1
|
Gao H, Wei X, Li K, Cao Y, Rao W, Zhang J, Wang D, Yang J. Cold-blooded vertebrate utilizes behavioral fever to alleviate T cell apoptosis and optimize antimicrobial immunity. Proc Natl Acad Sci U S A 2024; 121:e2408969121. [PMID: 39680767 DOI: 10.1073/pnas.2408969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 12/18/2024] Open
Abstract
Fever confers significant survival benefits on endotherms by optimizing both innate and adaptive immunity. Ectotherms achieve thermoregulation using behavioral strategies, but existing evidence supports its enhancement effect on innate immunity only. Therefore, it remains unknown whether the coordination between fever and adaptive immunity was independently acquired by endotherms or instead represents a gradually evolved function common to vertebrates. In the present study, we reported that Nile tilapia developed behavioral fever to enhance the immune response against Edwardsiella piscicida infection. Behavioral fever lasted five days, and the immune potential was optimized at 4 to 6 d post infection, indicating a potential correlation between fever events and T cell immunity. Further investigation suggested that fever did not affect T cell activation or proliferation but improved the ability of T cells to produce IFN-γ and Granzyme B and enhanced cytotoxicity, thereby eliminating the infection more effectively. Notably, we identified an advantage conferred by fever during infection: alleviation of T cell apoptosis to maintain a considerable T cell pool. Mechanistically, fever induced the expression of HSP70, which in turn entered the nucleus and bound to and promoted the phosphorylation of ERK1/2, thereby inhibiting the cleavage of caspase-8/caspase-3 and preventing T cell apoptosis. Our findings elucidate the detailed mechanism by which behavioral fever optimizes T cell immunity in a cold-blooded vertebrate and propose that integrating fever with adaptive immunity to gain survival advantages is an ancient strategy acquired before the emergence of tetrapod.
Collapse
Affiliation(s)
- Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenzhuo Rao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
2
|
Heintzman DR, Sinard RC, Fisher EL, Ye X, Patterson AR, Elasy JH, Voss K, Chi C, Sugiura A, Rodriguez-Garcia GJ, Chowdhury NU, Arner EN, Krystoviak ES, Mason FM, Toudji YT, Steiner KK, Khan W, Olson LM, Jones AL, Hong HS, Bass L, Beier KL, Deng W, Lyssiotis CA, Newcomb DC, Bick AG, Rathmell WK, Wilson JT, Rathmell JC. Subset-specific mitochondrial stress and DNA damage shape T cell responses to fever and inflammation. Sci Immunol 2024; 9:eadp3475. [PMID: 39303018 PMCID: PMC11607909 DOI: 10.1126/sciimmunol.adp3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/05/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Heat is a cardinal feature of inflammation, yet its impacts on immune cells remain uncertain. We show that moderate-grade fever temperatures (39°C) increased murine CD4 T cell metabolism, proliferation, and inflammatory effector activity while decreasing regulatory T cell suppressive capacity. However, heat-exposed T helper 1 (TH1) cells selectively developed mitochondrial stress and DNA damage that activated Trp53 and stimulator of interferon genes pathways. Although many TH1 cells subjected to such temperatures died, surviving TH1 cells exhibited increased mitochondrial mass and enhanced activity. Electron transport chain complex 1 (ETC1) was rapidly impaired under fever-range temperatures, a phenomenon that was specifically detrimental to TH1 cells. TH1 cells with elevated DNA damage and ETC1 signatures were also detected in human chronic inflammation. Thus, fever-relevant temperatures disrupt ETC1 to selectively drive apoptosis or adaptation of TH1 cells to maintain genomic integrity and enhance effector functions.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael C Sinard
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Emilie L Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Patterson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joel H Elasy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Channing Chi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ayaka Sugiura
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriel J Rodriguez-Garcia
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nowrin U Chowdhury
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily N Arner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan S Krystoviak
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Cell Imaging Shared Resource, Vanderbilt University, Nashville, TN, USA
| | - Frank M Mason
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasmine T Toudji
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - KayLee K Steiner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wasay Khan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lana M Olson
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Angela L Jones
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hanna S Hong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Lindsay Bass
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Katherine L Beier
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wentao Deng
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Dawn C Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander G Bick
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
3
|
Zhang J, Wang X, Li K, Rao W, Jiao X, Liang W, Gao H, Wang D, Cao Y, Wei X, Yang J. Hyperosmotic Stress Induces Inflammation and Excessive Th17 Response to Blunt T-Cell Immunity in Tilapia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1877-1890. [PMID: 38700398 DOI: 10.4049/jimmunol.2300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024]
Abstract
Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-β1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.
Collapse
Affiliation(s)
- Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaodan Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenzhuo Rao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinying Jiao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
4
|
Shi C, Fu W, Zhang X, Zhang Q, Zeng F, Nijiati S, Du C, Liu X, Wang M, Yao Y, Huang H, Zheng N, Chen X, Wu B, Zhou Z. Boosting the Immunoactivity of T Cells by Resonant Thermal Radiation from Electric Graphene Films for Improved Cancer Immunotherapy. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Wenxing Fu
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Xinyi Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Qianyu Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Fantian Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Sureya Nijiati
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Chao Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Xiaomin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Mingkun Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Youliang Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| | - Hongling Huang
- State Key Laboratory for Cellular Stress Biology School of Life Sciences Faculty of Medicine and Life Sciences Xiamen University Fujian 361102 China
| | - Nanfeng Zheng
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering Clinical Imaging Research Centre Centre for Translational Medicine Nanomedicine Translational Research Program NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
| | - Binghui Wu
- Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices Pen‐Tung Sah Institute of Micro‐Nano Science and Technology State Key Laboratory for Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National and Local Joint Engineering Research Center of Preparation Technology of Nanomaterials Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province College of Chemistry and Chemical
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine,Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361102 China
| |
Collapse
|
5
|
Kolbe T, Lassnig C, Poelzl A, Palme R, Auer KE, Rülicke T. Effect of Different Ambient Temperatures on Reproductive Outcome and Stress Level of Lactating Females in Two Mouse Strains. Animals (Basel) 2022; 12:ani12162141. [PMID: 36009730 PMCID: PMC9405067 DOI: 10.3390/ani12162141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The optimal temperature for laboratory mice has been under discussion for some time. Current standard temperature is 20 °C–24 °C but it has been suggested to elevate the standard to 30 °C, which is the thermoneutral zone for mice. In this study, the effect of different cage temperatures (20 °C, 25 °C, 30 °C) on reproduction and stress hormone metabolite excretion was evaluated in lactating females of two commonly used mouse strains. Pup loss was higher, and weights of mothers and pups were reduced at 30 °C compared to the lower temperatures. In addition, pups showed increased tail length at weaning under the high temperature (30 °C). There was no difference in stress hormone metabolite excretion in mice between temperature groups. We could not show any detrimental effects of the lower or higher cage temperature on stress hormone metabolite excretion, but found decreased reproductive outcome under the higher temperature. Abstract Ambient temperature is an important non-biotic environmental factor influencing immunological and oncological parameters in laboratory mice. It is under discussion which temperature is more appropriate and whether the commonly used room temperature in rodent facilities of about 21 °C represents a chronic cold stress or the 30 °C of the thermoneutral zone constitutes heat stress for the animals. In this study, we selected the physiological challenging period of lactation to investigate the influence of a cage temperature of 20 °C, 25 °C, and 30 °C, respectively, on reproductive performance and stress hormone levels in two frequently used mouse strains. We found that B6D2F1 hybrid mothers weaned more pups compared to C57BL/6N mothers, and that the number of weaned pups was reduced when mothers of both strains were kept at 30 °C. Furthermore, at 30 °C, mothers and pups showed reduced body weight at weaning and offspring had longer tails. Despite pronounced temperature effects on reproductive parameters, we did not find any temperature effects on adrenocortical activity in breeding and control mice. Independent of the ambient temperature, however, we found that females raising pups showed elevated levels of faecal corticosterone metabolites (FCMs) compared to controls. Peak levels of stress hormone metabolites were measured around birth and during the third week of lactation. Our results provide no evidence of an advantage for keeping lactating mice in ambient temperatures near the thermoneutral zone. In contrast, we found that a 30 °C cage temperature during lactation reduced body mass in females and their offspring and declined female reproductive performance.
Collapse
Affiliation(s)
- Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department IFA-Tulln, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Correspondence:
| | - Caroline Lassnig
- Biomodels Austria, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Kerstin E. Auer
- Institute of in vivo and in vitro Models, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
6
|
The Role of Hyperthermia in the Treatment of Peritoneal Surface Malignancies. Curr Oncol Rep 2022; 24:875-887. [PMID: 35325402 DOI: 10.1007/s11912-022-01275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Hyperthermia is used to treat peritoneal surface malignancies (PSM), particularly during hyperthermic intraperitoneal chemotherapy (HIPEC). This manuscript provides a focused update of hyperthermia in the treatment of PSM. RECENT FINDINGS The heterogeneous response to hyperthermia in PSM can be explained by tumor and treatment conditions. PSM tumors may resist hyperthermia via metabolic and immunologic adaptation. The thermodynamics of HIPEC are complex and require computational fluid dynamics (CFD). The clinical evidence supporting the benefit of hyperthermia is largely observational. Continued research will allow clinicians to characterize and predict the individual response of PSM to hyperthermia. The application of hyperthermia in current HIPEC protocols is mostly empirical. Thus, modeling heat transfer with CFD is a necessary task if we are to achieve consistent and reproducible hyperthermia. Although observational evidence suggests a survival benefit of hyperthermia, no clinical trial has tested the individual role of hyperthermia in PSM.
Collapse
|
7
|
Heintzman DR, Fisher EL, Rathmell JC. Microenvironmental influences on T cell immunity in cancer and inflammation. Cell Mol Immunol 2022; 19:316-326. [PMID: 35039633 PMCID: PMC8762638 DOI: 10.1038/s41423-021-00833-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
T cell metabolism is dynamic and highly regulated. While the intrinsic metabolic programs of T cell subsets are integral to their distinct differentiation and functional patterns, the ability of cells to acquire nutrients and cope with hostile microenvironments can limit these pathways. T cells must function in a wide variety of tissue settings, and how T cells interpret these signals to maintain an appropriate metabolic program for their demands or if metabolic mechanisms of immune suppression restrain immunity is an area of growing importance. Both in inflamed and cancer tissues, a wide range of changes in physical conditions and nutrient availability are now acknowledged to shape immunity. These include fever and increased temperatures, depletion of critical micro and macro-nutrients, and accumulation of inhibitory waste products. Here we review several of these factors and how the tissue microenvironment both shapes and constrains immunity.
Collapse
Affiliation(s)
- Darren R Heintzman
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA
| | - Emilie L Fisher
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, 37205, USA.
| |
Collapse
|
8
|
Li L, Zhou J, Luo L, Chen X, Li Y. Application of the Care Bundle in Perioperative Nursing Care of the Type A Aortic Dissection. Int J Gen Med 2021; 14:5949-5958. [PMID: 34584447 PMCID: PMC8464374 DOI: 10.2147/ijgm.s322755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/20/2021] [Indexed: 11/23/2022] Open
Abstract
Background To investigate the effect of the care bundle in the nursing care of the type A aortic dissection (TAAD). Methods A total of 161 patients with TAAD were included in the study. They were divided into control group (n=79) and care bundle group (n=82). The patients in the control group received routine nursing, while the patients in the care bundle group received routine nursing and care bundle. IL-2, IL-6 and IL-10 levels in the three periods of T0 (before anesthesia), T1 (before anesthesia to 6 h after surgery) and T2 (6–24 h after surgery), intraoperative blood loss, postoperative recovery, ICU stay time, intraoperative pressure ulcer rate, postoperative delirium rate, bloodstream infection rate and doctor satisfaction. Results The postoperative T and pH levels in two groups were all in the normal range. The levels of IL-2, IL-6 and IL-10 in the care bundle group at different periods were also significantly different. The levels of IL-2 and IL-10 showed an increased trend, while that of IL-6 showed a downward trend. The intraoperative blood loss, postoperative recovery and ICU stay time, intraoperative pressure sore rate, postoperative delirium rate, and bloodstream infection rate were lower, whereas doctor satisfaction was all significantly higher in care bundle group. Conclusion Care bundle increased the safety of the operation, and it was beneficial to the postoperative rehabilitation for TAAD patients. Relevance to Clinical Practice Patients with TAAD who underwent operation need higher quality care during the entire operation. Cluster nursing is the kind of the nursing model that can better meet the requirements of the intraoperative nursing quality. The intervention methods in this study include 5 core nursing measures. These measures are implemented together in a synergistic manner to effectively improve the quality of nursing care in operating room and the health outcomes of patients with TAAD. Care bundle is worthy of clinical application.
Collapse
Affiliation(s)
- Li Li
- Xinjiang Medical University,Urumqi, 830000,Xinjiang, People's Republic of China.,Nursing School, Xinjiang Medical University,Urumqi, 830000, Xinjiang, People's Republic of China.,Operating Room,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Jiangqi Zhou
- Operating Room,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Likun Luo
- Operating Room,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Xiaoqing Chen
- Operating Room,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, People's Republic of China
| | - Yinglan Li
- Nursing School, Xinjiang Medical University,Urumqi, 830000, Xinjiang, People's Republic of China.,Xiangya Nursing School, Central South University, Changsha, 410000, Hunan Province, People's Republic of China
| |
Collapse
|
9
|
O'Sullivan D, Stanczak MA, Villa M, Uhl FM, Corrado M, Klein Geltink RI, Sanin DE, Apostolova P, Rana N, Edwards-Hicks J, Grzes KM, Kabat AM, Kyle RL, Fabri M, Curtis JD, Buck MD, Patterson AE, Regina A, Field CS, Baixauli F, Puleston DJ, Pearce EJ, Zeiser R, Pearce EL. Fever supports CD8 + effector T cell responses by promoting mitochondrial translation. Proc Natl Acad Sci U S A 2021; 118:e2023752118. [PMID: 34161266 PMCID: PMC8237659 DOI: 10.1073/pnas.2023752118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Fever can provide a survival advantage during infection. Metabolic processes are sensitive to environmental conditions, but the effect of fever on T cell metabolism is not well characterized. We show that in activated CD8+ T cells, exposure to febrile temperature (39 °C) augmented metabolic activity and T cell effector functions, despite having a limited effect on proliferation or activation marker expression. Transcriptional profiling revealed an up-regulation of mitochondrial pathways, which was consistent with increased mass and metabolism observed in T cells exposed to 39 °C. Through in vitro and in vivo models, we determined that mitochondrial translation is integral to the enhanced metabolic activity and function of CD8+ T cells exposed to febrile temperature. Transiently exposing donor lymphocytes to 39 °C prior to infusion in a myeloid leukemia mouse model conferred enhanced therapeutic efficacy, raising the possibility that exposure of T cells to febrile temperatures could have clinical potential.
Collapse
Affiliation(s)
- David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Michal A Stanczak
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Franziska M Uhl
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Mauro Corrado
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Ramon I Klein Geltink
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Petya Apostolova
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Nisha Rana
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Katarzyna M Grzes
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Agnieszka M Kabat
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Ryan L Kyle
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Mario Fabri
- Department of Dermatology and Venereology, University of Cologne, 50937 Cologne, Germany
| | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Michael D Buck
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Annette E Patterson
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Annamaria Regina
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
- Department of Life Sciences, University of Trieste, 34128 Trieste, Italy
| | - Cameron S Field
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Francesc Baixauli
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Daniel J Puleston
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg im Breisgau, Germany;
| |
Collapse
|
10
|
Zhang B, Wang Y, Zhao Z, Han B, Yang J, Sun Y, Zhang B, Zang Y, Guan H. Temperature Plays an Essential Regulatory Role in the Tumor Immune Microenvironment. J Biomed Nanotechnol 2021; 17:169-195. [PMID: 33785090 DOI: 10.1166/jbn.2021.3030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, emerging immunotherapy has been included in various malignant tumor treatment standards. Temperature has been considered to affect different pathophysiological reactions such as inflammation and cancer for a long time. However, in tumor immunology research, temperature is still rarely considered a significant variable. In this review, we discuss the effects of room temperature, body temperature, and the local tumor temperature on the tumor immune microenvironment from multiple levels and perspectives, and we discuss changes in the body's local and whole-body temperature under tumor conditions. We analyze the current use of ablation treatment-the reason for the opposite immune effect. We should pay more attention to the therapeutic potential of temperature and create a better antitumor microenvironment that can be combined with immunotherapy.
Collapse
Affiliation(s)
- Bin Zhang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Ziyin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Jinbo Yang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yang Sun
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Yunjin Zang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Huashi Guan
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
11
|
A Tangled Threesome: Circadian Rhythm, Body Temperature Variations, and the Immune System. BIOLOGY 2021; 10:biology10010065. [PMID: 33477463 PMCID: PMC7829919 DOI: 10.3390/biology10010065] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Simple Summary In mammals, including humans, the body temperature displays a circadian rhythm and is maintained within a narrow range to facilitate the optimal functioning of physiological processes. Body temperature increases during the daytime and decreases during the nighttime thus influencing the expression of the molecular clock and the clock-control genes such as immune genes. An increase in body temperature (daytime, or fever) also prepares the organism to fight aggression by promoting the activation, function, and delivery of immune cells. Many factors may affect body temperature level and rhythm, including environment, age, hormones, or treatment. The disruption of the body temperature is associated with many kinds of diseases and their severity, thus supporting the assumed association between body temperature rhythm and immune functions. Recent studies using complex analysis suggest that circadian rhythm may change in all aspects (level, period, amplitude) and may be predictive of good or poor outcomes. The monitoring of body temperature is an easy tool to predict outcomes and maybe guide future studies in chronotherapy. Abstract The circadian rhythm of the body temperature (CRBT) is a marker of the central biological clock that results from multiple complex biological processes. In mammals, including humans, the body temperature displays a strict circadian rhythm and has to be maintained within a narrow range to allow optimal physiological functions. There is nowadays growing evidence on the role of the temperature circadian rhythm on the expression of the molecular clock. The CRBT likely participates in the phase coordination of circadian timekeepers in peripheral tissues, thus guaranteeing the proper functioning of the immune system. The disruption of the CRBT, such as fever, has been repeatedly described in diseases and likely reflects a physiological process to activate the molecular clock and trigger the immune response. On the other hand, temperature circadian disruption has also been described as associated with disease severity and thus may mirror or contribute to immune dysfunction. The present review aims to characterize the potential implication of the temperature circadian rhythm on the immune response, from molecular pathways to diseases. The origin of CRBT and physiological changes in body temperature will be mentioned. We further review the immune biological effects of temperature rhythmicity in hosts, vectors, and pathogens. Finally, we discuss the relationship between circadian disruption of the body temperature and diseases and highlight the emerging evidence that CRBT monitoring would be an easy tool to predict outcomes and guide future studies in chronotherapy.
Collapse
|
12
|
Belon L, Skidmore P, Mehra R, Walter E. Effect of a fever in viral infections — the ‘Goldilocks’ phenomenon? World J Clin Cases 2021; 9:296-307. [PMID: 33521098 PMCID: PMC7812885 DOI: 10.12998/wjcc.v9.i2.296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Acute infections, including those due to Coronaviridae and other viruses, often stimulate a febrile response. A mild fever appears to improve outcome; it appears to diminish viral replication by several mechanisms, including virion entry into host cells and genome transcription, and improving host defence mechanisms against the pathogen. However, a fever may also damage host cellular and tissue function and increase metabolic demands. At temperatures at the lower end of the febrile range, the benefit of the fever appears to outweigh the detrimental effects. However, at higher temperatures, the outcome worsens, suggesting that the disadvantages of fever on the host predominate. A non-infective fever is associated with a worse outcome at lower temperatures, suggesting that hyperthermia carries less benefit in the absence of infection. This review discusses the risks and benefits of a fever on the host response, focusing on the effects of a fever on viral replication and host response, and the detrimental effect on the host.
Collapse
Affiliation(s)
- Lucas Belon
- Department of Intensive Care Medicine, Royal Surrey County Hospital, Guildford GU2 7XX, Surrey, United Kingdom
| | - Peter Skidmore
- Department of General Medicine, Royal Surrey County Hospital, Guildford GU2 7XX, Surrey, United Kingdom
| | - Rohan Mehra
- Department of General Medicine, Royal Surrey County Hospital, Guildford GU2 7XX, Surrey, United Kingdom
| | - Edward Walter
- Department of Intensive Care Medicine, Royal Surrey County Hospital, Guildford GU2 7XX, Surrey, United Kingdom
| |
Collapse
|
13
|
Amini A, Pang D, Hackstein CP, Klenerman P. MAIT Cells in Barrier Tissues: Lessons from Immediate Neighbors. Front Immunol 2020; 11:584521. [PMID: 33329559 PMCID: PMC7734211 DOI: 10.3389/fimmu.2020.584521] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells present at considerable frequencies in human blood and barrier tissues, armed with an expanding array of effector functions in response to homeostatic perturbations. Analogous to other barrier immune cells, their phenotype and function is driven by crosstalk with host and dynamic environmental factors, most pertinently the microbiome. Given their distribution, they must function in diverse extracellular milieus. Tissue-specific and adapted functions of barrier immune cells are shaped by transcriptional programs and regulated through a blend of local cellular, inflammatory, physiological, and metabolic mediators unique to each microenvironment. This review compares the phenotype and function of MAIT cells with other barrier immune cells, highlighting potential areas for future exploration. Appreciation of MAIT cell biology within tissues is crucial to understanding their niche in health and disease.
Collapse
Affiliation(s)
- Ali Amini
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Declan Pang
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Carl-Philipp Hackstein
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Modulation and dynamics of cell membrane heterogeneities. Chem Phys Lipids 2020; 233:105006. [PMID: 33144069 DOI: 10.1016/j.chemphyslip.2020.105006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Numerous studies provide evidence that the lipid bilayer of the plasma membrane contains lateral nanodomains, and that these are functionally important regulators of transmembrane cell signaling. Depending on their chemical composition and the biophysical mechanism bringing the lipids together, multiple types of nanodomains exist in the inner and the outer leaflet of the plasma membrane bilayer. In intact cells, these domains are smaller than the optical resolution limit of light microscopy and also highly dynamic. Recently, advanced fluorescence methods have provided data to characterize many biophysical and thermodynamic aspects of these nanodomains. In this review, we summarize the physicochemical determinants of nanodomain formation, stability and extent. Then, we detail how these nanodomains play a structural role by anchoring nucleation sites for the membrane cytoskeleton on the lipid bilayer. Further, we review the existing literature on mechanisms that modulate the nanodomain size and stability, both acute and chronic events. We conclude that regulation of the nanodomains distribution in the lipid bilayer of the plasma membrane is important for modulation of transmembrane signaling. However, only very few modulators of nanodomain stability and size have been quantified in cells, suggesting interesting directions for future studies.
Collapse
|
15
|
Lim Y, Kim S, Kim S, Kim DI, Kang KW, Hong SH, Lee SM, Koh HR, Seo YJ. n-3 Polyunsaturated Fatty Acids Impede the TCR Mobility and the TCR-pMHC Interaction of Anti-Viral CD8+ T Cells. Viruses 2020; 12:v12060639. [PMID: 32545480 PMCID: PMC7354506 DOI: 10.3390/v12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/27/2022] Open
Abstract
The immune-suppressive effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) on T cells have been observed via multiple in vitro and in vivo models. However, the precise mechanism that causes these effects is still undefined. In this study, we investigated whether n-3 PUFAs regulated T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) interactions. The expansion of anti-viral CD8+ T cells that endogenously synthesize n-3 PUFAs (FAT-1) dramatically decreased upon lymphocytic choriomeningitis virus (LCMV) infection in vivo. This decrease was not caused by the considerable reduction of TCR expression or the impaired chemotactic activity of T cells. Interestingly, a highly inclined and laminated optical sheet (HILO) microscopic analysis revealed that the TCR motility was notably reduced on the surface of the FAT-1 CD8+ T cells compared to the wild type (WT) CD8+ T cells. Importantly, the adhesion strength of the FAT-1 CD8+ T cells to the peptide-MHC was significantly lower than that of the WT CD8+T cells. Consistent with this result, treatment with docosahexaenoic acid (DHA), one type of n-3 PUFA, significantly decreased CD8+ T cell adhesion to the pMHC. Collectively, our results reveal a novel mechanism through which n-3 PUFAs decrease TCR-pMHC interactions by modulating TCR mobility on CD8+ T cell surfaces.
Collapse
Affiliation(s)
- Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Seyoung Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Sehoon Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
| | - Dong-In Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - So-Hee Hong
- Department of Biotechnology, the Catholic University of Korea, Bucheon 14662, Korea;
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Korea; (K.W.K.); (S.-M.L.)
| | - Hye Ran Koh
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: (H.R.K.); (Y.-J.S.)
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul 06974, Korea; (Y.L.); (S.K.); (D.-I.K.)
- Correspondence: (H.R.K.); (Y.-J.S.)
| |
Collapse
|
16
|
Sharma N, Baek K, Shimokawa N, Takagi M. Effect of temperature on raft-dependent endocytic cluster formation during activation of Jurkat T cells by concanavalin A. J Biosci Bioeng 2018; 127:479-485. [PMID: 30355461 DOI: 10.1016/j.jbiosc.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/28/2023]
Abstract
Temperature plays an important role in the immune response. Acclimatization occurs when there are changes in ambient temperature over a long period. In this study, we used the human leukemic Jurkat T cell line to study the effect of temperature on the immune system using concanavalin A (ConA), a plant-derived immunostimulant, as a trigger for T-cell activation. Previously, we have reported endocytic intracellular cluster formation during T-cell activation by ConA with the aid of rafts and polymerization of the cytoskeleton (actin and microtubules). Here, we investigated the effect of temperature on cluster formation (with the aid of three-dimensional images of the cells) and on the stability of rafts, actin, and microtubules. When the temperature was changed between 23°C and 37°C (physiological temperature), clusters could be observed throughout this temperature range. Raft structure was stabilized at lower temperatures but destabilized at higher temperatures. Actin was stable when the temperature was higher than 27°C. When actin was depolymerized, clustering was not observed at 37°C but could be observed at 23°C. There were no changes in microtubules within this temperature range. Thus, raft clustering may be associated with raft stability at lower temperatures (<27°C) and with actin at higher temperatures (≥27°C). Hence, we provided insight into the associations between temperature, rafts, actin, and microtubules in the immune response.
Collapse
Affiliation(s)
- Neha Sharma
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - KeangOK Baek
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan.
| |
Collapse
|
17
|
Appenheimer MM, Evans SS. Temperature and adaptive immunity. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:397-415. [DOI: 10.1016/b978-0-444-63912-7.00024-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
18
|
Dumitru C, Kabat AM, Maloy KJ. Metabolic Adaptations of CD4 + T Cells in Inflammatory Disease. Front Immunol 2018; 9:540. [PMID: 29599783 PMCID: PMC5862799 DOI: 10.3389/fimmu.2018.00540] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
A controlled and self-limiting inflammatory reaction generally results in removal of the injurious agent and repair of the damaged tissue. However, in chronic inflammation, immune responses become dysregulated and prolonged, leading to tissue destruction. The role of metabolic reprogramming in orchestrating appropriate immune responses has gained increasing attention in recent years. Proliferation and differentiation of the T cell subsets that are needed to address homeostatic imbalance is accompanied by a series of metabolic adaptations, as T cells traveling from nutrient-rich secondary lymphoid tissues to sites of inflammation experience a dramatic shift in microenvironment conditions. How T cells integrate information about the local environment, such as nutrient availability or oxygen levels, and transfer these signals to functional pathways remains to be fully understood. In this review, we discuss how distinct subsets of CD4+ T cells metabolically adapt to the conditions of inflammation and whether these insights may pave the way to new treatments for human inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Dumitru
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Agnieszka M. Kabat
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Kevin J. Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- *Correspondence: Kevin J. Maloy,
| |
Collapse
|
19
|
Stanton SE, Disis ML. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 2016; 4:59. [PMID: 27777769 PMCID: PMC5067916 DOI: 10.1186/s40425-016-0165-6] [Citation(s) in RCA: 526] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/13/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor infiltrating lymphocytes (TIL) play an essential role in mediating response to chemotherapy and improving clinical outcomes in all subtypes of breast cancer. Triple negative breast cancers (TN) are most likely to have tumors with >50 % lymphocytic infiltrate, termed lymphocyte predominant breast cancer, and derive the greatest survival benefit from each 10 % increase in TIL. The majority of HER2+ breast cancers have similar level of immune infiltrate as TN breast cancer yet the presence of TILs has not shown the same survival benefit. For HER2+ breast cancers, type 1 T-cells, either increased TBET+ tumor infiltration or increased type 1 HER2-specific CD4+ T-cells in the peripheral blood, are associated with better outcomes. Hormone receptor positive HER2 negative tumors tend to have the least immune infiltrate yet are the only breast cancer subtype to show worse prognosis with increased FOXP3 regulatory T-cell infiltrate. Notably, all breast cancer subtypes have tumors with low, intermediate, or high TIL infiltrate. Tumors with high TILs may also have increased PD-L1 expression which might be the reason that TN breast cancer seems to demonstrate the most robust clinical response to immune checkpoint inhibitor therapy but further investigation is needed. Tumors with intermediate or low levels of pre-treatment immune infiltrate, on the other hand, may benefit from an intervention that may increase TIL, particularly type 1 T-cells. Examples of these interventions include specific types of cytotoxic chemotherapy, radiation, or vaccine therapy. Therefore, the systematic evaluation of TIL and specific populations of TIL may be able to both guide prognosis and the appropriate sequencing of therapies in breast cancer.
Collapse
Affiliation(s)
- Sasha E. Stanton
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, 850 Republican Street, 2nd Floor, Box 358050, Seattle, WA 98195-8050 USA
| | - Mary L. Disis
- Tumor Vaccine Group, Center for Translational Medicine in Women’s Health, University of Washington, 850 Republican Street, 2nd Floor, Box 358050, Seattle, WA 98195-8050 USA
| |
Collapse
|
20
|
van den Tempel N, Horsman MR, Kanaar R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperthermia 2016; 32:446-54. [PMID: 27086587 DOI: 10.3109/02656736.2016.1157216] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has long been established that hyperthermia increases the therapeutic benefit of radiation and chemotherapy in cancer treatment. During the last few years there have been substantial technical improvements in the sources used to apply and measure heat, which greatly increases enthusiasm for the clinical use of hyperthermia. These advances are converging with a better understanding of the physiological and molecular effects of hyperthermia. Therefore, we are now at a juncture where the parameters that will influence the efficacy of hyperthermia in cancer treatment can be optimised in a more systematic and rational manner. In addition, the novel insights in hyperthermia's many biological effects on tumour cells will ultimately result in new treatment regimes. For example, the molecular effects of hyperthermia on the essential cellular process of DNA repair suggest novel combination therapies, with DNA damage response targeting drugs that should now be clinically explored. Here, we provide an overview of recent studies on the various macroscopic and microscopic biological effects of hyperthermia. We indicate the significance of these effects on current treatments and suggest how they will help design novel future treatments.
Collapse
Affiliation(s)
- Nathalie van den Tempel
- a Department of Molecular Genetics, Cancer Genomic Netherlands, Department of Radiation Oncology , Erasmus Medical Centre , Rotterdam , the Netherlands
| | - Michael R Horsman
- b Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Roland Kanaar
- a Department of Molecular Genetics, Cancer Genomic Netherlands, Department of Radiation Oncology , Erasmus Medical Centre , Rotterdam , the Netherlands
| |
Collapse
|
21
|
Kaur P, Aliru ML, Chadha AS, Asea A, Krishnan S. Hyperthermia using nanoparticles--Promises and pitfalls. Int J Hyperthermia 2016; 32:76-88. [PMID: 26757879 PMCID: PMC4955578 DOI: 10.3109/02656736.2015.1120889] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An ever-increasing body of literature affirms the physical and biological basis for sensitisation of tumours to conventional therapies such as chemotherapy and radiation therapy by mild temperature hyperthermia. This knowledge has fuelled the efforts to attain, maintain, measure and monitor temperature via technological advances. A relatively new entrant in the field of hyperthermia is nanotechnology which capitalises on locally injected or systemically administered nanoparticles that are activated by extrinsic energy sources to generate heat. This review describes the kinds of nanoparticles available for hyperthermia generation, their activation sources, their characteristics, and the unique opportunities and challenges with nanoparticle-mediated hyperthermia.
Collapse
Affiliation(s)
- Punit Kaur
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Maureen L. Aliru
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center and Medical School at Houston, Houston, TX 77030, USA
| | - Awalpreet S. Chadha
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Alexzander Asea
- Deanship for Scientific Research, University of Dammam, Dammam Khobar Coastal Road, 33441 Dammam, Saudi Arabia
| | - Sunil Krishnan
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
22
|
Zheng Z, Zheng F. Immune Cells and Inflammation in Diabetic Nephropathy. J Diabetes Res 2016; 2016:1841690. [PMID: 26824038 PMCID: PMC4707326 DOI: 10.1155/2016/1841690] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes. At its core, DN is a metabolic disorder which can also manifest itself in terms of local inflammation in the kidneys. Such inflammation can then drive the classical markers of fibrosis and structural remodeling. As a result, resolution of immune-mediated inflammation is critical towards achieving a cure for DN. Many immune cells play a part in DN, including key members of both the innate and adaptive immune systems. While these cells were classically understood to primarily function against pathogen insult, it has also become increasingly clear that they also serve a major role as internal sensors of damage. In fact, damage sensing may serve as the impetus for much of the inflammation that occurs in DN, in a vicious positive feedback cycle. Although direct targeting of these proinflammatory cells may be difficult, new approaches that focus on their metabolic profiles may be able to alleviate DN significantly, especially since dysregulation of the local metabolic environment may well be responsible for triggering inflammation to begin with. In this review, the authors consider the metabolic profile of several relevant immune types and discuss their respective roles.
Collapse
Affiliation(s)
- Zihan Zheng
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Feng Zheng
- Department of Nephrology, Advanced Institute for Medical Sciences, Second Hospital, Dalian Medical University, Dalian 116023, China
- Department of Nephrology and Basic Science Laboratory, Fujian Medical University, Fuzhou 350002, China
- *Feng Zheng:
| |
Collapse
|