1
|
Nagy A, Czitrovszky A, Lehoczki A, Farkas Á, Füri P, Osán J, Groma V, Kugler S, Micsinai A, Horváth A, Ungvári Z, Müller V. Creating respiratory pathogen-free environments in healthcare and nursing-care settings: a comprehensive review. GeroScience 2024:10.1007/s11357-024-01379-7. [PMID: 39392557 DOI: 10.1007/s11357-024-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024] Open
Abstract
Hospital- and nursing-care-acquired infections are a growing problem worldwide, especially during epidemics, posing a significant threat to older adults in geriatric settings. Intense research during the COVID-19 pandemic highlighted the prominent role of aerosol transmission of pathogens. Aerosol particles can easily adsorb different airborne pathogens, carrying them for a long time. Understanding the dynamics of airborne pathogen transmission is essential for controlling the spread of many well-known pathogens, like the influenza virus, and emerging ones like SARS-CoV-2. Particles smaller than 50 to 100 µm remain airborne and significantly contribute to pathogen transmission. This review explores the journey of pathogen-carrying particles from formation in the airways, through airborne travel, to deposition in the lungs. The physicochemical properties of emitted particles depend on health status and emission modes, such as breathing, speaking, singing, coughing, sneezing, playing wind instruments, and medical interventions. After emission, sedimentation and evaporation primarily determine particle fate. Lung deposition of inhaled aerosol particles can be studied through in vivo, in vitro, or in silico methods. We discuss several numerical lung models, such as the Human Respiratory Tract Model, the LUng Dose Evaluation Program software (LUDEP), the Stochastic Lung Model, and the Computational Fluid Dynamics (CFD) techniques, and real-time or post-evaluation methods for detecting and characterizing these particles. Various air purification methods, particularly filtration, are reviewed for their effectiveness in healthcare settings. In the discussion, we analyze how this knowledge can help create environments with reduced PM2.5 and pathogen levels, enhancing safety in healthcare and nursing-care settings. This is particularly crucial for protecting older adults, who are more vulnerable to infections due to weaker immune systems and the higher prevalence of chronic conditions. By implementing effective airborne pathogen control measures, we can significantly improve health outcomes in geriatric settings.
Collapse
Affiliation(s)
- Attila Nagy
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary.
| | - Aladár Czitrovszky
- Department of Applied and Nonlinear Optics, HUN-REN Wigner Research Centre for Physics, Konkoly-Thege Miklós St. 29-33, 1121, Budapest, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Árpád Farkas
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Péter Füri
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - János Osán
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Veronika Groma
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | - Szilvia Kugler
- Environmental Physics Department, HUN-REN Centre for Energy Research, Budapest, Hungary
| | | | - Alpár Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Zoltán Ungvári
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 731042, USA
- Peggy and Charles Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
2
|
Han S, Maliksi C, Oh E, Kumaran S, Lee KH, Ko DH, Choi HJ. Evaluating layer contributions and salt coating effects on mask performance. RSC Adv 2024; 14:27644-27656. [PMID: 39224635 PMCID: PMC11367244 DOI: 10.1039/d4ra04581e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
The impact of respiratory diseases is vast and multifaceted, affecting individuals, healthcare systems, and global economies. In response to the spread of respiratory pathogens, masks and respirators have become pivotal, demonstrating their capability to mitigate transmission. However, the limitations of conventional face masks or respirators, such as their single-use nature, environmental impact, and the risk of contact-based transmission, have accelerated the development of antimicrobial masks. Designing effective antimicrobial masks requires a deep understanding of the properties of each layer and the identification of an optimal configuration to enhance their protective efficiency. In this study, we investigated the filtration performance, including filtration efficiency and breathability, of individual layers in conventional 3-ply masks and stacked spunbond (SB) fabrics with and without salt coating, under both dry and wet fabric conditions. We aimed to elucidate the filtration efficiency of each mask layer with respect to particle size and type (NaCl aerosols, DOP aerosols), with particular focus on the impact of salt-coated SB fabric and its application. While bare fabrics showed a decrease in filtration efficiency with increased wetness, salt-coated fabrics exhibited enhanced filtration efficiency. Importantly, evaluating the efficacy of a stack comprised of salt-coated SB fabrics across diverse antimicrobial respiratory devices highlighted its efficacy as both the outermost layer in a 3-ply mask and as a mask covering (i.e., a supplementary layer over a mask or respirator). This investigation not only emphasizes the significance of salt-coated antimicrobial technology in mitigating disease transmission but also offers a practical approach for adeptly implementing this technology in respiratory protection devices.
Collapse
Affiliation(s)
- Sumin Han
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Caitlyn Maliksi
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Euna Oh
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Surjith Kumaran
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University Seoul 03722 Republic of Korea
| | - Dae-Hong Ko
- Department of Materials Science and Engineering, Yonsei University Seoul 03722 Republic of Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta Edmonton AB T6G 1H9 Canada
| |
Collapse
|
3
|
Islam MT, Chen Y, Seong D, Verhougstraete M, Son YJ. Effects of recirculation and air change per hour on COVID-19 transmission in indoor settings: A CFD study with varying HVAC parameters. Heliyon 2024; 10:e35092. [PMID: 39170199 PMCID: PMC11336487 DOI: 10.1016/j.heliyon.2024.e35092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
COVID-19 has already claimed over 7 million lives and has infected over 775 million people globally [1]. SARS-CoV-2, the virus that causes Covid-19, spreads primarily through droplets from infected people's airways, rendering Heating, Ventilation, and Air Conditioning (HVAC) systems critical in controlling infection risk levels in the indoor environment. To understand the dynamics of exhaled droplets and aerosols and the percentage of particles that are inhaled, escaped, recirculated, or trapped on different surfaces for a variety of environmental settings, we have presented our findings from the Computational Fluid Dynamics (CFD) modeling to investigate the impact of changing HVAC parameters in this paper. When combined with the spatial and temporal distribution of droplets, this method can be used to assess the potential risk and strengthen resilience. This finding demonstrates the viability and usefulness of CFD for modeling the distribution and dynamics of droplets and aerosols in confined environments. Our study demonstrates that raising the Air Change per Hour (ACH) from 2 to 8 reduces the risk of particle inhalation by nearly 70 %. Additionally, limiting the amount of air recirculation or increasing the amount of fresh air helps to reduce the number of airborne particles in an indoor space. To reduce the potential for respiratory droplet-related transmission and to provide relevant recommendations to the appropriate authority, the same computational approach could be applied to a wide range of ventilated indoor environments such as public buses, restaurants, exhibitions, and theaters.
Collapse
Affiliation(s)
- Md Tariqul Islam
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Yijie Chen
- Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA
| | - Dahae Seong
- Community, Environment & Policy Department, University of Arizona, Tucson, AZ, USA
| | - Marc Verhougstraete
- Community, Environment & Policy Department, University of Arizona, Tucson, AZ, USA
| | - Young- Jun Son
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Xue M, Deng A, Wang JN, Mi X, Lao Z, Yang Y. A Zanamivir-protein conjugate mimicking mucin for trapping influenza virion particles and inhibiting neuraminidase activity. Int J Biol Macromol 2024; 275:133564. [PMID: 38955298 DOI: 10.1016/j.ijbiomac.2024.133564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Influenza viruses contribute significantly to the global health burden, necessitating the development of strategies against transmission as well as effective antiviral treatments. The present study reports a biomimetic strategy inspired by the natural antiviral properties of mucins. A bovine serum albumin (BSA) conjugate decorated with the multivalent neuraminidase inhibitor Zanamivir (ZA-BSA) was synthesized using copper-free click chemistry. This synthetic pseudo-mucin exhibited potent neuraminidase inhibitory activity against several influenza strains. Virus capture and growth inhibition assays demonstrated its effective absorption of virion particles and ability to prevent viral infection in nanomolar concentrations. Investigation of the underlying antiviral mechanism of ZA-BSA revealed a dual mode of action, involving disruption of the initial stages of host-cell binding and fusion by inducing viral aggregation, followed by blocking the release of newly assembled virions by targeting neuraminidase activity. Notably, the conjugate also exhibited potent inhibitory activity against Oseltamivir-resistant neuraminidase variant comparable to the monomeric Zanamivir. These findings highlight the application of multivalent drug presentation on protein scaffold to mimic mucin adsorption of viruses, together with counteracting drug resistance. This innovative approach has potential for the creation of antiviral agents against influenza and other viral infections.
Collapse
Affiliation(s)
- Mingming Xue
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Ang Deng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Jia-Ning Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Xue Mi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China
| | - Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yang Yang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13th Avenue, TEDA, Tianjin 300457, China.
| |
Collapse
|
5
|
Peng G, Liu F. Effect of an accelerating metro cabin on the diffusion of cough droplets. Sci Rep 2024; 14:14150. [PMID: 38898048 PMCID: PMC11187065 DOI: 10.1038/s41598-024-64026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Coronaviruses being capable of spreading through droplet contamination have raised significant concerns regarding high-capacity public rail transport, such as the metro. Within a rapidly moving railcar cabin, the internal airflow lags behind the bulkhead, generating internally induced airflow that accelerates droplet dispersion within a non-inertial reference system. This study investigates the impact of acceleration on the diffusion of cough droplets of varying sizes using computational fluid dynamics. The modified k-ε equation in ANSYS® Fluent was utilized to simulate droplet diffusion under different body orientations by adjusting the inertial force correction source term. Results indicate that droplets in the middle size range (50-175 μm) are primarily influenced by inertial forces, whereas smaller droplets (3.5-20 μm) are predominantly controlled by air drag forces. Regardless of facial orientation, the outlet of high-capacity public rail transport poses the highest risk of infection.
Collapse
Affiliation(s)
- Ge Peng
- Institute of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
- Key Laboratory of Urban Spatial Information, Ministry of Natural Resources, KLUSI, Beijing, 100044, China
| | - Fang Liu
- Institute of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Key Laboratory of Urban Spatial Information, Ministry of Natural Resources, KLUSI, Beijing, 100044, China.
| |
Collapse
|
6
|
Huang J, Wang D, Zhu Y, Yang Z, Yao M, Shi X, An T, Zhang Q, Huang C, Bi X, Li J, Wang Z, Liu Y, Zhu G, Chen S, Hang J, Qiu X, Deng W, Tian H, Zhang T, Chen T, Liu S, Lian X, Chen B, Zhang B, Zhao Y, Wang R, Li H. An overview for monitoring and prediction of pathogenic microorganisms in the atmosphere. FUNDAMENTAL RESEARCH 2024; 4:430-441. [PMID: 38933199 PMCID: PMC11197502 DOI: 10.1016/j.fmre.2023.05.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2024] Open
Abstract
Corona virus disease 2019 (COVID-19) has exerted a profound adverse impact on human health. Studies have demonstrated that aerosol transmission is one of the major transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pathogenic microorganisms such as SARS-CoV-2 can survive in the air and cause widespread infection among people. Early monitoring of pathogenic microorganism transmission in the atmosphere and accurate epidemic prediction are the frontier guarantee for preventing large-scale epidemic outbreaks. Monitoring of pathogenic microorganisms in the air, especially in densely populated areas, may raise the possibility to detect viruses before people are widely infected and contain the epidemic at an earlier stage. The multi-scale coupled accurate epidemic prediction system can provide support for governments to analyze the epidemic situation, allocate health resources, and formulate epidemic response policies. This review first elaborates on the effects of the atmospheric environment on pathogenic microorganism transmission, which lays a theoretical foundation for the monitoring and prediction of epidemic development. Secondly, the monitoring technique development and the necessity of monitoring pathogenic microorganisms in the atmosphere are summarized and emphasized. Subsequently, this review introduces the major epidemic prediction methods and highlights the significance to realize a multi-scale coupled epidemic prediction system by strengthening the multidisciplinary cooperation of epidemiology, atmospheric sciences, environmental sciences, sociology, demography, etc. By summarizing the achievements and challenges in monitoring and prediction of pathogenic microorganism transmission in the atmosphere, this review proposes suggestions for epidemic response, namely, the establishment of an integrated monitoring and prediction platform for pathogenic microorganism transmission in the atmosphere.
Collapse
Affiliation(s)
- Jianping Huang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Wang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongguan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zifeng Yang
- National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease (Guangzhou Medical University), Guangzhou 510230, China
| | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiang Zhang
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing 100084, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yongqin Liu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Siyu Chen
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 510640, China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, and Center for Environment and Health, Peking University, Beijing 100871, China
| | - Weiwei Deng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100101, China
| | - Tengfei Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tianmu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xinbo Lian
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bin Chen
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Beidou Zhang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingjie Zhao
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Han Li
- Collaborative Innovation Center for Western Ecological Safety, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
- College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
7
|
Sinclair P, Zhao L, Beggs CB, Illingworth CJR. The airborne transmission of viruses causes tight transmission bottlenecks. Nat Commun 2024; 15:3540. [PMID: 38670957 PMCID: PMC11053022 DOI: 10.1038/s41467-024-47923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The transmission bottleneck describes the number of viral particles that initiate an infection in a new host. Previous studies have used genome sequence data to suggest that transmission bottlenecks for influenza and SARS-CoV-2 involve few viral particles, but the general principles of virus transmission are not fully understood. Here we show that, across a broad range of circumstances, tight transmission bottlenecks are a simple consequence of the physical process of airborne viral transmission. We use mathematical modelling to describe the physical process of the emission and inhalation of infectious particles, deriving the result that that the great majority of transmission bottlenecks involve few viral particles. While exceptions to this rule exist, the circumstances needed to create these exceptions are likely very rare. We thus provide a physical explanation for previous inferences of bottleneck size, while predicting that tight transmission bottlenecks prevail more generally in respiratory virus transmission.
Collapse
Affiliation(s)
- Patrick Sinclair
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Lei Zhao
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Clive B Beggs
- Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | |
Collapse
|
8
|
Mofidfar M, Mehrgardi MA, Xia Y, Zare RN. Dependence on relative humidity in the formation of reactive oxygen species in water droplets. Proc Natl Acad Sci U S A 2024; 121:e2315940121. [PMID: 38489384 PMCID: PMC10962988 DOI: 10.1073/pnas.2315940121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
Water microdroplets (7 to 11 µm average diameter, depending on flow rate) are sprayed in a closed chamber at ambient temperature, whose relative humidity (RH) is controlled. The resulting concentration of ROS (reactive oxygen species) formed in the microdroplets, measured by the amount of hydrogen peroxide (H2O2), is determined by nuclear magnetic resonance (NMR) and by spectrofluorimetric assays after the droplets are collected. The results are found to agree closely with one another. In addition, hydrated hydroxyl radical cations (•OH-H3O+) are recorded from the droplets using mass spectrometry and superoxide radical anions (•O2-) and hydroxyl radicals (•OH) by electron paramagnetic resonance spectroscopy. As the RH varies from 15 to 95%, the concentration of H2O2 shows a marked rise by a factor of about 3.5 in going from 15 to 50%, then levels off. By replacing the H2O of the sprayed water with deuterium oxide (D2O) but keeping the gas surrounding droplets with H2O, mass spectrometric analysis of the hydrated hydroxyl radical cations demonstrates that the water in the air plays a dominant role in producing H2O2 and other ROS, which accounts for the variation with RH. As RH increases, the droplet evaporation rate decreases. These two facts help us understand why viruses in droplets both survive better at low RH values, as found in indoor air in the wintertime, and are disinfected more effectively at higher RH values, as found in indoor air in the summertime, thus explaining the recognized seasonality of airborne viral infections.
Collapse
Affiliation(s)
| | - Masoud A. Mehrgardi
- Department of Chemistry, Stanford University, Stanford, CA94305
- Department of Chemistry, University of Isfahan, Isfahan81743, Iran
| | - Yu Xia
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA94305
| |
Collapse
|
9
|
Zhang GH, Zhu QH, Zhang L, Li L, Fu J, Wang SL, Yuan WL, He L, Tao GH. Bio-based ionic liquid filter with enhanced electrostatic attraction for outside filtration and inside collection of viral aerosols. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133480. [PMID: 38219589 DOI: 10.1016/j.jhazmat.2024.133480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Hazardous biological pathogens in the air pose a significant public environmental health concern as infected individuals emit virus-laden aerosols (VLAs) during routine respiratory activities. Mask-wearing is a key preventive measure, but conventional filtration methods face challenges, particularly in high humidity conditions, where electrostatic charge decline increases the risk of infection. This study introduces a bio-based air filter comprising glycine ionic liquids (GILs) and malleable polymer composite (GILP) with high polarity and functional group density, which are wrapped around a melamine-formaldehyde (MF) resin skeleton, forming a conductive, porous GIL functionized ionic network air filter (GILP@MF). When subjected to low voltage, the GILP@MF composite efficiently captures VLAs including nanoscale virus particles through the enhanced electrostatic attraction, especially in facing high humidity bioaerosols exhaled by human body. The filtration/collection efficiency and quality factor can reach 98.3% and 0.264 Pa-1 at 0.1 m s-1, respectively. This innovative filter provides effective VLA protection and offers potential for non-invasive respiratory virus sampling, advancing medical diagnosis efforts.
Collapse
Affiliation(s)
- Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China; School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, China; School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lei Li
- MGI Tech. Co., Ltd., Shenzhen 518083, China
| | - Jie Fu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | | | - Wen-Li Yuan
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
10
|
Shankar SN, Vass WB, Lednicky JA, Logan T, Messcher RL, Eiguren-Fernandez A, Amanatidis S, Sabo-Attwood T, Wu CY. The BioCascade-VIVAS system for collection and delivery of virus-laden size-fractionated airborne particles. JOURNAL OF AEROSOL SCIENCE 2024; 175:106263. [PMID: 38680161 PMCID: PMC11044810 DOI: 10.1016/j.jaerosci.2023.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The size of virus-laden particles determines whether aerosol or droplet transmission is dominant in the airborne transmission of pathogens. Determining dominant transmission pathways is critical to implementing effective exposure risk mitigation strategies. The aerobiology discipline greatly needs an air sampling system that can collect virus-laden airborne particles, separate them by particle diameter, and deliver them directly onto host cells without inactivating virus or killing cells. We report the use of a testing system that combines a BioAerosol Nebulizing Generator (BANG) to aerosolize Human coronavirus (HCoV)-OC43 (OC43) and an integrated air sampling system comprised of a BioCascade impactor (BC) and Viable Virus Aerosol Sampler (VIVAS), together referred to as BC-VIVAS, to deliver the aerosolized virus directly onto Vero E6 cells. Particles were collected into four stages according to their aerodynamic diameter (Stage 1: >9.43 μm, Stage 2: 3.81-9.43 μm, Stage 3: 1.41-3.81 μm and Stage 4: <1.41 μm). OC43 was detected by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses of samples from all BC-VIVAS stages. The calculated OC43 genome equivalent counts per cm3 of air ranged from 0.34±0.09 to 70.28±12.56, with the highest concentrations in stage 3 (1.41-3.81 μm) and stage 4 (<1.41 μm). Virus-induced cytopathic effects appeared only in cells exposed to particles collected in stages 3 and 4, demonstrating the presence of viable OC43 in particles <3.81 μm. This study demonstrates the dual utility of the BC-VIVAS as particle size-fractionating air sampler and a direct exposure system for aerosolized viruses. Such utility may help minimize conventional post-collection sample processing time required to assess the viability of airborne viruses and increase the understanding about transmission pathways for airborne pathogens.
Collapse
Affiliation(s)
- Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Tracey Logan
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Rebeccah L. Messcher
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Tara Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
11
|
Eain MMG, Nolan K, Murphy B, McCaul C, MacLoughlin R. Exhaled patient derived aerosol dispersion during awake tracheal intubation with concurrent high flow nasal therapy. J Clin Monit Comput 2023; 37:1265-1273. [PMID: 36930390 PMCID: PMC10022553 DOI: 10.1007/s10877-023-00990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Awake Tracheal Intubation (ATI) can be performed in cases where there is potential for difficult airway management. It is considered an aerosol generating procedure and is a source of concern to healthcare workers due to the risk of transmission of airborne viral infections, such as SARS-CoV-2. At present, there is a lack of data on the quantities, size distributions and spread of aerosol particles generated during such procedures. This was a volunteer observational study which took place in an operating room of a university teaching hospital. Optical particle sizers were used to provide real time aerosol characterisation during a simulated ATI performed with concurrent high-flow nasal oxygen therapy. The particle sizers were positioned at locations that represented the different locations of clinical staff in an operating room during an ATI. The greatest concentration of patient derived aerosol particles was within 0.5-1.0 m of the subject and along their midline, 2242 #/cm3. As the distance, both radial and longitudinal, from the subject increased, the concentration decreased towards ambient levels, 36.9 ± 5.1 #/cm3. Patient derived aerosol particles < 5 µm in diameter remained entrained in the exhaled aerosol plume and fell to the floor or onto the subject. Patient derived particles > 5 µm in diameter broke away from the exhaled plume and spread radially throughout the operating room. Irrespective of distance and ventilation status, full airborne protective equipment should be worn by all staff when ATI is being performed on patients with suspected viral respiratory infections.
Collapse
Affiliation(s)
- Marc Mac Giolla Eain
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, IDA Business Park, Dangan, Galway, H91HE94, Ireland
| | - Kevin Nolan
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Brian Murphy
- Department of Anaesthesia, Rotunda Hospital, Parnell Square, Dublin, Ireland
| | - Conan McCaul
- Department of Anaesthesia, Rotunda Hospital, Parnell Square, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Ltd, IDA Business Park, Dangan, Galway, H91HE94, Ireland.
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons, Dublin, Ireland.
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, Dublin, Ireland.
| |
Collapse
|
12
|
Mofakham AA, Helenbrook BT, Erath BD, Ferro AR, Ahmed T, Brown DM, Ahmadi G. Influence of two-dimensional expiratory airflow variations on respiratory particle propagation during pronunciation of the fricative [f]. JOURNAL OF AEROSOL SCIENCE 2023; 173:106179. [PMID: 37069899 PMCID: PMC10088289 DOI: 10.1016/j.jaerosci.2023.106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Propagation of respiratory particles, potentially containing viable viruses, plays a significant role in the transmission of respiratory diseases (e.g., COVID-19) from infected people. Particles are produced in the upper respiratory system and exit the mouth during expiratory events such as sneezing, coughing, talking, and singing. The importance of considering speaking and singing as vectors of particle transmission has been recognized by researchers. Recently, in a companion paper, dynamics of expiratory flow during fricative utterances were explored, and significant variations of airflow jet trajectories were reported. This study focuses on respiratory particle propagation during fricative productions and the effect of airflow variations on particle transport and dispersion as a function of particle size. The commercial ANSYS-Fluent computational fluid dynamics (CFD) software was employed to quantify the fluid flow and particle dispersion from a two-dimensional mouth model of sustained fricative [f] utterance as well as a horizontal jet flow model. The fluid velocity field and particle distributions estimated from the mouth model were compared with those of the horizontal jet flow model. The significant effects of the airflow jet trajectory variations on the pattern of particle transport and dispersion during fricative utterances were studied. Distinct differences between the estimations of the horizontal jet model for particle propagation with those of the mouth model were observed. The importance of considering the vocal tract geometry and the failure of a horizontal jet model to properly estimate the expiratory airflow and respiratory particle propagation during the production of fricative utterances were emphasized.
Collapse
Affiliation(s)
- Amir A Mofakham
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, United States of America
| | - Brian T Helenbrook
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, United States of America
| | - Byron D Erath
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, United States of America
| | - Andrea R Ferro
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, NY 13699, United States of America
| | - Tanvir Ahmed
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, United States of America
| | - Deborah M Brown
- Joint Educational Programs, Trudeau Institute, Saranac Lake, NY 12983, United States of America
| | - Goodarz Ahmadi
- Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699, United States of America
| |
Collapse
|
13
|
Okajima J, Kato M, Hayakawa A, Iga Y. Investigation of bimodal characteristics of the droplet size distribution in condensation spray. Sci Rep 2023; 13:12006. [PMID: 37491517 PMCID: PMC10368728 DOI: 10.1038/s41598-023-39087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
To understand the generation process of airborne droplets during exhalation, this study investigates the mechanism of bimodal characteristics of the size distribution of droplets generated in a condensed spray flow. The phase change process in the condensed spray flow was estimated based on the droplet size distribution measured by a phase Doppler particle analyzer and the temperature distribution measured by a thermistor. On the central axis, the size distribution was unimodal in the spray interior. In contrast, bimodality of the size distribution at the outer edge of the spray flow was observed. At the edge of the spray flow, a large temperature gradient was formed. This indicates that condensation actively occurred at the outer edge. For the same reason as outlined above, condensation did not progress at the spray center because of the consumption of water vapor at the outer edge by the condensation, and the droplet diameter did not change significantly. Hence, owing to the difference in the local phase change process between the center and outer edge of the spray, large and small droplets can exist simultaneously in the middle region. As a result, the size distribution of the condensation spray is bimodal.
Collapse
Affiliation(s)
- Junnosuke Okajima
- Institute of Fluid Science, Tohoku University, Sendai, 980-8579, Japan.
| | - Mitsuki Kato
- Institute of Fluid Science, Tohoku University, Sendai, 980-8579, Japan
- Mechanical Engineering Division, Tohoku University, Sendai, 980-8579, Japan
| | - Akihiro Hayakawa
- Institute of Fluid Science, Tohoku University, Sendai, 980-8579, Japan
| | - Yuka Iga
- Institute of Fluid Science, Tohoku University, Sendai, 980-8579, Japan
| |
Collapse
|
14
|
Moschovis PP, Lombay J, Rooney J, Schenkel SR, Singh D, Rezaei SJ, Salo N, Gong A, Yonker LM, Shah J, Hayden D, Hibberd PL, Demokritou P, Kinane TB. The effect of activity and face masks on exhaled particles in children. Pediatr Investig 2023; 7:75-85. [PMID: 37324601 PMCID: PMC10262878 DOI: 10.1002/ped4.12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/29/2023] [Indexed: 06/17/2023] Open
Abstract
Importance Despite the high burden of respiratory infections among children, the production of exhaled particles during common activities and the efficacy of face masks in children have not been sufficiently studied. Objective To determine the effect of type of activity and mask usage on exhaled particle production in children. Methods Healthy children were asked to perform activities that ranged in intensity (breathing quietly, speaking, singing, coughing, and sneezing) while wearing no mask, a cloth mask, or a surgical mask. The concentration and size of exhaled particles were assessed during each activity. Results Twenty-three children were enrolled in the study. Average exhaled particle concentration increased by intensity of activity, with the lowest particle concentration during tidal breathing (1.285 particles/cm3 [95% CI 0.943, 1.627]) and highest particle concentration during sneezing (5.183 particles/cm3 [95% CI 1.911, 8.455]). High-intensity activities were associated with an increase primarily in the respirable size (≤ 5 µm) particle fraction. Surgical and cloth masks were associated with lower average particle concentration compared to no mask (P = 0.026 for sneezing). Surgical masks outperformed cloth masks across all activities, especially within the respirable size fraction. In a multivariable linear regression model, we observed significant effect modification of activity by age and by mask type. Interpretation Similar to adults, children produce exhaled particles that vary in size and concentration across a range of activities. Production of respirable size fraction particles (≤ 5 µm), the dominant mode of transmission of many respiratory viruses, increases significantly with coughing and sneezing and is most effectively reduced by wearing surgical face masks.
Collapse
Affiliation(s)
- Peter P. Moschovis
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jesiel Lombay
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jennifer Rooney
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sara R. Schenkel
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Dilpreet Singh
- Department of Environmental HealthHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Mechanical and Aerospace EngineeringRutgers University School of Public HealthNew BrunswickNew JerseyUSA
| | - Shawheen J. Rezaei
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Nora Salo
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Amanda Gong
- David Geffen School of Medicinethe University of California Los AngelesLos AngelesCaliforniaUSA
| | - Lael M. Yonker
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jhill Shah
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Douglas Hayden
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Patricia L. Hibberd
- Department of Global HealthBoston University School of Public HealthBostonMassachusettsUSA
| | - Philip Demokritou
- Department of Environmental HealthHarvard T. H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Mechanical and Aerospace EngineeringRutgers University School of Public HealthNew BrunswickNew JerseyUSA
| | - T. Bernard Kinane
- Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
15
|
Clements N, Arvelo I, Arnold P, Heredia NJ, Hodges UW, Deresinski S, Cook PW, Hamilton KA. Informing Building Strategies to Reduce Infectious Aerosol Transmission Risk by Integrating DNA Aerosol Tracers with Quantitative Microbial Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5771-5781. [PMID: 37000413 DOI: 10.1021/acs.est.2c08131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Using aerosol-based tracers to estimate risk of infectious aerosol transmission aids in the design of buildings with adequate protection against aerosol transmissible pathogens, such as SARS-CoV-2 and influenza. We propose a method for scaling a SARS-CoV-2 bulk aerosol quantitative microbial risk assessment (QMRA) model for impulse emissions, coughing or sneezing, with aerosolized synthetic DNA tracer concentration measurements. With point-of-emission ratios describing relationships between tracer and respiratory aerosol emission characteristics (i.e., volume and RNA or DNA concentrations) and accounting for aerosolized pathogen loss of infectivity over time, we scale the inhaled pathogen dose and risk of infection with time-integrated tracer concentrations measured with a filter sampler. This tracer-scaled QMRA model is evaluated through scenario testing, comparing the impact of ventilation, occupancy, masking, and layering interventions on infection risk. We apply the tracer-scaled QMRA model to measurement data from an ambulatory care room to estimate the risk reduction resulting from HEPA air cleaner operation. Using DNA tracer measurements to scale a bulk aerosol QMRA model is a relatively simple method of estimating risk in buildings and can be applied to understand the impact of risk mitigation efforts.
Collapse
Affiliation(s)
- Nicholas Clements
- Paul M. Rady Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Ilan Arvelo
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | - Phil Arnold
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | | | - Ulrike W Hodges
- SafeTraces, Inc., Pleasanton, California 94588, United States
| | - Stan Deresinski
- Stanford University School of Medicine, Stanford, California 94305, United States
| | - Peter W Cook
- Independent researcher, Atlanta, Georgia 30333, United States
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85281, United States
- The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
16
|
Chao I, Lee S, Brenker J, Wong D, Low C, Desselle M, Bernard A, Alan T, Keon-Cohen Z, Coles-Black J. The effect of clinical face shields on aerosolized particle exposure. JOURNAL OF 3D PRINTING IN MEDICINE 2023; 7:3DP2. [PMID: 38051985 PMCID: PMC9870239 DOI: 10.2217/3dp-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/16/2022] [Indexed: 12/07/2023]
Abstract
Background Face shields protect healthcare workers (HCWs) from fluid and large droplet contamination. Their effect on smaller aerosolized particles is unknown. Materials & methods An ultrasonic atomizer was used to simulate particle sizes equivalent to human breathing and forceful cough. Particles were measured at positions correlating to anesthetic personnel in relation to a patient inside an operating theatre environment. The effect of the application of face shields on HCW exposure was measured. Results & Conclusion Significant reductions in particle concentrations were measured after the application of vented and enclosed face shields. Face shields appear to reduce the concentration of aerosolized particles that HCWs are exposed to, thereby potentially conferring further protection against exposure to aerosolized particles in an operating theatre environment.
Collapse
Affiliation(s)
- Ian Chao
- Department of Anaesthesia, Box Hill Hospital, Eastern Health, Melbourne, Australia
| | - Sarah Lee
- Department of Anaesthesia, Box Hill Hospital, Eastern Health, Melbourne, 3128, Australia
| | - Jason Brenker
- Department of Mechanical & Aerospace Engineering, Monash University, Melbourne, 3800, Australia
| | - Derrick Wong
- Department of Anaesthesia, Box Hill Hospital, Eastern Health, Melbourne, Australia
| | - Caitlin Low
- Department of Anaesthesia, Box Hill Hospital, Eastern Health, Melbourne, Australia
| | - Mathilde Desselle
- Herston Biofabrication Institute, Metro North Hospital & Health Service, Herston, Queensland, 4029, Australia
| | - Anne Bernard
- QCIF Facility for Advanced Bioinformatics, St Lucia, Queensland, 4072, Australia
| | - Tuncay Alan
- Department of Mechanical & Aerospace Engineering, Monash University, Melbourne, 3800, Australia
| | - Zoe Keon-Cohen
- Department of Anaesthesia, Box Hill Hospital, Eastern Health, Melbourne, Australia
| | | |
Collapse
|
17
|
Vance D, Shah P, Sataloff RT. COVID-19: Impact on the Musician and Returning to Singing; A Literature Review. J Voice 2023; 37:292.e1-292.e8. [PMID: 33583675 PMCID: PMC7808728 DOI: 10.1016/j.jvoice.2020.12.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The purpose of this study was to review current literature of the impact of COVID-19 on musicians and returning to singing. METHODS A comprehensive search of peer-review articles was completed using PubMed, GoogleScholar, Scopus, and Web of Science. The search was completed using many key terms including voice, hoarseness, dysphonia, aphonia, cough, singers, and public speakers. The bibliography from each article found was searched to find additional articles. The search process revealed 56 peer-reviewed articles, 18 primary articles, ranging from the years 2019 to 2020. CONCLUSION COVID-19 has had a major impact on singers and other musicians worldwide. It can affect the voice and can lead to paresis/paralysis of laryngeal nerves to long-term changes in respiratory function. There is a risk from aerosolization/droplet formation transmission with singing, and with playing wind and brass instruments that can be mitigated by following COVID-19 guidelines. Ways to reduce possible transmission during singing and instrument play include virtual rehearsals or performances, mask-wearing, instrument covers, smaller choirs, performing outside, excellent ventilation being socially distanced, shorter rehearsals, regularly cleaning commonly touched surfaces and washing hands, avoiding contact with others, and temperature screening.
Collapse
Affiliation(s)
- Dylan Vance
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Priyanka Shah
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Robert T Sataloff
- Department of Otolaryngology - Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, Pennsylvania; Lankenau Institute for Medical Research, Wynnewood, Pennsylvania.
| |
Collapse
|
18
|
Derk RC, Coyle JP, Lindsley WG, Blachere FM, Lemons AR, Service SK, Martin SB, Mead KR, Fotta SA, Reynolds JS, McKinney WG, Sinsel EW, Beezhold DH, Noti JD. Efficacy of Do-It-Yourself air filtration units in reducing exposure to simulated respiratory aerosols. BUILDING AND ENVIRONMENT 2023; 229:109920. [PMID: 36569517 PMCID: PMC9759459 DOI: 10.1016/j.buildenv.2022.109920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 05/20/2023]
Abstract
Many respiratory diseases, including COVID-19, can be spread by aerosols expelled by infected people when they cough, talk, sing, or exhale. Exposure to these aerosols indoors can be reduced by portable air filtration units (air cleaners). Homemade or Do-It-Yourself (DIY) air filtration units are a popular alternative to commercially produced devices, but performance data is limited. Our study used a speaker-audience model to examine the efficacy of two popular types of DIY air filtration units, the Corsi-Rosenthal cube and a modified Ford air filtration unit, in reducing exposure to simulated respiratory aerosols within a mock classroom. Experiments were conducted using four breathing simulators at different locations in the room, one acting as the respiratory aerosol source and three as recipients. Optical particle spectrometers monitored simulated respiratory aerosol particles (0.3-3 μm) as they dispersed throughout the room. Using two DIY cubes (in the front and back of the room) increased the air change rate as much as 12.4 over room ventilation, depending on filter thickness and fan airflow. Using multiple linear regression, each unit increase of air change reduced exposure by 10%. Increasing the number of filters, filter thickness, and fan airflow significantly enhanced the air change rate, which resulted in exposure reductions of up to 73%. Our results show DIY air filtration units can be an effective means of reducing aerosol exposure. However, they also show performance of DIY units can vary considerably depending upon their design, construction, and positioning, and users should be mindful of these limitations.
Collapse
Affiliation(s)
- Raymond C Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Jayme P Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - William G Lindsley
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Francoise M Blachere
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Angela R Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Samantha K Service
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Stephen B Martin
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26505, USA
| | - Kenneth R Mead
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH, 45226, USA
| | - Steven A Fotta
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Jeffrey S Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Walter G McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Erik W Sinsel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - Donald H Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| | - John D Noti
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1000 Fredrick Lane, Morgantown, WV, 26508, USA
| |
Collapse
|
19
|
Vohra SB, Kumar CM. International survey of ophthalmic anaesthesia service provision, protection of anaesthesia providers and patients during COVID-19 pandemic: a wake-up call. Eye (Lond) 2023; 37:548-553. [PMID: 35220400 PMCID: PMC8881697 DOI: 10.1038/s41433-022-01979-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS This international survey was conducted to study the impact of Covid-19 pandemic on the provision and practices of ophthalmic anaesthesia, evaluate the methods employed by parent ophthalmic units for safeguarding their anaesthesia providers and patients during lockdown, and to assess pandemic's effect on anaesthesia providers as individuals. The study was done with the hope that the results will help in protecting patients and safeguarding precious human resource by better management if this pandemic was to continue or there was to be another pandemic. METHODS An anonymous questionnaire survey was distributed electronically between December 2020-January 2021 to the practicing ophthalmic anaesthesia providers in different parts of the world. RESULTS The survey identified that apart from reducing elective operating services, the ophthalmic units were ill prepared for the pandemic and the overall management was lacklustre. There was a definite lack of effective peri-operative patient screening, and, streaming processes. Measures for personal protection of staff were not optimal especially during regional/local ophthalmic anaesthesia. Severity of the pandemic, sudden job plan changes, and redeployment to intensive care units/acute covid wards had an adverse psychological impact on the affected staff. CONCLUSION Ophthalmic anaesthesia services worldwide have had poor attentiveness to the life-threatening menace and reality of Covid-19 pandemic. A review of the institutional practices to address correctible deficiencies is urgently required. Robust, mandatory, elective, timely preventative strategies need to be implemented to protect patients, and, the precious ophthalmic workforce from potential adverse physical and psychological injuries.
Collapse
Affiliation(s)
- Shashi B Vohra
- Department of Anaesthesia, Critical Care and Pain Management, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham Midland Eye Centre, City Hospital, Dudley Road, Birmingham, B18 7QH, UK.
| | - Chandra M Kumar
- Newcastle University, Gelang Patah, Johor, Malaysia
- Department of Anaesthesia, Khoo Teck Puat Hospital, Yishun Central 90, Singapore, 768828, Singapore
| |
Collapse
|
20
|
Tan K, Gao B, Yang CH, Johnson EL, Hsu MC, Passalacqua A, Krishnamurthy A, Ganapathysubramanian B. A computational framework for transmission risk assessment of aerosolized particles in classrooms. ENGINEERING WITH COMPUTERS 2023:1-22. [PMID: 36742376 PMCID: PMC9884603 DOI: 10.1007/s00366-022-01773-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Infectious airborne diseases like the recent COVID-19 pandemic render confined spaces high-risk areas. However, in-person activities like teaching in classroom settings and government services are often expected to continue or restart quickly. It becomes important to evaluate the risk of airborne disease transmission while accounting for the physical presence of humans, furniture, and electronic equipment, as well as ventilation. Here, we present a computational framework and study based on detailed flow physics simulations that allow straightforward evaluation of various seating and operating scenarios to identify risk factors and assess the effectiveness of various mitigation strategies. These scenarios include seating arrangement changes, presence/absence of computer screens, ventilation rate changes, and presence/absence of mask-wearing. This approach democratizes risk assessment by automating a key bottleneck in simulation-based analysis-creating an adequately refined mesh around multiple complex geometries. Not surprisingly, we find that wearing masks (with at least 74% inward protection efficiency) significantly reduced transmission risk against unmasked and infected individuals. While the use of face masks is known to reduce the risk of transmission, we perform a systematic computational study of the transmission risk due to variations in room occupancy, seating layout and air change rates. In addition, our findings on the efficacy of face masks further support use of face masks. The availability of such an analysis approach will allow education administrators, government officials (courthouses, police stations), and hospital administrators to make informed decisions on seating arrangements and operating procedures. Supplementary Information The online version contains supplementary material available at 10.1007/s00366-022-01773-9.
Collapse
Affiliation(s)
- Kendrick Tan
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 USA
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632 Singapore
| | - Boshun Gao
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 USA
| | - Cheng-Hau Yang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 USA
| | - Emily L. Johnson
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Ming-Chen Hsu
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 USA
| | - Alberto Passalacqua
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011 USA
| | | | | |
Collapse
|
21
|
Wedel J, Steinmann P, Štrakl M, Hriberšek M, Cui Y, Ravnik J. Anatomy matters: The role of the subject-specific respiratory tract on aerosol deposition - A CFD study. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 401:115372. [PMID: 35919629 PMCID: PMC9333481 DOI: 10.1016/j.cma.2022.115372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic is one of the greatest challenges to humanity nowadays. COVID-19 virus can replicate in the host's larynx region, which is in contrast to other viruses that replicate in lungs only, i.e. SARS. This is conjectured to support a fast spread of COVID-19. However, there is sparse research in this field about quantitative comparison of virus load in the larynx for varying susceptible individuals. In this regard the lung geometry itself could influence the risk of reproducing more pathogens and consequently exhaling more virus. Disadvantageously, there are only sparse lung geometries available. To still be able to investigate realistic geometrical deviations we employ three different digital replicas of human airways up to the 7 th level of bifurcation, representing two realistic lungs (male and female) as well as a more simplified experimental model. Our aim is to investigate the influence of breathing scenarios on aerosol deposition in anatomically different, realistic human airways. In this context, we employ three levels of cardiovascular activity as well as reported experimental particle size distributions by means of Computational Fluid Dynamics (CFD) with special focus on the larynx region to enable new insights into the local virus loads in human respiratory tracts. In addition, the influence of more realistic boundary conditions is investigated by performing transient simulations of a complete respiratory cycle in the upper lung regions of the considered respiratory models, focusing in particular on deposition in the oral cavity, the laryngeal region, and trachea, while simplifying the tracheobronchial tree. The aerosol deposition is modeled via OpenFOAM\protect \relax \special {t4ht=®} by employing an Euler-Lagrangian frame including steady and unsteady Reynolds Averaged Navier-Stokes (RANS) resolved turbulent flow using the k- ω -SST and k- ω -SST DES turbulence models. We observed that the respiratory geometry altered the local deposition patterns, especially in the laryngeal region. Despite the larynx region, the effects of varying flow rate for the airway geometries considered were found to be similar in the majority of respiratory tract regions. For all particle size distributions considered, localized particle accumulation occurred in the larynx of all considered lung models, which were more pronounced for larger particle size distributions. Moreover, it was found, that employing transient simulations instead of steady-state analysis, the overall particle deposition pattern is maintained, however with a stronger intensity in the transient cases.
Collapse
Affiliation(s)
- Jana Wedel
- Institute of Applied Mechanics, Universität Erlangen-Nürnberg, Germany
| | - Paul Steinmann
- Institute of Applied Mechanics, Universität Erlangen-Nürnberg, Germany
- Glasgow Computational Engineering Center, University of Glasgow, United Kingdom
| | - Mitja Štrakl
- Faculty of Mechanical Engineering, University of Maribor, Slovenia
| | - Matjaž Hriberšek
- Faculty of Mechanical Engineering, University of Maribor, Slovenia
| | - Yan Cui
- Huazhong University of Science and Technology, Wuhan, China
| | - Jure Ravnik
- Faculty of Mechanical Engineering, University of Maribor, Slovenia
| |
Collapse
|
22
|
Zhou G, Burnett GW, Shah RS, Lai CY, Katz D, Fried EA. Development of an Easily Reproducible Cough Simulator With Droplets and Aerosols for Rapidly Testing Novel Personal Protective Equipment. Simul Healthc 2022; 17:336-342. [PMID: 35238849 DOI: 10.1097/sih.0000000000000644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The current COVID-19 pandemic has produced numerous innovations in personal protective equipment, barrier devices, and infection mitigation strategies, which have not been validated. During high-risk procedures such as airway manipulation, coughs are common and discrete events that may expose healthcare workers to large amounts of viral particles. A simulated cough under controlled circumstances can rapidly test novel devices and protocols and thus aid in their evaluation and the development of implementation guidelines. Physiologic cough simulators exist but require significant expertise and specialized equipment not available to most clinicians. METHODS Using components commonly found in healthcare settings, a cough simulator was designed for clinicians to easily assemble and use. Both droplet and aerosol particle generators were incorporated into a bimodal experimental system. High-speed flash photography was used for data collection. RESULTS Using a gas flow analyzer, video recordings, and high-speed digital photography, the cough and particle simulators were quantitatively and qualitatively compared with known physiologic cough parameters and in vivo Schlieren imaging of human coughs. CONCLUSIONS Based on our validation studies, this cough and particle simulator model approximates a physiologic, human cough in the context of testing personal protective equipment, barrier devices, and infection prevention measures.
Collapse
Affiliation(s)
- George Zhou
- From the Department of Anesthesiology, Perioperative and Pain Medicine (G.Z.), Stanford University Hospital, Stanford, CA; Department of Anesthesiology, Perioperative and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY (G.W.B., C.Y.L., D.K., E.A.F.); and Department of Anesthesiology and Critical Care Medicine (R.S.S.), Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | |
Collapse
|
23
|
Zhen Q, Zhang A, Huang Q, Li J, Du Y, Zhang Q. Overview of the Role of Spatial Factors in Indoor SARS-CoV-2 Transmission: A Space-Based Framework for Assessing the Multi-Route Infection Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11007. [PMID: 36078723 PMCID: PMC9518419 DOI: 10.3390/ijerph191711007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has lasted from 2019 to 2022, severely disrupting human health and daily life. The combined effects of spatial, environmental, and behavioral factors on indoor COVID-19 spread and their interactions are usually ignored. Especially, there is a lack of discussion on the role of spatial factors in reducing the risk of virus transmission in complex and diverse indoor environments. This paper endeavours to summarize the spatial factors and their effects involved in indoor virus transmission. The process of release, transport, and intake of SARS-CoV-2 was reviewed, and six transmission routes according to spatial distance and exposure way were classified. The triangular relationship between spatial, environmental and occupant behavioral parameters during virus transmission was discussed. The detailed effects of spatial parameters on droplet-based, surface-based and air-based transmission processes and virus viability were summarized. We found that spatial layout, public-facility design and openings have a significant indirect impact on the indoor virus distribution and transmission by affecting occupant behavior, indoor airflow field and virus stability. We proposed a space-based indoor multi-route infection risk assessment framework, in which the 3D building model containing detailed spatial information, occupant behavior model, virus-spread model and infection-risk calculation model are linked together. It is also applicable to other, similar, respiratory infectious diseases such as SARS, influenza, etc. This study contributes to developing building-level, infection-risk assessment models, which could help building practitioners make better decisions to improve the building's epidemic-resistance performance.
Collapse
Affiliation(s)
- Qi Zhen
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Anxiao Zhang
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Qiong Huang
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300072, China
| | - Yiming Du
- School of Architecture, Tianjin University, Tianjin 300072, China
| | - Qi Zhang
- School of Architecture, Tianjin University, Tianjin 300072, China
| |
Collapse
|
24
|
Hecker JG, He J, Rochlin R, Brannen C, Teng S, Glenn K, Novosselov I. Measuring aerosols in the operating theatre and beyond using a real-time sensor network. Anaesthesia 2022; 77:1097-1105. [PMID: 36047649 DOI: 10.1111/anae.15842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
The ability to measure and track aerosols in the vicinity of patients with suspected or confirmed COVID-19 is highly desirable. At present, there is no way to measure and track, in real time, the sizes, dispersion and dilution/disappearance of aerosols that are generated by airway manipulations such as mask ventilation; tracheal intubation; bronchoscopy; dental and gastro-intestinal endoscopy procedures; or by vigorous breathing, coughing or exercise. We deployed low-cost photoelectric sensors in five operating theatres between surgical cases. We measured and analysed dilution and exfiltration of aerosols we generated to evaluate air handling and dispersion under real-world conditions. These data were used to develop a model of aerosol persistence. We found significant variation between different operating theatres. Equipment placement near air vents affects air flows, impacting aerosol movement and elimination patterns. Despite these impediments, air exchange in operating theatres is robust and prolonged fallow time before theatre turnover may not be necessary. Significant concentrations of aerosols are not seen in adjoining areas outside of the operating theatre. These models and dispersion rates can predict aerosol persistence in operating theatres and other clinical areas and potentially facilitate quantification of risk, with obvious and far-reaching implications for designing, evaluating and confirming air handling in non-medical environments.
Collapse
Affiliation(s)
- J G Hecker
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - J He
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - R Rochlin
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - C Brannen
- Peri-operative Services, Department of Nursing, University of Washington, Seattle, WA, USA
| | - S Teng
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - K Glenn
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| | - I Novosselov
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
25
|
Coupled discrete phase model and Eulerian wall film model for numerical simulation of respiratory droplet generation during coughing. Sci Rep 2022; 12:14849. [PMID: 36050319 PMCID: PMC9434508 DOI: 10.1038/s41598-022-18788-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022] Open
Abstract
Computational fluid dynamics is widely used to simulate droplet-spreading behavior due to respiratory events. However, droplet generation inside the body, such as the number, mass, and particle size distribution, has not been quantitatively analyzed. The aim of this study was to identify quantitative characteristics of droplet generation during coughing. Airflow simulations were performed by coupling the discrete phase model and Eulerian wall film model to reproduce shear-induced stripping of airway mucosa. An ideal airway model with symmetric bifurcations was constructed, and the wall domain was covered by a mucous liquid film. The results of the transient airflow simulation indicated that the droplets had a wide particle size distribution of 0.1–400 µm, and smaller droplets were generated in larger numbers. In addition, the total mass and number of droplets generated increased with an increasing airflow. The total mass of the droplets also increased with an increasing mucous viscosity, and the largest number and size of droplets were obtained at a viscosity of 8 mPa s. The simulation methods used in this study can be used to quantify the particle size distribution and maximum particle diameter under various conditions.
Collapse
|
26
|
Parhizkar H, Van Den Wymelenberg KG, Haas CN, Corsi RL. A Quantitative Risk Estimation Platform for Indoor Aerosol Transmission of COVID-19. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:2075-2088. [PMID: 34713463 PMCID: PMC8662138 DOI: 10.1111/risa.13844] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/22/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
Aerosol transmission has played a significant role in the transmission of COVID-19 disease worldwide. We developed a COVID-19 aerosol transmission risk estimation model to better understand how key parameters associated with indoor spaces and infector emissions affect inhaled deposited dose of aerosol particles that convey the SARS-CoV-2 virus. The model calculates the concentration of size-resolved, virus-laden aerosol particles in well-mixed indoor air challenged by emissions from an index case(s). The model uses a mechanistic approach, accounting for particle emission dynamics, particle deposition to indoor surfaces, ventilation rate, and single-zone filtration. The novelty of this model relates to the concept of "inhaled & deposited dose" in the respiratory system of receptors linked to a dose-response curve for human coronavirus HCoV-229E. We estimated the volume of inhaled & deposited dose of particles in the 0.5-4 μm range expressed in picoliters (pL) in a well-documented COVID-19 outbreak in restaurant X in Guangzhou China. We anchored the attack rate with the dose-response curve of HCoV-229E which provides a preliminary estimate of the average SARS-CoV-2 dose per person, expressed in plaque forming units (PFUs). For a reasonable emission scenario, we estimate approximately three PFU per pL deposited, yielding roughly 10 PFUs deposited in the respiratory system of those infected in restaurant X. To explore the model's utility, we tested it with four COVID-19 outbreaks. The risk estimates from the model fit reasonably well with the reported number of confirmed cases given available metadata from the outbreaks and uncertainties associated with model assumptions.
Collapse
Affiliation(s)
- Hooman Parhizkar
- Institute for Health in the Built EnvironmentUniversity of OregonEugeneORUSA
- Energy Studies in Building LaboratoryUniversity of OregonEugeneORUSA
| | - Kevin G. Van Den Wymelenberg
- Institute for Health in the Built EnvironmentUniversity of OregonEugeneORUSA
- Energy Studies in Building LaboratoryUniversity of OregonEugeneORUSA
- Biology and the Built Environment CenterUniversity of OregonEugeneORUSA
| | | | | |
Collapse
|
27
|
Morawska L, Buonanno G, Mikszewski A, Stabile L. The physics of respiratory particle generation, fate in the air, and inhalation. NATURE REVIEWS. PHYSICS 2022; 4:723-734. [PMID: 36065441 PMCID: PMC9430019 DOI: 10.1038/s42254-022-00506-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 05/31/2023]
Abstract
Given that breathing is one of the most fundamental physiological functions, there is an urgent need to broaden our understanding of the fluid dynamics that governs it. There would be many benefits from doing so, including a better assessment of respiratory health, a basis for more precise delivery of pharmaceutical drugs for treatment, and the understanding and potential minimization of respiratory infection transmission. We review the physics of particle generation in the respiratory tract, the fate of these particles in the air on exhalation and the physics of particle inhalation. The main focus is on evidence from experimental studies. We conclude that although there is qualitative understanding of the generation of particles in the respiratory tract, a basic quantitative knowledge of the characteristics of the particles emitted during respiratory activities and their fate after emission, and a theoretical understanding of particle deposition during inhalation, nevertheless the general understanding of the entire process is rudimentary, and many open questions remain.
Collapse
Affiliation(s)
- Lidia Morawska
- Queensland University of Technology, International Laboratory for Air Quality & Health (ILAQH), Brisbane, Queensland Australia
- Global Centre for Clean Air Research, Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Giorgio Buonanno
- Queensland University of Technology, International Laboratory for Air Quality & Health (ILAQH), Brisbane, Queensland Australia
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Alex Mikszewski
- Queensland University of Technology, International Laboratory for Air Quality & Health (ILAQH), Brisbane, Queensland Australia
| | - Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| |
Collapse
|
28
|
Multi-objective performance assessment of HVAC systems and physical barriers on COVID-19 infection transmission in a high-speed train. JOURNAL OF BUILDING ENGINEERING 2022; 53:104544. [PMCID: PMC9022448 DOI: 10.1016/j.jobe.2022.104544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 06/16/2023]
Abstract
A computational fluid dynamics (CFD) simulation was performed to model and study the transmission risk associated with cough-related SARS-CoV-2 droplets in a real-world high-speed train (HST). In this study, the evaporating of the droplets was considered. Simulation data were post-processed to assess the fraction of the particles deposited on each passenger's face and body, suspended in air, and escaped from exhausts. Firstly, the effects of temperature, relative humidity, ventilation rate, injection source, exhausts' location and capacity, and adding the physical barriers on evaporation and transport of respiratory droplets are investigated in long distance HST. The results demonstrate that overall, 6–43% of the particles were suspended in the cabin after 2.7 min, depending on conditions, and 3–58% of the particles were removed from the cabin in the same duration. Use of physical barriers and high ventilation rate is therefore recommended for both personal and social protection. We found more exhaust capacity and medium relative humidity to be effective in reducing the particles' transmission potential across all studied scenarios. The results indicate that reducing ventilation rate and exhaust capacity, increased aerosols shelf time and dispersion throughout the cabin.
Collapse
|
29
|
Gedge DA, Chilcott RP, Williams J. Quantifying the Risk to Health Care Workers of Cough as an Aerosol Generating Event in an Ambulance Setting: A Research Report. Prehosp Disaster Med 2022; 37:515-519. [PMID: 35713106 PMCID: PMC9280060 DOI: 10.1017/s1049023x22000917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/12/2022] [Accepted: 04/30/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION AND OBJECTIVE United Kingdom Health Security Agency (UKHSA) guidance related to mask use for health care workers in a non-aerosol generating procedure (AGP) setting has remained as Level 2 water repellent paper mask (surgical mask) only. Energetic respiratory events, such as coughing, can generate vast numbers of droplets and aerosols. Coughing, considered to be a non-AGP event, frequently occurs in the relatively small, confined space of an ambulance (∼25 m3). The report seeks to explore whether existing research can provide an indication of the risk to ambulance staff, via aerosol transmission, of an acute respiratory infection (ARI) during a coughing event within the clinical setting of an ambulance. METHODS International bibliographic databases were searched (CINAHL Plus, SCOPUS, PubMed, and CENTRAL) using appropriate search strings and a combination of relevant medical subject headings with appropriate truncation. Methodological filters were not applied. Papers without an English language abstract were excluded from the review. Grey literature was sought by searching specialist databases OpenGrey and GreyNet, as well as key organizations' websites. The initial search identified 2,405 articles. Following screening, along with forward and backward citation of key papers identified within the literature search, 36 papers were deemed eligible for the scoping review. DISCUSSION Attempts to replicate a clinical environment to investigate the risk of transmission of airborne viruses to health care workers during a coughing event provided evidence for the generation of respirable aerosol particles and thus potential transmission of pathogens. In cases of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), potential to infect versus true airborne transmission is a debate that continues, but there is general consensus that a large variation of cough characteristics and aerosol generation amongst individuals exists. Studies widely endorsed face masks as a source control device, but there were conflicting views about the impact of mask leakage. CONCLUSION Further research is required to provide clarity of the risk to health care workers when caring for a coughing patient in the confined clinical ambulance setting and to provide an evidence base to assist in the determination of appropriate respiratory protective equipment (RPE).
Collapse
Affiliation(s)
- Dale A. Gedge
- University of Hertfordshire, School of Health and Social Work, Hatfield, Hertfordshire, United Kingdom
- Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, Norfolk, United Kingdom
| | - Robert P. Chilcott
- University of Hertfordshire, Toxicology Research Group, Hatfield, Hertfordshire, United Kingdom
| | - Julia Williams
- University of Hertfordshire, School of Health and Social Work, Hatfield, Hertfordshire, United Kingdom
| |
Collapse
|
30
|
van Beest MRRS, Arpino F, Hlinka O, Sauret E, van Beest NRTP, Humphries RS, Buonanno G, Morawska L, Governatori G, Motta N. Influence of indoor airflow on particle spread of a single breath and cough in enclosures: Does opening a window really 'help'? ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101473. [PMID: 35692900 PMCID: PMC9167821 DOI: 10.1016/j.apr.2022.101473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The spread of respiratory diseases via aerosol particles in indoor settings is of significant concern. The SARS-CoV-2 virus has been found to spread widely in confined enclosures like hotels, hospitals, cruise ships, prisons, and churches. Particles exhaled from a person indoors can remain suspended long enough for increasing the opportunity for particles to spread spatially. Careful consideration of the ventilation system is essential to minimise the spread of particles containing infectious pathogens. Previous studies have shown that indoor airflow induced by opened windows would minimise the spread of particles. However, how outdoor airflow through an open window influences the indoor airflow has not been considered. The aim of this study is to provide a clear understanding of the indoor particle spread across multiple rooms, in a situation similar to what is found in quarantine hotels and cruise ships, using a combination of HVAC (Heating, Ventilation and Air-Conditioning) ventilation and an opening window. Using a previously validated mathematical model, we used 3D CFD (computational fluid dynamics) simulations to investigate to what extent different indoor airflow scenarios contribute to the transport of a single injection of particles ( 1 . 3 μ m ) in a basic 3D multi-room indoor environment. Although this study is limited to short times, we demonstrate that in certain conditions approximately 80% of the particles move from one room to the corridor and over 60% move to the nearby room within 5 to 15 s. Our results provide additional information to help identifying relevant recommendations to limit particles from spreading in enclosures.
Collapse
Affiliation(s)
- M R R S van Beest
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - F Arpino
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - O Hlinka
- Information Management & Technology (IM&T), CSIRO, Pullenvale, Queensland, Australia
| | - E Sauret
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - N R T P van Beest
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - R S Humphries
- Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia
| | - G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - L Morawska
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia
| | - G Governatori
- Software Systems Group, CSIRO | DATA61, Brisbane, Queensland, Australia
| | - N Motta
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
31
|
Kong M, Li L, Eilts SM, Li L, Hogan CJ, Pope ZC. Localized and Whole-Room Effects of Portable Air Filtration Units on Aerosol Particle Deposition and Concentration in a Classroom Environment. ACS ES&T ENGINEERING 2022; 2:653-669. [PMID: 37552723 PMCID: PMC8864773 DOI: 10.1021/acsestengg.1c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 05/14/2023]
Abstract
In indoor environments with limited ventilation, recirculating portable air filtration (PAF) units may reduce COVID-19 infection risk via not only the direct aerosol route (i.e., inhalation) but also via an indirect aerosol route (i.e., contact with the surface where aerosol particles deposited). We systematically investigated the impact of PAF units in a mock classroom, as a supplement to background ventilation, on localized and whole-room surface deposition and particle concentration. Fluorescently tagged particles with a volumetric mean diameter near 2 μm were continuously introduced into the classroom environment via a breathing simulator with a prescribed inhalation-exhalation waveform. Deposition velocities were inferred on >50 horizontal and vertical surfaces throughout the classroom, while aerosol concentrations were spatially monitored via optical particle spectrometry. Results revealed a particle decay rate consistent with expectations based upon the reported clean air delivery rates of the PAF units. Additionally, the PAF units reduced peak concentrations by a factor of around 2.5 compared to the highest concentrations observed and led to a statistically significant reduction in deposition velocities for horizontal surfaces >2.5 m from the aerosol source. Our results not only confirm that PAF units can reduce particle concentrations but also demonstrate that they may lead to reduced particle deposition throughout an indoor environment when properly positioned with respect to the location of the particle source(s) within the room (e.g., where the largest group of students sit) and the predominant air distribution profile of the room.
Collapse
Affiliation(s)
- Meng Kong
- Well Living Lab, Rochester,
Minnesota 55902, United States
| | - Linhao Li
- Well Living Lab, Rochester,
Minnesota 55902, United States
| | - Stephanie M. Eilts
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Li Li
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Christopher J. Hogan
- Department of Mechanical Engineering,
University of Minnesota, Minneapolis, Minnesota 55455,
United States
| | - Zachary C. Pope
- Well Living Lab, Rochester,
Minnesota 55902, United States
- Mayo Clinic, Department of Physiology and
Biomedical Engineering, Rochester, Minnesota 55905, United
States
| |
Collapse
|
32
|
Eames I, Flór JB. Spread of infectious agents through the air in complex spaces. Interface Focus 2022; 12:20210080. [PMID: 35261735 PMCID: PMC8831084 DOI: 10.1098/rsfs.2021.0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
The fluid mechanical processes that govern the spread of infectious agents through the air in complex spaces are reviewed and the scientific gaps and challenges identified and discussed. Air, expelled from the nose and mouth, creates turbulent jets that form loosely coherent structures which quickly slow. For the transport and dispersion of aerosols, the suitability of the Eulerian as well as the Lagrangian approaches are brought into context. The effects of buoyancy and external turbulence are explored and shown to influence the horizontal extent of expulsion through distinct mechanisms which both inhibit penetration and enhance mixing. The general influence of inhomogeneous turbulence and stratification on the spread of infectious agents in enclosed complex spaces is discussed.
Collapse
Affiliation(s)
- Ian Eames
- Centre for Engineering in Extreme Environments, University College London, Gower Street, London WC1E 7JE, UK
| | - Jan-Bert Flór
- Laboratoire des Écoulements Géophysiques et Industriels (LEGI), CNRS, Université Grenoble Alpes, Grenoble INP, Grenoble 38000, France
| |
Collapse
|
33
|
Sheikhnejad Y, Aghamolaei R, Fallahpour M, Motamedi H, Moshfeghi M, Mirzaei PA, Bordbar H. Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. SUSTAINABLE CITIES AND SOCIETY 2022; 79:103704. [PMID: 35070645 PMCID: PMC8767784 DOI: 10.1016/j.scs.2022.103704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 05/03/2023]
Abstract
Pathogen droplets released from respiratory events are the primary means of dispersion and transmission of the recent pandemic of COVID-19. Computational fluid dynamics (CFD) has been widely employed as a fast, reliable, and inexpensive technique to support decision-making and to envisage mitigatory protocols. Nonetheless, the airborne pathogen droplet CFD modeling encounters limitations due to the oversimplification of involved physics and the intensive computational demand. Moreover, uncertainties in the collected clinical data required to simulate airborne and aerosol transport such as droplets' initial velocities, tempo-spatial profiles, release angle, and size distributions are broadly reported in the literature. There is a noticeable inconsistency around these collected data amongst many reported studies. This study aims to review the capabilities and limitations associated with CFD modeling. Setting the CFD models needs experimental data of respiratory flows such as velocity, particle size, and number distribution. Therefore, this paper briefly reviews the experimental techniques used to measure the characteristics of airborne pathogen droplet transmissions together with their limitations and reported uncertainties. The relevant clinical data related to pathogen transmission needed for postprocessing of CFD data and translating them to safety measures are also reviewed. Eventually, the uncertainty and inconsistency of the existing clinical data available for airborne pathogen CFD analysis are scurtinized to pave a pathway toward future studies ensuing these identified gaps and limitations.
Collapse
Affiliation(s)
- Yahya Sheikhnejad
- Centre for Mechanical Technology and Automation, Department of Mechanical Engineering, Universidade de Aveiro, Aveiro 3810-193, Portugal
- PICadvanced SA, Creative Science Park, Via do Conhecimento, Ed. Central, Ílhavo 3830-352, Portugal
| | - Reihaneh Aghamolaei
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering and Computing, Dublin City University, Dublin 9, Whitehall, Ireland
| | - Marzieh Fallahpour
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering and Computing, Dublin City University, Dublin 9, Whitehall, Ireland
| | - Hamid Motamedi
- Department of Mechanical Engineering, Tarbiat Modares University, Iran
| | - Mohammad Moshfeghi
- Department of Mechanical Engineering, Sogang University, Seoul, South Korea
| | - Parham A Mirzaei
- Architecture & Built Environment Department, University of Nottingham, University Park, Nottingham, UK
| | - Hadi Bordbar
- School of Engineering, Aalto University, Finland
| |
Collapse
|
34
|
Lee H, Partanen M, Lee M, Jeong S, Lee HJ, Kim K, Ryu W, Dholakia K, Oh K. A laser-driven optical atomizer: photothermal generation and transport of zeptoliter-droplets along a carbon nanotube deposited hollow optical fiber. NANOSCALE 2022; 14:5138-5146. [PMID: 35302135 DOI: 10.1039/d1nr06211e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
From mechanical syringes to electric field-assisted injection devices, precise control of liquid droplet generation has been sought after, and the present state-of-the-art technologies have provided droplets ranging from nanoliter to subpicoliter volume sizes. In this study, we present a new laser-driven method to generate liquid droplets with a zeptoliter volume, breaking the fundamental limits of previous studies. We guided an infrared laser beam through a hollow optical fiber (HOF) with a ring core whose end facet was coated with single-walled carbon nanotubes. The laser light was absorbed by this nanotube film and efficiently generated a highly localized microring heat source. This evaporated the liquid inside the HOF, which rapidly recondensed into zeptoliter droplets in the surrounding air at room temperature. We spectroscopically confirmed the chemical structures of the liquid precursor maintained in the droplets by atomizing dye-dissolved glycerol. Moreover, we explain the fundamental physical principles as well as functionalities of the optical atomizer and perform a detailed characterization of the droplets. Our approach has strong prospects for nanoscale delivery of biochemical substances in minuscule zeptoliter volumes.
Collapse
Affiliation(s)
- Hyeonwoo Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Mikko Partanen
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- Photonics Group, Department of Electronics and Nanoengineering, Aalto University, P.O. Box 13500, 00076 Aalto, Finland
| | - Mingyu Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Sunghoon Jeong
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Hyeung Joo Lee
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Kwanpyo Kim
- Department of Physics, Yonsei University, Seoul 03722, Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Korea
| | - Wonhyoung Ryu
- Biomedical and Energy System Laboratory, Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| | - Kishan Dholakia
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
- SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, UK.
| | - Kyunghwan Oh
- Photonic Device Physics Laboratory, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
| |
Collapse
|
35
|
Liu J, Zheng T, Xia W, Xu S, Li Y. Cold chain and severe acute respiratory syndrome coronavirus 2 transmission: a review for challenges and coping strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:50-65. [PMID: 35658108 PMCID: PMC9047647 DOI: 10.1515/mr-2021-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/13/2021] [Indexed: 06/15/2023]
Abstract
Since June 2020, the re-emergence of coronavirus disease 2019 (COVID-19) epidemics in parts of China was linked to the cold chain, which attracted extensive attention and heated discussions from the public. According to the typical characteristics of these epidemics, we speculated a possible route of transmission from cold chain to human. A series of factors in the supply chain contributed to the epidemics if the cold chain were contaminated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), such as temperature, humidity, personal hygiene/protection, and disinfection. The workers who worked in the cold chain at the receiving end faced a higher risk of being infected when they were not well protected. Facing the difficult situation, China put forward targeted and powerful countermeasures to block the cold chain-related risk. However, in the context of the unstable pandemic situation globally, the risk of the cold chain needs to be recognized and evaluated seriously. Hence, in this review, we reviewed the cold chain-related epidemics in China, analyzed the possible mechanisms, introduced the Chinese experience, and suggested coping strategies for the global epidemic prevention and control.
Collapse
Affiliation(s)
- Jiangtao Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongzhang Zheng
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02912, United States
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
36
|
Matsui R, Sasano H, Azami T, Yano H, Yoshikawa H, Yamagishi Y, Goshima T, Miyazaki Y, Imai K, Tsubouchi M, Matsuo Y, Takiguchi S, Hattori T. Effectiveness of a novel semi-closed barrier device with a personalized exhaust in cough aerosol simulation according to particle counts and visualization of particles. INDOOR AIR 2022; 32:e12988. [PMID: 35225390 PMCID: PMC9111386 DOI: 10.1111/ina.12988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Oxygen therapy is an essential treatment for patients with coronavirus disease 2019, although there is a risk of aerosolization of additional viral droplets occurring during this treatment that poses a danger to healthcare professionals. High-flow oxygen through nasal cannula (HFNC) is a vital treatment bridging low-flow oxygen therapy with tracheal intubation. Although many barrier devices (including devices without negative pressure in the barrier) have been reported in the literature, few barrier devices are suitable for HFNC and aerosol infection control procedures during HFNC have not yet been established. Hence, we built a single cough simulator model to examine the effectiveness of three protective measures (a semi-closed barrier device, a personalized exhaust, and surgical masks) administered in isolation as well as in combination using particle counter measurements and laser sheet visualization. We found that the addition of a personalized exhaust to a semi-closed barrier device reduced aerosol leakage during HFNC without negative pressure. This novel combination may thus reduce aerosol exposure during oxygen therapy, enhance the protection of healthcare workers, and likely reduce nosocomial infection risk.
Collapse
Affiliation(s)
- Ryohei Matsui
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Hiroshi Sasano
- Department of Advancing Acute MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takafumi Azami
- PathophysiologyNagoya City University Graduate School of NursingNagoyaJapan
| | - Hisako Yano
- Infection Control and Prevention NursingNagoya City University Graduate School of NursingNagoyaJapan
| | - Hiromi Yoshikawa
- Infection Control and Prevention NursingNagoya City University Graduate School of NursingNagoyaJapan
| | - Yota Yamagishi
- Department of Advancing Acute MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Takahiro Goshima
- Department of Advancing Acute MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yuka Miyazaki
- Department of Advancing Acute MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Kazunori Imai
- Department of Advancing Acute MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Marechika Tsubouchi
- Department of Advancing Acute MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Yoichi Matsuo
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Shuji Takiguchi
- Department of Gastroenterological SurgeryNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Tomonori Hattori
- Department of Advancing Acute MedicineNagoya City University Graduate School of Medical SciencesNagoyaJapan
| |
Collapse
|
37
|
Crowley C, Murphy B, McCaul C, Cahill R, Nolan KP. Airborne particle dispersion by high flow nasal oxygen: An experimental and CFD analysis. PLoS One 2022; 17:e0262547. [PMID: 35061806 PMCID: PMC8782405 DOI: 10.1371/journal.pone.0262547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
High Flow Nasal Oxygen (HFNO) therapy offers a proven means of delivering respiratory support to critically ill patients suffering from viral illness such as COVID-19. However, the therapy has the potential to modify aerosol generation and dispersion patterns during exhalation and thereby put healthcare workers at increased risk of disease transmission. Fundamentally, a gap exists in the literature with regards to the effect of the therapy on the fluid dynamics of the exhalation jet which is essential in understanding the dispersion of aerosols and hence quantifying the disease transmission risk posed by the therapy. In this paper, a multi-faceted approach was taken to studying the aerosol-laden exhalation jet. Schlieren imaging was used to visualise the flow field for a range of expiratory activities for three healthy human volunteers receiving HFNO therapy at flow rates of 0-60 L/min. A RANS turbulence model was implemented using the CFD software OpenFOAM and used to perform a parametric study on the influence of exhalation velocity and duration on the dispersion patterns of non-evaporating droplets in a room environment. A dramatic increase in the turbulence of the exhalation jet was observed when HFNO was applied. Quantitative analysis indicated that the mean exhalation velocity was increased by 2.2-3.9 and 2.3-3 times that for unassisted breathing and coughing, respectively. A 1-2 second increase was found in the exhalation duration. The CFD model showed that small droplets (10-40 μm) were most greatly affected, where a 1 m/s increase in velocity and 1 s increase in duration caused an 80% increase in axial travel distance.
Collapse
Affiliation(s)
- Caroline Crowley
- School of Mechanical and Material Engineering, University College Dublin, Dublin, Ireland
| | - Brian Murphy
- Department of Anaesthesia, The Rotunda Hospital, Dublin, Ireland
- Department of Anaesthesia, Mater Misericordiae Hospital, Dublin, Ireland
| | - Conan McCaul
- Department of Anaesthesia, The Rotunda Hospital, Dublin, Ireland
- Department of Anaesthesia, Mater Misericordiae Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Ronan Cahill
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Centre for Precision Surgery, Section of Surgery and Surgical Specialities, School of Medicine, University College Dublin, Dublin, Ireland
| | - Kevin Patrick Nolan
- School of Mechanical and Material Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Mohamadi F, Fazeli A. A Review on Applications of CFD Modeling in COVID-19 Pandemic. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 29:3567-3586. [PMID: 35079217 PMCID: PMC8773396 DOI: 10.1007/s11831-021-09706-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/28/2021] [Indexed: 05/25/2023]
Abstract
COVID-19 pandemic has started a big challenge to the world health and economy during recent years. Many efforts were made to use the computation fluid dynamic (CFD) approach in this pandemic. CFD was used to understanding the airborne dispersion and transmission of this virus in different situations and buildings. The effect of the different conditions of the ventilation was studied by the CFD modeling to discuss preventing the COVID-19 transmission. Social distancing and using the facial masks were also modeled by the CFD approach to study the effect on reducing dispersion of the microdroplets containing the virus. Most of these recent applications of the CFD were reviewed for COVID-19 in this article. Special applications of the CFD modeling such as COVID-19 microfluidic biosensors, and COVID-19 inactivation using UV radiation were also reviewed in this research. The main findings of each research were also summarized in a table to answer critical questions about the effectiveness levels of applying the COVID-19 health protocols. CFD applications for modeling of COVID-19 dispersion in an airplane cabin, an elevator, a small classroom, a supermarket, an operating room of a hospital, a restaurant, a hospital waiting room, and a children's recovery room in a hospital were discussed briefly in different scenarios. CFD modeling for studying the effect of social distancing with different spaces, using and not using facial masks, difference of sneezing and coughing, different inlet/outlet ventilation layouts, combining air-conditioning and sanitizing machine, and using general or local air-conditioning systems were reviewed.
Collapse
Affiliation(s)
- Fateme Mohamadi
- Department of Chemical Engineering, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Ali Fazeli
- Department of Chemical Engineering, Caspian Faculty of Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
39
|
Bartels J, Estill CF, Chen IC, Neu D. Laboratory study of physical barrier efficiency for worker protection against SARS-CoV-2 while standing or sitting. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2022; 56:295-303. [PMID: 35677842 PMCID: PMC9170184 DOI: 10.1080/02786826.2021.2020210] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 05/30/2023]
Abstract
Transparent barriers were installed as a response to the SARS-COV-2 pandemic in many customer-facing industries. Transparent barriers are an engineering control that intercept particles traveling between customers and workers. Information on the effectiveness of these barriers against aerosols is limited. In this study, a cough simulator was used to represent a cough from a customer. Two optical particle counters were used (one on each side of the barrier, labeled customer and worker) to determine the number of particles that migrated around a transparent barrier. Ten configurations were tested with six replicates for both sitting and standing scenarios, representing nail salons and grocery stores, respectively. Barrier efficiency was calculated using a ratio of the particle count results (customer/worker). Barriers had better efficiency (up to 93%) when its top was 9 to 39 cm above cough height and its width was at least 91 cm. Barriers that extended 91 cm above table height for both scenarios blocked 71% or more of the particles between 0.35-0.725 μm and 68% for particles between 1 to 3 μm. A barrier that blocked an initial cough was effective at reducing particle counts. While the width of the barriers was not as significant as the height in determining barrier efficiency it is important that a barrier be placed where interactions between customers and workers are most frequent. Bystander exposure was not taken into consideration along with other limitations.
Collapse
Affiliation(s)
- Jacob Bartels
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Cheryl Fairfield Estill
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - I-Chen Chen
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| | - Dylan Neu
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA
| |
Collapse
|
40
|
Auvinen M, Kuula J, Grönholm T, Sühring M, Hellsten A. High-resolution large-eddy simulation of indoor turbulence and its effect on airborne transmission of respiratory pathogens-Model validation and infection probability analysis. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:015124. [PMID: 35340682 PMCID: PMC8939551 DOI: 10.1063/5.0076495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/10/2021] [Indexed: 05/18/2023]
Abstract
High-resolution large-eddy simulation (LES) is exploited to study indoor air turbulence and its effect on the dispersion of respiratory virus-laden aerosols and subsequent transmission risks. The LES modeling is carried out with unprecedented accuracy and subsequent analysis with novel mathematical robustness. To substantiate the physical relevance of the LES model under realistic ventilation conditions, a set of experimental aerosol concentration measurements are carried out, and their results are used to successfully validate the LES model results. The obtained LES dispersion results are subjected to pathogen exposure and infection probability analysis in accordance with the Wells-Riley model, which is here mathematically extended to rely on LES-based space- and time-dependent concentration fields. The methodology is applied to assess two dissimilar approaches to reduce transmission risks: a strategy to augment the indoor ventilation capacity with portable air purifiers and a strategy to utilize partitioning by exploiting portable space dividers. The LES results show that use of air purifiers leads to greater reduction in absolute risks compared to the analytical Wells-Riley model, which fails to predict the original risk level. However, the two models do agree on the relative risk reduction. The spatial partitioning strategy is demonstrated to have an undesirable effect when employed without other measures, but may yield desirable outcomes with targeted air purifier units. The study highlights the importance of employing accurate indoor turbulence modeling when evaluating different risk-reduction strategies.
Collapse
Affiliation(s)
- Mikko Auvinen
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
- Author to whom correspondence should be addressed:
| | - Joel Kuula
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| | - Tiia Grönholm
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| | - Matthias Sühring
- Institute of Meteorology and Climatology, Leibniz University Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Antti Hellsten
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| |
Collapse
|
41
|
Al-Rubaey NF, Hussain H, Ibraheem N, Radhi M, Hindi NK, AL-Jubori RK. A review of airborne contaminated microorganisms associated with human diseases. MEDICAL JOURNAL OF BABYLON 2022. [DOI: 10.4103/mjbl.mjbl_20_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
42
|
Yang H, Balakuntala MV, Quiñones JJ, Kaur U, Moser AE, Doosttalab A, Esquivel-Puentes A, Purwar T, Castillo L, Ma X, Zhang LT, Voyles RM. Occupant-centric robotic air filtration and planning for classrooms for Safer school reopening amid respiratory pandemics. ROBOTICS AND AUTONOMOUS SYSTEMS 2022; 147:103919. [PMID: 34703078 PMCID: PMC8530773 DOI: 10.1016/j.robot.2021.103919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/17/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Coexisting with the current COVID-19 pandemic is a global reality that comes with unique challenges impacting daily interactions, business, and facility maintenance. A monumental challenge accompanied is continuous and effective disinfection of shared spaces, such as office/school buildings, elevators, classrooms, and cafeterias. Although ultraviolet light and chemical sprays are routines for indoor disinfection, they irritate humans, hence can only be used when the facility is unoccupied. Stationary air filtration systems, while being irritation-free and commonly available, fail to protect all occupants due to limitations in air circulation and diffusion. Hence, we present a novel collaborative robot (cobot) disinfection system equipped with a Bernoulli Air Filtration Module, with a design that minimizes disturbance to the surrounding airflow and maneuverability among occupants for maximum coverage. The influence of robotic air filtration on dosage at neighbors of a coughing source is analyzed with derivations from a Computational Fluid Dynamics (CFD) simulation. Based on the analysis, the novel occupant-centric online rerouting algorithm decides the path of the robot. The rerouting ensures effective air filtration that minimizes the risk of occupants under their detected layout. The proposed system was tested on a 2 × 3 seating grid (empty seats allowed) in a classroom, and the worst-case dosage for all occupants was chosen as the metric. The system reduced the worst-case dosage among all occupants by 26% and 19% compared to a stationary air filtration system with the same flow rate, and a robotic air filtration system that traverses all the seats but without occupant-centric planning of its path, respectively. Hence, we validated the effectiveness of the proposed robotic air filtration system.
Collapse
Affiliation(s)
- Haoguang Yang
- Polytechnic Institute, Purdue University, United States of America
| | | | - Jhon J Quiñones
- School of Mechanical Engineering, Purdue University, United States of America
| | - Upinder Kaur
- Polytechnic Institute, Purdue University, United States of America
| | - Abigayle E Moser
- School of Mechanical Engineering, Purdue University, United States of America
- Department of Aerospace Engineering, Iowa State University, United States of America
| | - Ali Doosttalab
- School of Mechanical Engineering, Purdue University, United States of America
| | | | - Tanya Purwar
- School of Mechanical Engineering, Purdue University, United States of America
| | - Luciano Castillo
- School of Mechanical Engineering, Purdue University, United States of America
| | - Xin Ma
- Polytechnic Institute, Purdue University, United States of America
| | - Lucy T Zhang
- Mechanical Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, United States of America
| | - Richard M Voyles
- Polytechnic Institute, Purdue University, United States of America
| |
Collapse
|
43
|
Hirschwald LT, Herrmann S, Felder D, Kalde AM, Stockmeier F, Wypysek D, Alders M, Tepper M, Rubner J, Brand P, Kraus T, Wessling M, Linkhorst J. Discrepancy of particle passage in 101 mask batches during the first year of the Covid-19 pandemic in Germany. Sci Rep 2021; 11:24490. [PMID: 34966168 PMCID: PMC8716525 DOI: 10.1038/s41598-021-03862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
During the first wave of Covid-19 infections in Germany in April 2020, clinics reported a shortage of filtering face masks with aerosol retention> 94% (FFP2 & 3, KN95, N95). Companies all over the world increased their production capacities, but quality control of once-certified materials and masks came up short. To help identify falsely labeled masks and ensure safe protection equipment, we tested 101 different batches of masks in 993 measurements with a self-made setup based on DIN standards. An aerosol generator provided a NaCl test aerosol which was applied to the mask. A laser aerosol spectrometer measured the aerosol concentration in a range from 90 to 500 nm to quantify the masks' retention. Of 101 tested mask batches, only 31 batches kept what their label promised. Especially in the initial phase of the pandemic in Germany, we observed fluctuating mask qualities. Many batches show very high variability in aerosol retention. In addition, by measuring with a laser aerosol spectrometer, we were able to show that not all masks filter small and large particles equally well. In this study we demonstrate how important internal and independent quality controls are, especially in times of need and shortage of personal protection equipment.
Collapse
Affiliation(s)
- Lukas T Hirschwald
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Stefan Herrmann
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Daniel Felder
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Anna M Kalde
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Felix Stockmeier
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Denis Wypysek
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Michael Alders
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Maik Tepper
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Jens Rubner
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Peter Brand
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelstr. 30, 52074, Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelstr. 30, 52074, Aachen, Germany
| | - Matthias Wessling
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - John Linkhorst
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.
| |
Collapse
|
44
|
Persad E, Engela-Volker JS, Noertjojo K, Pizarro AB, Mbeye N, Jørgensen KJ, Martin C, Sampson O, Bruschettini M. Elimination, substitution, engineering, and administrative interventions to reduce the risk of SARS-CoV-2 infection in healthcare workers. Hippokratia 2021. [DOI: 10.1002/14651858.cd015113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emma Persad
- Cochrane Austria, Department for Evidence-based Medicine and Evaluation; Danube University Krems; Krems Austria
- Karl Landsteiner University of Health Sciences; Krems Austria
| | | | | | | | - Nyanyiwe Mbeye
- School of Public Health and Family Medicine, College of Medicine; University of Malawi; Blantyre Malawi
| | | | | | | | - Matteo Bruschettini
- Department of Clinical Sciences Lund, Paediatrics; Lund University, Skåne University Hospital; Lund Sweden
- Cochrane Sweden; Lund University, Skåne University Hospital; Lund Sweden
| |
Collapse
|
45
|
Muthusamy J, Haq S, Akhtar S, Alzoubi MA, Shamim T, Alvarado J. Implication of coughing dynamics on safe social distancing in an indoor environment-A numerical perspective. BUILDING AND ENVIRONMENT 2021; 206:108280. [PMID: 34493895 PMCID: PMC8413013 DOI: 10.1016/j.buildenv.2021.108280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 05/30/2023]
Abstract
Coughing is a primary symptomatic pathway of respiratory or air-borne disease transmission, including COVID-19. Several parameters such as cougher's age, gender, and posture affect particle dispersion indoors. This study numerically investigates the transient cough evolution, contamination range, particle reach probability, and deposition fraction for different age groups of males and females in standing and sitting postures in a ventilated room. The efficacy of a cloth mask has also been studied with and without the influence of air ventilation. Validated Computational Fluid Dynamics methodology has been implemented to model complex physics such as turbulent buoyant cloud, particle-air interaction, particle collision/breakup, and droplet evaporation. Our results show that overall, the contamination range is slightly lower for females due to lower cough velocities and particle counts. Moreover, a significant fraction of particles crosses the two meters social distancing guideline threshold with an unhindered cough. Besides, wearing a cloth mask reduces the average contamination range by approximately two-third of the distance compared to coughing without the mask. However, aerosolized particles reach longer streamwise distances and drift for extended durations beyond thirty seconds. This study can be used to improve the heating, ventilation, and air conditioning recommendations and distancing guidelines in indoor settings.
Collapse
Affiliation(s)
- Jayaveera Muthusamy
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Syed Haq
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | - Saad Akhtar
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | - Mahmoud A Alzoubi
- Department of Mechanical Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Tariq Shamim
- Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL, USA
| | - Jorge Alvarado
- Department of Engineering Technology and Industrial Distribution, Texas A&M University, College Station, TX, USA
- Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
46
|
Bessling SL, Grady SL, Corson EC, Schilling VA, Sebeck NM, Therkorn JH, Brensinger BR, Meidenbauer KL. Routine Decontamination of Working Canines: A Study on the Removal of Superficial Gross Contamination. Health Secur 2021; 19:633-641. [PMID: 34756102 PMCID: PMC8739844 DOI: 10.1089/hs.2021.0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Odor detection canines are a valuable resource used by multiple agencies for the sensitive detection of explosives, narcotics, firearms, agricultural products, and even human bodies. These canines and their handlers are frequently deployed to pathogen-contaminated environments or to work in close proximity with potentially sick individuals. Appropriate decontamination protocols must be established to mitigate both canine and handler exposure in these scenarios. Despite this potential risk, extremely limited guidance is available on routine canine decontamination from pathogenic biological materials. In this article, we evaluate the ability of several commercial off-the-shelf cleansing products, used in wipe form, to remove superficial contamination from fur, canine equipment, and toys. Using Glo Germ MIST as a proxy for biological contamination, our analysis demonstrated more than a 90% average reduction in contamination after wiping with a Nolvasan scrub solution, 0.5% chlorhexidine solution, or 70% isopropyl alcohol. Wiping with nondisinfectant baby wipes or water yielded an almost 80% average removal of contaminant from all surfaces. Additionally, researchers used Gwet's AC2 measurement to assess interrater reliability, which demonstrated substantial agreement (P < .001). These data provide key insights toward the development of a rapid, convenient, and fieldable alternative to traditional water-intensive bathing of working canines.
Collapse
Affiliation(s)
- Seneca L Bessling
- Seneca L. Bessling, MS, is a Molecular Biologist, Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD
| | - Sarah L Grady
- Sarah L. Grady, PhD, is a Senior Research Scientist, Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD
| | - Elizabeth C Corson
- Elizabeth C. Corson, MS, is a Senior Image Analyst, Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD
| | - Veronica A Schilling
- Veronica A. Schilling is an Intern Research Scientist, Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD
| | - Natalie M Sebeck
- Natalie M. Sebeck, MS, is a Microbiologist, Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD
| | - Jennifer H Therkorn
- Jennifer H. Therkorn, PhD, is a Senior Aerosol Scientist, Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD
| | - Bryan R Brensinger
- Bryan R. Brensinger is an Image Analyst/Molecular Biologist, Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD
| | - Karen L Meidenbauer
- Karen L. Meidenbauer, DVM, MPH, is Project Manager/Senior Veterinarian, Asymmetric Operations Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD
| |
Collapse
|
47
|
Sheikh S, Hamilton FW, Nava GW, Gregson FKA, Arnold DT, Riley C, Brown J, Reid JP, Bzdek BR, Maskell NA, Dodd JW. Are aerosols generated during lung function testing in patients and healthy volunteers? Results from the AERATOR study. Thorax 2021; 77:292-294. [PMID: 34728573 DOI: 10.1136/thoraxjnl-2021-217671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/12/2021] [Indexed: 11/03/2022]
Abstract
Pulmonary function tests are fundamental to the diagnosis and monitoring of respiratory diseases. There is uncertainty around whether potentially infectious aerosols are produced during testing and there are limited data on mitigation strategies to reduce risk to staff. Healthy volunteers and patients with lung disease underwent standardised spirometry, peak flow and FENO assessments. Aerosol number concentration was sampled using an aerodynamic particle sizer and an optical particle sizer. Measured aerosol concentrations were compared with breathing, speaking and voluntary coughing. Mitigation strategies included a standard viral filter and a full-face mask normally used for exercise testing (to mitigate induced coughing). 147 measures were collected from 33 healthy volunteers and 10 patients with lung disease. The aerosol number concentration was highest in coughs (1.45-1.61 particles/cm3), followed by unfiltered peak flow (0.37-0.76 particles/cm3). Addition of a viral filter to peak flow reduced aerosol emission by a factor of 10 without affecting the results. On average, coughs produced 22 times more aerosols than standard spirometry (with filter) in patients and 56 times more aerosols in healthy volunteers. FENO measurement produced negligible aerosols. Cardiopulmonary exercise test (CPET) masks reduced aerosol emission when breathing, speaking and coughing significantly. Lung function testing produces less aerosols than voluntary coughing. CPET masks may be used to reduce aerosol emission from induced coughing. Standard viral filters are sufficiently effective to allow guidelines to remove lung function testing from the list of aerosol-generating procedures.
Collapse
Affiliation(s)
- Sadiyah Sheikh
- Bristol Aerosol Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | - Fergus W Hamilton
- Department of Infection Science, North Bristol NHS Trust, Bristol, UK .,Population Health Sciences, University of Bristol, Bristol, UK.,MRC Integrative Epidemiology Unit, Bristol, UK
| | - George W Nava
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Florence K A Gregson
- Bristol Aerosol Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | - David T Arnold
- Academic Respiratory Unit, University of Bristol, Bristol, UK
| | - Colleen Riley
- Respiratory Physiology, North Bristol NHS Trust, Westbury on Trym, UK
| | - Jules Brown
- Anaesthetics and Intensive Care Department, North Bristol NHS Trust, Westbury on Trym, UK
| | | | - Jonathan P Reid
- Bristol Aerosol Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | - Bryan R Bzdek
- Bristol Aerosol Research Centre, School of Chemistry, University of Bristol, Bristol, UK
| | - Nicholas A Maskell
- North Bristol Lung Centre, Southmead Hospital, Bristol, UK.,Academic Respiratory Unit, Department of Clinical Sciences, Bristol University, Bristol, UK
| | - James William Dodd
- Academic Respiratory Unit, North Bristol NHS Trust, Westbury on Trym, UK
| |
Collapse
|
48
|
Locke L, Dada O, Shedd JS. Aerosol Transmission of Infectious Disease and the Efficacy of Personal Protective Equipment (PPE): A Systematic Review. J Occup Environ Med 2021; 63:e783-e791. [PMID: 34419986 PMCID: PMC8562920 DOI: 10.1097/jom.0000000000002366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Health care professionals and governmental agencies are in consensus regarding contact and droplet transmission of infectious diseases. However, personal protective equipment (PPE) efficacy is not considered for aerosol or airborne transmission of infectious diseases. This review discusses the inhalation of virus-laden aerosols as a viable mechanism of transmission of various respiratory infectious diseases and PPE efficacy. METHODS The Preferred Reporting Items for Systematic reviews, and Meta-Analysis (PRISMA) guidelines was used. RESULTS The transmission of infectious disease is of concern for all respirable diseases discussed (SARS-CoV-1, SARS-CoV-2, MERS, influenza, and tuberculosis), and the effectiveness of facemasks is dependent on the efficiency of the filter, fit, and proper use. CONCLUSION PPE should be the last resort in preventing the spread of infectious disease and should only be used for protection and not to control the transmission.
Collapse
Affiliation(s)
- Laramie Locke
- Department of Occupational Safety and Health, Murray State University, Kentucky (Mr Locke, Dr Dada); Eastman Chemical Company, Tennessee (Mr Locke); and Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama (Mr Shedd)
| | | | | |
Collapse
|
49
|
Grinshpun SA, Yermakov M. Technical note: Impact of face covering on aerosol transport patterns during coughing and sneezing. JOURNAL OF AEROSOL SCIENCE 2021; 158:105847. [PMID: 34305164 PMCID: PMC8279921 DOI: 10.1016/j.jaerosci.2021.105847] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 is spread via different routes, including virus-laden airborne particles generated by human respiratory activities. In addition to large droplets, coughing and sneezing produce a lot of small aerosol particles. While face coverings are believed to reduce the aerosol transmission, information about their outward effectiveness is limited. Here, we determined the aerosol concentration patterns around a coughing and sneezing manikin and established spatial zones representing specific elevations of the aerosol concentration relative to the background. Real-time measurements of sub-micrometer aerosol particles were performed in the vicinity of the manikin. The tests were carried out without any face covering and with three different types of face covers: a safety faceshield, low-efficiency facemask and high-efficiency surgical mask. With no face covering, the simulated coughing and sneezing created a powerful forward-propagating fine aerosol flow. At 6 ft forward from the manikin head, the aerosol concentration was still 20-fold above the background. Adding a face covering reconfigured the forward-directed aerosol transmission pattern. The tested face coverings were found capable of mitigating the risk of coronavirus transmission; their effectiveness is dependent on the protective device. The outward leakage associated with a specific face covering was shown to be a major determinant of the exposure level for a person standing or seating next to or behind the coughing or sneezing "spreader" in a bus/train/aircraft/auditorium setting. Along with reports recently published in the literature, the study findings help assess the infectious dose and ultimately health risk for persons located within a 6-ft radius around the "spreader."
Collapse
Affiliation(s)
- Sergey A Grinshpun
- Center for Health-Related Aerosol Studies, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Michael Yermakov
- Center for Health-Related Aerosol Studies, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
50
|
Pant CS, Kumar S, Gavasane A. Mixing at the interface of the sneezing/coughing phenomena and its effect on viral loading. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:115129. [PMID: 35002200 PMCID: PMC8728636 DOI: 10.1063/5.0073563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
The primary objective of this work is to investigate the mixing of droplets/aerosols, which originates from the sneezing/coughing (of possibly COVID-19 patient) with the ambient atmosphere. Effectively, we are studying the growth/decay of droplets/aerosols in the presence of inhomogeneous mixing, which focuses on the phenomena of entrainment of the (relatively) dry ambient air. We have varied the initial standard deviation, mean radius of the droplets/aerosols size distribution, and humidity of the ambient atmosphere to understand their effects on the final size spectra of droplets. Furthermore, a rigorous error analysis is carried out to understand the relative importance of these effects on the final spectra of droplets/aerosols. We find that these are vital parameters to determine the final spectra of droplets, which govern the broadening of the size spectra. Typically, broadening the size spectra of droplets/aerosols increases the probability of the virus-laden droplets/aerosols and thus could affect the transmission of infection in the ambient atmosphere.
Collapse
Affiliation(s)
- Chandra Shekhar Pant
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sumit Kumar
- Department of Mechanical Engineering, National Institute of Technology, Rourkela, India
| | - Abhimanyu Gavasane
- Department of Mechanical Engineering, B.M.S. College of Engineering, Bengaluru, India
| |
Collapse
|