studies and the Remote Sensing and Signaling Hypothesis. Overall, the data indicate how different urate transporters become more or less important depending on renal function, ethnicity and gender. Therapies focused on enhancing ABCG2 urate handling may be helpful in the setting of CKD and hyperuricemia.
Collapse
Affiliation(s)
- Vibha Bhatnagar
- Department of Family Medicine and Public Health , School of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Erin L Richard
- Department of Family Medicine and Public Health , School of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Wei Wu
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry , School of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Michael S Lipkowitz
- Division of Nephrology and Hypertension , Georgetown University Medical Center , Washington, DC , USA
| | - Janina Jeff
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - Adam X Maihofer
- Department of Psychiatry , School of Medicine, University of California San Diego , La Jolla, CA , USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|