1
|
Ciambarella BT, Almeida GSD, Dias DF, Trentin PG, Oliveira Santos TPD, Teixeira Ferreira TP, Arantes ACSD, Azevedo RBD, Fernandes AJM, Martins MA, E Silva PMR. TNF-alpha mediates airway hyperreactivity in silicotic mice: Effect of thalidomide treatment. Eur J Pharmacol 2025; 990:177263. [PMID: 39793879 DOI: 10.1016/j.ejphar.2025.177263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 01/13/2025]
Abstract
Inhalation of crystalline silica particles causes silicosis, which is a severe inflammatory lung disease that is associated with granulomatous and fibrotic responses. We investigated whether silica-induced silicosis might promote airway hyperreactivity (AHR) and the role of TNF-α and thalidomide in this process. Mice received an intranasal instillation of silica particles (1.25, 5, and 10 mg/mouse) and given methacholine on days 2, 7, and 28 after provocation or 5-HT challenges on day 7 after provocation. AHR was assessed using invasive whole-body plethysmography. Lung-tissue samples were collected for TNF-α measurements and histological analyses. Thalidomide was given orally from days 21-27 after silica administration. We found that following aerosolised methacholine or 5-HT treatment, a state of AHR was induced with silica-particle amounts of 5 and 10 mg/mouse, but not 1.25 mg/mouse. The effect was apparent within 2 days and remained for at least 28 days. Silica-particle amounts of 5 and 10 mg/mouse also induced significant granuloma response correlating with the silica required to induce AHR. In addition, a parallel was also observed between the elevation of lung tissue levels of TNF-α and AHR. Notably, silica-induced granulomatous and AHR responses were abolished in TNFR1-/- mice compared to wild-type mice. Moreover, the blockade of ongoing TNF-α generation by thalidomide prevented both events. Our findings suggest that exposure of mice to silica particles leads to a granulomatous lung response marked by non-specific AHR induced by TNF-α. In addition, the results indicate that thalidomide can control silica-induced pathological features of the lungs by blocking TNF-α generation.
Collapse
|
2
|
Blanco-Pérez J, Salgado-Barreira Á, Blanco-Dorado S, González Bello ME, Caldera Díaz AC, Pérez-Gonzalez A, Pallarés Sanmartín A, Fernández Villar A, Gonzalez-Barcala FJ. Clinical usefulness of serum angiotensin converting enzyme in silicosis. Pulmonology 2024; 30:370-377. [PMID: 36280590 DOI: 10.1016/j.pulmoe.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Silicosis is an irreversible and incurable disease. Preventive measures to eliminate exposure are the only effective way to reduce morbidity and mortality. In such situations, having a biomarker for early diagnosis or to predict evolution would be very useful in order to improve control of the disease. The elevation of serum angiotensin-converting enzyme (sACE) in silicosis has been described in previous studies, although its relationship with severity and prognosis is not clear. AIMS To determine the levels of sACE in a cohort of patients with exposure to silica dust with and without silicosis, and to assess their impact on the prognosis of the aforementioned patients. METHOD Prospective observational study on patients treated in a silicosis clinic from 2009 to 2018. sACE levels and pulmonary function tests were performed. Radiological progression was assessed in patients who had already had 2 X-rays of the thorax and / or two CT scans with at least a 1-year interval, from the time of inclusion in the study. RESULTS A total of 413 cases of silicosis were confirmed, as well as 73 with exposure to silica dust but without silicosis. The mean sACE level for healthy subjects was 27.5±7.3U/L, for exposed patients without silicosis it was 49.6±24.2U/L, for simple silicosis it was 57.8±31,3U/L and for complicated silicosis it was 74.5±38.6U/L. Patients with a higher sACE generally progressed radiologically during follow-up (73.3±38.0 vs. 60.4±33.7; p<.001) and so the category of silicosis changed (73,9±38.1 vs. 62.5±34.6; p<.021). CONCLUSIONS sACE was elevated in patients with silicosis, and the greater its severity, the higher it was, which is associated with disease progression measured radiologically or as a category change of silicosis.
Collapse
Affiliation(s)
- J Blanco-Pérez
- Pneumology Department, University Hospital Complex of Vigo, Spain..
| | - Á Salgado-Barreira
- Department of Preventive Medicine and Public Health, University of Santiago de Compostela, Santiago de Compostela, Spain.; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.; Consortium for Biomedical Research in Epidemiology and Public Health (CIBER en Epidemiología y Salud Pública-CIBERESP), Carlos III Health Institute, Madrid, Spain..
| | - S Blanco-Dorado
- Pharmacy Department, University Hospital Complex of Santiago de Compostela, Spain
| | | | - A C Caldera Díaz
- Radiology Department, University Hospital Complex of Vigo, Spain
| | - A Pérez-Gonzalez
- Internal Medicine Department, University Hospital Complex of Vigo, Spain
| | | | | | - F J Gonzalez-Barcala
- Pneumology Department, University Hospital Complex of Vigo, Spain.; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.; Pneumology Department, University Hospital Complex of Santiago de Compostela; Spanish Biomedical Research Networking Centre-CIBERES, Spain
| |
Collapse
|
3
|
Tehrani AM, Berijani N, Hajiketabi S, Samadi M. Tracking bioaerosol exposure among municipal solid waste workers using hematological and inflammatory biomarkers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124124. [PMID: 38723706 DOI: 10.1016/j.envpol.2024.124124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/20/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
High levels of bioaerosols may exist in the air of municipal solid waste (MSW) management facilities, constituting a significant occupational hazard for workers. In this study, we investigated the potential association between exposure to bioaerosols and inflammatory biomarkers among municipal solid waste workers (MSWWs) at both the landfill site and the municipal solid waste transfer station (MSWTS), in comparison to a control group without exposure. Air sampling was conducted at six points around the landfill, two points at the MSWTS, and one point in a public park (as a control area) during the spring and summer of 2019. The results of our study revealed that airborne pathogens were highly prevalent at the sampling points, especially in the active zone and leachate collection pond. Aspergillus species were the predominant fungal species detected in this study, with the highest occurrence observed for Aspergillus flavus (83.3%), Aspergillus niger, and Aspergillus fumigatus (75.0%). Furthermore, Staphylococcus species accounted for over 75% of the total bacterial bioaerosols detected across all study areas. The blood test results of workers revealed a significant increase in platelets (PLT), immunoglobulin G (IgG), white blood cells (WBC), neutrophils, basophils, and high-sensitivity C-reactive protein (hs-CRP) compared to the control group. Conversely, platelet distribution width (PDW), mean platelet volume (MPV), and platelet-large cell ratio (P-LCR) in the exposed subjects exhibited a decreasing trend compared to the control group. These findings suggest a potential association between exposure to bioaerosols, particularly in the vicinity of open dumpsites, and elevated levels of hematologic and inflammatory markers in circulation. Furthermore, the influence of smoking status and confounding factors appears to be significant in both the control and exposure groups.
Collapse
Affiliation(s)
- Ashraf Mazaheri Tehrani
- Social Determinants of Health Research Center, Kashan University of Medical Sciences, Kashan, Iran; Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Sajjad Hajiketabi
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadtaghi Samadi
- Research Center for Health Sciences, Department of Environmental Health Engineering, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Zhao JH, Li S, Du SL, Zhang ZQ. The role of mitochondrial dysfunction in macrophages on SiO 2 -induced pulmonary fibrosis: A review. J Appl Toxicol 2024; 44:86-95. [PMID: 37468209 DOI: 10.1002/jat.4517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Several epidemiologic and toxicological studies have widely regarded that mitochondrial dysfunction is a popular molecular event in the process of silicosis from different perspectives, but the details have not been systematically summarized yet. Thus, it is necessary to investigate how silica dust leads to pulmonary fibrosis by damaging the mitochondria of macrophages. In this review, we first introduce the molecular mechanisms that silica dust induce mitochondrial morphological and functional abnormalities and then introduce the main molecular mechanisms that silica-damaged mitochondria induce pulmonary fibrosis. Finally, we conclude that the mitochondrial abnormalities of alveolar macrophages caused by silica dust are involved deeply in the pathogenesis of silicosis through these two sequential mechanisms. Therefore, reducing the silica-damaged mitochondria will prevent the potential occurrence and fatality of the disease in the future.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, Shandong, China
- Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Ling Du
- Weifang Medical University, Weifang, Shandong, China
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
5
|
Wang R, Zhang S, Liu Y, Li H, Guan S, Zhu L, Jia L, Liu Z, Xu H. The role of macrophage polarization and related key molecules in pulmonary inflammation and fibrosis induced by coal dust dynamic inhalation exposure in Sprague-Dawley rats. Cytokine 2024; 173:156419. [PMID: 37976700 DOI: 10.1016/j.cyto.2023.156419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Coal dust is the main occupational hazard factor during coal mining operations. This study aimed to investigate the role of macrophage polarization and its molecular regulatory network in lung inflammation and fibrosis in Sprague-Dawley rats caused by coal dust exposure. Based on the key exposure parameters (exposure route, dose and duration) of the real working environment of coal miners, the dynamic inhalation exposure method was employed, and a control group and three coal dust groups (4, 10 and 25 mg/m3) were set up. Lung function was measured after 30, 60 and 90 days of coal dust exposure. Meanwhile, the serum, lung tissue and bronchoalveolar lavage fluid were collected after anesthesia for downstream experiments (histopathological analysis, RT-qPCR, ELISA, etc.). The results showed that coal dust exposure caused stunted growth, increased lung organ coefficient and decreased lung function in rats. The expression level of the M1 macrophage marker iNOS was significantly upregulated in the early stage of exposure and was accompanied by higher expression of the inflammatory cytokines TNF-α, IL-1β, IL-6 and the chemokines IL-8, CCL2 and CCL5, with the most significant trend of CCL5 mRNA in lung tissues. Expression of the M2 macrophage marker Arg1 was significantly upregulated in the mid to late stages of coal dust exposure and was accompanied by higher expression of the anti-inflammatory cytokines IL-10 and TGF-β. In conclusion, macrophage polarization and its molecular regulatory network (especially CCL5) play an important role in lung inflammation and fibrosis in SD rats exposed to coal dust by dynamic inhalation.
Collapse
Affiliation(s)
- Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Siyi Zhang
- Wuxi Center For Disease Control And Prevention, Wuxi, Jiangsu 214000, China
| | - Yifei Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Hongmei Li
- The Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Suzhen Guan
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Lingqin Zhu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Leina Jia
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China
| | - Zhihong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| | - Haiming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, No. 1160, Shengli Street, Xingqing District, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
6
|
Li P, Hao X, Liu J, Zhang Q, Liang Z, Li X, Liu H. miR-29a-3p Regulates Autophagy by Targeting Akt3-Mediated mTOR in SiO 2-Induced Lung Fibrosis. Int J Mol Sci 2023; 24:11440. [PMID: 37511199 PMCID: PMC10380316 DOI: 10.3390/ijms241411440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Silicosis is a refractory pneumoconiosis of unknown etiology that is characterized by diffuse lung fibrosis, and microRNA (miRNA) dysregulation is connected to silicosis. Emerging evidence suggests that miRNAs modulate pulmonary fibrosis through autophagy; however, its underlying molecular mechanism remains unclear. In agreement with miRNA microarray analysis, the qRT-PCR results showed that miR-29a-3p was significantly decreased in the pulmonary fibrosis model both in vitro and in vivo. Increased autophagosome was observed via transmission electron microscopy in lung epithelial cell models and lung tissue of silicosis mice. The expression of autophagy-related proteins LC3α/β and Beclin1 were upregulated. The results from using 3-methyladenine, an autophagy inhibitor, or rapamycin, an autophagy inducer, together with TGF-β1, indicated that autophagy attenuates fibrosis by protecting lung epithelial cells. In TGF-β1-treated TC-1 cells, transfection with miR-29a-3p mimics activated protective autophagy and reduced alpha-smooth muscle actin and collagen I expression. miRNA TargetScan predicted, and dual-luciferase reporter experiments identified Akt3 as a direct target of miR-29a-3p. Furthermore, Akt3 expression was significantly elevated in the silicosis mouse model and TGF-β1-treated TC-1 cells. The mammalian target of rapamycin (mTOR) is a central regulator of the autophagy process. Silencing Akt3 inhibited the transduction of the mTOR signaling pathway and activated autophagy in TGF-β1-treated TC-1 cells. These results show that miR-29a-3p overexpression can partially reverse the fibrotic effects by activating autophagy of the pulmonary epithelial cells regulated by the Akt3/mTOR pathway. Therefore, targeting miR-29a-3p may provide a new therapeutic strategy for silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Peiyuan Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Xiaohui Hao
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, China
| | - Jiaxin Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Qinxin Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Zixuan Liang
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Xinran Li
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan 063210, China; (P.L.); (J.L.); (Q.Z.); (Z.L.); (X.L.)
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
7
|
León-Mejía G, Rueda RA, Pérez Pérez J, Miranda-Guevara A, Moreno OF, Quintana-Sosa M, Trindade C, De Moya YS, Ruiz-Benitez M, Lemus YB, Rodríguez IL, Oliveros-Ortiz L, Acosta-Hoyos A, Pacheco-Londoño LC, Muñoz A, Hernández-Rivera SP, Olívero-Verbel J, da Silva J, Henriques JAP. Analysis of the cytotoxic and genotoxic effects in a population chronically exposed to coal mining residues. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54095-54105. [PMID: 36869947 PMCID: PMC10119205 DOI: 10.1007/s11356-023-26136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
During coal mining activities, many compounds are released into the environment that can negatively impact human health. Particulate matter, polycyclic aromatic hydrocarbons (PAHs), metals, and oxides are part of the complex mixture that can affect nearby populations. Therefore, we designed this study to evaluate the potential cytotoxic and genotoxic effects in individuals chronically exposed to coal residues from peripheral blood lymphocytes and buccal cells. We recruited 150 individuals who lived more than 20 years in La Loma-Colombia and 120 control individuals from the city of Barranquilla without a history of exposure to coal mining. In the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, significant differences in the frequency of micronucleus (MN), nucleoplasmic bridge (NPB), nuclear bud (NBUD), and apoptotic cells (APOP) were observed between the two groups. In the buccal micronucleus cytome (BM-Cyt) assay, a significant formation of NBUD, karyorrhexis (KRX), karyolysis (KRL), condensed chromatin (CC), and binucleated (BN) cells was observed in the exposed group. Considering the characteristics of the study group, a significant correlation for CBMN-Cyt was found between NBUD and vitamin consumption, between MN or APOP and meat consumption, and between MN and age. Moreover, a significant correlation for BM-Cyt was found between KRL and vitamin consumption or age, and BN versus alcohol consumption. Using Raman spectroscopy, a significant increase in the concentration of DNA/RNA bases, creatinine, polysaccharides, and fatty acids was detected in the urine of individuals exposed to coal mining compared to the control group. These results contribute to the discussion on the effects of coal mining on nearby populations and the development of diseases due to chronic exposure to these residues.
Collapse
Affiliation(s)
- Grethel León-Mejía
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia.
| | - Robinson Alvarez Rueda
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Jose Pérez Pérez
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Alvaro Miranda-Guevara
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Ornella Fiorillo Moreno
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Milton Quintana-Sosa
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Cristiano Trindade
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Yurina Sh De Moya
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Martha Ruiz-Benitez
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Yesit Bello Lemus
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Ibeth Luna Rodríguez
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Ludis Oliveros-Ortiz
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Antonio Acosta-Hoyos
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Leonardo C Pacheco-Londoño
- Centro de Investigaciones en Ciencias de La Vida (CICV), Universidad Simón Bolívar, Cra 53 Calle 64-51, 080002, Barranquilla, Colombia
| | - Amner Muñoz
- Grupo de Investigación en Química Y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Samuel P Hernández-Rivera
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico, Mayagüez, PR, 00681, USA
| | - Jesús Olívero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, Colombia
| | - Juliana da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana Do Brasil (ULBRA), Canoas-RS, Brazil
| | - João Antonio Pêgas Henriques
- Departamento de Biofísica, Centro de Biotecnologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-Graduação Em Biotecnologia E Em Ciências Médicas, Universidade Do Vale Do Taquari - UNIVATES, Lajeado, RS, Brazil
| |
Collapse
|
8
|
Lam M, Mansell A, Tate MD. Preclinical Mouse Model of Silicosis. Methods Mol Biol 2023; 2691:111-120. [PMID: 37355541 DOI: 10.1007/978-1-0716-3331-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Silicosis is an untreatable occupational lung disease caused by chronic inhalation of crystalline silica. Cyclical release and reuptake of silica particles by macrophages and airway epithelial cells causes repeated tissue damage, characterized by widespread inflammation and progressive diffuse fibrosis. While inhalation is the main route of entry for silica particles in humans, most preclinical studies administer silica via the intratracheal route. In vivo mouse models of lung disease are valuable tools required to bridge the translational gap between in vitro cell culture and human disease. This chapter describes a mouse model of silicosis which mimics clinical features of human silicosis, as well as methods for intranasal instillation of silica and disease analysis. Lung tissue can be collected for histological assessment of silica particle distribution, inflammation, structural damage, and fibrosis in sections stained with hematoxylin and eosin or Masson's trichrome. This approach can be extended to other chronic fibrotic lung diseases where inhalation of small damaging particles such as pollutants causes irreversible disease.
Collapse
Affiliation(s)
- Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Ashley Mansell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
9
|
Vanka KS, Shukla S, Gomez HM, James C, Palanisami T, Williams K, Chambers DC, Britton WJ, Ilic D, Hansbro PM, Horvat JC. Understanding the pathogenesis of occupational coal and silica dust-associated lung disease. Eur Respir Rev 2022; 31:31/165/210250. [PMID: 35831008 DOI: 10.1183/16000617.0250-2021] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 01/15/2023] Open
Abstract
Workers in the mining and construction industries are at increased risk of respiratory and other diseases as a result of being exposed to harmful levels of airborne particulate matter (PM) for extended periods of time. While clear links have been established between PM exposure and the development of occupational lung disease, the mechanisms are still poorly understood. A greater understanding of how exposures to different levels and types of PM encountered in mining and construction workplaces affect pathophysiological processes in the airways and lungs and result in different forms of occupational lung disease is urgently required. Such information is needed to inform safe exposure limits and monitoring guidelines for different types of PM and development of biomarkers for earlier disease diagnosis. Suspended particles with a 50% cut-off aerodynamic diameter of 10 µm and 2.5 µm are considered biologically active owing to their ability to bypass the upper respiratory tract's defences and penetrate deep into the lung parenchyma, where they induce potentially irreversible damage, impair lung function and reduce the quality of life. Here we review the current understanding of occupational respiratory diseases, including coal worker pneumoconiosis and silicosis, and how PM exposure may affect pathophysiological responses in the airways and lungs. We also highlight the use of experimental models for better understanding these mechanisms of pathogenesis. We outline the urgency for revised dust control strategies, and the need for evidence-based identification of safe level exposures using clinical and experimental studies to better protect workers' health.
Collapse
Affiliation(s)
- Kanth Swaroop Vanka
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Division of Pulmonary, Allergy, and Critical Care Medicine, Dept of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shakti Shukla
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Carole James
- School of Health Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment (CERSE), The University of Newcastle, Newcastle, NSW, Australia
| | - Kenneth Williams
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Daniel C Chambers
- School of Clinical Medicine, The University of Queensland, Brisbane, QLD, Australia.,Queensland Lung Transplant Program, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Dept of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Dusan Ilic
- Newcastle Institute for Energy and Resources (NIER), School of Engineering, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Michael Hansbro
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| | - Jay Christopher Horvat
- School of Biomedical Sciences and Pharmacy, The University of Newcastle/Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia .,P.M. Hansbro and J.C. Horvat have equally contributed as senior authors
| |
Collapse
|
10
|
Chen Z, Shi J, Zhang Y, Zhang J, Li S, Guan L, Jia G. Screening of Serum Biomarkers of Coal Workers' Pneumoconiosis by Metabolomics Combined with Machine Learning Strategy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127051. [PMID: 35742299 PMCID: PMC9222502 DOI: 10.3390/ijerph19127051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022]
Abstract
Pneumoconiosis remains one of the most serious global occupational diseases. However, effective treatments are lacking, and early detection is crucial for disease prevention. This study aimed to explore serum biomarkers of occupational coal workers’ pneumoconiosis (CWP) by high-throughput metabolomics, combining with machine learning strategy for precision screening. A case–control study was conducted in Beijing, China, involving 150 pneumoconiosis patients with different stages and 120 healthy controls. Metabolomics found a total of 68 differential metabolites between the CWP group and the control group. Then, potential biomarkers of CWP were screened from these differential metabolites by three machine learning methods. The four most important differential metabolites were identified as benzamide, terazosin, propylparaben and N-methyl-2-pyrrolidone. However, after adjusting for the influence of confounding factors, including age, smoking, drinking and chronic diseases, only one metabolite, propylparaben, was significantly correlated with CWP. The more severe CWP was, the higher the content of propylparaben in serum. Moreover, the receiver operating characteristic curve (ROC) of propylparaben showed good sensitivity and specificity as a biomarker of CWP. Therefore, it was demonstrated that the serum metabolite profiles in CWP patients changed significantly and that the serum metabolites represented by propylparaben were good biomarkers of CWP.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Z.C.); (J.S.); (Y.Z.); (J.Z.)
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Z.C.); (J.S.); (Y.Z.); (J.Z.)
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Z.C.); (J.S.); (Y.Z.); (J.Z.)
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Z.C.); (J.S.); (Y.Z.); (J.Z.)
| | - Shuqiang Li
- Department of Occupational Disease, Peking University Third Hospital, Beijing 100191, China;
| | - Li Guan
- Department of Occupational Disease, Peking University Third Hospital, Beijing 100191, China;
- Correspondence: (L.G.); (G.J.)
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China; (Z.C.); (J.S.); (Y.Z.); (J.Z.)
- Correspondence: (L.G.); (G.J.)
| |
Collapse
|
11
|
Computer-Aided Diagnosis of Coal Workers' Pneumoconiosis in Chest X-ray Radiographs Using Machine Learning: A Systematic Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116439. [PMID: 35682023 PMCID: PMC9180284 DOI: 10.3390/ijerph19116439] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 02/01/2023]
Abstract
Computer-aided diagnostic (CAD) systems can assist radiologists in detecting coal workers' pneumoconiosis (CWP) in their chest X-rays. Early diagnosis of the CWP can significantly improve workers' survival rate. The development of the CAD systems will reduce risk in the workplace and improve the quality of chest screening for CWP diseases. This systematic literature review (SLR) amis to categorise and summarise the feature extraction and detection approaches of computer-based analysis in CWP using chest X-ray radiographs (CXR). We conducted the SLR method through 11 databases that focus on science, engineering, medicine, health, and clinical studies. The proposed SLR identified and compared 40 articles from the last 5 decades, covering three main categories of computer-based CWP detection: classical handcrafted features-based image analysis, traditional machine learning, and deep learning-based methods. Limitations of this review and future improvement of the review are also discussed.
Collapse
|
12
|
García-Núñez A, Jiménez-Gómez G, Hidalgo-Molina A, Córdoba-Doña JA, León-Jiménez A, Campos-Caro A. Inflammatory indices obtained from routine blood tests show an inflammatory state associated with disease progression in engineered stone silicosis patients. Sci Rep 2022; 12:8211. [PMID: 35581230 PMCID: PMC9114118 DOI: 10.1038/s41598-022-11926-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/25/2022] [Indexed: 02/08/2023] Open
Abstract
Patients with silicosis caused by occupational exposure to engineered stone (ES) present a rapid progression from simple silicosis (SS) to progressive massive fibrosis (PMF). Patient classification follows international rules based on radiology and high-resolution computed tomography (HRCT), but limited studies, if any, have explored biomarkers from routine clinical tests that can be used as predictors of disease status. Our objective was thus to investigate circulating biomarker levels and systemic inflammatory indices in ES silicosis patients whose exposure to ES dust ended several years ago. Ninety-one adult men, ex-workers in the manufacturing of ES, 53 diagnosed with SS and 38 with PMF, and 22 healthy male volunteers (HC) as controls not exposed to ES dust, were recruited. The following circulating levels of biomarkers like lactate dehydrogenase (LDH), angiotensin-converting-enzyme (ACE), protein C reactive (PCR), rheumatoid factor, alkaline phosphatase and fibrinogen were obtained from clinical reports after being measured from blood samples. As biochemical markers, only LDH (HC = 262 ± 48.1; SS = 315.4 ± 65.4; PMF = 337.6 ± 79.3 U/L), ACE (HC = 43.1 ± 18.4; SS = 78.2 ± 27.2; PMF = 86.1 ± 23.7 U/L) and fibrinogen (HC = 182.3 ± 49.1; SS = 212.2 ± 43.5; PMF = 256 ± 77.3 U/L) levels showed a significant sequential increase, not been observed for the rest of biomarkers, in the HC → SS → PMF direction. Moreover, several systemic inflammation indices neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), systemic inflammation response index (SIRI), systemic immune-inflammation index (SII), aggregate index of systemic inflammation (AISI) derived from whole blood cell counts showed significant differences between the HC, SS and PMF groups. All these biomarkers were analyzed using receiver operating characteristic (ROC) curves, and the results provided moderately high sensitivity and specificity for discriminating between ES silicosis patient groups and healthy controls. Our study reveals that some inflammatory biomarkers, easily available from routine blood analysis, are present in ES silicosis patients even several years after cessation of exposure to ES silica dust and they could help to know the progression of the disease.
Collapse
Affiliation(s)
- Alejandro García-Núñez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009, Cádiz, Spain.,Research Unit, Puerta del Mar University Hospital, 11009, Cádiz, Spain
| | - Gema Jiménez-Gómez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009, Cádiz, Spain.,Research Unit, Puerta del Mar University Hospital, 11009, Cádiz, Spain
| | - Antonio Hidalgo-Molina
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009, Cádiz, Spain.,Pulmonology, Allergy and Thoracic Surgery Department, Puerta del Mar University Hospital, 11009, Cádiz, Spain
| | - Juan Antonio Córdoba-Doña
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009, Cádiz, Spain.,Department of Preventive Medicine and Public Health, Jerez University Hospital, 11407, Jerez de la Frontera, Spain
| | - Antonio León-Jiménez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009, Cádiz, Spain.,Pulmonology, Allergy and Thoracic Surgery Department, Puerta del Mar University Hospital, 11009, Cádiz, Spain
| | - Antonio Campos-Caro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), 11009, Cádiz, Spain. .,Research Unit, Puerta del Mar University Hospital, 11009, Cádiz, Spain. .,Genetics Area, Biomedicine, Biotechnology and Public Health Department, School of Marine and Environmental Sciences, University of Cadiz, 11510, Cádiz, Spain.
| |
Collapse
|
13
|
Li XY, Wei JL, Xie YX, Zhao J, Ma LY, Zhang N, Yang HF. Serum Levels of Mitochondrial Fission- and Fusion-Related Genes of Coal Workers' Pneumoconiosis and Risk Factor Analysis Based on a Generalized Linear Model. Appl Bionics Biomech 2022; 2022:8629583. [PMID: 35401788 PMCID: PMC8993577 DOI: 10.1155/2022/8629583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Objective We aimed to explore the risk factors for coal workers' pneumoconiosis and to further explore the significance of mitochondrial fission and fusion factors in CWP and verify the feasibility of mitochondrial fission and fusion factors as diagnostic and therapeutic targets. Methods The data of 168 cases were collected, and they were divided into a healthy control group (40 cases), dust exposure control group (61 cases), and CWP group (67 cases) and entered into SPSS 24.0. The statistical data were analyzed by the chi-square test or Fisher's exact probability method. The variables with statistically significant differences of the univariate analysis results were included in the generalized linear model. Test level was α = 0.05. Blood samples were collected to detect the ROS content, MDA content, and SOD activity. The mRNA expression levels of OPA1, Drp1, MFN2, Fis1, Col I, Col III, and α-SMA were determined by q-PCR. The protein expression levels of OPA1, Drp1, MFN2, Fis1, Col I, Col III, and α-SMA were detected by western blot. Results Generalized linear regression analysis showed that lower school education, no respiratory protective measures, the working age beyond 15 years, and the type of work like coal mine drillers were the risk factors for CWP. With the aggravation of CWP, the degree of fibrosis and inflammation increased oxidative damage, increased mitochondrion division, and decreased fusion, which were more sensitive in the second and third stages of CWP. Conclusion The results in this found that mitochondria are injured by fission and fusion in the CWP patients. Detection of the mitochondria fission and fusion factors provides the application value to evaluate the injury degree and progress of CWP and the clues for finding the real and effective screening and diagnosis biomarkers.
Collapse
Affiliation(s)
- Xiao-Yu Li
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Jing-Lin Wei
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Yong-Xin Xie
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Ji Zhao
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Li-Ya Ma
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Na Zhang
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| | - Hui-Fang Yang
- School of Public Healthy and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
14
|
Lam M, Mansell A, Tate MD. Another One Fights the Dust - Targeting the NLRP3 Inflammasome for the Treatment of Silicosis. Am J Respir Cell Mol Biol 2022; 66:601-611. [PMID: 35290170 DOI: 10.1165/rcmb.2021-0545tr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Silicosis is a multifaceted lung disease, characterised by persistent inflammation and structural remodelling. Despite its poor prognosis, there are no treatments currently available for patients with silicosis. Recent pre-clinical findings in models of lung fibrosis have suggested a major role for the nucleotide binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome in silica-driven inflammation and fibrosis. This review outlines the beneficial effects of targeting the NLRP3 inflammasome in in vitro cell experiments and in in vivo animal models, whereby inflammation and fibrosis are abrogated following NLRP3 inflammasome inhibition. While preclinical evidence is promising, studies which explore NLRP3 inflammasomes in the clinical setting are warranted. In particular, there is still a need to identify biomarkers which may be helpful for the early detection of silicosis and to fully elucidate mechanisms underlying these beneficial effects to further develop or repurpose existing anti-NLRP3 drugs as novel treatments that limit disease progression.
Collapse
Affiliation(s)
- Maggie Lam
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University , Department of Molecular and Translational Sciences, Clayton, Victoria, Australia
| | - Ashley Mansell
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash Univerisity, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia.,Adiso Therapeutics Inc, Concord, Massachusetts, United States
| | - Michelle D Tate
- Hudson Institute of Medical Research Centre for Innate Immunity and Infectious Diseases, 366840, Clayton, Victoria, Australia.,Monash University, Department of Molecular and Translational Sciences, Clayton, Victoria, Australia;
| |
Collapse
|
15
|
Yang JY, Zhou WJ, Wang Q, Li Y, Yan YN, Wang YX, Wu SL, Wei WB. Retinal nerve fiber layer thickness and retinal vascular caliber alterations in coal miners in northern China: a community-based observational study. Int J Ophthalmol 2022; 15:135-140. [PMID: 35047368 DOI: 10.18240/ijo.2022.01.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 03/24/2021] [Indexed: 11/23/2022] Open
Abstract
AIM To evaluate retinal nerve fiber layer thickness and retinal vascular caliber alterations in coal mine workers. METHODS The community-based observational cross-sectional study included 4004 participants of a sub-population of the Kailuan Study. All the study participants underwent structured interviews with a standardized questionnaire, fundus photography and spectral-domain optical coherence tomography (OCT) examinations performed by trained doctors. RESULTS The retinal nerve fiber layer thickness was significantly higher (P=0.006) and the central macular thickness was lower in coal miners (n=659, 51.0±7.8y) as compared to the control (working above the ground; n=477, 51.8±7.5y; P=0.032). Additionally, the downhole workers showed a significantly thicker retinal artery (P=0.012) and vein diameters (P<0.001). In multivariable regression, a thicker retinal nerve fiber layer was associated with a higher cumulative silica dust exposure (P=0.005) after adjusting for younger age and larger spherical equivalent. In a reverse pattern, a higher cumulative silica dust exposure (P=0.004) was significantly associated with a thicker retinal nerve fiber layer after adjusting for age, high-density lipoproteins and uric acid. Wider retinal vein diameters were associated with higher cumulative silica dust exposure (P=0.036) after adjusting for younger age and larger spherical equivalent. CONCLUSION The retinal vessels diameters and retinal nerve fiber layer thickness are significantly thicker in long term of coal mining. The results of our study indicate that underground working environment may lead to retinal vessel dilation and inflammation. Thus, ocular examination might be needed within coal miners in order to monitor the occupational eye health as well as the incidence and progression of eye diseases.
Collapse
Affiliation(s)
- Jing-Yan Yang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing 100730, China
| | - Wen-Jia Zhou
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing 100730, China
| | - Qian Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing 100730, China
| | - Yang Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing 100730, China
| | - Yan-Ni Yan
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing 100730, China
| | - Ya-Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing 100730, China
| | - Shou-Ling Wu
- Cardiology Department, Kailuan General Hospital, Tangshan 063000, Hebei Province, China
| | - Wen-Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Beijing Ophthalmology and Visual Science Key Lab, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Capital Medical University, Beijing 100730, China
| |
Collapse
|
16
|
A rapid point of care CC16 kit for screening of occupational silica dust exposed workers for early detection of silicosis/silico-tuberculosis. Sci Rep 2021; 11:23485. [PMID: 34873200 PMCID: PMC8648725 DOI: 10.1038/s41598-021-02392-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022] Open
Abstract
Silicosis is an irreversible, incurable and progressive occupational disease caused by prolonged exposure to crystalline-silica dust while working in the relevant industries. Conventionally diagnosis is done by chest radiology, often in an advanced stage as early symptoms often go unnoticed. Early detection and necessary intervention (secondary prevention) could be a realistic possible control strategy for controlling silicosis as no effective treatment is available to stop and/or reverse the pathological process. Additionally, these patients are also vulnerable to pulmonary tuberculosis, which often becomes difficult to treat and with uncertain treatment outcome. Considering India has a huge burden of silicosis and silico-tuberculosis, a rapid and inexpensive screening method was realized to be an urgent need for early detection of silicosis among silica dust exposed workers. Serum club cell protein 16 (CC16) is evidenced to be a useful proxy screening marker for early detection of silicosis as evidenced from the recent research work of ICMR-National Institute of Occupational Health (ICMR-NIOH), India. In this study a lateral-flow assay for semi-quantitative estimation of serum CC16 level was developed. The detection was performed using gold nanoparticles conjugated anti-CC16 monoclonal antibodies. A sum of 106 serum samples was tested to do the performance evaluation of the assay. A concentration of 6 ng/ml or less produced one band, 6.1–9 ng/ml produced two bands, while more than 9 ng/ml produced all the three bands at the test zone. The sensitivity of the assay was 100% while the specificity was 95%. This assay may be used as a sensitive tool for periodic screening of silica dust exposed vulnerable workers for early detection of silicosis in them.
Collapse
|
17
|
Wang H, Cui J, Hao X, Guo L, Zhao J, Wang R, Liu H. Silicon, an important exposure marker in vivo in silicosis research. Int Arch Occup Environ Health 2021; 94:1513-1522. [PMID: 34110461 DOI: 10.1007/s00420-021-01729-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE The degree of silicosis exposure is closely related to the progress of silicosis. At present, we use animal and human studies to explore whether silicon can be an important exposure marker in the development of silicosis. METHODS Rats were randomly divided into 2 groups: (1) controls; and (2) silicosis. Rats in the silicosis group were killed at 4, 8, 12, 16, 24 h, 3, 7, 14, 21, and 28 days. Hematoxylin-eosin (HE) and immunohistochemistry (IHC) were performed to observe the histomorphology of lung tissue. The expression levels of CC16 and SP-D were detected using ELISA kits. In addition, we conducted a population study. Workers who have been selected to work in an iron mine for more than 1 year as research objects. The population was divided into four groups: silicosis exposure group (workers exposed to silica dust for more than 1 year in an iron mine were selected); patients group (silicosis patients); observation group (evidence of disease not meeting formal diagnostic criteria) and control group. Both the levels of trace silicon in the urine and blood of rats and human subjects were measured with ICP-MS. RESULTS Serum levels of silicon were immediately increased in rats exposed to silicon dust. Similarly, our population study revealed that the silicon level in the silica exposure group and the observing group (exposed but no obvious symptoms) were significantly increased over that of the control group (P < 0.05). In subjects with extended exposure to silica, the serum and urine silicon level in exposed workers appeared to rapidly increase, reaching its peak in 1-5 years, followed by a gradual decline thereafter. Workers exposed to dust for less than 10 years were divided into subgroups by 2-year limit. The levels of serum silicon, urine silicon, TGF-β1, and TNF-α were significantly higher than that of control group. CONCLUSION Changes of the serum levels of silicon occurred earlier than the expression of cytokines such as TNF-α, TGF-β1, CC16, and SP-D. The level of silicon in workers rapidly increased after exposure to silica, and the change occurred before the expression of TGF-β1 and TNF-α. As a whole, the findings suggest that determining the level of silicon in vivo might be an effective exposure marker in the diagnosis and pathogenesis of silicosis.
Collapse
Affiliation(s)
- Hongli Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, China
| | - Jie Cui
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
| | - Xiaohui Hao
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, China
| | - Lingli Guo
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, China
| | - Jinyuan Zhao
- The Occupational Medicine Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Ruimin Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, China
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China.
- Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, 063210, China.
| |
Collapse
|
18
|
Yuan J, Li P, Pan H, Xu Q, Xu T, Li Y, Wei D, Mo Y, Zhang Q, Chen J, Ni C. miR-770-5p inhibits the activation of pulmonary fibroblasts and silica-induced pulmonary fibrosis through targeting TGFBR1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112372. [PMID: 34082245 DOI: 10.1016/j.ecoenv.2021.112372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Silicosis is a devastating interstitial lung disease arising from long-term exposure to inhalable silica. Regrettably, no therapy currently can effectively reverse the silica-induced fibrotic lesion. Emerging evidence has indicated that the dysregulation of microRNAs is involved in silica-induced pulmonary fibrosis. The aim of this study is to explore the expression pattern and underlying mechanisms of miR-770-5p in silica-induced pulmonary fibrosis. Consistent with our previous miRNA microarray analysis, the results of qRT-PCR showed that miR-770-5p expression was downregulated in silica-induced pulmonary fibrosis in humans and animal models. Administration of miR-770-5p agomir significantly reduced the fibrotic lesions in the lungs of mice exposed to silica dust. MiR-770-5p also exhibited a dramatic reduction in TGF-β1-activated human pulmonary fibroblasts (MRC-5). Transfection of miR-770-5p mimics significantly decreased the viability, migration ability, and S/G0 phase distribution, as well as the expression of fibronectin, collagen I, and α-SMA in TGF-β1-treated MRC-5 cells. Transforming growth factor-β receptor 1 (TGFBR1) was confirmed as a direct target of regulation by miR-770-5p. The expression of TGFBR1 was significantly increased in pulmonary fibrosis. Knockdown of TGFBR1 blocked the transduction of the TGF-β1 signaling pathway and attenuated the activation of MRC-5 cells, while overexpression of TGFBR1 effectively restored the activation of MRC-5 cells inhibited by miR-770-5p. Together, our results demonstrated that miR-770-5p exerted an anti-fibrotic effect in silica-induced pulmonary fibrosis by targeting TGFBR1. Targeting miR-770-5p might provide a new therapeutic strategy to prevent the abnormal activation of pulmonary fibroblasts in silicosis.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Ping Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Honghong Pan
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Qi Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Tiantian Xu
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Yan Li
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China
| | - Dong Wei
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Jingyu Chen
- The Transplant Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu 214003, China
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
19
|
Blanco-Pérez JJ, Blanco-Dorado S, Rodríguez-García J, Gonzalez-Bello ME, Salgado-Barreira Á, Caldera-Díaz AC, Pallarés-Sanmartín A, Fernandez-Villar A, González-Barcala FJ. Serum levels of inflammatory mediators as prognostic biomarker in silica exposed workers. Sci Rep 2021; 11:13348. [PMID: 34172787 PMCID: PMC8233419 DOI: 10.1038/s41598-021-92587-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
Silicosis is a diffuse interstitial lung disease caused by sustained inhalation of silica and silicates. Several cytokines are activated by their inhalation and can mediate the process of pulmonary fibrosis. The identification of biomarkers could allow an early diagnosis before the development of radiological alterations and help monitor the evolution of patients. The objetive of this study was to determine the clinical significance of specific biomarkers, to estimate their association with the development, severity and/or progression of silicosis, and identify determinants of this evolution. We conducted a prospective observational study in patients attending the pulmonology clinic from 2009 to 2018. Serum levels of the following inflammatory mediators were assessed: interleukin-6 (IL-6), interleukin 2 receptor subunit alpha (IL2R) interleukin 1 beta (IL1B), interleukin-8 (IL-8), tumour necrosis factor-alpha (TNF-α), transforming growth factor-beta1 (TGF-β1), alpha-1 antitrypsin (AAT), C-reactive protein (CRP), lactate dehydrogenase (LDH) and ferritin in subjects exposed to silica, with and without silicosis. Association between those inflammatory mediators with lung function measurements and radiological severity of disease and their impact on prognosis were analysed. 337 exposed to silica (278 with silicosis) and 30 subjects in the control group were included. IL-8, α1AT, ferritin, CRP and LDH levels were higher in silicosis than in those exposed to silica without silicosis. IL-8, LDH and AAT levels were associated with progression of silicosis and IL-6, IL-8, LDH, AAT, ferritin, and CRP with vital status. The results of the ROC analysis indicated the potential of IL-8 as a biomarker in the presence of silicosis and for the prediction of mortality.
Collapse
Affiliation(s)
- José Jesús Blanco-Pérez
- Department of Pneumonology, University Hospital Complex of Vigo, Pontevedra, Spain. .,IRIDIS Group (Investigation in Rheumatology and Immuno-Mediated Diseases) Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain.
| | - Sara Blanco-Dorado
- Department of Pharmacy, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Rodríguez-García
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS)-SERGAS, Santiago de Compostela, Spain.,Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain
| | | | - Ángel Salgado-Barreira
- Methodology and Statistics Unit, Galicia Sur Health Research Institute (IIS Galicia Sur), Vigo, Spain
| | | | | | | | - Francisco Javier González-Barcala
- Department of Pneumonology, University Hospital Complex of Santiago de Compostela, Spanish Biomedical Research Networking Centre-CIBERES, Santiago de Compostela, Spain
| |
Collapse
|
20
|
Peruzzi CP, Brucker N, Bubols G, Cestonaro L, Moreira R, Domingues D, Arbo M, Olivo Neto P, Knorst MM, Garcia SC. Occupational exposure to crystalline silica and peripheral biomarkers: An update. J Appl Toxicol 2021; 42:87-102. [PMID: 34128557 DOI: 10.1002/jat.4212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/20/2022]
Abstract
Peripheral biomarkers are important tools for detecting occupational exposures to prevent the onset and/or progression of diseases. Studies that reveal early peripheral biomarkers are highly important to preserve the health of workers and can potentially contribute to diagnosing and/or prognosing occupational pathologies. Exposure to crystalline silica is a problem in several workplaces because it increases the risk of chronic obstructive pulmonary disease (COPD), tuberculosis, cancer, and pulmonary fibrosis, clinically defined as silicosis. Silicosis is diagnosed by chest radiography and/or lung tomography in advanced stages when there is a severe loss of lung function. Peripheral biomarkers can help in diagnosing early changes prior to silicosis and represent a highly important technical-scientific advance that is minimally invasive. This review aimed to investigate the biomarkers studied for evaluating occupational exposure to crystalline silica and to understand the recent advances in this area. Potential oxidative, inflammatory, and immunological biomarkers were reviewed, as well as routine biomarkers such as biochemical parameters. It was found that biomarkers of effect such as serum CC16 and l-selectin levels could represent promising alternatives. Additionally, studies have shown that neopterin levels in urine and serum can be used to monitor worker exposure. However, further studies are needed that include a greater number of participants, different times of exposure to crystalline silica, and a combination of silicosis patients and healthy volunteers. Evaluating the concentration of crystalline silica in occupational environments, its impact on biomarkers of effect, and alterations in lung function could contribute to revealing early health alterations in workers in a more robust manner.
Collapse
Affiliation(s)
- Caroline Portela Peruzzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Guilherme Bubols
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Larissa Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moreira
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daiane Domingues
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Olivo Neto
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marli Maria Knorst
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Pulmonology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
21
|
Naha N, Muhamed JCJ, Pagdhune A, Sarkar B, Sarkar K. Club cell protein 16 as a biomarker for early detection of silicosis. Indian J Med Res 2021; 151:319-325. [PMID: 32461395 PMCID: PMC7371066 DOI: 10.4103/ijmr.ijmr_1799_18] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background & objectives Clinically silicosis is diagnosed by chest X-ray showing specific opacities along with history of silica dust exposure. Diagnosis is invariably made at an advanced or end stage when it is irreversible. Moreover, silicosis patients are susceptible to develop tuberculosis. Therefore, a suitable biomarker for early detection of silicosis is needed. This study evaluated the suitability of club cell protein (CC16) as a biomarker for early detection of silicosis. Methods This pilot study included 121 individuals from X-ray-confirmed/advanced silicosis, moderate silica dust-exposed workers and healthy controls from western India. CC16 levels were quantified in serum samples through ELISA. Sensitivity and specificity of CC16 values at different cut-off points were calculated in both non-smokers and smokers. Results Serum CC16 level was significantly (P <0.01) decreased in X-ray confirmed advanced silicosis patients (4.7±3.07 ng/ml) followed by moderately exposed workers (10.2±1.77 ng/ml) as compared to healthy non-exposed individuals (16.7±3.81 ng/ml). Tobacco smoking also caused a significant decrease of serum CC16 concentration in both healthy (10.2±1.12 ng/ml) and advanced silicosis workers (2.6±2.28 ng/ml) compared to non-smokers. Sensitivity and specificity of CC16 values were also found to be ≥83 per cent for screening all categories of individuals. Interpretation & conclusions Because of high sensitivity and specificity, serum CC16 could be used as predictive biomarker for suspicion and early detection of silicosis, which would help in reducing/delaying premature deaths caused by silicosis. It would also control silicotuberculosis additionally.
Collapse
Affiliation(s)
- Nibedita Naha
- Division of Biochemistry, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Jaseer C J Muhamed
- Division of Biochemistry, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Avinash Pagdhune
- Division of Biochemistry, ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| | - Bidisa Sarkar
- Department of General Medicine, KPC Medical College & Hospital, Kolkata, West Bengal, India
| | - Kamalesh Sarkar
- ICMR-National Institute of Occupational Health, Ahmedabad, Gujarat, India
| |
Collapse
|
22
|
Jiao J, Li L, Yao W, Qin W, Hao C, Lu L. Influence of Silica Exposure for Lung Silicosis Rat. DISEASE MARKERS 2021; 2021:6268091. [PMID: 34938375 PMCID: PMC8687785 DOI: 10.1155/2021/6268091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/18/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To investigate the influence of silica exposure on the expression of connective tissue growth factor (CTGF), transforming growth factor beta-1 (TGF-β1), and platelet-derived growth factor (PDGF) in lung silicosis rat. METHODS Wistar rats were divided into an experimental group and a control group. In the experimental group, rats were exposed to silica by intratracheal instillation. In the control group, rats were exposed to physiological saline by intratracheal instillation. After 45 days, we compared the level of fibrosis and CTGF, TGF-β1, and PDGF in the lungs by immunohistochemistry or reverse transcription-polymerase chain reaction between the two groups. RESULTS The results showed that the expression levels of CTGF, TGF-β1, and PDGF mRNA were significantly higher in the experimental group than those in the control group (P < 0.05). The positive staining of CTGF, TGF-β1, and PDGF mRNA was found in the cytoplasm, especially in the silicotic nodules of the hyalinisation section and cell endochylema of the alveolar macrophages, type II pneumonocytes, and lung tracheal epithelium. There were significantly positive correlations between CTGF, TGF-β1, and PDGF expressions (P < 0.05). A protein-protein interaction analysis showed interactions between TGF-β1, CTGF, and PDGF. CONCLUSIONS TGF-β/CTGF signaling pathway plays an important role in silicosis. Silicon dioxide exposure can induce the expression of CTGF, TGF-β1, and PDGF.
Collapse
Affiliation(s)
- Jie Jiao
- 1Henan Provincial Institute for Occupational Health, Zhengzhou, Henan, China
| | - Li Li
- 2The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wu Yao
- 3School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Weidong Qin
- 1Henan Provincial Institute for Occupational Health, Zhengzhou, Henan, China
| | - Changfu Hao
- 3School of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Lingeng Lu
- 4Yale School of Public Health, Yale University, New Haven, Connecticut 06510, USA
| |
Collapse
|
23
|
Extracellular Histones Promote Pulmonary Fibrosis in Patients With Coal Workers' Pneumoconiosis. J Occup Environ Med 2020; 61:89-95. [PMID: 30308624 DOI: 10.1097/jom.0000000000001473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This investigation assessed the profibrotic role that extracellular histones play in the pathogenesis of coal workers' pneumoconiosis (CWP). METHODS The correlation of extracellular histones with small opacity profusion (SOP) and transforming growth factor-β (TGF-β) was analyzed. The stimulating effect of extracellular histones on pulmonary fibroblast was assessed in vitro. RESULTS The levels of extracellular histones in plasma were positively correlated with SOP and TGF-β in the coal miners investigated. Plasma collected from patients with CWP caused apparent lung fibroblast proliferation, while anti-H4 antibody antagonized the stimulating effect of the patient plasma by blocking histone H4. In vitro experiments showed that extracellular histones directly stimulated fibroblast proliferation. CONCLUSION Consistent with our hypothesis, the concentrations of extracellular histones were indices of the severity of pulmonary fibrosis in simple CWP, and extracellular histones-targeted intervention could inhibit the proliferation of lung fibroblast.
Collapse
|
24
|
Wu R, Högberg J, Adner M, Ramos-Ramírez P, Stenius U, Zheng H. Crystalline silica particles cause rapid NLRP3-dependent mitochondrial depolarization and DNA damage in airway epithelial cells. Part Fibre Toxicol 2020; 17:39. [PMID: 32778128 PMCID: PMC7418441 DOI: 10.1186/s12989-020-00370-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Respirable crystalline silica causes lung carcinomas and many thousand future cancer cases are expected in e.g. Europe. Critical questions are how silica causes genotoxicity in the respiratory epithelium and if new cases can be avoided by lowered permissible exposure levels. In this study we investigate early DNA damaging effects of low doses of silica particles in respiratory epithelial cells in vitro and in vivo in an effort to understand low-dose carcinogenic effects of silica particles. RESULTS We find DNA damage accumulation already after 5-10 min exposure to low doses (5 μg/cm2) of silica particles (Min-U-Sil 5) in vitro. DNA damage was documented as increased levels of γH2AX, pCHK2, by Comet assay, AIM2 induction, and by increased DNA repair (non-homologous end joining) signaling. The DNA damage response (DDR) was not related to increased ROS levels, but to a NLRP3-dependent mitochondrial depolarization. Particles in contact with the plasma membrane elicited a Ser198 phosphorylation of NLRP3, co-localization of NLRP3 to mitochondria and depolarization. FCCP, a mitochondrial uncoupler, as well as overexpressed NLRP3 mimicked the silica-induced depolarization and the DNA damage response. A single inhalation of 25 μg silica particles gave a similar rapid DDR in mouse lung. Biomarkers (CC10 and GPRC5A) indicated an involvement of respiratory epithelial cells. CONCLUSIONS Our findings demonstrate a novel mode of action (MOA) for silica-induced DNA damage and mutagenic double strand breaks in airway epithelial cells. This MOA seems independent of particle uptake and of an involvement of macrophages. Our study might help defining models for estimating exposure levels without DNA damaging effects.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Johan Högberg
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Mikael Adner
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Patricia Ramos-Ramírez
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden
| | - Huiyuan Zheng
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-17177, Stockholm, Sweden.
| |
Collapse
|
25
|
Zhao H, Jiang Z, Lv R, Li X, Xing Y, Gao Y, Lv D, Si Y, Wang J, Li J, Zhao X, Cai L. Transcriptome profile analysis reveals a silica-induced immune response and fibrosis in a silicosis rat model. Toxicol Lett 2020; 333:42-48. [PMID: 32721576 DOI: 10.1016/j.toxlet.2020.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/31/2022]
Abstract
Silicosis is a type of pneumoconiosis caused by the inhalation of silica dust. It is characterized by inflammation and fibrosis of the lung. Although many studies have reported that crystalline silica-inhalation into the lung initiates the immune response, activating effector cells and triggering the inflammatory cascade with subsequent elaboration of the extracellular matrix and fibrosis, the mechanism of silicosis pathogenesis remains unclear. In the present study, we established a silica inhalation-induced silicosis rat model validated by histological and cytokine analyses. RNA-seq and bioinformatic analyses showed that 600 genes were upregulated and 537 genes were downregulated in the silica-treated group. GO enrichment analysis indicates that these differentially expressed genes are enriched in several biological processes including immune response and organism remodeling. KEGG enrichment analysis showed that 53 enriched pathways were mainly associated with human diseases, immune response, signal transduction, and fibrosis process. Since alternative splicing of pre-mRNAs is also essential for the regulation of gene expression, we identified several alternative pre-mRNA splicing events in the fibrotic process. This study will provide a foundation to understand the molecular mechanism of the pulmonary fibrosis caused by silica.
Collapse
Affiliation(s)
- Hongyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Zhiyan Jiang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Runchao Lv
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Xue Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yongqiang Xing
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou, 014010, China
| | - Da Lv
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Yangming Si
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jingyan Wang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Jun Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Xiujuan Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Lu Cai
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China; Inner Mongolia Key Laboratory of Functional Genome Bioinformatics, Inner Mongolia University of Science and Technology, Baotou, 014010, China.
| |
Collapse
|
26
|
Thongtip S, Siviroj P, Prapamontol T, Deesomchok A, Wisetborisut A, Nangola S, Khacha-ananda S. A suitable biomarker of effect, club cell protein 16, from crystalline silica exposure among Thai stone-carving workers. Toxicol Ind Health 2020; 36:287-296. [DOI: 10.1177/0748233720920137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Exposure to respirable crystalline silica (RCS) reportedly induces chronic lung injury. We investigated the association between RCS exposure and two biomarkers of the effect, plasma club cell protein 16 (CC16) and heme oxygenase-1 (HO-1) levels, in stone-carving workers. Fifty-seven exposed workers (EWs) and 20 unexposed workers (UWs) were enrolled onto the study. Cumulative exposure to RCS was individually estimated using a filter-based gravimetric method. The plasma CC16 and HO-1 levels were determined using commercial kits. The 8-h time-weighted average for RCS concentration in the EW was significantly greater than this concentration in the UW ( p < 0.001). The health risk characterization for RCS exposure expressed as a hazard quotient (HQ) indicated that crystalline silica might be a risk factor where there is chronic exposure (HQ = 4.48). The EW group presented a significant decrease in CC16 and an increase in HO-1 levels in comparison to the UW group ( p < 0.001). In addition, we found a significant association between RCS concentration and plasma CC16 only. Therefore, our findings representing a significant decrease in CC16 in the plasma of stone-carving workers and this biological marker were significantly associated with RCS concentration. Our data indicated that CC16 might be a suitable biomarker to use to predict the health risk to stone-carving workers of exposure to RCS.
Collapse
Affiliation(s)
- Sakesun Thongtip
- Department of Environmental Health, Faculty of Medicine, University of Phayao, Phayao, Thailand
| | - Penprapa Siviroj
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Athavudh Deesomchok
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anawat Wisetborisut
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sawitree Nangola
- Department of Clinical Immunology and Transfusion Sciences, Faculty of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Supakit Khacha-ananda
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
27
|
Xiao X, Zhang J, Wang H, Han X, Ma J, Ma Y, Luan H. Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:135292. [PMID: 32019003 DOI: 10.1016/j.scitotenv.2019.135292] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 05/06/2023]
Abstract
Coal production and utilization are recognized as two principal sources of potentially toxic elements in the environment. Here the published literature (2008-2018) was searched to collect data on As, Ni, Cd, Cu, Cr, Hg, Pb and Zn concentrations in soils near different types of coal industrial areas such as coal mines, thermal power plants, coal chemical plants, coal mining cities and coal waster piles. The contamination levels of soils and associated health risks were assessed using global reference materials and multiple contamination indices. The results revealed that average concentrations of potentially toxic elements varied widely, yet most of them exceeded global averages in background soils and upper continental crust concentrations. Spatial distribution analysis suggested the concentrations of potentially toxic elements varied according to coalification and combustion conditions. Higher concentrations were found in Southeast Asia, South Europe, and North Africa compared with other regions. Assessment of the geoaccumulation index revealed that contamination levels of Cd and Hg were higher than those of other elements. In particular, Ni, Cd, Zn, and Hg were most likely to accumulate in soils near coal mining areas, while Cd and Hg tended to accumulate near coal chemical plants. Regarding non-carcinogenic risks, oral ingestion was the major pathway of exposure to potentially toxic elements in coal industry-associated soils, followed by dermal contact and inhalation. Tolerable non-carcinogenic risk of potentially toxic elements and relatively high carcinogenic risks of As were observed. Children were most vulnerable to non-carcinogenic risks, while the carcinogenic risks estimated for adult and children populations were similar. Accordingly, As should be designated as top candidates for priority control to protect human health in the vicinity of coal industry-associated areas. This study provides timely information for developing control and management strategies to reduce soil contamination by potentially toxic elements in different types of coal industrial areas.
Collapse
Affiliation(s)
- Xin Xiao
- Jiangsu Key Laboratory of Resources and Environmental Information Engineering, Xuzhou, Jiangsu 221116, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Jixiong Zhang
- School of Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Hui Wang
- Jiangsu Key Laboratory of Resources and Environmental Information Engineering, Xuzhou, Jiangsu 221116, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| | - Xiaoxun Han
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Jing Ma
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Yu Ma
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Huijun Luan
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
28
|
Scalia Carneiro AP, Algranti E, Chérot‐Kornobis N, Silva Bezerra F, Tibiriça Bon AM, Felicidade Tomaz Braz N, Soares Souza DM, Paula Costa G, Bussacos MA, Paula Alves Bezerra OM, Talvani A. Inflammatory and oxidative stress biomarkers induced by silica exposure in crystal craftsmen. Am J Ind Med 2020; 63:337-347. [PMID: 31953962 DOI: 10.1002/ajim.23088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Identification of biomarkers associated with the diagnosis and prognosis of silicosis would be highly advantageous in the clinical setting. The aim of this study is to evaluate inflammatory and oxidative stress biomarkers in subjects exposed to silica. METHODS A cross-sectional study of crystal craftsmen currently (n = 34) or formerly (n = 35) exposed and a group of nonexposed subjects (n = 12) was performed. Personal respirable dust samples were collected. Plasma inflammatory mediators (bone morphogenetic protein- BMP2 and chemokines CXCL16, and CCL5), oxidative stress enzymes (thiobarbituric acid reactive substances [TBARs] and superoxide dismutase [SOD]), and nitrite (NO2 - ) were analyzed in parallel with nitric oxide in exhaled breath (FeNO). RESULTS Being currently or formerly exposed to silica was related to increased levels of CXCL16 and TBARs. Currently, exposed subjects showed decreased levels of SOD. Thirty-seven craftsmen with silicosis (26 formerly and 11 currently exposed) showed higher levels of CXCL16, which was positively associated with the radiological severity of silicosis. Compared with the nonexposed, subjects with silicosis had higher levels of TBARs and those with complicated silicosis had lower levels of SOD. In multivariate analysis, higher levels of CXCL16 were associated with exposure status and radiological severity of silicosis. Smoking was not a confounder. FeNO did not distinguish between the exposure status and the presence of silicosis. CONCLUSION CXCL16 emerged as a potential biomarker that could distinguish both silica exposure and silicosis. TBARs were elevated in exposed individuals. However, their clinical applications demand further investigation in follow-up studies of representative samples.
Collapse
Affiliation(s)
- Ana Paula Scalia Carneiro
- Workers' Health Division of the Clinics Hospital of Federal University of Minas GeraisBelo Horizonte Brazil
| | | | | | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology/DECBIFederal University of Ouro PretoOuro Preto Minas Gerais Brazil
| | | | - Nayara Felicidade Tomaz Braz
- Interdisciplinary Laboratory for Medical Research, Department of Neuroscience, School of MedicineFederal University of Minas GeraisBelo Horizonte Brazil
| | | | - Guilherme Paula Costa
- Laboratory of Immunobiology of Inflammation/DECBIFederal University of Ouro PretoOuro Preto Brazil
| | | | - Olívia Maria Paula Alves Bezerra
- School of Medicine, Department of Family Medicine, Mental and Collective HealthFederal University of Ouro PretoOuro Preto Minas Gerais Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation/DECBIFederal University of Ouro PretoOuro Preto Brazil
| |
Collapse
|
29
|
Mack SM, Madl AK, Pinkerton KE. Respiratory Health Effects of Exposure to Ambient Particulate Matter and Bioaerosols. Compr Physiol 2019; 10:1-20. [PMID: 31853953 PMCID: PMC7553137 DOI: 10.1002/cphy.c180040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers have been studying the respiratory health effects of ambient air pollution for more than 70 years. While air pollution as a whole can include gaseous, solid, and liquid constituents, this article focuses only on the solid and liquid fractions, termed particulate matter (PM). Although PM may contain anthropogenic, geogenic, and/or biogenic fractions, in this article, particles that originate from microbial, fungal, animal, or plant sources are distinguished from PM as bioaerosols. Many advances have been made toward understanding which particle and exposure characteristics most influence deposition and clearance processes in the respiratory tract. These characteristics include particle size, shape, charge, and composition as well as the exposure concentration and dose rate. Exposure to particles has been directly associated with the exacerbation and, under certain circumstances, onset of respiratory disease. The circumstances of exposure leading to disease are dependent on stressors such as human activity level and changing particle composition in the environment. Historically, researchers assumed that bioaerosols were too large to be inhaled into the deep lung, and thus, not applicable for study in conjunction with PM2.5 (the 2.5-μm and below size fraction that can reach the deep lung); however, this concept is beginning to be challenged. While there is extensive research on the health effects of PM and bioaerosols independent of each other, only limited work has been performed on their coexposure. Studying these two particle types as dual stressors to the respiratory system may aid in more thoroughly understanding the etiology of respiratory injury and disease. © 2020 American Physiological Society. Compr Physiol 10:1-20, 2020.
Collapse
Affiliation(s)
- Savannah M. Mack
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Amy K. Madl
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| |
Collapse
|
30
|
Upaassana VT, Ghosh S, Chakraborty A, Birch ME, Joseph P, Han J, Ku BK, Ahn CH. Highly Sensitive Lab on a Chip (LOC) Immunoassay for Early Diagnosis of Respiratory Disease Caused by Respirable Crystalline Silica (RCS). Anal Chem 2019; 91:6652-6660. [PMID: 31012299 DOI: 10.1021/acs.analchem.9b00582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Respirable crystalline silica (RCS) produced in mining and construction industries can cause life-threatening diseases such as silicosis, lung cancer, and chronic obstructive pulmonary disease (COPD). These diseases could be more effectively treated and prevented if RCS-related biomarkers were identified and measured at an early stage of disease progression, which makes development of a point of care test (POCT) platform extremely desirable for early diagnosis. In this work, a new, highly sensitive lab on a chip (LOC) immunoassay has been designed, developed, and characterized for tumor necrosis factor α (TNF-α), a protein biomarker that causes lung inflammation due to RCS exposure. The designed LOC device is composed of four reservoirs for sample, enzyme conjugated detection antibody, wash buffer, and chemiluminescence substrate in liquid form, along with three spiral reaction chambers for test, positive control, and negative control. All reservoirs and spiral microchannels were connected in series and designed to perform sequential delivery of immunoassay reagents with minimal user intervention. The developed LOC measured TNF-α concentrations as low as 16 pg/mL in plasma from RCS-exposed rats and also had a limit of detection (LOD) of 0.5 pg/mL in spiked artificial serum. In addition, the analysis time was drastically reduced to about 30 min, as opposed to hours in conventional methods. Successful implementation of a highly sensitive, chemiluminescence-based immunoassay on a preloaded LOC with proper quality control, as reported in this work, can pave the way toward developing a new rapid POCT platform for in-field clinical diagnosis.
Collapse
Affiliation(s)
- V Thiyagarajan Upaassana
- Microsystems and BioMEMS Laboratory, Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Sthitodhi Ghosh
- Microsystems and BioMEMS Laboratory, Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Atreyee Chakraborty
- Microsystems and BioMEMS Laboratory, Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - M Eileen Birch
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) , Division of Applied Research and Technology , 1090 Tusculum Avenue , Cincinnati , Ohio 45226 , United States
| | - Pius Joseph
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) , Health Effects Laboratory Division , 1095 Willowdale Road , Morgantown , West Virginia 26505 , United States
| | - Jungyoup Han
- Mico BioMed USA Inc. , 10999 Reed Hartman Highway , STE 309C, Cincinnati , Ohio 45242 , United States
| | - Bon Ki Ku
- Centers for Disease Control and Prevention (CDC), National Institute for Occupational Safety and Health (NIOSH) , Division of Applied Research and Technology , 1090 Tusculum Avenue , Cincinnati , Ohio 45226 , United States
| | - Chong H Ahn
- Microsystems and BioMEMS Laboratory, Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| |
Collapse
|
31
|
Konečný P, Ehrlich R, Gulumian M, Jacobs M. Immunity to the Dual Threat of Silica Exposure and Mycobacterium tuberculosis. Front Immunol 2019; 9:3069. [PMID: 30687311 PMCID: PMC6334662 DOI: 10.3389/fimmu.2018.03069] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/11/2018] [Indexed: 01/28/2023] Open
Abstract
Exposure to silica and the consequent development of silicosis are well-known health problems in countries with mining and other dust producing industries. Apart from its direct fibrotic effect on lung tissue, chronic and immunomodulatory character of silica causes susceptibility to tuberculosis (TB) leading to a significantly higher TB incidence in silica-exposed populations. The presence of silica particles in the lung and silicosis may facilitate initiation of tuberculous infection and progression to active TB, and exacerbate the course and outcome of TB, including prognosis and survival. However, the exact mechanisms of the involvement of silica in the pathological processes during mycobacterial infection are not yet fully understood. In this review, we focus on the host's immunological response to both silica and Mycobacterium tuberculosis, on agents of innate and adaptive immunity, and particularly on silica-induced immunological modifications in co-exposure that influence disease pathogenesis. We review what is known about the impact of silica and Mycobacterium tuberculosis or their co-exposure on the host's immune system, especially an impact that goes beyond an exclusive focus on macrophages as the first line of the defense. In both silicosis and TB, acquired immunity plays a major role in the restriction and/or elimination of pathogenic agents. Further research is needed to determine the effects of silica in adaptive immunity and in the pathogenesis of TB.
Collapse
Affiliation(s)
- Petr Konečný
- Centre for Environmental and Occupational Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa.,Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rodney Ehrlich
- Centre for Environmental and Occupational Health, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Mary Gulumian
- National Health Laboratory Service, Department of Toxicology and Biochemistry, National Institute for Occupational Health, Johannesburg, South Africa.,Division of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa.,National Health Laboratory Service, Johannesburg, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| |
Collapse
|
32
|
Abstract
The purpose of this commentary is to bring the neglected phenomenon of subradiological silicosis and its implications to the attention of readers. We define subradiological silicosis as silicosis detectable on pathological examination of lung tissue but not visible radiologically. For extent of the phenomenon, we draw on a study using a large South African autopsy database of deceased miners and chest radiographs taken in life. At an International Labour Organization threshold of >1/0 only 43% of all pathologically detected cases were detected on chest radiograph, and only 62% of those classified on pathology as "moderate or marked" silicosis. Subradiological silicosis has a number of implications for research and practice: for dose-response studies of silicosis; for studies of the relationship between silica and conditions such as tuberculosis, lung cancer, and autoimmune disease, including the mechanistic role of fibrogenesis; for prognostication in silica exposed workers; and for workers' compensation criteria.
Collapse
Affiliation(s)
- Rodney Ehrlich
- Centre for Occupational and Environmental Health Research; School of Public Health and Family Medicine; University of Cape Town; Cape Town South Africa
| | - Jill Murray
- School of Public Health; University of the Witwatersrand; Johannesburg South Africa
| | - David Rees
- National Institute for Occupational Health; and School of Public Health; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
33
|
Mandrioli D, Schlünssen V, Ádám B, Cohen RA, Colosio C, Chen W, Fischer A, Godderis L, Göen T, Ivanov ID, Leppink N, Mandic-Rajcevic S, Masci F, Nemery B, Pega F, Prüss-Üstün A, Sgargi D, Ujita Y, van der Mierden S, Zungu M, Scheepers PTJ. WHO/ILO work-related burden of disease and injury: Protocol for systematic reviews of occupational exposure to dusts and/or fibres and of the effect of occupational exposure to dusts and/or fibres on pneumoconiosis. ENVIRONMENT INTERNATIONAL 2018; 119:174-185. [PMID: 29958118 DOI: 10.1016/j.envint.2018.06.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/20/2018] [Accepted: 06/06/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND The World Health Organization (WHO) and the International Labour Organization (ILO) are developing a joint methodology for estimating the national and global work-related burden of disease and injury (WHO/ILO joint methodology), with contributions from a large network of experts. In this paper, we present the protocol for two systematic reviews of parameters for estimating the number of deaths and disability-adjusted life years attributable to pneumoconiosis from occupational exposure to dusts and/or fibres, to inform the development of the WHO/ILO joint methodology. OBJECTIVES We aim to systematically review studies on occupational exposure to dusts and/or fibres (Systematic Review 1) and systematically review and meta-analyse estimates of the effect of occupational exposure to dusts and/or fibres on pneumoconiosis (Systematic Review 2), applying the Navigation Guide systematic review methodology as an organizing framework. DATA SOURCES Separately for Systematic Reviews 1 and 2, we will search electronic academic databases for potentially relevant records from published and unpublished studies, including Medline, EMBASE, Web of Science and CISDOC. We will also search electronic grey literature databases, Internet search engines and organizational websites; hand-search reference list of previous systematic reviews and included study records; and consult additional experts. STUDY ELIGIBILITY AND CRITERIA We will include working-age (≥15 years) study participants in the formal and informal economy in any WHO and/or ILO Member State but exclude children (<15 years) and unpaid domestic workers. Eligible risk factors will be dusts and/or fibres from: (i) asbestos; (ii) silica; and/or (iii) coal (defined as pure coal dust and/or dust from coal mining). Included outcomes will be (i) asbestosis; (ii) silicosis; (iii) coal worker pneumoconiosis; and (iv) unspecified pneumoconiosis. For Systematic Review 1, we will include quantitative prevalence studies of occupational exposure to dusts and/or fibres (i.e. no versus any exposure) stratified by country, sex, age and industrial sector or occupation. For Systematic Review 2, we will include randomized controlled trials, cohort studies, case-control studies and other non-randomized intervention studies with an estimate of any occupational exposure to dusts and/or fibres on the prevalence of, incidence of or mortality due to pneumoconiosis, compared with the theoretical minimum risk exposure level of no exposure. STUDY APPRAISAL AND SYNTHESIS METHODS At least two review authors will independently screen titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, followed by extraction of data from qualifying studies. At least two review authors will assess risk of bias and the quality of evidence, using the most suited tools currently available. For Systematic Review 2, if feasible, we will combine relative risks using meta-analysis. We will report results using the guidelines for accurate and transparent health estimates reporting (GATHER) for Systematic Review 1 and the preferred reporting items for systematic reviews and meta-analyses guidelines (PRISMA) for Systematic Review 2. PROSPERO REGISTRATION NUMBER CRD42018084131.
Collapse
Affiliation(s)
- Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy.
| | - Vivi Schlünssen
- Aarhus University, Aarhus, Denmark; National Research Center for the Working Environment, Copenhagen, Denmark.
| | | | - Robert A Cohen
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Claudio Colosio
- Department of Health Sciences, University of Milano, Milano, Italy; International Centre for Rural Health, San Paolo Hospital, Milano, Italy.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | - Thomas Göen
- University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Ivan D Ivanov
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland.
| | - Nancy Leppink
- Labour Administration, Labour Inspection and Occupational Safety and Health Branch, International Labour Organization, Geneva, Switzerland.
| | | | - Federica Masci
- Department of Health Sciences, University of Milano, Milano, Italy.
| | | | - Frank Pega
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland.
| | - Annette Prüss-Üstün
- Department of Public Health, Environmental and Social Determinants of Health, World Health Organization, Geneva, Switzerland.
| | | | - Yuka Ujita
- Labour Administration, Labour Inspection and Occupational Safety and Health Branch, International Labour Organization, Geneva, Switzerland.
| | | | - Muzimkhulu Zungu
- National Institute for Occupational Health, South Africa, Johannesburg, Gauteng Province, South Africa.
| | - Paul T J Scheepers
- Radboud Institute for Health Sciences, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
34
|
Cortes-Ramirez J, Naish S, Sly PD, Jagals P. Mortality and morbidity in populations in the vicinity of coal mining: a systematic review. BMC Public Health 2018; 18:721. [PMID: 29890962 PMCID: PMC5996462 DOI: 10.1186/s12889-018-5505-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/25/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Evidence of the association of coal mining with health outcomes such as increased mortality and morbidity in the general population has been provided by epidemiological studies in the last 25 years. Given the diverse sources of data included to investigate different health outcomes in the exposed populations, the International Classification of Diseases (ICD) can be used as a single classification standard to compare the findings of studies conducted in different socioeconomic and geographic contexts. The ICD classifies diagnoses of diseases and other disorders as codes organized by categories and chapters. OBJECTIVES Identify the ICD codes found in studies of morbidity and/or mortality in populations resident or in proximity of coal mining and assess the methods of these studies conducting a systematic review. METHODS A systematic database search of PubMed, EMBASE and Scopus following the PRISMA protocol was conducted to assess epidemiological studies from 1990 to 2016. The health outcomes were mapped to ICD codes and classified by studies of morbidity and/or mortality, and the categories and chapters of the ICD. RESULTS Twenty-eight epidemiological studies with ecological design from the USA, Europe and China were included. The exposed populations had increased risk of mortality and/or morbidity by 78 ICD diagnosis categories and 9 groups of ICD categories in 10 chapters of the ICD: Neoplasms, diseases of the circulatory, respiratory and genitourinary systems, metabolic diseases, diseases of the eye and the skin, perinatal conditions, congenital and chromosomal abnormalities, and external causes of morbidity. Exposed populations had non-increased risk of 9 ICD diagnosis categories of diseases of the genitourinary system, and prostate cancer. CONCLUSIONS There is consistent evidence of the association of coal mining with a wide spectrum of diseases in populations resident or in proximity of the mining activities. The methods of the studies included in this review can be integrated with individual-level and longitudinal studies to provide further evidence of the exposure pathways linked to increased risk in the exposed populations.
Collapse
Affiliation(s)
- Javier Cortes-Ramirez
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia.
| | - Suchithra Naish
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter D Sly
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Paul Jagals
- Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Nardi J, Nascimento S, Göethel G, Gauer B, Sauer E, Fão N, Cestonaro L, Peruzzi C, Souza J, Garcia SC. Inflammatory and oxidative stress parameters as potential early biomarkers for silicosis. Clin Chim Acta 2018; 484:305-313. [PMID: 29860036 DOI: 10.1016/j.cca.2018.05.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/25/2023]
Abstract
Workers involved in mining activities are exposed to crystalline silica, which leads to constant pulmonary inflammatory reactions and severe oxidative damage, resulting in silicosis. In this work, we aimed to evaluate inflammatory and oxidative stress parameters as potential early biomarkers of effect to assess crystalline silica toxicity in workers who had occupational exposure during mining. We enrolled 38 workers exposed to crystalline silica (WECS), 24 individuals with silicosis (IWS), and 30 occupationally unexposed workers (OUW), a total of 92 participants. The WECS were divided into 2 groups, according to the time of exposure: 19 workers with 1-15 years of occupational exposure (WECS I) and 19 workers with >16 years of occupational exposure (WECS II). The inflammatory parameters assessed were L-selectin, β-2 integrin, and intercellular adhesion molecule-1 (ICAM-1) surface protein expression in lymphocytes and monocytes, complement C3 and C4, high sensitivity C-reactive protein (hsCRP), and adenosine deaminase (ADA) in serum. Plasma levels of malondialdehyde (MDA) and serum levels of vitamin C were determined as biomarkers of oxidative stress. Biochemical and hematological parameters were also investigated. L-selectin surface protein expression was significantly decreased in the WECS II group (p < 0.05), indicating the importance of this immune system component as a potential marker of crystalline-silica-induced toxicity. The MDA levels were significantly increased in the WECS I, WECS II, and IWS groups compared to the OUW group (p < 0.05). Vitamin C levels were decreased, while C3, hsCRP, ADA, and aspartate aminotransferase (AST) levels were increased in the IWS group compared to the OUW group (p < 0.05). Glucose and urea levels were significantly higher in the WECS I, II, and IWS groups compared to the OUW group (p < 0.05). Negative partial association was found between L-selectin and time of exposure (p < 0.001), supporting the relevance of this biomarker evaluation in long-term exposure to crystalline silica. Significant associations were also observed among inflammatory and oxidative stress biomarkers. Therefore, our results demonstrated the relevance of L-selectin as a potential peripheral biomarker for monitoring crystalline silica-induced toxicity in miners after chronic exposure, before silicosis has developed. However, more studies are necessary for better understanding of the use L-selectin as an early biomarker in exposed workers.
Collapse
Affiliation(s)
- Jessica Nardi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sabrina Nascimento
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Nuryan Fão
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Larissa Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caroline Peruzzi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jorge Souza
- Unidade Regional de Saúde do Trabalhador, Ametista do Sul, RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
36
|
Mohammadi H, Farhang Dehghan S, Tahamtan A, Golbabaei F. Evaluation of potential biomarkers of exposure to crystalline silica: A case study in an insulator manufacturer. Toxicol Ind Health 2018; 34:491-498. [PMID: 29734927 DOI: 10.1177/0748233718770073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to examine the potential determinants of serum neopterin, malondialdehyde (MDA), and erythrocyte glutathione (GSH) as potential markers of oxidative stress, resulting in cellular immune response to inhaled silica particles. This descriptive analytical study was conducted on two groups of exposed workers ( n = 55) and unexposed office workers ( n = 38) of an insulator manufacturing plant. The sampling of airborne silica in the breathing zone of participants was done on the basis of the National Institute for Occupational Safety and Health Method 7601. The blood samples were analyzed by high performance liquid chromatography to determine the level of serum neopterin. A ZellBio GmbH assay kit was used for the quantitative assays of GSH and MDA on the basis of the colorimetric assay. The results of this study show that the measurements of serum neopterin, MDA, and GSH can be considered as potential biological markers of silica exposure for undertaking further comprehensive studies in this area.
Collapse
Affiliation(s)
- Hamzeh Mohammadi
- 1 Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Farhang Dehghan
- 2 Department of Occupational Health, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Tahamtan
- 3 Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,4 Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farideh Golbabaei
- 5 Department of Occupational Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Mayeux JM, Escalante GM, Christy JM, Pawar RD, Kono DH, Pollard KM. Silicosis and Silica-Induced Autoimmunity in the Diversity Outbred Mouse. Front Immunol 2018; 9:874. [PMID: 29755467 PMCID: PMC5932595 DOI: 10.3389/fimmu.2018.00874] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/09/2018] [Indexed: 12/02/2022] Open
Abstract
Epidemiological studies have confidently linked occupational crystalline silica exposure to autoimmunity, but pathogenic mechanisms and role of genetic predisposition remain poorly defined. Although studies of single inbred strains have yielded insights, understanding the relationships between lung pathology, silica-induced autoimmunity, and genetic predisposition will require examination of a broad spectrum of responses and susceptibilities. We defined the characteristics of silicosis and autoimmunity and their relationships using the genetically heterogeneous diversity outbred (DO) mouse population and determined the suitability of this model for investigating silica-induced autoimmunity. Clinically relevant lung and autoimmune phenotypes were assessed 12 weeks after a transoral dose of 0, 5, or 10 mg crystalline silica in large cohorts of DO mice. Data were further analyzed for correlations, hierarchical clustering, and sex effects. DO mice exhibited a wide range of responses to silica, including mild to severe silicosis and importantly silica-induced systemic autoimmunity. Strikingly, about half of PBS controls were anti-nuclear antibodies (ANA) positive, however, few had disease-associated specificities, whereas most ANAs in silica-exposed mice showed anti-ENA5 reactivity. Correlation and hierarchical clustering showed close association of silicosis, lung biomarkers, and anti-ENA5, while other autoimmune characteristics, such as ANA and glomerulonephritis, clustered separately. Silica-exposed males had more lung inflammation, bronchoalveolar lavage fluid cells, IL-6, and autoantibodies. DO mice are susceptible to both silicosis and silica-induced autoimmunity and show substantial individual variations reflecting their genetic diverseness and the importance of predisposition particularly for autoimmunity. This model provides a new tool for deciphering the relationship between silica exposure, genes, and disease.
Collapse
Affiliation(s)
- Jessica M Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Gabriela M Escalante
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Joseph M Christy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Rahul D Pawar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Dwight H Kono
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| | - Kenneth M Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
38
|
MiRNA-Regulated Changes in Extracellular Matrix Protein Levels Associated With a Severe Decline in Lung Function Induced by Silica Dust. J Occup Environ Med 2018; 60:316-321. [DOI: 10.1097/jom.0000000000001268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Lee JS, Shin JH, Lee Y, Baek J, Choi BS. The Serum Levels of LD and CRP in Patients of Coal Workers' Pneumoconiosis with Chronic Obstructive Pulmonary Disease. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.3.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jong Seong Lee
- Occupational Lung Diseases Research Institute, Korea Workers’ Compensation & Welfare Service, Incheon, Korea
| | - Jae Hoon Shin
- Occupational Lung Diseases Research Institute, Korea Workers’ Compensation & Welfare Service, Incheon, Korea
| | - YouLim Lee
- Occupational Lung Diseases Research Institute, Korea Workers’ Compensation & Welfare Service, Incheon, Korea
| | - JinEe Baek
- Occupational Lung Diseases Research Institute, Korea Workers’ Compensation & Welfare Service, Incheon, Korea
| | - Byung-Soon Choi
- Occupational Lung Diseases Research Institute, Korea Workers’ Compensation & Welfare Service, Incheon, Korea
| |
Collapse
|
40
|
TAK1 inhibition attenuates both inflammation and fibrosis in experimental pneumoconiosis. Cell Discov 2017; 3:17023. [PMID: 28698801 PMCID: PMC5504492 DOI: 10.1038/celldisc.2017.23] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
Pneumoconiosis, caused by inhalation of mineral dusts, is a major occupational disease worldwide. Currently, there are no effective drugs owing to a lack of potential therapeutic targets during either the inflammation or fibrosis molecular events in pneumoconiosis. Here, we performed microarrays to identify aberrantly expressed genes in the above molecular events in vitro and found a hub gene transforming growth factor-β-activated kinase 1 (TAK1), which was highly expressed and activated in pneumoconiosis patients as well as silica-exposed rats with experimental pneumoconiosis. Genetic modulation of TAK1 by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9, RNA interference and overexpression indicated the important role of TAK1 in both inflammation and fibrosis in experimental pneumoconiosis. To achieve pharmacological TAK1 inhibition, we virtually screened out a natural product resveratrol, which targeted TAK1 at both N161 and A107 residues, and significantly inhibited TAK1 activation to attenuate inflammation and fibrosis in vitro. Consistently, in vivo prevention and intervention studies showed that resveratrol could inhibit pulmonary inflammation and fibrosis in silica-exposed rats.
Collapse
|
41
|
Anlar HG, Bacanli M, İritaş S, Bal C, Kurt T, Tutkun E, Hinc Yilmaz O, Basaran N. Effects of Occupational Silica Exposure on OXIDATIVE Stress and Immune System Parameters in Ceramic Workers in TURKEY. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:688-696. [PMID: 28524802 DOI: 10.1080/15287394.2017.1286923] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silica is the second most common element after oxygen, and therefore, exposures to crystalline silica dust occur in a large variety of occupations such as metal foundries, constructions, and ceramic, quarry, and pottery industries. Since crystalline silica exposure has been linked with silicosis, lung cancer, and other pulmonary diseases, adverse effect attributed to this element has be a cause for concern worldwide. Silica dust exposure in workers is still considered to be important health problem especially in developing countries. The aim of the study was to investigate the effects of occupational silica exposure on oxidative stress parameters including the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and levels of total glutathione (GSH) and thiobarbituric acid reactive substance (TBARS) as well as immune system parameters such as interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, and IL-10 and tumor necrosis factor (TNF)-α in Turkish ceramic workers. In this study, nearly 50% of Turkish ceramic workers were diagnosed with silicosis. Eighty-four percent of these silicotic workers were found to present with profusion category 1 silicosis, whereas controls (n = 81) all displayed normal chest radiographs. Data demonstrated a significant decrease in levels of GSH and activities of CAT, SOD, and GPx, but a significant increase in MDA levels and activity of GR in all workers. Further, workers possessed significantly higher levels of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, and TNF-α. These observations suggest that ceramic workers may have impaired antioxidant/oxidant status and activated immune system indicative of inflammatory responses.
Collapse
Affiliation(s)
- Hatice Gul Anlar
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
- b Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Çukurova University , Adana , Turkey
| | - Merve Bacanli
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| | - Servet İritaş
- c The Council of Forensic Medicine , Branch Office of Ankara , Ankara , Turkey
| | - Ceylan Bal
- d Yıldırım Beyazıt University, Faculty of Medicine , Department of Medical Biochemistry , Ankara , Turkey
| | - Türker Kurt
- e Faculty of Education , Gazi University , Ankara , Turkey
| | - Engin Tutkun
- f Faculty of Medicine, Department of Public Health , Bozok University , Yozgat , Turkey
| | - O Hinc Yilmaz
- g Ankara Occupational Diseases Hospital Department of Toxiocology Ankara , Turkey
| | - Nursen Basaran
- a Department of Pharmaceutical Toxicology , Faculty of Pharmacy, Hacettepe University , Ankara , Turkey
| |
Collapse
|
42
|
Perret JL, Plush B, Lachapelle P, Hinks TSC, Walter C, Clarke P, Irving L, Brady P, Dharmage SC, Stewart A. Coal mine dust lung disease in the modern era. Respirology 2017; 22:662-670. [PMID: 28370783 DOI: 10.1111/resp.13034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 12/15/2022]
Abstract
Coal workers' pneumoconiosis (CWP), as part of the spectrum of coal mine dust lung disease (CMDLD), is a preventable but incurable lung disease that can be complicated by respiratory failure and death. Recent increases in coal production from the financial incentive of economic growth lead to higher respirable coal and quartz dust levels, often associated with mechanization of longwall coal mining. In Australia, the observed increase in the number of new CWP diagnoses since the year 2000 has necessitated a review of recommended respirable dust exposure limits, where exposure limits and monitoring protocols should ideally be standardized. Evidence that considers the regulation of engineering dust controls in the mines is lacking even in high-income countries, despite this being the primary preventative measure. Also, it is a global public health priority for at-risk miners to be systemically screened to detect early changes of CWP and to include confirmed patients within a central registry; a task limited by financial constraints in less developed countries. Characteristic X-ray changes are usually categorized using the International Labour Office classification, although future evaluation by low-dose HRCT) chest scanning may allow for CWP detection and thus avoidance of further exposure, at an earlier stage. Preclinical animal and human organoid-based models are required to explore potential re-purposing of anti-fibrotic and related agents with potential efficacy. Epidemiological patterns and the assessment of molecular and genetic biomarkers may further enhance our capacity to identify susceptible individuals to the inhalation of coal dust in the modern era.
Collapse
Affiliation(s)
- Jennifer L Perret
- Lung Health Research Centre (LHRC), The University of Melbourne, Melbourne, Victoria, Australia.,Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia.,Institute for Breathing and Sleep (IBAS), Melbourne, Victoria, Australia
| | - Brian Plush
- PM10 Laboratories Pty Limited, Somersby, New South Wales, Australia.,Faculty of Engineering and Informational Sciences, The University of Wollongong, Wollongong, New South Wales, Australia
| | - Philippe Lachapelle
- Lung Health Research Centre (LHRC), The University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory Medicine and Sleep Disorders, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Timothy S C Hinks
- Lung Health Research Centre (LHRC), The University of Melbourne, Melbourne, Victoria, Australia.,Department for Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia.,Clinical and Experimental Sciences, University of Southampton, Southampton, UK.,Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton University Hospital, Southampton, UK
| | - Clare Walter
- Lung Health Research Centre (LHRC), The University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory Medicine and Sleep Disorders, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Philip Clarke
- Centre for Health Policy, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Louis Irving
- Lung Health Research Centre (LHRC), The University of Melbourne, Melbourne, Victoria, Australia.,Department of Respiratory Medicine and Sleep Disorders, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Pat Brady
- Pump Investments Pty Limited, Melbourne, Victoria, Australia
| | - Shyamali C Dharmage
- Lung Health Research Centre (LHRC), The University of Melbourne, Melbourne, Victoria, Australia.,Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alastair Stewart
- Lung Health Research Centre (LHRC), The University of Melbourne, Melbourne, Victoria, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Umbright C, Sellamuthu R, Roberts JR, Young SH, Richardson D, Schwegler-Berry D, McKinney W, Chen B, Gu JK, Kashon M, Joseph P. Pulmonary toxicity and global gene expression changes in response to sub-chronic inhalation exposure to crystalline silica in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1349-1368. [PMID: 29165057 DOI: 10.1080/15287394.2017.1384773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Exposure to crystalline silica results in serious adverse health effects, most notably, silicosis. An understanding of the mechanism(s) underlying silica-induced pulmonary toxicity is critical for the intervention and/or prevention of its adverse health effects. Rats were exposed by inhalation to crystalline silica at a concentration of 15 mg/m3, 6 hr/day, 5 days/week for 3, 6 or 12 weeks. Pulmonary toxicity and global gene expression profiles were determined in lungs at the end of each exposure period. Crystalline silica was visible in lungs of rats especially in the 12-week group. Pulmonary toxicity, as evidenced by an increase in lactate dehydrogenase (LDH) activity and albumin content and accumulation of macrophages and neutrophils in the bronchoalveolar lavage (BAL), was seen in animals depending upon silica exposure duration. The most severe histological changes, noted in the 12-week exposure group, consisted of chronic active inflammation, type II pneumocyte hyperplasia, and fibrosis. Microarray analysis of lung gene expression profiles detected significant differential expression of 38, 77, and 99 genes in rats exposed to silica for 3-, 6-, or 12-weeks, respectively, compared to time-matched controls. Among the significantly differentially expressed genes (SDEG), 32 genes were common in all exposure groups. Bioinformatics analysis of the SDEG identified enrichment of functions, networks and canonical pathways related to inflammation, cancer, oxidative stress, fibrosis, and tissue remodeling in response to silica exposure. Collectively, these results provided insights into the molecular mechanisms underlying pulmonary toxicity following sub-chronic inhalation exposure to crystalline silica in rats.
Collapse
Affiliation(s)
- Christina Umbright
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Rajendran Sellamuthu
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Jenny R Roberts
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Shih-Houng Young
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Diana Richardson
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Diane Schwegler-Berry
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Walter McKinney
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Bean Chen
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Ja Kook Gu
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Michael Kashon
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| | - Pius Joseph
- a Toxicology and Molecular Biology Branch, Health Effects Laboratory Division , National Institute for Occupational Safety and Health (NIOSH) , Morgantown , WV , USA
| |
Collapse
|
44
|
O’Keefe SJ, Feltis BN, Piva TJ, Turney TW, Wright PFA. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells. Nanotoxicology 2016; 10:1287-96. [DOI: 10.1080/17435390.2016.1206148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Sean J. O’Keefe
- School of Medical Sciences, and Nanosafe Australia, RMIT University, Bundoora, Victoria, Australia and
| | - Bryce N. Feltis
- School of Medical Sciences, and Nanosafe Australia, RMIT University, Bundoora, Victoria, Australia and
- Department of Materials Engineering, Monash University, Clayton, Victoria, Australia
| | - Terrence J. Piva
- School of Medical Sciences, and Nanosafe Australia, RMIT University, Bundoora, Victoria, Australia and
| | - Terence W. Turney
- Department of Materials Engineering, Monash University, Clayton, Victoria, Australia
| | - Paul F. A. Wright
- School of Medical Sciences, and Nanosafe Australia, RMIT University, Bundoora, Victoria, Australia and
| |
Collapse
|
45
|
Mohammadi H, Dehghan SF, Golbabaei F, Ansari M, Yaseri M, Roshani S, Divani R. Evaluation of Serum and Urinary Neopterin Levels as a Biomarker for Occupational Exposure to Crystalline Silica. Ann Med Health Sci Res 2016; 6:274-279. [PMID: 28503343 PMCID: PMC5414438 DOI: 10.4103/amhsr.amhsr_140_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Crystalline silica is a commonly used mineral in various industries and construction activities, and it is so important introducing potential biomarkers to identify early indicators of biological effects in its high-risk occupational exposures. Aim: The present study was aimed to assess the blood and urinary neopterin as an early biomarker of exposure in the workers of an insulator manufacturing plant who are exposed to crystalline silica. Subjects and Methods: This analytical descriptive study was done among two groups of exposed workers (n = 55) and unexposed office workers (n = 38) of an insulator manufacturing plant. Statistical software R was used to determine sample size and select the participants by random sampling among nonsmoker workers. Sampling of airborne silica in breathing zone of participants was done based on the National Institute for Occupational Safety and Health method 7601. The urinary and blood samples were collected and prepared for analysis by high-performance liquid chromatography to determine the level of urinary and serum neopterin. All of the statistical analyses were carried out using SPSS 22. Results: The airborne silica concentration was significantly different between two exposed and unexposed groups (P < 0.001, 0.27 [0.11] vs. 0.0028 [0.0006] mg/m3, respectively). The urinary neopterin in exposed group is significantly higher than the unexposed one (P < 0.001, 97.67 [30.24] vs. 55.52 [2.18] μmol/mol creatinine, respectively). Neopterin level of serum in exposed group is higher than the unexposed group, and there is a significant difference between them (P < 0.001, 6.90 [2.70] vs. 2.20 [1.20] nmol/l, respectively). The positive significant correlations were found between silica exposure concentration with urinary and serum neopterin (P < 0.001, r = 0.36 and 0.59, respectively). Conclusions: Considering the sensitively and easily measurement of neopterin in biological fluid and also the statistically significant positive relationships which were found between the airborne silica concentration and neopterin levels in the present study, the serum and urinary neopterin levels can be considered the potential biomarkers of silica exposure for doing further comprehensive studies in this area.
Collapse
Affiliation(s)
- H Mohammadi
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - S F Dehghan
- Department of Occupational Health, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - F Golbabaei
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Ansari
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Yaseri
- Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - S Roshani
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - R Divani
- Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Ji X, Wang L, Wu B, Han R, Han L, Wang T, Yang J, Ni C. Associations of MMP1, MMP2 and MMP3 Genes Polymorphism with Coal Workers' Pneumoconiosis in Chinese Han Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13901-12. [PMID: 26528997 PMCID: PMC4661622 DOI: 10.3390/ijerph121113901] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/19/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
Abstract
Coal workers’ pneumoconiosis (CWP) has been associated with abnormalities in the extracellular matrix remodeling, as well as aberrant matrix metalloproteinases (MMPs) in lung tissues. We investigated the association of three functional polymorphisms in MMP gene promoters (MMP1 rs1799750, MMP2 rs2285053 and MMP3 rs522616) with the risk of CWP. A total of 693 CWP cases and 690 controls were included in a case-control study. Genotype analysis was performed by the TaqMan method. Statistically significant differences were found in distributions of MMP3 rs522616 under a recessive model (p = 0.047) between CWP cases and controls. In the stratification analysis, individuals with MMP3 rs522616 GG genotype decreased the risk of CWP (adjusted OR = 0.72, 95% CI = 0.52–0.99) compared to those with AA/AG genotype obviously, particularly among subgroups of no smokers (adjusted OR = 0.64, 95% CI = 0.41–1.00). Furthermore, serum MMP3 protein levels measured with enzyme-linked immune-sorbent assay in the control group was significantly lower than that in the CWP groups (p = 0.02). Extremely lower MMP3 among subjects with the rs522616 GG or AG genotype compared with the AA genotype carriers (p < 0.05, p < 0.01 respectively) in the normal serum. These findings indicate that the MMP3 rs522616 polymorphism may contribute to the etiology of CWP in the Chinese population and MMP3 might be a potential diagnostic biomarker for CWP, additional independent studies are warranted to validate our findings in different populations as well as in a larger series.
Collapse
Affiliation(s)
- Xiaoming Ji
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lijuan Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Baiqun Wu
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Ruhui Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lei Han
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210029, China.
| | - Ting Wang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jingjin Yang
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chunhui Ni
- Department of Occupational Medicine and Environmental Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
47
|
Combes RD, Balls M. A critical assessment of the scientific basis, and implementation, of regulations for the safety assessment and marketing of innovative tobacco-related products. Altern Lab Anim 2015; 43:251-90. [PMID: 26375889 DOI: 10.1177/026119291504300406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our scientific, logistical, ethical and animal welfare-related concerns about the latest US Food and Drug Administration (FDA) regulations for existing and so-called 'new' tobacco products, aimed at reducing harmful exposures, are explained. Such claims for sales in the USA now have to be based on a wide range of information, a key part of which will increasingly be data on safety and risk. One of the pathways to achieve marketing authorisation is to demonstrate substantial equivalence (SE) with benchmark products, called predicates. However, the regulations are insufficiently transparent with regard to: a) a rationale for the cut-off date for 'old' and 'new' products, and for exempting the former from regulation; b) the scientific validity and operation of SE; c) options for product labelling to circumvent SE; d) the experimental data required to support, and criteria to judge, a claim; and e) a strategy for risk assessment/management. Scientific problems related to the traditional animal methods used in respiratory disease and inhalation toxicology, and the use of quantitative comparators of toxicity, such as the No Observed Adverse Effect Level, are discussed. We review the advantages of relevant in vitro, mechanism-based, target tissue-oriented technologies, which an advisory report of the Institute of Medicine of the US National Academy of Sciences largely overlooked. These benefits include: a) the availability, for every major site in the respiratory tract, of organotypic human cell-based tissue culture systems, many of which are already being used by the industry; b) the accurate determination of concentrations of test materials received by target cells; c) methods for exposure to particulate and vapour phases of smoke, separately or combined; d) the ability to study tissue-specific biotransformation; and e) the use of modern, human-focused methodologies, unaffected by species differences. How data extrapolation, for risk assessment, from tissue culture to the whole animal, could be addressed, is also discussed. A cost (to animal welfare)-benefit (to society, including industry and consumers) analysis was conducted, taking into account the above information; the potential for animal suffering; the extensive data already available; the existence of other, less hazardous forms of nicotine delivery; the fact that much data will be generated solely for benchmarking; and that many smokers (especially nicotine-dependents) ignore health warnings. It is concluded that, in common with policies of several tobacco companies and countries, the use of laboratory animals for tobacco testing is very difficult, if not impossible, to justify. Instead, we propose and argue for an integrated testing scheme, starting with extensive chemical analysis of the ingredients and by-products associated with the use of tobacco products and their toxicity, followed by use of in vitro systems and early clinical studies (involving specific biomarkers) with weight-of-evidence assessments at each stage. Appropriate adjustment factors could be developed to enable concentration-response data obtained in vitro, with the other information generated by the strategy, to enable the FDA to meet its objectives. It is hoped that our intentionally provocative ideas will stimulate further debate on this contentious area of regulatory testing and public safety.
Collapse
|
48
|
Lee JS, Shin JH, Choi BS. Serum levels of IL-8 and ICAM-1 as biomarkers for progressive massive fibrosis in coal workers' pneumoconiosis. J Korean Med Sci 2015; 30:140-4. [PMID: 25653483 PMCID: PMC4310938 DOI: 10.3346/jkms.2015.30.2.140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/17/2014] [Indexed: 11/20/2022] Open
Abstract
Coal workers' pneumoconiosis (CWP) is characterized as a chronic inflammation of the lung associated with activation of macrophages and endothelial cells in the lung. The aim of the present study was to compare the levels of serum interleukin-8 (IL-8), macrophage inflammatory protein-1α (MIP-α), and intercellular adhesion molecule-1 (ICAM-1) as biomarkers for progressive massive fibrosis (PMF) in 106 subjects (27 non-CWP and 79 CWP patients). The levels of serum IL-8 (P<0.001) and ICAM-1 (P=0.001) of subjects with PMF were higher than those of non-CWP subjects. The IL-8 levels of PMF subjects were also higher than those of simple CWP subjects (P=0.003). Among the subjects without PMF, IL-8 levels in the subjects with International Labour Organization (ILO) category II or III were higher than those in the subjects with ILO category 0 (P=0.006) and with category I (P=0.026). These results suggest that high serum levels of IL-8 and ICAM-1, which are important as neutrophil attractants and adhesion molecules, are associated with PMF.
Collapse
Affiliation(s)
- Jong Seong Lee
- Occupational Lung Diseases Institute, Korea Workers' Compensation & Welfare Service, Incheon, Korea
| | - Jae Hoon Shin
- Occupational Lung Diseases Institute, Korea Workers' Compensation & Welfare Service, Incheon, Korea
| | - Byung-Soon Choi
- Occupational Lung Diseases Institute, Korea Workers' Compensation & Welfare Service, Incheon, Korea
| |
Collapse
|
49
|
Subchronic inhalation of coal dust particulate matter 10 induces bronchoalveolar hyperplasia and decreases MUC5AC expression in male Wistar rats. ACTA ACUST UNITED AC 2014; 66:383-9. [DOI: 10.1016/j.etp.2014.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/09/2014] [Accepted: 06/02/2014] [Indexed: 11/23/2022]
|
50
|
Blackley DJ, Halldin CN, Wang ML, Laney AS. Small mine size is associated with lung function abnormality and pneumoconiosis among underground coal miners in Kentucky, Virginia and West Virginia. Occup Environ Med 2014; 71:690-4. [PMID: 25052085 DOI: 10.1136/oemed-2014-102224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To describe the prevalence of lung function abnormality and coal workers' pneumoconiosis (CWP) by mine size among underground coal miners in Kentucky, Virginia and West Virginia. METHODS During 2005-2012, 4491 miners completed spirometry and chest radiography as part of a health surveillance programme. Spirometry was interpreted according to American Thoracic Society and European Respiratory Society guidelines, and radiography per International Labour Office standards. Prevalence ratios (PR) were calculated for abnormal spirometry (obstructive, restrictive or mixed pattern using lower limits of normal derived from National Health and Nutrition Examination Survey (NHANES) III) and CWP among workers from small mines (≤50 miners) compared with those from large mines. RESULTS Among 3771 eligible miners, those from small mines were more likely to have abnormal spirometry (18.5% vs 13.8%, p<0.01), CWP (10.8% vs 5.2%, p<0.01) and progressive massive fibrosis (2.4% vs 1.1%, p<0.01). In regression analysis, working in a small mine was associated with 37% higher prevalence of abnormal spirometry (PR 1.37, 95% CI 1.16 to 1.61) and 2.1 times higher prevalence of CWP (95% CI 1.68 to 2.70). CONCLUSIONS More than one in four of these miners had evidence of CWP, abnormal lung function or both. Although 96% of miners in the study have worked exclusively under dust regulations implemented following the 1969 Federal Coal Mine Safety and Health Act, we observed high rates of respiratory disease including severe cases. The current approach to dust control and provision of safe work conditions for central Appalachian underground coal miners is not adequate to protect them from adverse respiratory health effects.
Collapse
Affiliation(s)
- David J Blackley
- Surveillance Branch, Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA Epidemic Intelligence Service Program, Division of Scientific Education and Professional Development, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cara N Halldin
- Surveillance Branch, Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Mei Lin Wang
- Surveillance Branch, Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - A Scott Laney
- Surveillance Branch, Division of Respiratory Disease Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| |
Collapse
|