1
|
Bruch A, Lazarova V, Berg M, Krüger T, Schäuble S, Kelani AA, Mertens B, Lehenberger P, Kniemeyer O, Kaiser S, Panagiotou G, Gsaller F, Blango MG. tRNA hypomodification facilitates 5-fluorocytosine resistance via cross-pathway control system activation in Aspergillus fumigatus. Nucleic Acids Res 2024:gkae1205. [PMID: 39711467 DOI: 10.1093/nar/gkae1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/12/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Increasing antifungal drug resistance is a major concern associated with human fungal pathogens like Aspergillus fumigatus. Genetic mutation and epimutation mechanisms clearly drive resistance, yet the epitranscriptome remains relatively untested. Here, deletion of the A. fumigatus transfer RNA (tRNA)-modifying isopentenyl transferase ortholog, Mod5, led to altered stress response and unexpected resistance against the antifungal drug 5-fluorocytosine (5-FC). After confirming the canonical isopentenylation activity of Mod5 by liquid chromatography-tandem mass spectrometry and Nano-tRNAseq, we performed simultaneous profiling of transcriptomes and proteomes to reveal a comparable overall response to 5-FC stress; however, a premature activation of cross-pathway control (CPC) genes in the knockout was further increased after antifungal treatment. We identified several orthologues of the Aspergillus nidulans Major Facilitator Superfamily transporter nmeA as specific CPC-client genes in A. fumigatus. Overexpression of Mod5-target tRNATyrGΨA in the Δmod5 strain rescued select phenotypes but failed to reverse 5-FC resistance, whereas deletion of nmeA largely, but incompletely, reverted the resistance phenotype, implying additional relevant exporters. In conclusion, 5-FC resistance in the absence of Mod5 and i6A likely originates from multifaceted transcriptional and translational changes that skew the fungus towards premature CPC-dependent activation of antifungal toxic-intermediate exporter nmeA, offering a potential mechanism reliant on RNA modification to facilitate transient antifungal resistance.
Collapse
Affiliation(s)
- Alexander Bruch
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Valentina Lazarova
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Maximilian Berg
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Sascha Schäuble
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Abdulrahman A Kelani
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Birte Mertens
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, 6020 Innsbruck, Austria
| | - Pamela Lehenberger
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
| | - Stefanie Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
- Friedrich-Schiller-University, Faculty of Biological Sciences, Fürstengraben 1, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Fürstengraben 1, 07743 Jena, Germany
| | - Fabio Gsaller
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Fritz-Pregl-Straße 3, 6020 Innsbruck, Austria
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (Leibniz-HKI), Beutenbergstraße 11A, 07745 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, Fürstengraben 1, 07743 Jena, Germany
| |
Collapse
|
2
|
Rudolf J, Tomovicova L, Panzarova K, Fajkus J, Hejatko J, Skalak J. Epigenetics and plant hormone dynamics: a functional and methodological perspective. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5267-5294. [PMID: 38373206 PMCID: PMC11389840 DOI: 10.1093/jxb/erae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Plant hormones, pivotal regulators of plant growth, development, and response to environmental cues, have recently emerged as central modulators of epigenetic processes governing gene expression and phenotypic plasticity. This review addresses the complex interplay between plant hormones and epigenetic mechanisms, highlighting the diverse methodologies that have been harnessed to decipher these intricate relationships. We present a comprehensive overview to understand how phytohormones orchestrate epigenetic modifications, shaping plant adaptation and survival strategies. Conversely, we explore how epigenetic regulators ensure hormonal balance and regulate the signalling pathways of key plant hormones. Furthermore, our investigation includes a search for novel genes that are regulated by plant hormones under the control of epigenetic processes. Our review offers a contemporary overview of the epigenetic-plant hormone crosstalk, emphasizing its significance in plant growth, development, and potential agronomical applications.
Collapse
Affiliation(s)
- Jiri Rudolf
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Lucia Tomovicova
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Klara Panzarova
- Photon Systems Instruments, Prumyslova 470, CZ-664 24 Drasov, Czech Republic
| | - Jiri Fajkus
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, CZ-61265 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Hejatko
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| | - Jan Skalak
- Mendel Centre for Plant Genomics and Proteomics, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, CZ-62500 Brno, Czech Republic
| |
Collapse
|
3
|
Lin XN, Gai BX, Liu L, Cheng L. Advances in the investigation of N 6-isopentenyl adenosine i 6A RNA modification. Bioorg Med Chem 2024; 110:117838. [PMID: 39018794 DOI: 10.1016/j.bmc.2024.117838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Prenylation (isopentenylation), a key post-transcriptional modification with a hydrophobic prenyl group onto the biomacromolecules such as RNA and proteins, influences their localization and function. Prenyltransferases mediate this process, while cytokinin oxidases degrade the prenylated adenosine in plants. This review summarizes current progress in detecting prenylation modifications in RNA across species and their effects on protein synthesis. Advanced methods have been developed to label and study these modifications in vitro and in vivo, despite challenges posed by the inert chemical properties of prenyl groups. Continued advancements in bioorthogonal chemistry promise new tools for understanding the precise biological functions of prenylated RNA modifications and other related proteins.
Collapse
Affiliation(s)
- Xiu-Na Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo-Xu Gai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Sun X, Hui TH, Liu L, Cheng L. Discovery of Photoexcited 2-Chloro-3,5-Dinitrobenzoic Acid as a Chemical Deprenylase of i 6A RNA. Chembiochem 2024; 25:e202400361. [PMID: 38767267 DOI: 10.1002/cbic.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
RNA modifications play crucial roles in regulating gene expression and cellular homeostasis. Modulating RNA modifications, particularly by targeting the enzymes responsible for their catalysis, has emerged as a promising therapeutic strategy. However, limitations, such as the lack of identified modifying enzymes and compensatory mechanisms, hinder targeted interventions. Chemical approaches independent of enzymatic activity offer an alternative strategy for RNA modification modulation. Here, we present the identification of 2-chloro-3,5-dinitrobenzoic acid as a highly effective photochemical deprenylase of i6A RNA. This method demonstrates exceptional selectivity towards i6A, converting its substituent into a "N-doped" ozonide, which upon hydrolysis releases natural adenine. We believe that this chemical approach will pave the way for a better understanding of RNA modification biology and the development of novel therapeutic modalities.
Collapse
Affiliation(s)
- Xin Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-He Hui
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Sun J, Wu J, Yuan Y, Fan L, Chua WLP, Ling YHS, Balamkundu S, priya D, Suen HCS, de Crécy-Lagard V, Dziergowska A, Dedon PC. tRNA modification profiling reveals epitranscriptome regulatory networks in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601603. [PMID: 39005467 PMCID: PMC11245014 DOI: 10.1101/2024.07.01.601603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there is extensive knowledge about the enzymes installing the dozens of post-transcriptional tRNA modifications - the tRNA epitranscriptome - very little is known about how metabolic, signaling, and other networks integrate to regulate tRNA modification levels. Here we took a comprehensive first step at understanding epitranscriptome regulatory networks by developing a high-throughput tRNA isolation and mass spectrometry-based modification profiling platform and applying it to a Pseudomonas aeruginosa transposon insertion mutant library comprising 5,746 strains. Analysis of >200,000 tRNA modification data points validated the annotations of predicted tRNA modification genes, uncovered novel tRNA-modifying enzymes, and revealed tRNA modification regulatory networks in P. aeruginosa. Platform adaptation for RNA-seq library preparation would complement epitranscriptome studies, while application to human cell and mouse tissue demonstrates its utility for biomarker and drug discovery and development.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Junzhou Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - Leon Fan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Wei Lin Patrina Chua
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yan Han Sharon Ling
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | | | - Dwija priya
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Hazel Chay Suen Suen
- Department of Food, Chemical & Biotechnology, Singapore of Institute of Technology, 138683 Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Genetic Institute, University of Florida, Gainesville, FL 32611 USA
| | | | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| |
Collapse
|
6
|
Guo Y, Chen X, Gan Y, Li Y, Wang R. Targeted i 6A-RNA degradation through sequential Fluorination-Azidation and Click reaction with imidazole-based probes. Bioorg Med Chem Lett 2024; 108:129815. [PMID: 38795737 DOI: 10.1016/j.bmcl.2024.129815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
We report the use of trimethylsilyl azide and Selectfluor to implement a standard protocol targeted at the prenylated nucleic acid known as i6A-RNA. After optimizing the conditions, we applied this method to regulate a wide range of i6A-RNA species using synthetic imidazole-based probes (I-IV). We observed that prenylated nucleic acid plays a crucial role in the cell hemostasis in A549 cell lines.
Collapse
Affiliation(s)
- Yuyang Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoqian Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Youfang Gan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518063, China.
| |
Collapse
|
7
|
Li Y, Zhou H, Chen S, Li Y, Guo Y, Chen X, Wang S, Wang L, Gan Y, Zhang S, Zheng Y, Sheng J, Zhou Z, Wang R. Bioorthogonal labeling and profiling of N6-isopentenyladenosine (i6A) modified RNA. Nucleic Acids Res 2024; 52:2808-2820. [PMID: 38426933 PMCID: PMC11014277 DOI: 10.1093/nar/gkae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Chemical modifications in RNAs play crucial roles in diversifying their structures and regulating numerous biochemical processes. Since the 1990s, several hydrophobic prenyl-modifications have been discovered in various RNAs. Prenyl groups serve as precursors for terpenes and many other biological molecules. The processes of prenylation in different macromolecules have been extensively studied. We introduce here a novel chemical biology toolkit that not only labels i6A, a prenyl-modified RNA residue, by leveraging the unique reactivity of the prenyl group, but also provides a general strategy to incorporate fluorescence functionalities into RNAs for molecular tracking purposes. Our findings revealed that iodine-mediated cyclization reactions of the prenyl group occur rapidly, transforming i6A from a hydrogen-bond acceptor to a donor. Based on this reactivity, we developed an Iodine-Mediated Cyclization and Reverse Transcription (IMCRT) tRNA-seq method, which can profile all nine endogenous tRNAs containing i6A residues in Saccharomyces cerevisiae with single-base resolution. Furthermore, under stress conditions, we observed a decline in i6A levels in budding yeast, accompanied by significant decrease of mutation rate at A37 position. Thus, the IMCRT tRNA-seq method not only permits semi-quantification of i6A levels in tRNAs but also holds potential for transcriptome-wide detection and analysis of various RNA species containing i6A modifications.
Collapse
Affiliation(s)
- Yuanyuan Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongling Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shasha Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinan Li
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuyang Guo
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoqian Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Sheng Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Youfang Gan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shusheng Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ya Ying Zheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zhipeng Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
8
|
Smith TJ, Giles RN, Koutmou KS. Anticodon stem-loop tRNA modifications influence codon decoding and frame maintenance during translation. Semin Cell Dev Biol 2024; 154:105-113. [PMID: 37385829 DOI: 10.1016/j.semcdb.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023]
Abstract
RNAs are central to protein synthesis, with ribosomal RNA, transfer RNAs and messenger RNAs comprising the core components of the translation machinery. In addition to the four canonical bases (uracil, cytosine, adenine, and guanine) these RNAs contain an array of enzymatically incorporated chemical modifications. Transfer RNAs (tRNAs) are responsible for ferrying amino acids to the ribosome, and are among the most abundant and highly modified RNAs in the cell across all domains of life. On average, tRNA molecules contain 13 post-transcriptionally modified nucleosides that stabilize their structure and enhance function. There is an extensive chemical diversity of tRNA modifications, with over 90 distinct varieties of modifications reported within tRNA sequences. Some modifications are crucial for tRNAs to adopt their L-shaped tertiary structure, while others promote tRNA interactions with components of the protein synthesis machinery. In particular, modifications in the anticodon stem-loop (ASL), located near the site of tRNA:mRNA interaction, can play key roles in ensuring protein homeostasis and accurate translation. There is an abundance of evidence indicating the importance of ASL modifications for cellular health, and in vitro biochemical and biophysical studies suggest that individual ASL modifications can differentially influence discrete steps in the translation pathway. This review examines the molecular level consequences of tRNA ASL modifications in mRNA codon recognition and reading frame maintenance to ensure the rapid and accurate translation of proteins.
Collapse
Affiliation(s)
- Tyler J Smith
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Rachel N Giles
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA
| | - Kristin S Koutmou
- University of Michigan, Department of Chemistry, 930 N University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Rashad S, Al-Mesitef S, Mousa A, Zhou Y, Ando D, Sun G, Fukuuchi T, Iwasaki Y, Xiang J, Byrne SR, Sun J, Maekawa M, Saigusa D, Begley TJ, Dedon PC, Niizuma K. Translational response to mitochondrial stresses is orchestrated by tRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580389. [PMID: 38405984 PMCID: PMC10888749 DOI: 10.1101/2024.02.14.580389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitochondrial stress and dysfunction play important roles in many pathologies. However, how cells respond to mitochondrial stress is not fully understood. Here, we examined the translational response to electron transport chain (ETC) inhibition and arsenite induced mitochondrial stresses. Our analysis revealed that during mitochondrial stress, tRNA modifications (namely f5C, hm5C, queuosine and its derivatives, and mcm5U) dynamically change to fine tune codon decoding, usage, and optimality. These changes in codon optimality drive the translation of many pathways and gene sets, such as the ATF4 pathway and selenoproteins, involved in the cellular response to mitochondrial stress. We further examined several of these modifications using targeted approaches. ALKBH1 knockout (KO) abrogated f5C and hm5C levels and led to mitochondrial dysfunction, reduced proliferation, and impacted mRNA translation rates. Our analysis revealed that tRNA queuosine (tRNA-Q) is a master regulator of the mitochondrial stress response. KO of QTRT1 or QTRT2, the enzymes responsible for tRNA-Q synthesis, led to mitochondrial dysfunction, translational dysregulation, and metabolic alterations in mitochondria-related pathways, without altering cellular proliferation. In addition, our analysis revealed that tRNA-Q loss led to a domino effect on various tRNA modifications. Some of these changes could be explained by metabolic profiling. Our analysis also revealed that utilizing serum deprivation or alteration with Queuine supplementation to study tRNA-Q or stress response can introduce various confounding factors by altering many other tRNA modifications. In summary, our data show that tRNA modifications are master regulators of the mitochondrial stress response by driving changes in codon decoding.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shadi Al-Mesitef
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Abdulrahman Mousa
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuan Zhou
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Ando
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, Tohoku university Graduate school of Medicine, Sendai, Japan
| | - Guangxin Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Tomoko Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yuko Iwasaki
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Jingdong Xiang
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
| | - Shane R Byrne
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Codomax Inc, 17 Briden St STE 219, Worcester, MA 01605
| | - Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Thomas J Begley
- Department of Biological Sciences, University at Albany, Albany, NY, USA
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, MA, USA
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance IRG, Campus for Research Excellence and Technological Enterprise, Singapore
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Qiu S, Yang B, Li Z, Li S, Yan H, Xin Z, Liu J, Zhao X, Zhang L, Xiang W, Wang W. Building a highly efficient Streptomyces super-chassis for secondary metabolite production by reprogramming naturally-evolved multifaceted shifts. Metab Eng 2024; 81:210-226. [PMID: 38142854 DOI: 10.1016/j.ymben.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Streptomyces has an extensive array of bioactive secondary metabolites (SMs). Nevertheless, devising a framework for the heterologous production of these SMs remains challenging. We here reprogrammed a versatile plug-and-play Streptomyces super-chassis and established a universal pipeline for production of diverse SMs via understanding of the inherent pleiotropic effects of ethanol shock on jadomycin production in Streptomyces venezuelae. We initially identified and characterized a set of multiplex targets (afsQ1, bldD, bldA, and miaA) that contribute to SM (jadomycin) production when subjected to ethanol shock. Subsequently, we developed an ethanol-induced orthogonal amplification system (EOAS), enabling dynamic and precise control over targets. Ultimately, we integrated these multiplex targets into functional units governed by the EOAS, generating a universal and plug-and-play Streptomyces super-chassis. In addition to achieving the unprecedented titer and yield of jadomycin B, we also evidenced the potential of this super-chassis for production of diverse heterologous SMs, including antibiotic oxytetracycline, anticancer drug doxorubicins, agricultural herbicide thaxtomin A, and plant growth regulator guvermectin, all with the yields of >10 mg/g glucose in a simple mineral medium. Given that the production of SMs all required complexed medium and the cognate yields were usually much lower, our achievement of using a universal super-chassis and engineering pipeline in a simple mineral medium is promising for convenient heterologous production of SMs.
Collapse
Affiliation(s)
- Shiwen Qiu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China; State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bowen Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejin Zhao
- State Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology (ECUST), Shanghai, 200237, China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Soman S, Ram S. Arginine to glutamine mutation in the substrate binding region impaired the isopentenyl activity of Mycobacterium tuberculosis MiaA. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:3-9. [PMID: 38164369 PMCID: PMC10644310 DOI: 10.22099/mbrc.2023.47247.1825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
tRNAs act as adaptors during protein synthesis and are chemically modified post-transcriptionally for their structural stability as well as accuracy of the translation. Hypomodifications of tRNAs are known to cause various human diseases, including cancer. Studies in bacteria and yeasts showed that levels of tRNA modifications vary under different stress conditions, enabling the organism to modulate gene expression for survival. Isopentelylation of the base 37 (i6A37) in the anticodon stem-loop by tRNA isopentenyltransferase (MiaA) is well-conserved modification present in prokaryotes and eukaryotes. i6A37 modification increases both the speed and fidelity of translation. A homozygous p.Arg323Gln mutation in the tRNA binding region of tRNA isopentenyltransferase reduced i6A37 levels in humans, affecting mitochondrial translation and thereby causing neurodevelopmental disorder. In this study, we mutated the Arg residue at the conserved position to Gln in Mycobacterium tuberculosis (M. tb) MiaA and analyzed the i6A modification activity of the enzyme on its target tRNAs. We found that p.Arg274Gln mutant MiaA could not modify the target tRNAs, tRNALeuCAA, tRNAPheGAA, and tRNASerCGA from M. tb, confirming the role of Arg residue in tRNA binding.
Collapse
Affiliation(s)
- Smitha Soman
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh, India
| | - Siya Ram
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh, India
- School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India
| |
Collapse
|
12
|
Bian P, Chai J, Xu B. Research Advances on Deafness Genes Associated with Mitochondrial tRNA-37 Modifications. J Int Adv Otol 2023; 19:414-419. [PMID: 37789629 PMCID: PMC10645192 DOI: 10.5152/iao.2023.231107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/08/2023] [Indexed: 10/05/2023] Open
Abstract
As the most common cause of speech disorders, the etiological study of deafness is important for the diagnosis and treatment of deafness. The mitochondrial genome has gradually become a hotspot for deafness genetic research. Mitochondria are the core organelles of energy and material metabolism in eukaryotic cells. Human mitochondria contain 20 amino acids, except for tRNALeu and tRNASer, which have 2 iso-receptors, the other 18 amino acids correspond to unique tRNAs one by one, so mutations in any one tRNA may lead to protein translation defects in mitochondria and thus affect their oxidative phosphorylation process resulting in the corresponding disease phenotype. Mitochondrial tRNAs are extensively modified with base modifications that contribute to the correct folding of tRNAs and maintain their stability. Defective mitochondrial tRNA modifications are closely associated with the development of mitochondrial diseases. The in-depth study found that modification defects of mammalian mitochondrial tRNAs are associated with deafness, especially the nucleotide modification defect of mt-tRNA-37. This article reviews the research on mitochondrial tRNAs, nucleotide modification structure of mitochondrial tRNA-37, and nuclear genes related to modification defects to provide new ideas for the etiological study of deafness.
Collapse
Affiliation(s)
- Panpan Bian
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jing Chai
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Baicheng Xu
- Department of Otolaryngology—Head and Neck Surgery, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
13
|
Rathore AS, Gupta KK, Govindaraj SK, Ajmani A, Arivalagan J, Anto RJ, Kalishwaralal K, Chandran SA. Targeting BRF2: insights from in silico screening and molecular dynamic simulations. J Biomol Struct Dyn 2023; 42:10439-10451. [PMID: 37705251 DOI: 10.1080/07391102.2023.2256884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
The Transcription factor II B (TFIIB)‑related factor 2 (BRF2) containing TFIIIB complex recruits RNA polymerase III multi-subunit complex to selective gene promoters that altogether are responsible for synthesizing a variety of small non-coding RNAs, including a special type of selenocysteine tRNA (tRNASec), micro-RNA (miRNA), and other regulatory RNAs. BRF2 has been identified as a potential oncogene that promotes cancer cell survival under oxidative stress through its genetic activation. The structure of the BRF2 protein was modeled using the Robetta server, refined, and validated using the Ramachandran plot. A virtual approach utilizing molecular docking was used to screen a natural compound library to determine potential compounds that can interact with the molecular pin motif of the BRF2 protein using Maestro (Schrodinger). Subsequent molecular dynamics simulation studies of the top four ligands that exhibited low glide scores were performed using GROMACS. The findings derived from the simulations, in conjunction with the exploration of hydrogen bonding patterns, evaluation of the free energy landscape, and thorough analysis of residue decomposition, collectively converged to emphasize the robust interaction characteristics exhibited by Ligand 366 (Deacetyl lanatoside C) and ligand 336 (Neogitogenin)-with the BRF2 protein. These natural compounds may be potential inhibitors of BRF2, which could modulate the regulation of selenoprotein synthesis in cancer cells. Targeting BRF2 using these promising compounds may offer a new therapeutic approach to sensitize cancer cells to ferroptosis and apoptosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Krishna Kant Gupta
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Abhishek Ajmani
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | | | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Sam Aldrin Chandran
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
14
|
Vindry C, Guillin O, Wolff P, Marie P, Mortreux F, Mangeot P, Ohlmann T, Chavatte L. A homozygous mutation in the human selenocysteine tRNA gene impairs UGA recoding activity and selenoproteome regulation by selenium. Nucleic Acids Res 2023; 51:7580-7601. [PMID: 37254812 PMCID: PMC10415148 DOI: 10.1093/nar/gkad482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.
Collapse
Affiliation(s)
- Caroline Vindry
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| | - Olivia Guillin
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| | - Philippe Wolff
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Paul Marie
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule, 69007 Lyon, France
- CNRS/ENS/UCBL1 UMR5239, 69007 Lyon, France
- INSERM U1210, 69007 Lyon, France
| | - Franck Mortreux
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- LBMC, Laboratoire de Biologie et Modélisation de la Cellule, 69007 Lyon, France
- CNRS/ENS/UCBL1 UMR5239, 69007 Lyon, France
- INSERM U1210, 69007 Lyon, France
| | - Philippe E Mangeot
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| | - Théophile Ohlmann
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| | - Laurent Chavatte
- CIRI, Centre International de Recherche en Infectiologie, 69007 Lyon, France
- INSERM U1111, 69007 Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Lyon, France
- CNRS/ENS/UCBL1 UMR5308, 69007 Lyon, France
| |
Collapse
|
15
|
Chen AY, Owens MC, Liu KF. Coordination of RNA modifications in the brain and beyond. Mol Psychiatry 2023; 28:2737-2749. [PMID: 37138184 DOI: 10.1038/s41380-023-02083-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Gene expression regulation is a critical process throughout the body, especially in the nervous system. One mechanism by which biological systems regulate gene expression is via enzyme-mediated RNA modifications, also known as epitranscriptomic regulation. RNA modifications, which have been found on nearly all RNA species across all domains of life, are chemically diverse covalent modifications of RNA nucleotides and represent a robust and rapid mechanism for the regulation of gene expression. Although numerous studies have been conducted regarding the impact that single modifications in single RNA molecules have on gene expression, emerging evidence highlights potential crosstalk between and coordination of modifications across RNA species. These potential coordination axes of RNA modifications have emerged as a new direction in the field of epitranscriptomic research. In this review, we will highlight several examples of gene regulation via RNA modification in the nervous system, followed by a summary of the current state of the field of RNA modification coordination axes. In doing so, we aim to inspire the field to gain a deeper understanding of the roles of RNA modifications and coordination of these modifications in the nervous system.
Collapse
Affiliation(s)
- Anthony Yulin Chen
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, PA, 19081, USA
| | - Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
16
|
Fiutek N, Couger MB, Pirro S, Roy SW, de la Torre JR, Connor EF. Genomic Assessment of the Contribution of the Wolbachia Endosymbiont of Eurosta solidaginis to Gall Induction. Int J Mol Sci 2023; 24:ijms24119613. [PMID: 37298563 DOI: 10.3390/ijms24119613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
We explored the genome of the Wolbachia strain, wEsol, symbiotic with the plant-gall-inducing fly Eurosta solidaginis with the goal of determining if wEsol contributes to gall induction by its insect host. Gall induction by insects has been hypothesized to involve the secretion of the phytohormones cytokinin and auxin and/or proteinaceous effectors to stimulate cell division and growth in the host plant. We sequenced the metagenome of E. solidaginis and wEsol and assembled and annotated the genome of wEsol. The wEsol genome has an assembled length of 1.66 Mbp and contains 1878 protein-coding genes. The wEsol genome is replete with proteins encoded by mobile genetic elements and shows evidence of seven different prophages. We also detected evidence of multiple small insertions of wEsol genes into the genome of the host insect. Our characterization of the genome of wEsol indicates that it is compromised in the synthesis of dimethylallyl pyrophosphate (DMAPP) and S-adenosyl L-methionine (SAM), which are precursors required for the synthesis of cytokinins and methylthiolated cytokinins. wEsol is also incapable of synthesizing tryptophan, and its genome contains no enzymes in any of the known pathways for the synthesis of indole-3-acetic acid (IAA) from tryptophan. wEsol must steal DMAPP and L-methionine from its host and therefore is unlikely to provide cytokinin and auxin to its insect host for use in gall induction. Furthermore, in spite of its large repertoire of predicted Type IV secreted effector proteins, these effectors are more likely to contribute to the acquisition of nutrients and the manipulation of the host's cellular environment to contribute to growth and reproduction of wEsol than to aid E. solidaginis in manipulating its host plant. Combined with earlier work that shows that wEsol is absent from the salivary glands of E. solidaginis, our results suggest that wEsol does not contribute to gall induction by its host.
Collapse
Affiliation(s)
- Natalie Fiutek
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Matthew B Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stacy Pirro
- Iridian Genomes Inc., Bethesda, MD 20817, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - José R de la Torre
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| | - Edward F Connor
- Department of Biology, San Francisco State University, San Francisco, CA 94112, USA
| |
Collapse
|
17
|
Lampi M, Gregorova P, Qasim MS, Ahlblad NCV, Sarin LP. Bacteriophage Infection of the Marine Bacterium Shewanella glacialimarina Induces Dynamic Changes in tRNA Modifications. Microorganisms 2023; 11:microorganisms11020355. [PMID: 36838320 PMCID: PMC9963407 DOI: 10.3390/microorganisms11020355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Viruses are obligate intracellular parasites that, throughout evolution, have adapted numerous strategies to control the translation machinery, including the modulation of post-transcriptional modifications (PTMs) on transfer RNA (tRNA). PTMs are critical translation regulators used to further host immune responses as well as the expression of viral proteins. Yet, we lack critical insight into the temporal dynamics of infection-induced changes to the tRNA modification landscape (i.e., 'modificome'). In this study, we provide the first comprehensive quantitative characterization of the tRNA modificome in the marine bacterium Shewanella glacialimarina during Shewanella phage 1/4 infection. Specifically, we show that PTMs can be grouped into distinct categories based on modification level changes at various infection stages. Furthermore, we observe a preference for the UAC codon in viral transcripts expressed at the late stage of infection, which coincides with an increase in queuosine modification. Queuosine appears exclusively on tRNAs with GUN anticodons, suggesting a correlation between phage codon usage and PTM modification. Importantly, this work provides the basis for further studies into RNA-based regulatory mechanisms employed by bacteriophages to control the prokaryotic translation machinery.
Collapse
Affiliation(s)
- Mirka Lampi
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Correspondence: (M.L.); (L.P.S.); Tel.: +358-2941-59533 (L.P.S.)
| | - Pavlina Gregorova
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Doctoral Programme in Integrative Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - M. Suleman Qasim
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Doctoral Programme in Microbiology and Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Niklas C. V. Ahlblad
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - L. Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Helsinki, Finland
- Correspondence: (M.L.); (L.P.S.); Tel.: +358-2941-59533 (L.P.S.)
| |
Collapse
|
18
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
19
|
Lin Q, Huang J, Liu Z, Chen Q, Wang X, Yu G, Cheng P, Zhang LH, Xu Z. tRNA modification enzyme MiaB connects environmental cues to activation of Pseudomonas aeruginosa type III secretion system. PLoS Pathog 2022; 18:e1011027. [PMID: 36469533 PMCID: PMC9754610 DOI: 10.1371/journal.ppat.1011027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/15/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa, a major inhabitant of numerous environmental reservoirs, is a momentous opportunistic human pathogen associated with severe infections even death in the patients suffering from immune deficiencies or metabolic diseases. Type III secretion system (T3SS) employed by P. aeruginosa to inject effector proteins into host cells is one of the pivotal virulence factors pertaining to acute infections caused by this pathogen. Previous studies showed that P. aeruginosa T3SS is regulated by various environmental cues such as calcium concentration and the host signal spermidine. However, how T3SS is regulated and expressed particularly under the ever-changing environmental conditions remains largely elusive. In this study, we reported that a tRNA modification enzyme PA3980, designated as MiaB, positively regulated T3SS gene expression in P. aeruginosa and was essential for the induced cytotoxicity of human lung epithelial cells. Further genetic assays revealed that MiaB promoted T3SS gene expression by repressing the LadS-Gac/Rsm signaling pathway and through the T3SS master regulator ExsA. Interestingly, ladS, gacA, rsmY and rsmZ in the LadS-Gac/Rsm signaling pathway seemed potential targets under the independent regulation of MiaB. Moreover, expression of MiaB was found to be induced by the cAMP-dependent global regulator Vfr as well as the spermidine transporter-dependent signaling pathway and thereafter functioned to mediate their regulation on the T3SS gene expression. Together, these results revealed a novel regulatory mechanism for MiaB, with which it integrates different environmental cues to modulate T3SS gene expression in this important bacterial pathogen.
Collapse
Affiliation(s)
- Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- School of Food Pharmaceutical Engineering, Zhao Qing University, Zhaoqing, China
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhiqing Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qunyi Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Xinbo Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Guohui Yu
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ping Cheng
- Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- * E-mail: (L-HZ); (ZX)
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- * E-mail: (L-HZ); (ZX)
| |
Collapse
|
20
|
Arzumanian VA, Dolgalev GV, Kurbatov IY, Kiseleva OI, Poverennaya EV. Epitranscriptome: Review of Top 25 Most-Studied RNA Modifications. Int J Mol Sci 2022; 23:13851. [PMID: 36430347 PMCID: PMC9695239 DOI: 10.3390/ijms232213851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The alphabet of building blocks for RNA molecules is much larger than the standard four nucleotides. The diversity is achieved by the post-transcriptional biochemical modification of these nucleotides into distinct chemical entities that are structurally and functionally different from their unmodified counterparts. Some of these modifications are constituent and critical for RNA functions, while others serve as dynamic markings to regulate the fate of specific RNA molecules. Together, these modifications form the epitranscriptome, an essential layer of cellular biochemistry. As of the time of writing this review, more than 300 distinct RNA modifications from all three life domains have been identified. However, only a few of the most well-established modifications are included in most reviews on this topic. To provide a complete overview of the current state of research on the epitranscriptome, we analyzed the extent of the available information for all known RNA modifications. We selected 25 modifications to describe in detail. Summarizing our findings, we describe the current status of research on most RNA modifications and identify further developments in this field.
Collapse
Affiliation(s)
- Viktoriia A. Arzumanian
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | - Georgii V. Dolgalev
- Correspondence: (V.A.A.); (G.V.D.); Tel.: +7-960-889-7117 (V.A.A.); +7-967-236-36-79 (G.V.D.)
| | | | | | | |
Collapse
|
21
|
Akuh OA, Elahi R, Prigge ST, Seeber F. The ferredoxin redox system - an essential electron distributing hub in the apicoplast of Apicomplexa. Trends Parasitol 2022; 38:868-881. [PMID: 35999149 PMCID: PMC9481715 DOI: 10.1016/j.pt.2022.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
The apicoplast, a relict plastid found in most species of the phylum Apicomplexa, harbors the ferredoxin redox system which supplies electrons to enzymes of various metabolic pathways in this organelle. Recent reports in Toxoplasma gondii and Plasmodium falciparum have shown that the iron-sulfur cluster (FeS)-containing ferredoxin is essential in tachyzoite and blood-stage parasites, respectively. Here we review ferredoxin's crucial contribution to isoprenoid and lipoate biosynthesis as well as tRNA modification in the apicoplast, highlighting similarities and differences between the two species. We also discuss ferredoxin's potential role in the initial reductive steps required for FeS synthesis as well as recent evidence that offers an explanation for how NADPH required by the redox system might be generated in Plasmodium spp.
Collapse
Affiliation(s)
- Ojo-Ajogu Akuh
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany; Division of Biomedical Science and Biochemistry, Australian National University, Canberra, Australia
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA
| | - Sean T Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, MD, USA; The Johns Hopkins Malaria Research Institute, Baltimore, MD, USA.
| | - Frank Seeber
- FG16 Parasitology, Robert Koch-Institute, Berlin, Germany.
| |
Collapse
|
22
|
Fleming BA, Blango MG, Rousek AA, Kincannon WM, Tran A, Lewis A, Russell C, Zhou Q, Baird LM, Barber A, Brannon JR, Beebout C, Bandarian V, Hadjifrangiskou M, Howard M, Mulvey M. A tRNA modifying enzyme as a tunable regulatory nexus for bacterial stress responses and virulence. Nucleic Acids Res 2022; 50:7570-7590. [PMID: 35212379 PMCID: PMC9303304 DOI: 10.1093/nar/gkac116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.
Collapse
Affiliation(s)
- Brittany A Fleming
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Matthew G Blango
- Junior Research Group RNA Biology of Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (Leibniz-HKI), 07745 Jena, Germany
| | - Alexis A Rousek
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | - Alexander Tran
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Adam J Lewis
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Colin W Russell
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Qin Zhou
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Lisa M Baird
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Amelia E Barber
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael T Howard
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew A Mulvey
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
23
|
Yakita M, Chujo T, Wei FY, Hirayama M, Kato K, Takahashi N, Naganuma K, Nagata M, Kawahara K, Nakayama H, Tomizawa K. Extracellular N6 -isopentenyladenosine (i 6A) addition induces cotranscriptional i 6A incorporation into ribosomal RNAs. RNA (NEW YORK, N.Y.) 2022; 28:1013-1027. [PMID: 35414588 PMCID: PMC9202588 DOI: 10.1261/rna.079176.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
N6 -isopentenyladenosine (i6A), a modified adenosine monomer, is known to induce cell death upon its addition to the culture medium. However, the molecular fate of extracellularly added i6A has yet to be identified. Here we show that i6A addition to cell culture medium results in i6A incorporation into cellular RNA in several cell lines, including the 5-fluorouracil (5-FU)-resistant human oral squamous cell carcinoma cell line FR2-SAS and its parental 5-FU-sensitive cell line SAS. i6A was predominantly incorporated into 18S and 28S rRNAs, and i6A incorporation into total RNA was mostly suppressed by treating these cell lines with an RNA polymerase I (Pol I) inhibitor. i6A was incorporated into RNA even upon inactivation of TRIT1, the only cellular i6A-modifying enzyme. These results indicate that upon cellular uptake of i6A, it is anabolized to be used for Pol I transcription. Interestingly, at lower i6A concentrations, the cytotoxic effect of i6A was substantially more pronounced in FR2-SAS cells than in SAS cells. Moreover, in FR2-SAS cells, i6A treatment decreased the rate of cellular protein synthesis and increased intracellular protein aggregation, and these effects were more pronounced than in SAS cells. Our work provides insights into the molecular fate of extracellularly applied i6A in the context of intracellular nucleic acid anabolism and suggests investigation of i6A as a candidate for a chemotherapy agent against 5-FU-resistant cancer cells.
Collapse
Affiliation(s)
- Maya Yakita
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mayumi Hirayama
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Koji Kato
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Nozomu Takahashi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenta Naganuma
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
24
|
Soman S, Ram S. MiaA (Rv2727c) mediated tRNA isopentenylation of Mycobacterium tuberculosis H37Rv. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2022; 11:97-104. [PMID: 36059932 PMCID: PMC9336784 DOI: 10.22099/mbrc.2022.43197.1726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
tRNA modifications play a significant role in the structural stability as well as translational fidelity in all organisms from bacteria to humans. They also play a major role in bacterial physiology by regulating translation in response to various environmental stresses. Modifications coming at the anticodon-stem loop (ASL) are particularly important as they stabilize codon-anticodon interactions, ensuring accuracy and speed in decoding mRNAs Addition of isopentenyl group (i6A) at A37 position by tRNA isopentenyltransferase (MiaA) is a well conserved modification from bacteria to human. We studied M. tuberculosis MiaA from strain H37Rv and identified the target tRNAs for this modification based on the A36A37A38 motif. i6A modification of target tRNAs tRNALeuCAA, tRNAPheGAA, tRNATrpCCA and tRNASerCGA were further confirmed by isopentenyltransferase assay providing the substrate DMAPP and recombinant MiaA enzyme.
Collapse
Affiliation(s)
- Smitha Soman
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh, India
| | - Siya Ram
- School of Biotechnology, Gautam Buddha University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh, India
- School of Sciences, Indira Gandhi National Open University, Maidan Garhi, New Delhi, India
| |
Collapse
|
25
|
Kelley M, Paulines MJ, Yoshida G, Myers R, Jora M, Levoy JP, Addepalli B, Benoit JB, Limbach PA. Ionizing radiation and chemical oxidant exposure impacts on Cryptococcus neoformans transfer RNAs. PLoS One 2022; 17:e0266239. [PMID: 35349591 PMCID: PMC8963569 DOI: 10.1371/journal.pone.0266239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Cryptococcus neoformans is a fungus that is able to survive abnormally high levels of ionizing radiation (IR). The radiolysis of water by IR generates reactive oxygen species (ROS) such as H2O2 and OH-. C. neoformans withstands the damage caused by IR and ROS through antioxidant production and enzyme-catalyzed breakdown of ROS. Given these particular cellular protein needs, questions arise whether transfer ribonucleic acids molecules (tRNAs) undergo unique chemical modifications to maintain their structure, stability, and/or function under such environmental conditions. Here, we investigated the effects of IR and H2O2 exposure on tRNAs in C. neoformans. We experimentally identified the modified nucleosides present in C. neoformans tRNAs and quantified changes in those modifications upon exposure to oxidative conditions. To better understand these modified nucleoside results, we also evaluated tRNA pool composition in response to the oxidative conditions. We found that regardless of environmental conditions, tRNA modifications and transcripts were minimally affected. A rationale for the stability of the tRNA pool and its concomitant profile of modified nucleosides is proposed based on the lack of codon bias throughout the C. neoformans genome and in particular for oxidative response transcripts. Our findings suggest that C. neoformans can rapidly adapt to oxidative environments as mRNA translation/protein synthesis are minimally impacted by codon bias.
Collapse
Affiliation(s)
- Melissa Kelley
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Mellie June Paulines
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - George Yoshida
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Ryan Myers
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Manasses Jora
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Joel P. Levoy
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
| | | | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Patrick A. Limbach
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
26
|
D’Esposito RJ, Myers CA, Chen AA, Vangaveti S. Challenges with Simulating Modified RNA: Insights into Role and Reciprocity of Experimental and Computational Approaches. Genes (Basel) 2022; 13:540. [PMID: 35328093 PMCID: PMC8949676 DOI: 10.3390/genes13030540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/12/2023] Open
Abstract
RNA is critical to a broad spectrum of biological and viral processes. This functional diversity is a result of their dynamic nature; the variety of three-dimensional structures that they can fold into; and a host of post-transcriptional chemical modifications. While there are many experimental techniques to study the structural dynamics of biomolecules, molecular dynamics simulations (MDS) play a significant role in complementing experimental data and providing mechanistic insights. The accuracy of the results obtained from MDS is determined by the underlying physical models i.e., the force-fields, that steer the simulations. Though RNA force-fields have received a lot of attention in the last decade, they still lag compared to their protein counterparts. The chemical diversity imparted by the RNA modifications adds another layer of complexity to an already challenging problem. Insight into the effect of RNA modifications upon RNA folding and dynamics is lacking due to the insufficiency or absence of relevant experimental data. This review provides an overview of the state of MDS of modified RNA, focusing on the challenges in parameterization of RNA modifications as well as insights into relevant reference experiments necessary for their calibration.
Collapse
Affiliation(s)
- Rebecca J. D’Esposito
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
| | - Christopher A. Myers
- Department of Physics, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA;
| | - Alan A. Chen
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA; (R.J.D.); (A.A.C.)
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Sweta Vangaveti
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| |
Collapse
|
27
|
Evke S, Lin Q, Melendez JA, Begley TJ. Epitranscriptomic Reprogramming Is Required to Prevent Stress and Damage from Acetaminophen. Genes (Basel) 2022; 13:genes13030421. [PMID: 35327975 PMCID: PMC8955276 DOI: 10.3390/genes13030421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Epitranscriptomic marks, in the form of enzyme catalyzed RNA modifications, play important gene regulatory roles in response to environmental and physiological conditions. However, little is known with respect to how acute toxic doses of pharmaceuticals influence the epitranscriptome. Here we define how acetaminophen (APAP) induces epitranscriptomic reprogramming and how the writer Alkylation Repair Homolog 8 (Alkbh8) plays a key gene regulatory role in the response. Alkbh8 modifies tRNA selenocysteine (tRNASec) to translationally regulate the production of glutathione peroxidases (Gpx’s) and other selenoproteins, with Gpx enzymes known to play protective roles during APAP toxicity. We demonstrate that APAP increases toxicity and markers of damage, and decreases selenoprotein levels in Alkbh8 deficient mouse livers, when compared to wildtype. APAP also promotes large scale reprogramming of many RNA marks comprising the liver tRNA epitranscriptome including: 5-methoxycarbonylmethyluridine (mcm5U), isopentenyladenosine (i6A), pseudouridine (Ψ), and 1-methyladenosine (m1A) modifications linked to tRNASec and many other tRNA’s. Alkbh8 deficiency also leads to wide-spread epitranscriptomic dysregulation in response to APAP, demonstrating that a single writer defect can promote downstream changes to a large spectrum of RNA modifications. Our study highlights the importance of RNA modifications and translational responses to APAP, identifies writers as key modulators of stress responses in vivo and supports the idea that the epitranscriptome may play important roles in responses to pharmaceuticals.
Collapse
Affiliation(s)
- Sara Evke
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (S.E.); (J.A.M.)
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
| | - Qishan Lin
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
| | - Juan Andres Melendez
- Nanobioscience Constellation, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA; (S.E.); (J.A.M.)
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
| | - Thomas John Begley
- The RNA Institute, University at Albany, Albany, NY 12222, USA;
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
- RNA Epitranscriptomics and Proteomics Resource, University at Albany, Albany, NY 12222, USA
- Correspondence:
| |
Collapse
|
28
|
Xie Y, Fang Z, Yang W, He Z, Chen K, Heng P, Wang B, Zhou X. 6-Iodopurine as a Versatile Building Block for RNA Purine Architecture Modifications. Bioconjug Chem 2022; 33:353-362. [PMID: 35119264 DOI: 10.1021/acs.bioconjchem.1c00595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural modified bases in RNA were found to be indispensable for basic biological processes. In addition, artificial RNA modifications have been a versatile toolbox for the study of RNA interference, structure, and dynamics. Here, we present a chemical method for the facile synthesis of RNA containing C6-modified purine. 6-Iodopurine, as a postsynthetic building block with high reactivity, was used for metal-free construction of C-N, C-O, and C-S bonds under mild conditions and C-C bond formation by Suzuki-Miyaura cross-coupling. Our strategy provides a convenient approach for the synthesis of various RNA modifications, especially for oligonucleotides containing specific structures.
Collapse
Affiliation(s)
- Yalun Xie
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhentian Fang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiyong He
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Kun Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Panpan Heng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Baoshan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
29
|
Lateef OM, Akintubosun MO, Olaoba OT, Samson SO, Adamczyk M. Making Sense of "Nonsense" and More: Challenges and Opportunities in the Genetic Code Expansion, in the World of tRNA Modifications. Int J Mol Sci 2022; 23:938. [PMID: 35055121 PMCID: PMC8779196 DOI: 10.3390/ijms23020938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/09/2023] Open
Abstract
The evolutional development of the RNA translation process that leads to protein synthesis based on naturally occurring amino acids has its continuation via synthetic biology, the so-called rational bioengineering. Genetic code expansion (GCE) explores beyond the natural translational processes to further enhance the structural properties and augment the functionality of a wide range of proteins. Prokaryotic and eukaryotic ribosomal machinery have been proven to accept engineered tRNAs from orthogonal organisms to efficiently incorporate noncanonical amino acids (ncAAs) with rationally designed side chains. These side chains can be reactive or functional groups, which can be extensively utilized in biochemical, biophysical, and cellular studies. Genetic code extension offers the contingency of introducing more than one ncAA into protein through frameshift suppression, multi-site-specific incorporation of ncAAs, thereby increasing the vast number of possible applications. However, different mediating factors reduce the yield and efficiency of ncAA incorporation into synthetic proteins. In this review, we comment on the recent advancements in genetic code expansion to signify the relevance of systems biology in improving ncAA incorporation efficiency. We discuss the emerging impact of tRNA modifications and metabolism in protein design. We also provide examples of the latest successful accomplishments in synthetic protein therapeutics and show how codon expansion has been employed in various scientific and biotechnological applications.
Collapse
Affiliation(s)
- Olubodun Michael Lateef
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| | | | - Olamide Tosin Olaoba
- Laboratory of Functional and Structural Biochemistry, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil;
| | - Sunday Ocholi Samson
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| | - Malgorzata Adamczyk
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (O.M.L.); (M.O.A.); (S.O.S.)
| |
Collapse
|
30
|
Abstract
The COVID-19 pandemic has highlighted the need to identify additional antiviral small molecules to complement existing therapies. Although increasing evidence suggests that metabolites produced by the human microbiome have diverse biological activities, their antiviral properties remain poorly explored. Using a cell-based SARS-CoV-2 infection assay, we screened culture broth extracts from a collection of phylogenetically diverse human-associated bacteria for the production of small molecules with antiviral activity. Bioassay-guided fractionation uncovered three bacterial metabolites capable of inhibiting SARS-CoV-2 infection. This included the nucleoside analogue N6-(Δ2-isopentenyl)adenosine, the 5-hydroxytryptamine receptor agonist tryptamine, and the pyrazine 2,5-bis(3-indolylmethyl)pyrazine. The most potent of these, N6-(Δ2-isopentenyl)adenosine, had a 50% inhibitory concentration (IC50) of 2 μM. These natural antiviral compounds exhibit structural and functional similarities to synthetic drugs that have been clinically examined for use against COVID-19. Our discovery of structurally diverse metabolites with anti-SARS-CoV-2 activity from screening a small fraction of the bacteria reported to be associated with the human microbiome suggests that continued exploration of phylogenetically diverse human-associated bacteria is likely to uncover additional small molecules that inhibit SARS-CoV-2 as well as other viral infections. IMPORTANCE The continued prevalence of COVID-19 and the emergence of new variants has once again put the spotlight on the need for the identification of SARS-CoV-2 antivirals. The human microbiome produces an array of small molecules with bioactivities (e.g., host receptor ligands), but its ability to produce antiviral small molecules is relatively underexplored. Here, using a cell-based screening platform, we describe the isolation of three microbiome-derived metabolites that are able to prevent SARS-CoV-2 infection in vitro. These molecules display structural similarities to synthetic drugs that have been explored for the treatment of COVID-19, and these results suggest that the microbiome may be a fruitful source of the discovery of small molecules with antiviral activities.
Collapse
|
31
|
Zhou JB, Wang ED, Zhou XL. Modifications of the human tRNA anticodon loop and their associations with genetic diseases. Cell Mol Life Sci 2021; 78:7087-7105. [PMID: 34605973 PMCID: PMC11071707 DOI: 10.1007/s00018-021-03948-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Transfer RNAs (tRNAs) harbor the most diverse posttranscriptional modifications. Among such modifications, those in the anticodon loop, either on nucleosides or base groups, compose over half of the identified posttranscriptional modifications. The derivatives of modified nucleotides and the crosstalk of different chemical modifications further add to the structural and functional complexity of tRNAs. These modifications play critical roles in maintaining anticodon loop conformation, wobble base pairing, efficient aminoacylation, and translation speed and fidelity as well as mediating various responses to different stress conditions. Posttranscriptional modifications of tRNA are catalyzed mainly by enzymes and/or cofactors encoded by nuclear genes, whose mutations are firmly connected with diverse human diseases involving genetic nervous system disorders and/or the onset of multisystem failure. In this review, we summarize recent studies about the mechanisms of tRNA modifications occurring at tRNA anticodon loops. In addition, the pathogenesis of related disease-causing mutations at these genes is briefly described.
Collapse
Affiliation(s)
- Jing-Bo Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 93 Middle Huaxia Road, Shanghai, 201210, China.
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
32
|
Dai W, Li A, Yu NJ, Nguyen T, Leach RW, Wühr M, Kleiner RE. Activity-based RNA-modifying enzyme probing reveals DUS3L-mediated dihydrouridylation. Nat Chem Biol 2021; 17:1178-1187. [PMID: 34556860 PMCID: PMC8551019 DOI: 10.1038/s41589-021-00874-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
Epitranscriptomic RNA modifications can regulate RNA activity; however, there remains a major gap in our understanding of the RNA chemistry present in biological systems. Here we develop RNA-mediated activity-based protein profiling (RNABPP), a chemoproteomic strategy that relies on metabolic RNA labeling, mRNA interactome capture and quantitative proteomics, to investigate RNA-modifying enzymes in human cells. RNABPP with 5-fluoropyrimidines allowed us to profile 5-methylcytidine (m5C) and 5-methyluridine (m5U) methyltransferases. Further, we uncover a new mechanism-based crosslink between 5-fluorouridine (5-FUrd)-modified RNA and the dihydrouridine synthase (DUS) homolog DUS3L. We investigate the mechanism of crosslinking and use quantitative nucleoside liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis and 5-FUrd-based crosslinking and immunoprecipitation (CLIP) sequencing to map DUS3L-dependent dihydrouridine (DHU) modifications across the transcriptome. Finally, we show that DUS3L-knockout (KO) cells have compromised protein translation rates and impaired cellular proliferation. Taken together, our work provides a general approach for profiling RNA-modifying enzyme activity in living cells and reveals new pathways for epitranscriptomic RNA regulation.
Collapse
Affiliation(s)
- Wei Dai
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Ang Li
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,These authors contributed equally
| | - Nathan J. Yu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Thao Nguyen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Robert W. Leach
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ralph E. Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA,
| |
Collapse
|
33
|
Fradejas-Villar N, Bohleber S, Zhao W, Reuter U, Kotter A, Helm M, Knoll R, McFarland R, Taylor RW, Mo Y, Miyauchi K, Sakaguchi Y, Suzuki T, Schweizer U. The Effect of tRNA [Ser]Sec Isopentenylation on Selenoprotein Expression. Int J Mol Sci 2021; 22:ijms222111454. [PMID: 34768885 PMCID: PMC8583801 DOI: 10.3390/ijms222111454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
Transfer RNA[Ser]Sec carries multiple post-transcriptional modifications. The A37G mutation in tRNA[Ser]Sec abrogates isopentenylation of base 37 and has a profound effect on selenoprotein expression in mice. Patients with a homozygous pathogenic p.R323Q variant in tRNA-isopentenyl-transferase (TRIT1) show a severe neurological disorder, and hence we wondered whether selenoprotein expression was impaired. Patient fibroblasts with the homozygous p.R323Q variant did not show a general decrease in selenoprotein expression. However, recombinant human TRIT1R323Q had significantly diminished activities towards several tRNA substrates in vitro. We thus engineered mice conditionally deficient in Trit1 in hepatocytes and neurons. Mass-spectrometry revealed that hypermodification of U34 to mcm5Um occurs independently of isopentenylation of A37 in tRNA[Ser]Sec. Western blotting and 75Se metabolic labeling showed only moderate effects on selenoprotein levels and 75Se incorporation. A detailed analysis of Trit1-deficient liver using ribosomal profiling demonstrated that UGA/Sec re-coding was moderately affected in Selenop, Txnrd1, and Sephs2, but not in Gpx1. 2′O-methylation of U34 in tRNA[Ser]Sec depends on FTSJ1, but does not affect UGA/Sec re-coding in selenoprotein translation. Taken together, our results show that a lack of isopentenylation of tRNA[Ser]Sec affects UGA/Sec read-through but differs from a A37G mutation.
Collapse
Affiliation(s)
- Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Simon Bohleber
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Wenchao Zhao
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Uschi Reuter
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Annika Kotter
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of Mainz, Staudingerweg 5, D-55128 Mainz, Germany; (A.K.); (M.H.)
| | - Rainer Knoll
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (R.M.); (R.W.T.)
| | - Yufeng Mo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Yuriko Sakaguchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan; (Y.M.); (K.M.); (Y.S.); (T.S.)
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, D-53115 Bonn, Germany; (N.F.-V.); (S.B.); (W.Z.); (U.R.); (R.K.)
- Correspondence:
| |
Collapse
|
34
|
Dynamic changes in tRNA modifications and abundance during T cell activation. Proc Natl Acad Sci U S A 2021; 118:2106556118. [PMID: 34642250 DOI: 10.1073/pnas.2106556118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The tRNA pool determines the efficiency, throughput, and accuracy of translation. Previous studies have identified dynamic changes in the tRNA (transfer RNA) supply and mRNA (messenger RNA) demand during cancerous proliferation. Yet dynamic changes may also occur during physiologically normal proliferation, and these are less well characterized. We examined the tRNA and mRNA pools of T cells during their vigorous proliferation and differentiation upon triggering their antigen receptor. We observed a global signature of switch in demand for codons at the early proliferation phase of the response, accompanied by corresponding changes in tRNA expression levels. In the later phase, upon differentiation, the response of the tRNA pool relaxed back to the basal level, potentially restraining excessive proliferation. Sequencing of tRNAs allowed us to evaluate their diverse base-modifications. We found that two types of tRNA modifications, wybutosine and ms2t6A, are reduced dramatically during T cell activation. These modifications occur in the anticodon loops of two tRNAs that decode "slippery codons," which are prone to ribosomal frameshifting. Attenuation of these frameshift-protective modifications is expected to increase the potential for proteome-wide frameshifting during T cell proliferation. Indeed, human cell lines deleted of a wybutosine writer showed increased ribosomal frameshifting, as detected with an HIV gag-pol frameshifting site reporter. These results may explain HIV's specific tropism toward proliferating T cells since it requires ribosomal frameshift exactly on the corresponding codon for infection. The changes in tRNA expression and modifications uncover a layer of translation regulation during T cell proliferation and expose a potential tradeoff between cellular growth and translation fidelity.
Collapse
|
35
|
Gobet C, Naef F. Ribo-DT: An automated pipeline for inferring codon dwell times from ribosome profiling data. Methods 2021; 203:10-16. [PMID: 34673173 DOI: 10.1016/j.ymeth.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Protein synthesis is an energy consuming process characterised as a pivotal and highly regulated step in gene expression. The net protein output is dictated by a combination of translation initiation, elongation and termination rates that have remained difficult to measure. Recently, the development of ribosome profiling has enabled the inference of translation parameters through modelling, as this method informs on the ribosome position along the mRNA. Here, we present an automated, reproducible and portable computational pipeline to infer relative single-codon and codon-pair dwell times as well as gene flux from raw ribosome profiling sequencing data. As a case study, we applied our workflow to a publicly available yeast ribosome profiling dataset consisting of 57 independent gene knockouts related to RNA and tRNA modifications. We uncovered the effects of those modifications on translation elongation and codon selection during decoding. In particular, knocking out mod5 and trm7 increases codon-specific dwell times which indicates their potential tRNA targets, and highlights effects of nucleotide modifications on ribosome decoding rate.
Collapse
Affiliation(s)
- Cédric Gobet
- Institute of Bioengineering (IBI), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Félix Naef
- Institute of Bioengineering (IBI), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
36
|
Dannfald A, Favory JJ, Deragon JM. Variations in transfer and ribosomal RNA epitranscriptomic status can adapt eukaryote translation to changing physiological and environmental conditions. RNA Biol 2021; 18:4-18. [PMID: 34159889 PMCID: PMC8677040 DOI: 10.1080/15476286.2021.1931756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 01/27/2023] Open
Abstract
The timely reprogramming of gene expression in response to internal and external cues is essential to eukaryote development and acclimation to changing environments. Chemically modifying molecular receptors and transducers of these signals is one way to efficiently induce proper physiological responses. Post-translation modifications, regulating protein biological activities, are central to many well-known signal-responding pathways. Recently, messenger RNA (mRNA) chemical (i.e. epitranscriptomic) modifications were also shown to play a key role in these processes. In contrast, transfer RNA (tRNA) and ribosomal RNA (rRNA) chemical modifications, although critical for optimal function of the translation apparatus, and much more diverse and quantitatively important compared to mRNA modifications, were until recently considered as mainly static chemical decorations. We present here recent observations that are challenging this view and supporting the hypothesis that tRNA and rRNA modifications dynamically respond to various cell and environmental conditions and contribute to adapt translation to these conditions.
Collapse
Affiliation(s)
- Arnaud Dannfald
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Jacques Favory
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
| | - Jean-Marc Deragon
- CNRS LGDP-UMR5096, Pepignan, France
- Université de Perpignan via Domitia, Perpignan, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
37
|
Valadon C, Namy O. The Importance of the Epi-Transcriptome in Translation Fidelity. Noncoding RNA 2021; 7:51. [PMID: 34564313 PMCID: PMC8482273 DOI: 10.3390/ncrna7030051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/17/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
RNA modifications play an essential role in determining RNA fate. Recent studies have revealed the effects of such modifications on all steps of RNA metabolism. These modifications range from the addition of simple groups, such as methyl groups, to the addition of highly complex structures, such as sugars. Their consequences for translation fidelity are not always well documented. Unlike the well-known m6A modification, they are thought to have direct effects on either the folding of the molecule or the ability of tRNAs to bind their codons. Here we describe how modifications found in tRNAs anticodon-loop, rRNA, and mRNA can affect translation fidelity, and how approaches based on direct manipulations of the level of RNA modification could potentially be used to modulate translation for the treatment of human genetic diseases.
Collapse
Affiliation(s)
| | - Olivier Namy
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| |
Collapse
|
38
|
Watanabe LM, Hashimoto AC, Torres DJ, Alfulaij N, Peres R, Sultana R, Maunakea AK, Berry MJ, Seale LA. Effect of statin treatment in obese selenium-supplemented mice lacking selenocysteine lyase. Mol Cell Endocrinol 2021; 533:111335. [PMID: 34052303 PMCID: PMC8263501 DOI: 10.1016/j.mce.2021.111335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
People with obesity are often dyslipidemic and prescribed statins to prevent cardiovascular events. A common side effect of statin use is myopathy. This could potentially be caused by the reduction of selenoproteins that curb oxidative stress, in turn, affecting creatine metabolism. We determined if statins regulate hepatic and muscular selenoprotein expression, oxidative stress and creatine metabolism. Mice lacking selenocysteine lyase (Scly KO), a selenium-provider enzyme for selenoprotein synthesis, were fed a high-fat, Se-supplemented diet and treated with simvastatin. Statin improved creatine metabolism in females and oxidative responses in both sexes. Male Scly KO mice were heavier than females after statin treatment. Hepatic selenoproteins were unaffected by statin and genotype in females. Statin upregulated muscular Gpx1 in females but not males, while Scly loss downregulated muscular Gpx1 in males and Selenon in females. Osgin1 was reduced in statin-treated Scly KO males after AmpliSeq analysis. These results refine our understanding of the sex-dependent role of selenium in statin responses.
Collapse
Affiliation(s)
- Ligia M Watanabe
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Department of Internal Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo - FMRP/USP, Brazil
| | - Ann C Hashimoto
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Daniel J Torres
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Naghum Alfulaij
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA; Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Rafael Peres
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Razvan Sultana
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Marla J Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Lucia A Seale
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
39
|
Manavski N, Vicente A, Chi W, Meurer J. The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods. Genes (Basel) 2021; 12:genes12081121. [PMID: 34440296 PMCID: PMC8394491 DOI: 10.3390/genes12081121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Modifications in nucleic acids are present in all three domains of life. More than 170 distinct chemical modifications have been reported in cellular RNAs to date. Collectively termed as epitranscriptome, these RNA modifications are often dynamic and involve distinct regulatory proteins that install, remove, and interpret these marks in a site-specific manner. Covalent nucleotide modifications-such as methylations at diverse positions in the bases, polyuridylation, and pseudouridylation and many others impact various events in the lifecycle of an RNA such as folding, localization, processing, stability, ribosome assembly, and translational processes and are thus crucial regulators of the RNA metabolism. In plants, the nuclear/cytoplasmic epitranscriptome plays important roles in a wide range of biological processes, such as organ development, viral infection, and physiological means. Notably, recent transcriptome-wide analyses have also revealed novel dynamic modifications not only in plant nuclear/cytoplasmic RNAs related to photosynthesis but especially in chloroplast mRNAs, suggesting important and hitherto undefined regulatory steps in plastid functions and gene expression. Here we report on the latest findings of known plastid RNA modifications and highlight their relevance for the post-transcriptional regulation of chloroplast gene expression and their role in controlling plant development, stress reactions, and acclimation processes.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Alexandre Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
- Correspondence: ; Tel.: +49-89-218074556
| |
Collapse
|
40
|
Moschetti A, Dagda RK, Ryan RO. Coenzyme Q nanodisks counteract the effect of statins on C2C12 myotubes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102439. [PMID: 34256063 DOI: 10.1016/j.nano.2021.102439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Depletion of coenzyme Q (CoQ) is associated with disease, ranging from myopathy to heart failure. To induce a CoQ deficit, C2C12 myotubes were incubated with high dose simvastatin. This resulted in a concentration-dependent inhibition of cell viability. Simvastatin-induced effects were prevented by co-incubation with mevalonic acid. When myotubes were incubated with 60 μM simvastatin, mitochondrial CoQ content decreased while co-incubation with CoQ nanodisks (ND) increased mitochondrial CoQ levels and improved cell viability. Incubation of myotubes with simvastatin also led to a reduction in oxygen consumption rate (OCR). When myotubes were co-incubated with simvastatin and CoQ ND, the decline in OCR was ameliorated. The data indicate that CoQ ND represent a water soluble vehicle capable of delivering CoQ to cultured myotubes. Thus, these biocompatible nanoparticles have the potential to bypass poor CoQ oral bioavailability as a treatment option for individuals with severe CoQ deficiency syndromes and/or aging-related CoQ depletion.
Collapse
Affiliation(s)
- Anthony Moschetti
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno, NV
| | - Robert O Ryan
- Department of Pharmacology, University of Nevada, Reno, NV.
| |
Collapse
|
41
|
Kazimierczyk M, Wrzesinski J. Long Non-Coding RNA Epigenetics. Int J Mol Sci 2021; 22:6166. [PMID: 34200507 PMCID: PMC8201194 DOI: 10.3390/ijms22116166] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs exceeding a length of 200 nucleotides play an important role in ensuring cell functions and proper organism development by interacting with cellular compounds such as miRNA, mRNA, DNA and proteins. However, there is an additional level of lncRNA regulation, called lncRNA epigenetics, in gene expression control. In this review, we describe the most common modified nucleosides found in lncRNA, 6-methyladenosine, 5-methylcytidine, pseudouridine and inosine. The biosynthetic pathways of these nucleosides modified by the writer, eraser and reader enzymes are important to understanding these processes. The characteristics of the individual methylases, pseudouridine synthases and adenine-inosine editing enzymes and the methods of lncRNA epigenetics for the detection of modified nucleosides, as well as the advantages and disadvantages of these methods, are discussed in detail. The final sections are devoted to the role of modifications in the most abundant lncRNAs and their functions in pathogenic processes.
Collapse
Affiliation(s)
| | - Jan Wrzesinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland;
| |
Collapse
|
42
|
Abstract
Covering: up to mid-2020 Terpenoids, also called isoprenoids, are the largest and most structurally diverse family of natural products. Found in all domains of life, there are over 80 000 known compounds. The majority of characterized terpenoids, which include some of the most well known, pharmaceutically relevant, and commercially valuable natural products, are produced by plants and fungi. Comparatively, terpenoids of bacterial origin are rare. This is counter-intuitive to the fact that recent microbial genomics revealed that almost all bacteria have the biosynthetic potential to create the C5 building blocks necessary for terpenoid biosynthesis. In this review, we catalogue terpenoids produced by bacteria. We collected 1062 natural products, consisting of both primary and secondary metabolites, and classified them into two major families and 55 distinct subfamilies. To highlight the structural and chemical space of bacterial terpenoids, we discuss their structures, biosynthesis, and biological activities. Although the bacterial terpenome is relatively small, it presents a fascinating dichotomy for future research. Similarities between bacterial and non-bacterial terpenoids and their biosynthetic pathways provides alternative model systems for detailed characterization while the abundance of novel skeletons, biosynthetic pathways, and bioactivies presents new opportunities for drug discovery, genome mining, and enzymology.
Collapse
Affiliation(s)
- Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
43
|
Coll-SanMartin L, Davalos V, Piñeyro D, Rosselló-Tortella M, Bueno-Costa A, Setien F, Villanueva A, Granada I, Ruiz-Xiviller N, Kotter A, Helm M, Yokota J, Kawabata-Iwakawa R, Kohno T, Esteller M. Gene Amplification-Associated Overexpression of the Selenoprotein tRNA Enzyme TRIT1 Confers Sensitivity to Arsenic Trioxide in Small-Cell Lung Cancer. Cancers (Basel) 2021; 13:1869. [PMID: 33919717 PMCID: PMC8070726 DOI: 10.3390/cancers13081869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 12/16/2022] Open
Abstract
The alteration of RNA modification patterns is emerging as a common feature of human malignancies. If these changes affect key RNA molecules for mRNA translation, such as transfer RNA, they can have important consequences for cell transformation. TRIT1 is the enzyme responsible for the hypermodification of adenosine 37 in the anticodon region of human tRNAs containing serine and selenocysteine. Herein, we show that TRIT1 undergoes gene amplification-associated overexpression in cancer cell lines and primary samples of small-cell lung cancer. From growth and functional standpoints, the induced depletion of TRIT1 expression in amplified cells reduces their tumorigenic potential and downregulates the selenoprotein transcripts. We observed that TRIT1-amplified cells are sensitive to arsenic trioxide, a compound that regulates selenoproteins, whereas reduction of TRIT1 levels confers loss of sensitivity to the drug. Overall, our results indicate a role for TRIT1 as a small-cell lung cancer-relevant gene that, when undergoing gene amplification-associated activation, can be targeted with the differentiation agent arsenic trioxide.
Collapse
Affiliation(s)
- Laia Coll-SanMartin
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
| | - Veronica Davalos
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
| | - David Piñeyro
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Margalida Rosselló-Tortella
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
- Germans Trias i Pujol Health Science Research Institute (IGTP), 08916 Barcelona, Spain
| | - Alberto Bueno-Costa
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
| | - Fernando Setien
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
| | - Alberto Villanueva
- Group of Chemoresistance and Predictive Factors, Subprogram Against Cancer Therapeutic Resistance (ProCURE), Oncobell Program, IDIBELL, Institut Català d’Oncologia (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain;
| | - Isabel Granada
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
- Cytogenetics Platform, Hematology Laboratory Service, Institut Català d’Oncologia (ICO)-Hospital Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
| | - Neus Ruiz-Xiviller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
- Cytogenetics Platform, Hematology Laboratory Service, Institut Català d’Oncologia (ICO)-Hospital Germans Trias i Pujol (IGTP), 08916 Barcelona, Spain
| | - Annika Kotter
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (A.K.); (M.H.)
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany; (A.K.); (M.H.)
| | - Jun Yokota
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (J.Y.); (R.K.-I.); (T.K.)
| | - Reika Kawabata-Iwakawa
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (J.Y.); (R.K.-I.); (T.K.)
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma 371-8511, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; (J.Y.); (R.K.-I.); (T.K.)
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Tokyo 104-0045, Japan
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Barcelona, Spain; (L.C.-S.); (V.D.); (D.P.); (M.R.-T.); (A.B.-C.); (F.S.); (I.G.); (N.R.-X.)
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), 28029 Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
44
|
TusA Is a Versatile Protein That Links Translation Efficiency to Cell Division in Escherichia coli. J Bacteriol 2021; 203:JB.00659-20. [PMID: 33526615 DOI: 10.1128/jb.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 11/20/2022] Open
Abstract
To enable accurate and efficient translation, sulfur modifications are introduced posttranscriptionally into nucleosides in tRNAs. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems for the incorporation of sulfur atoms in different nucleosides of tRNA. One of the proteins that is involved in inserting the sulfur for 5-methylaminomethyl-2-thiouridine (mnm5s2U34) modifications in tRNAs is the TusA protein. TusA, however, is a versatile protein that is also involved in numerous other cellular pathways. Despite its role as a sulfur transfer protein for the 2-thiouridine formation in tRNA, a fundamental role of TusA in the general physiology of Escherichia coli has also been discovered. Poor viability, a defect in cell division, and a filamentous cell morphology have been described previously for tusA-deficient cells. In this report, we aimed to dissect the role of TusA for cell viability. We were able to show that the lack of the thiolation status of wobble uridine (U34) nucleotides present on Lys, Gln, or Glu in tRNAs has a major consequence on the translation efficiency of proteins; among the affected targets are the proteins RpoS and Fis. Both proteins are major regulatory factors, and the deregulation of their abundance consequently has a major effect on the cellular regulatory network, with one consequence being a defect in cell division by regulating the FtsZ ring formation.IMPORTANCE More than 100 different modifications are found in RNAs. One of these modifications is the mnm5s2U modification at the wobble position 34 of tRNAs for Lys, Gln, and Glu. The functional significance of U34 modifications is substantial since it restricts the conformational flexibility of the anticodon, thus providing translational fidelity. We show that in an Escherichia coli TusA mutant strain, involved in sulfur transfer for the mnm5s2U34 thio modifications, the translation efficiency of RpoS and Fis, two major cellular regulatory proteins, is altered. Therefore, in addition to the transcriptional regulation and the factors that influence protein stability, tRNA modifications that ensure the translational efficiency provide an additional crucial regulatory factor for protein synthesis.
Collapse
|
45
|
Sun Z, Tan J, Zhao M, Peng Q, Zhou M, Zuo S, Wu F, Li X, Dong Y, Xie M, Yang Y, Zhou J, Liu X, He Q, He Z, Yu X, He Q. Integrated genomic analysis reveals regulatory pathways and dynamic landscapes of the tRNA transcriptome. Sci Rep 2021; 11:5226. [PMID: 33664286 PMCID: PMC7933247 DOI: 10.1038/s41598-021-83469-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/01/2021] [Indexed: 11/25/2022] Open
Abstract
tRNAs and tRNA-derived RNA fragments (tRFs) play various roles in many cellular processes outside of protein synthesis. However, comprehensive investigations of tRNA/tRF regulation are rare. In this study, we used new algorithms to extensively analyze the publicly available data from 1332 ChIP-Seq and 42 small-RNA-Seq experiments in human cell lines and tissues to investigate the transcriptional and posttranscriptional regulatory mechanisms of tRNAs. We found that histone acetylation, cAMP, and pluripotency pathways play important roles in the regulation of the tRNA gene transcription in a cell-specific manner. Analysis of RNA-Seq data identified 950 high-confidence tRFs, and the results suggested that tRNA pools are dramatically distinct across the samples in terms of expression profiles and tRF composition. The mismatch analysis identified new potential modification sites and specific modification patterns in tRNA families. The results also show that RNA library preparation technologies have a considerable impact on tRNA profiling and need to be optimized in the future.
Collapse
Affiliation(s)
- Zefang Sun
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Jia Tan
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Minqiong Zhao
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Qiyao Peng
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Mingqing Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Shanru Zuo
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Feilong Wu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Xueguang Li
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Yangyang Dong
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Ming Xie
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Yide Yang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Junhua Zhou
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Xianghua Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine One Baylor Plaza, Houston, TX, 77-30, USA
| | - Quanze He
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Zuping He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Xing Yu
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China
| | - Quanyuan He
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Tongzipo Road 371, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
46
|
Berg MD, Brandl CJ. Transfer RNAs: diversity in form and function. RNA Biol 2021; 18:316-339. [PMID: 32900285 PMCID: PMC7954030 DOI: 10.1080/15476286.2020.1809197] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/31/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
As the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology. This review analyzes tRNA structure, biosynthesis and function, and includes topics that demonstrate their diversity and growing importance.
Collapse
Affiliation(s)
- Matthew D. Berg
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | | |
Collapse
|
47
|
Swift RP, Rajaram K, Elahi R, Liu HB, Prigge ST. Roles of Ferredoxin-Dependent Proteins in the Apicoplast of Plasmodium falciparum Parasites. mBio 2021; 13:e0302321. [PMID: 35164549 PMCID: PMC8844926 DOI: 10.1128/mbio.03023-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022] Open
Abstract
Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.
Collapse
Affiliation(s)
- Russell P. Swift
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Krithika Rajaram
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rubayet Elahi
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hans B. Liu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sean T. Prigge
- Department of Molecular Microbiology and Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Meng F, Zhou M, Xiao Y, Mao X, Zheng J, Lin J, Lin T, Ye Z, Cang X, Fu Y, Wang M, Guan MX. A deafness-associated tRNA mutation caused pleiotropic effects on the m1G37 modification, processing, stability and aminoacylation of tRNAIle and mitochondrial translation. Nucleic Acids Res 2021; 49:1075-1093. [PMID: 33398350 PMCID: PMC7826259 DOI: 10.1093/nar/gkaa1225] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023] Open
Abstract
Defects in the posttranscriptional modifications of mitochondrial tRNAs have been linked to human diseases, but their pathophysiology remains elusive. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAIle 4295A>G mutation affecting a highly conserved adenosine at position 37, 3′ adjacent to the tRNA’s anticodon. Primer extension and methylation activity assays revealed that the m.4295A>G mutation introduced a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAIle. Molecular dynamics simulations suggested that the m.4295A>G mutation affected tRNAIle structure and function, supported by increased melting temperature, conformational changes and instability of mutated tRNA. An in vitro processing experiment revealed that the m.4295A>G mutation reduced the 5′ end processing efficiency of tRNAIle precursors, catalyzed by RNase P. We demonstrated that cybrid cell lines carrying the m.4295A>G mutation exhibited significant alterations in aminoacylation and steady-state levels of tRNAIle. The aberrant tRNA metabolism resulted in the impairment of mitochondrial translation, respiratory deficiency, decreasing membrane potentials and ATP production, increasing production of reactive oxygen species and promoting autophagy. These demonstrated the pleiotropic effects of m.4295A>G mutation on tRNAIle and mitochondrial functions. Our findings highlighted the essential role of deficient posttranscriptional modifications in the structure and function of tRNA and their pathogenic consequence of deafness.
Collapse
Affiliation(s)
- Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mi Zhou
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoting Mao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Fu
- Division of Otolaryngology-Head and Neck Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
49
|
The Hulks and the Deadpools of the Cytokinin Universe: A Dual Strategy for Cytokinin Production, Translocation, and Signal Transduction. Biomolecules 2021; 11:biom11020209. [PMID: 33546210 PMCID: PMC7913349 DOI: 10.3390/biom11020209] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Cytokinins are plant hormones, derivatives of adenine with a side chain at the N6-position. They are involved in many physiological processes. While the metabolism of trans-zeatin and isopentenyladenine, which are considered to be highly active cytokinins, has been extensively studied, there are others with less obvious functions, such as cis-zeatin, dihydrozeatin, and aromatic cytokinins, which have been comparatively neglected. To help explain this duality, we present a novel hypothesis metaphorically comparing various cytokinin forms, enzymes of CK metabolism, and their signalling and transporter functions to the comics superheroes Hulk and Deadpool. Hulk is a powerful but short-lived creation, whilst Deadpool presents a more subtle and enduring force. With this dual framework in mind, this review compares different cytokinin metabolites, and their biosynthesis, translocation, and sensing to illustrate the different mechanisms behind the two CK strategies. This is put together and applied to a plant developmental scale and, beyond plants, to interactions with organisms of other kingdoms, to highlight where future study can benefit the understanding of plant fitness and productivity.
Collapse
|
50
|
Seelam Prabhakar P, Takyi NA, Wetmore SD. Posttranscriptional modifications at the 37th position in the anticodon stem-loop of tRNA: structural insights from MD simulations. RNA (NEW YORK, N.Y.) 2021; 27:202-220. [PMID: 33214333 PMCID: PMC7812866 DOI: 10.1261/rna.078097.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Transfer RNA (tRNA) is the most diversely modified RNA. Although the strictly conserved purine position 37 in the anticodon stem-loop undergoes modifications that are phylogenetically distributed, we do not yet fully understand the roles of these modifications. Therefore, molecular dynamics simulations are used to provide molecular-level details for how such modifications impact the structure and function of tRNA. A focus is placed on three hypermodified base families that include the parent i6A, t6A, and yW modifications, as well as derivatives. Our data reveal that the hypermodifications exhibit significant conformational flexibility in tRNA, which can be modulated by additional chemical functionalization. Although the overall structure of the tRNA anticodon stem remains intact regardless of the modification considered, the anticodon loop must rearrange to accommodate the bulky, dynamic hypermodifications, which includes changes in the nucleotide glycosidic and backbone conformations, and enhanced or completely new nucleobase-nucleobase interactions compared to unmodified tRNA or tRNA containing smaller (m1G) modifications at the 37th position. Importantly, the extent of the changes in the anticodon loop is influenced by the addition of small functional groups to parent modifications, implying each substituent can further fine-tune tRNA structure. Although the dominant conformation of the ASL is achieved in different ways for each modification, the molecular features of all modified tRNA drive the ASL domain to adopt the functional open-loop conformation. Importantly, the impact of the hypermodifications is preserved in different sequence contexts. These findings highlight the likely role of regulating mRNA structure and translation.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Anticodon/chemistry
- Anticodon/genetics
- Anticodon/metabolism
- Base Pairing
- Base Sequence
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Isopentenyladenosine/chemistry
- Isopentenyladenosine/metabolism
- Molecular Dynamics Simulation
- Nucleic Acid Conformation
- Nucleosides/chemistry
- Nucleosides/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Transfer, Lys/chemistry
- RNA, Transfer, Lys/genetics
- RNA, Transfer, Lys/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
Collapse
Affiliation(s)
- Preethi Seelam Prabhakar
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Nathania A Takyi
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|