1
|
Su K, Tang M, Wu J, Ye N, Jiang X, Zhao M, Zhang R, Cai X, Zhang X, Li N, Peng J, Lin L, Wu W, Ye H. Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway. Eur J Med Chem 2025; 289:117476. [PMID: 40056798 DOI: 10.1016/j.ejmech.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The NLRP3 inflammasome is crucial for immune responses. However, its overactivation can lead to severe inflammatory diseases, underscoring its importance as a target for therapeutic intervention. Although numerous inhibitors targeting NLRP3 exist, regulating its degradation offers an alternative and promising strategy to suppress its activation. The degradation of NLRP3 is primarily mediated by the proteasomal and autophagic pathways. The review not only elaborates on the traditional concepts of ubiquitination and NLRP3 degradation but also investigates the important roles of indirect regulatory modifications, such as phosphorylation, acetylation, ubiquitin-like modifications, and palmitoylation-key post-translational modifications (PTMs) that influence NLRP3 degradation. Additionally, we also discuss the potential targets that may affect NLRP3 degradation during the proteasomal and autophagic pathways. By unraveling these complex regulatory mechanisms, the review aims to enhance the understanding of NLRP3 regulation and its implications for developing therapeutic strategies to combat inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Fischer FA, Demarco B, Min FCH, Yeap HW, De Nardo D, Chen KW, Bezbradica JS. TBK1 and IKKε prevent premature cell death by limiting the activity of both RIPK1 and NLRP3 death pathways. SCIENCE ADVANCES 2025; 11:eadq1047. [PMID: 40053580 PMCID: PMC11887814 DOI: 10.1126/sciadv.adq1047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/31/2025] [Indexed: 03/09/2025]
Abstract
The loss of TBK1, or both TBK1 and the related kinase IKKε, results in uncontrolled cell death-driven inflammation. Here, we show that the pathway leading to cell death depends on the nature of the activating signal. Previous models suggest that in steady state, TBK1/IKKε-deficient cells die slowly and spontaneously predominantly by uncontrolled tumor necrosis factor-RIPK1-driven death. However, upon infection of cells that express the NLRP3 inflammasome, (e.g., macrophages), with pathogens that activate this pathway (e.g., Listeria monocytogenes), TBK1/IKKε-deficient cells die rapidly, prematurely, and exclusively by enhanced NLRP3-driven pyroptosis. Even infection with the RIPK1-activating pathogen, Yersinia pseudotuberculosis, results in enhanced RIPK1-caspase-8 activation and enhanced secondary NLRP3 activation. Mechanistically, TBK1/IKKε control endosomal traffic, and their loss disrupts endosomal homeostasis, thereby signaling cell stress. This results in premature NLRP3 activation even upon sensing "signal 2" alone, without the obligatory "signal 1." Collectively, TBK1/IKKε emerge as a central brake in limiting death-induced inflammation by both RIPK1 and NLRP3 death-inducing pathways.
Collapse
Affiliation(s)
- Fabian A. Fischer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Felicia Chan Hui Min
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dominic De Nardo
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kaiwen W. Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
3
|
Jing J, Yang F, Wang K, Cui M, Kong N, Wang S, Qiao X, Kong F, Zhao D, Ji J, Tang L, Gao J, Cong YS, Ding D, Chen K. UFMylation of NLRP3 Prevents Its Autophagic Degradation and Facilitates Inflammasome Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406786. [PMID: 39985286 DOI: 10.1002/advs.202406786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/29/2025] [Indexed: 02/24/2025]
Abstract
NLRP3 (NOD, LRR and pyrin domain-containing protein 3) inflammasome is important for host defense against infections and maintaining homeostasis. Aberrant activation of NLRP3 inflammasome is closely related to various inflammatory diseases. Post-translational modifications are critical for NLRP3 inflammasome regulation. However, the mechanism of NLRP3 inflammasome activation remains incompletely understood. Here, it is demonstrated that the Ufm1 E3 ligase Ufl1 mediated UFMylation is essential for NLRP3 inflammasome activation. Mechanistically, Ufl1 binds and UFMylates NLRP3 in the priming stage of NLRP3 activation, thereby sustaining the stability of NLRP3 by preventing NLRP3 K63-linked ubiquitination and the subsequent autophagic degradation. It is further demonstrated that myeloid cell-specific Ufl1 or Ufm1 deficiency in mice significantly alleviated inflammatory responses and tissue damage following lipopolysaccharide (LPS)-induced endotoxemia and alum-induced peritonitis. Thus, the findings offer new insights into potential therapeutic targets for NLRP3 inflammasome-related diseases by targeting the UFMylation system.
Collapse
Affiliation(s)
- Jiongjie Jing
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Fan Yang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Ke Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Mintian Cui
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Ni Kong
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Shixi Wang
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Xiaoyue Qiao
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
| | - Fanyu Kong
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Dongyang Zhao
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jinlu Ji
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Lunxian Tang
- Department of Internal Emergency Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu-Sheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Kun Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200127, China
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Guo J, Fu R, Zhao B, Li H, Jiao J. LncRNA TMC3-AS1 silence alleviates lipopolysaccharide-induced acute kidney injury by suppressing Wnt5a-mediated autophagy and pyroptosis pathway. Mol Cell Probes 2025; 79:102006. [PMID: 39732180 DOI: 10.1016/j.mcp.2024.102006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/10/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Long non-coding RNA TMC3-AS1 is identified to be upregulated by lipopolysaccharide (LPS) in inflammatory disease, but its role in acute kidney injury (AKI) is almost unknown. The study investigated the involvement of TMC3-AS1 in LPS-induced AKI and its downstream molecular regulatory mechanism. Our data suggested that knocking down TMC3-AS1 significantly reduced renal dysfunction, tissue inflammation and tissue damage in LPS-induced mice, and promoted cell viability, inhibited inflammation, apoptosis and necrosis in LPS-stimulated human renal tubular epithelial cells HK2. Meanwhile, silencing TMC3-AS1 decreased the expression levels of Wnt5a, Atg5, NLRP3 and cleaved caspase1 and the ratio of LC3II/LC3I, but elevated p62 level in vivo and in vitro, suggesting the inhibitory effect of TMC3-AS1 silence on Wnt5a signaling, autophagy, and pyroptosis. Mechanically, TMC3-AS1 upregulated the expression of WNT5A mRNA and Wnt5a protein through competitively binding with miR-148a-3p, thus elevating the expression levels of autophagy and pyroptosis-associated markers in LPS-induced HK2 cells. MiR-148a-3p mimic also exerted protective effects on LPS-treated HK2 cells, which was counteracted by overexpressing WNT5A or TMC3-AS1. Altogether, these findings reveal that TMC3-AS1 inhibition restrains LPS-triggered AKI progression through inactivating Wnt5a -mediated autophagy and pyroptosis pathway.
Collapse
Affiliation(s)
- Jing Guo
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Rao Fu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Bo Zhao
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Hongbo Li
- Department of Nephrology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
5
|
Qiu Z, Ma J, Zhang X, Jiao M, Zhi L. Electroacupuncture combined with trigonelline inhibits pyroptosis in cerebral ischemia-reperfusion by suppressing autophagy via the PI3K/AKT/mTOR signaling pathway. Brain Res Bull 2025; 221:111200. [PMID: 39788460 DOI: 10.1016/j.brainresbull.2025.111200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
BACKGROUND Electroacupuncture (EA) and trigonelline (TG) have been reported to be beneficial in alleviating cerebral ischemia/reperfusion injury (CIRI). However, the synergistic effects of EA and TG in CIRI and the underlying mechanism have not been demonstrated. METHODS Rats were subjected to middle cerebral artery occlusion (MCAO) surgery and reperfusion (MCAO/R) to establish a CIRI model. Neurological deficit score was evaluated using Garcia's scale. Cerebral infarction in rats was determined using TTC staining. Brain tissue morphology was assessed by HE staining. The expression of various proteins was measured using IF assay and western blot. RESULTS EA or TG treatment could effectively ameliorate neurological disorders, attenuate cerebral infarction and reduce neuronal damage in brain tissue in CIRI rats. In addition, EA or TG treatment suppressed autophagy and pyroptosis in CIRI rats. More importantly, synergistic effects of EA and TG intervention in CIRI rats were observed in ameliorating neuronal damage and suppressing autophagy and pyroptosis, while Rapa, an inducer of autophagy, strengthened these effects in MCAO/R-induced rats. Furthermore. Rapa reversed EA in combination with TG-mediated improvement of neuronal damage and suppression of autophagy and pyroptosis in CIRI rats. Notably, the PI3K/AKT/mTOR pathway was inactivated in CIRI rats and EA combined with TG enhanced the activation of the PI3K/AKT/mTOR pathway. LY294002, an inhibitor of the PI3K/AKT/mTOR pathway, stimulated autophagy and pyroptosis in CIRI rats and reversed EA combined with TG-mediated suppression of autophagy and pyroptosis. CONCLUSION EA combined with TG suppressed pyroptosis, which was dependent on inhibition of autophagy in CIRI rats through activation of the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhengguo Qiu
- Department of Anesthesiology, Banan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jianbing Ma
- Department of Joint, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi East Road, Xi'an, Shaanxi 710054, PR China
| | - Xiaqing Zhang
- Department of Anesthesiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, PR China
| | - Mingna Jiao
- Department of Anesthesiology, The Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi 712000, PR China
| | - Liqiang Zhi
- Department of Joint, Honghui Hospital, Xi'an Jiaotong University, No.555 Youyi East Road, Xi'an, Shaanxi 710054, PR China.
| |
Collapse
|
6
|
Zhao P, Yin S, Qiu Y, Sun C, Yu H. Ferroptosis and pyroptosis are connected through autophagy: a new perspective of overcoming drug resistance. Mol Cancer 2025; 24:23. [PMID: 39825385 PMCID: PMC11740669 DOI: 10.1186/s12943-024-02217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025] Open
Abstract
Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear. Ferroptosis and pyroptosis can be affected by various types of autophagy. Therefore, ferroptosis and pyroptosis have crosstalk via autophagy, potentially leading to a switch in cell death types under certain conditions. As two forms of inflammatory programmed cell death, ferroptosis and pyroptosis have different effects on inflammation, and the cGAS-STING signaling pathway is also involved. Therefore, it also plays an important role in the progression of some chronic inflammatory diseases. This review discusses the relationship between autophagy, ferroptosis and pyroptosis, and attempts to uncover the reasons behind the evasion of tumor cell death and the nature of drug resistance.
Collapse
Affiliation(s)
- Peng Zhao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangshuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, 261053, China.
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, 261041, China.
| | - Haiyang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
7
|
Bellomo C, Furone F, Rotondo R, Ciscognetti I, Carpinelli M, Nicoletti M, D'Aniello G, Sepe L, Barone MV, Nanayakkara M. Role of Protein Tyrosine Phosphatases in Inflammatory Bowel Disease, Celiac Disease and Diabetes: Focus on the Intestinal Mucosa. Cells 2024; 13:1981. [PMID: 39682729 DOI: 10.3390/cells13231981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes essential for numerous cellular processes, such as cell growth, inflammation, differentiation, immune-mediated responses and oncogenic transformation. The aim of this review is to review the literature concerning the role of several PTPs-PTPN22, PTPN2, PTPN6, PTPN11, PTPσ, DUSP2, DUSP6 and PTPRK-at the level of the intestinal mucosa in inflammatory bowel disease (IBD), celiac disease (CeD) and type 1 diabetes (T1D) in both in vitro and in vivo models. The results revealed shared features, at the level of the intestinal mucosa, between these diseases characterized by alterations of different biological processes, such as proliferation, autoimmunity, cell death, autophagy and inflammation. PTPs are now actively studied to develop new drugs. Also considering the availability of organoids as models to test new drugs in personalized ways, it is very likely that soon these proteins will be the targets of useful drugs.
Collapse
Affiliation(s)
- Claudia Bellomo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Francesca Furone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Ilaria Ciscognetti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Carpinelli
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Genoveffa D'Aniello
- ELFID (European Laboratory for the Investigation of Food-Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- ELFID (European Laboratory for the Investigation of Food-Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | |
Collapse
|
8
|
Bonfante S, Netto MB, de Oliveira Junior AN, Mathias K, Machado RS, Joaquim L, Cidreira T, da Silva MG, Daros GC, Danielski LG, Gava F, da Silva Lemos I, Matiola RT, Córneo E, Prophiro JS, de Bitencourt RM, Catalão CHR, da Silva Generoso J, Streck EL, Dal-Pizzol F, Barichello T, Petronilho F. Oxidative stress and mitochondrial dysfunction contributes to postoperative cognitive dysfunction in elderly rats dependent on NLRP3 activation. Metab Brain Dis 2024; 40:1. [PMID: 39535569 DOI: 10.1007/s11011-024-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/25/2024] [Indexed: 11/16/2024]
Abstract
Postoperative cognitive dysfunction (POCD), a complication following procedures such as orthopedic surgery, is associated with a worsened prognosis, especially in the elderly population. Several mechanisms have been proposed for communication between the immune system and the brain after surgery. In an experimental tibial fracture (TF) model, we aimed to understand the role of the NLR family pyrin domain containing 3 (NLRP3) on oxidative stress and mitochondrial dysfunction as mechanisms underlying POCD in aged and adult rats. Adult or aged male Wistar rats were subjected to the TF model and received intracerebroventricular saline or MCC950 (140 ng/kg), a specific small-molecule inhibitor that selectively blocks activation of the NLRP3 inflammasome. We followed the control (sham) and TF groups treated with MCC950 or saline for seven days to determine cognitive function and survival. The prefrontal cortex and hippocampus were isolated for NLRP3 evaluation, cytokine analysis, oxidative stress measurements, myeloperoxidase activity, nitric oxide formation, mitochondrial respiratory chain enzymes, and succinate dehydrogenase (SDH) activity. Seven days after TF induction, NLRP3 levels increased in the hippocampus and prefrontal cortex in both ages, showed an enhancement in aged rats compared to adults, and experienced a reversal with MCC950 administration. The administration of MCC950 restored memory, IL-1β and IL-10 levels, nitrite/nitrate, lipid peroxidation in the hippocampus and prefrontal cortex, and preserved catalase activity in the prefrontal cortex in aged rats. At the same age, the complex I activity alteration in both regions and complex II, IV, and SDH in the prefrontal cortex were reversed. In conclusion, NLRP3 activation contributes to POCD development because it is intrinsically involved in mitochondrial dysfunction and oxidative stress after orthopedic surgery in aged rats.
Collapse
Affiliation(s)
- Sandra Bonfante
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | | | | | | | | | | | | | | | | | - Lucinéia Gainski Danielski
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fernanda Gava
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Isabela da Silva Lemos
- Laboratory of Neurometabolic Diseases, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaela Tezza Matiola
- Laboratory of Neurometabolic Diseases, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | | | | | - Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto Medical School, University of Sao Paulo (USP), Ribeirao Preto, SP, Brazil
- Faillace Department of Psychiatry and Behavioural Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jaqueline da Silva Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Emílio Luiz Streck
- Laboratory of Neurometabolic Diseases, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Tatiana Barichello
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Faillace Department of Psychiatry and Behavioural Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil.
- Laboratório de Neurobiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciuma, SC, Brazil.
| |
Collapse
|
9
|
Niibo P, Nikopensius T, Jagomägi T, Voog Ü, Haller T, Tõnisson N, Metspalu A, Saag M, Pruunsild C. Genetic susceptibility to temporomandibular joint involvement in juvenile idiopathic arthritis. J Oral Rehabil 2024; 51:2445-2451. [PMID: 39192486 DOI: 10.1111/joor.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/17/2023] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Temporomandibular joint (TMJ) is among the most commonly affected joints in JIA patients. When JIA involves the TMJ, it may affect condylar growth in the joint; therefore, JIA patients are at risk of unfavourable long-term outcomes from associated joint damage. If undetected, TMJ involvement can lead to various functional disabilities such as reduced mandibular mobility and disorders of the mastication muscles. Limitations in sagittal and vertical mandibular growth can result in micrognathia and anterior open bite with aesthetic and functional restrictions. OBJECTIVE Genetic factors may play a role in determining which individuals are more prone to develop TMJ disorders or in predicting the severity of the disease process. Therefore, we applied a GWAS approach to identify loci associated with TMJ involvement in a sample of Estonian patients with JIA. Our aim was to address the potential role of genetic susceptibility factors in TMJ-JIA, a condition not previously studied in this context. METHODS The case group consisted of 55 JIA patients with TMJ involvement and 208 patients without TMJ involvement comprised the control group. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. Imputation was performed using a nationwide reference panel obtained of 2240 individuals whose data were obtained from the Estonian Biobank. RESULTS We identified six loci as being associated with the risk of TMJ-JIA in Estonian JIA patients. The strongest associations were identified at CD6 rs3019551 (P = 3.80 × 10-6), SLC26A8/MAPK14 rs9470191 (P = 6.15 × 10-6), NLRP3 rs2056795 (P = 8.91 × 10-6) and MAP2K4 rs7225328 (P = 1.64 × 10-5). CONCLUSION This study provides first insights into the risk-associated loci between JIA and its manifestation in the TMJ. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that render the TMJ susceptible to involvement by JIA in Estonian patients.
Collapse
Affiliation(s)
- P Niibo
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - T Nikopensius
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - T Jagomägi
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - Ü Voog
- Institute of Dentistry, University of Tartu, Tartu, Estonia
- Stomatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - T Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - N Tõnisson
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - A Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - M Saag
- Institute of Dentistry, University of Tartu, Tartu, Estonia
| | - C Pruunsild
- Children's Clinic, Tartu University Hospital, Tartu, Estonia
- Children's Clinic, Institute of Clinical Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
10
|
Kim Y, Lee S, Park YH. NLRP3 Negative Regulation Mechanisms in the Resting State and Its Implications for Therapeutic Development. Int J Mol Sci 2024; 25:9018. [PMID: 39201704 PMCID: PMC11354250 DOI: 10.3390/ijms25169018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular sensor of the innate immune system that detects various pathogen- and danger-associated molecular patterns, leading to the assembly of the NLRP3 inflammasome and release of interleukin (IL) 1β and IL-18. However, the abnormal activation of the NLRP3 inflammasome has been implicated in the pathogenesis of autoinflammatory diseases such as cryopyrin-associated autoinflammatory syndromes (CAPS) and common diseases such as Alzheimer's disease and asthma. Recent studies have revealed that pyrin functions as an indirect sensor, similar to the plant guard system, and is regulated by binding to inhibitory 14-3-3 proteins. Upon activation, pyrin transitions to its active form. NLRP3 is predicted to follow a similar regulatory mechanism and maintain its inactive form in the cage model, as it also acts as an indirect sensor. Additionally, newly developed NLRP3 inhibitors have been found to inhibit NLRP3 activity by stabilizing its inactive form. Most studies and reviews on NLRP3 have focused on the activation of the NLRP3 inflammasome. This review highlights the molecular mechanisms that regulate NLRP3 in its resting state, and discusses how targeting this inhibitory mechanism can lead to novel therapeutic strategies for NLRP3-related diseases.
Collapse
Affiliation(s)
- YeJi Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.K.); (S.L.)
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Sumin Lee
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.K.); (S.L.)
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.K.); (S.L.)
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
11
|
Cescato M, Zhu YYJ, Le Corre L, Py BF, Georgin-Lavialle S, Rodero MP. Implication of the LRR Domain in the Regulation and Activation of the NLRP3 Inflammasome. Cells 2024; 13:1365. [PMID: 39195255 DOI: 10.3390/cells13161365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/29/2024] Open
Abstract
The NLRP3 inflammasome is a critical component of the innate immune response. NLRP3 activation is a tightly controlled process involving an initial priming to express NLRP3, pro-IL-1 β, and pro-IL-18, followed by an activation signal. The precise mechanism of activation is not fully understood due to the diverse range of activators, yet it effectively orchestrates the activation of caspase-1, which subsequently triggers the release of proinflammatory cytokines IL-1β and IL-18. NLRP3 dysregulation can lead to a variety of inflammatory diseases, highlighting its significant role in immune response and disease pathogenesis. NLRP3 is divided into three domains: the PYD, the NACHT, and the LRR domains. This review focuses on the LRR domain of NLRP3, detailing its structural characteristics, its function in pathogen sensing, its role in the degradation process, and its involvement in inflammasome auto-inhibition and activation. Additionally, we discuss the impact of mutations within the LRR domain found in atypical Cryopyrin-Associated Periodic Syndromes (CAPS), highlighting the clinical relevance of this domain.
Collapse
Affiliation(s)
- Margaux Cescato
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, CNRS, Paris Cité University, 75006 Paris, France
| | - Yixiang Y J Zhu
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, CNRS, Paris Cité University, 75006 Paris, France
- National Reference Center for Autoinflammatory Diseases and AA Amyloidosis, Department of Internal Medicine, Tenon Hospital, Sorbonne University, Assistance Publique-Hôpitaux de Paris (APHP), 75020 Paris, France
| | - Laurent Le Corre
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, CNRS, Paris Cité University, 75006 Paris, France
| | - Bénédicte F Py
- CIRI, International Center for Research in Infectiology, Inserm, University Claude Bernard Lyon 1, 69007 Lyon, France
| | - Sophie Georgin-Lavialle
- National Reference Center for Autoinflammatory Diseases and AA Amyloidosis, Department of Internal Medicine, Tenon Hospital, Sorbonne University, Assistance Publique-Hôpitaux de Paris (APHP), 75020 Paris, France
| | - Mathieu P Rodero
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry, CNRS, Paris Cité University, 75006 Paris, France
| |
Collapse
|
12
|
Zhang W, Zou M, Fu J, Xu Y, Zhu Y. Autophagy: A potential target for natural products in the treatment of ulcerative colitis. Biomed Pharmacother 2024; 176:116891. [PMID: 38865850 DOI: 10.1016/j.biopha.2024.116891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the mucosa of the colon and rectum. UC is characterized by recurrent episodes, often necessitating lifelong medication use, imposing a significant burden on patients. Current conventional and advanced treatments for UC have the disadvantages of insufficient efficiency, susceptibility to drug resistance, and notable adverse effects. Therefore, developing effective and safe drugs has become an urgent need. Autophagy is an intracellular degradation process that plays an important role in intestinal homeostasis. Emerging evidence suggests that aberrant autophagy is involved in the development of UC, and modulating autophagy can effectively alleviate experimental colitis. A growing number of studies have established that autophagy can interplay with endoplasmic reticulum stress, gut microbiota, apoptosis, and the NLRP3 inflammasome, all of which contribute to the pathogenesis of UC. In addition, a variety of intestinal epithelial cells, including absorptive cells, goblet cells, and Paneth cells, as well as other cell types like neutrophils, antigen-presenting cells, and stem cells in the gut, mediate the development of UC through autophagy. To date, many studies have found that natural products hold the potential to exert therapeutic effects on UC by regulating autophagy. This review focuses on the possible effects and pharmacological mechanisms of natural products to alleviate UC with autophagy as a potential target in recent years, aiming to provide a basis for new drug development.
Collapse
Affiliation(s)
- Wei Zhang
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Menglong Zou
- The First Clinical College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jia Fu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China.
| |
Collapse
|
13
|
Liao C, Xu F, Yu Z, Ding K, Jia Y. The Novel Role of the NLRP3 Inflammasome in Mycotoxin-Induced Toxicological Mechanisms. Vet Sci 2024; 11:291. [PMID: 39057975 PMCID: PMC11281663 DOI: 10.3390/vetsci11070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Mycotoxins are secondary metabolites produced by several fungi and moulds that exert toxicological effects on animals including immunotoxicity, genotoxicity, hepatotoxicity, teratogenicity, and neurotoxicity. However, the toxicological mechanisms of mycotoxins are complex and unclear. The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric cytosolic protein complex composed of the NLRP3 sensor, ASC adapter protein, and caspase-1 effector. Activation of the NLRP3 inflammasome plays a crucial role in innate immune defence and homeostatic maintenance. Recent studies have revealed that NLRP3 inflammasome activation is linked to tissue damage and inflammation induced by mycotoxin exposure. Thus, this review summarises the latest advancements in research on the roles of NLRP3 inflammasome activation in the pathogenesis of mycotoxin exposure. The effects of exposure to multiple mycotoxins, including deoxynivalenol, aflatoxin B1, zearalenone, T-2 toxin, ochratoxin A, and fumonisim B1, on pyroptosis-related factors and inflammation-related factors in vitro and in vivo and the pharmacological inhibition of specific and nonspecific NLRP3 inhibitors are summarized and examined. This comprehensive review contributes to a better understanding of the role of the NLRP3 inflammasome in toxicity induced by mycotoxin exposure and provides novel insights for pharmacologically targeting NLRP3 as a novel anti-inflammatory agent against mycotoxin exposure.
Collapse
Affiliation(s)
- Chengshui Liao
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Fengru Xu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Zuhua Yu
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Ke Ding
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| | - Yanyan Jia
- Laboratory of Functional Microbiology and Animal Health, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; (C.L.); (F.X.); (Z.Y.); (K.D.)
- Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Luoyang 471023, China
- The Key Lab of Animal Disease and Public Health, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
14
|
Zhu L, Guo L, Xu J, Xiang Q, Tan Y, Tian F, Du X, Zhang S, Wen T, Liu L. Postprandial Triglyceride-Rich Lipoproteins-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Inflammation in White Adipocytes. J Nutr 2024; 154:1619-1630. [PMID: 38008361 DOI: 10.1016/j.tjnut.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Obesity and postprandial hypertriglyceridemia, characterized by an increase in triglyceride-rich lipoproteins (TRLs), cause chronic low-grade inflammation. It is unclear how postprandial TRLs affect inflammation in white adipocytes. OBJECTIVES The objectives of the study were to explore the inflammatory response of postprandial TRLs in white adipocytes and investigate the possible mechanism. METHODS We measured postprandial triglyceride (TG) and high-sensitivity C-reactive protein (hsCRP) concentrations in 204 recruited subjects and treated white adipocytes from mice with postprandial TRLs from above patients with hypertriglyceridemia. RESULTS Serum hsCRP concentrations and BMI were positively related to TG concentrations in the postprandial state. Postprandial TRLs increased mRNA and protein expression of inflammatory factors, including interleukin-1β, via the NOD-like receptor protein 3 (NLRP3)/Caspase-1 pathway, and impaired autophagy flux in white adipocytes of mice. TRLs also induced lysosomal damage as evidenced by the reduced protein expression of lysosome-associated membrane proteins-1 and Cathepsin L. Inhibition of Cathepsin B, NLRP3, and mTOR signaling improved autophagy/lysosome dysfunction and inhibited the activation of the NLRP3/Caspase-1 pathway and inflammatory factors induced by TRLs in white adipocytes. CONCLUSIONS Our results suggest that postprandial hypertriglyceridemia causes chronic inflammation in adipocytes through TRL-induced lysosomal dysfunction and impaired autophagic flux in an mTOR-dependent manner.
Collapse
Affiliation(s)
- Liyuan Zhu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Liling Guo
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Qunyan Xiang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Yangrong Tan
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Feng Tian
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China
| | - Shilan Zhang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China; Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine Shanghai, PR China
| | - Tie Wen
- Department of Emergency Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Emergency Medicine and Difficult Diseases Institute, Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, Central South University, Changsha, Hunan, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha, Hunan, PR China.
| |
Collapse
|
15
|
Bai J, Wang Y, Li F, Wu Y, Chen J, Li M, Wang X, Lv B. Research advancements and perspectives of inflammatory bowel disease: A comprehensive review. Sci Prog 2024; 107:368504241253709. [PMID: 38778725 PMCID: PMC11113063 DOI: 10.1177/00368504241253709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence, such as Crohn's disease and ulcerative colitis. The accurate etiology and pathogenesis of IBD remain unclear, and it is generally believed that it is related to genetic susceptibility, gut microbiota, environmental factors, immunological abnormalities, and potentially other factors. Currently, the mainstream therapeutic drugs are amino salicylic acid agents, corticosteroids, immunomodulators, and biological agents, but the remission rates do not surpass 30-60% of patients in a real-life setting. As a consequence, there are many studies focusing on emerging drugs and bioactive ingredients that have higher efficacy and long-term safety for achieving complete deep healing. This article begins with a review of the latest, systematic, and credible summaries of the pathogenesis of IBD. In addition, we provide a summary of the current treatments and drugs for IBD. Finally, we focus on the therapeutic effects of emerging drugs such as microRNAs and lncRNAs, nanoparticles-mediated drugs and natural products on IBD and their mechanisms of action.
Collapse
Affiliation(s)
- Junyi Bai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ying Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuhao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyao Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
16
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Scalez DCB, Nascimento AV, Santos DJA, Stefani G, Carvalho IS, Sandoval AF, Brito LF. Genetic parameters and genome-wide association studies for mozzarella and milk production traits, lactation length, and lactation persistency in Murrah buffaloes. J Dairy Sci 2024; 107:992-1021. [PMID: 37730179 DOI: 10.3168/jds.2023-23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Genetic and genomic analyses of longitudinal traits related to milk production efficiency are paramount for optimizing water buffaloes breeding schemes. Therefore, this study aimed to (1) compare single-trait random regression models under a single-step genomic BLUP setting based on alternative covariance functions (i.e., Wood, Wilmink, and Ali and Schaeffer) to describe milk (MY), fat (FY), protein (PY), and mozzarella (MZY) yields, fat-to-protein ratio (FPR), somatic cell score (SCS), lactation length (LL), and lactation persistency (LP) in Murrah dairy buffaloes (Bubalus bubalis); (2) combine the best functions for each trait under a multiple-trait framework; (3) estimate time-dependent SNP effects for all the studied longitudinal traits; and (4) identify the most likely candidate genes associated with the traits. A total of 323,140 test-day records from the first lactation of 4,588 Murrah buffaloes were made available for the study. The model included the average curve of the population nested within herd-year-season of calving, systematic effects of number of milkings per day, and age at first calving as linear and quadratic covariates, and additive genetic, permanent environment, and residual as random effects. The Wood model had the best goodness of fit based on the deviance information criterion and posterior model probabilities for all traits. Moderate heritabilities were estimated over time for most traits (0.30 ± 0.02 for MY; 0.26 ± 0.03 for FY; 0.45 ± 0.04 for PY; 0.28 ± 0.05 for MZY; 0.13 ± 0.02 for FPR; and 0.15 ± 0.03 for SCS). The heritability estimates for LP ranged from 0.38 ± 0.02 to 0.65 ± 0.03 depending on the trait definition used. Similarly, heritabilities estimated for LL ranged from 0.10 ± 0.01 to 0.14 ± 0.03. The genetic correlation estimates across days in milk (DIM) for all traits ranged from -0.06 (186-215 DIM for MY-SCS) to 0.78 (66-95 DIM for PY-MZY). The SNP effects calculated for the random regression model coefficients were used to estimate the SNP effects throughout the lactation curve (from 5 to 305 d). Numerous relevant genomic regions and candidate genes were identified for all traits, confirming their polygenic nature. The candidate genes identified contribute to a better understanding of the genetic background of milk-related traits in Murrah buffaloes and reinforce the value of incorporating genomic information in their breeding programs.
Collapse
Affiliation(s)
- Sirlene F Lázaro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Humberto Tonhati
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alessandra A Silva
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Daiane C B Scalez
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - André V Nascimento
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | | | - Gabriela Stefani
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Isabella S Carvalho
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Amanda F Sandoval
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|
17
|
Bonam SR, Mastrippolito D, Georgel P, Muller S. Pharmacological targets at the lysosomal autophagy-NLRP3 inflammasome crossroads. Trends Pharmacol Sci 2024; 45:81-101. [PMID: 38102020 DOI: 10.1016/j.tips.2023.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dylan Mastrippolito
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France
| | - Philippe Georgel
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
18
|
Bornancin F, Dekker C. A phospho-harmonic orchestra plays the NLRP3 score. Front Immunol 2023; 14:1281607. [PMID: 38022631 PMCID: PMC10654991 DOI: 10.3389/fimmu.2023.1281607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
NLRP3 is a prototypical sensor protein connecting cellular stress to pro-inflammatory signaling. A complex array of regulatory steps is required to switch NLRP3 from an inactive state into a primed entity that is poised to assemble an inflammasome. Accumulating evidence suggests that post-translational mechanisms are critical. In particular, phosphorylation/dephosphorylation and ubiquitylation/deubiquitylation reactions have been reported to regulate NLRP3. Taken individually, several post-translational modifications appear to be essential. However, it remains difficult to understand how they may be coordinated, whether there is a unique sequence of regulatory steps accounting for the functional maturation of NLRP3, or whether the sequence is subject to variations depending on cell type, the stimulus, and other parameters such as the cellular context. This review will focus on the regulation of the NLRP3 inflammasome by phosphorylation and dephosphorylation, and on kinases and phosphatases that have been reported to modulate NLRP3 activity. The aim is to try to integrate the current understanding and highlight potential gaps for further studies.
Collapse
Affiliation(s)
| | - Carien Dekker
- Discovery Sciences Department, Novartis Biomedical Research, Basel, Switzerland
| |
Collapse
|
19
|
Fayand A, Cescato M, Le Corre L, Terré A, Wacheux M, Zhu YYJ, Melet A, Moreau TRJ, Bodaghi B, Bonnet F, Bronnimann D, Cuisset L, Faria R, Grateau G, Pillet P, Mulders-Manders CM, Neven B, Quartier P, Richer O, Savey L, Truchetet ME, Py BF, Boursier G, Herbeuval JP, Georgin-Lavialle S, Rodero MP. Pathogenic variants in the NLRP3 LRR domain at position 861 are responsible for a boost-dependent atypical CAPS phenotype. J Allergy Clin Immunol 2023; 152:1303-1311.e1. [PMID: 37506976 DOI: 10.1016/j.jaci.2023.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Cryopyrin-associated periodic syndrome (CAPS) is associated with NLRP3 pathogenic variants, mostly located in the NACHT (neuronal apoptosis inhibitor protein, MHC class 2 transcription activator, incompatibility locus protein from Podospora anserina, telomerase-associated protein) domain. Cold-induced urticarial rash is among the main clinical features. However, this study identified a series of 14 patients with pathogenic variants of the Y861 residue (p.Tyr861) of the LRR domain of NLRP3 and minimal prevalence of cold-induced urticarial rash. OBJECTIVES This study aimed to address a possible genotype/phenotype correlation for patients with CAPS and to investigate at the cellular levels the impact of the Y861C substitution (p.Tyr861Cys) on NLRP3 activation. METHODS Clinical features of 14 patients with CAPS and heterozygous substitution at position 861 in the LRR domain of NLRP3 were compared to clinical features of 48 patients with CAPS and pathogenic variants outside the LRR domain of NLRP3. IL-1β secretion by PBMCs and purified monocytes from patients and healthy donors was evaluated following LPS and monosodium urate crystal stimulation. RESULTS Patients with substitution at position 861 of NLRP3 demonstrated a higher prevalence of sensorineural hearing loss while being less prone to skin urticarial. In contrast to patients with classical CAPS, cells from patients with a pathogenic variant at position 861 required an activation signal to secrete IL-1β but produced more IL-1β during the early and late phase of secretion than cells from healthy donors. CONCLUSIONS Pathogenic variants of Y861 of NLRP3 drive a boost-dependent oversecretion of IL-1β associated with an atypical CAPS phenotype.
Collapse
Affiliation(s)
- Antoine Fayand
- Department of Internal Medicine, National Reference Center for Autoinflammatory Diseases and Amyloid A Amyloidosis, Tenon Hospital, Sorbonne Université, Paris, France; Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Margaux Cescato
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Laurent Le Corre
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Alexandre Terré
- Department of Internal Medicine, National Reference Center for Autoinflammatory Diseases and Amyloid A Amyloidosis, Tenon Hospital, Sorbonne Université, Paris, France; Laboratoire Mécanismes Cellulaires et Moléculaires des Désordres Hématologiques et Implications Thérapeutiques, Institut Imagine, Institut National de la Santé et de la Recherche Médicale, Université Paris Cité, Paris, France
| | - Margaux Wacheux
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Yixiang Y J Zhu
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Armelle Melet
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Thomas R J Moreau
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France; Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Bahram Bodaghi
- Department of Ophthalmology, Instituts Hospitalo-Universitaires FOReSIGHT, Pitié-Salpêtrière Hospital, Assistance Publique-Hȏpitaux de Paris, Sorbonne Université, Paris, France
| | - Fabrice Bonnet
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint-André, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Didier Bronnimann
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint-André, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Laurence Cuisset
- Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Raquel Faria
- Unidade de Imunologia Clínica, Centro Hospitalar Universitário do Porto, Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Gilles Grateau
- Department of Internal Medicine, National Reference Center for Autoinflammatory Diseases and Amyloid A Amyloidosis, Tenon Hospital, Sorbonne Université, Paris, France
| | - Pascal Pillet
- Service de Pédiatrie et Rhumatologie Pédiatrique, Hôpital Pellegrin-Enfants, Bordeaux, France
| | - Catharina M Mulders-Manders
- Department of Internal Medicine, Radboud Expertise Center for Immunodeficiency and Autoinflammation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benedicte Neven
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, Université Paris Cité, Paris, France
| | - Pierre Quartier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, Université Paris Cité, Paris, France; RAISE Reference Centre for Rare Diseases, Paris, France
| | - Olivier Richer
- Service de Pédiatrie et Rhumatologie Pédiatrique, Hôpital Pellegrin-Enfants, Bordeaux, France
| | - Léa Savey
- Department of Internal Medicine, National Reference Center for Autoinflammatory Diseases and Amyloid A Amyloidosis, Tenon Hospital, Sorbonne Université, Paris, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, Hôpital Pellegrin, Bordeaux, France; Unite de Mixte Recherche 5164 ImmunoConcept, Bordeaux University Hospital, Bordeaux University, Bordeaux, France
| | - Bénédicte F Py
- Centre International de Recherche en Infectiologie, Université Lyon, Lyon, France; U1111, Institut National de la Santé et de la Recherche Médicale, Université Claude Bernard Lyon 1, Lyon, France; Unite de Mixte Recherche 5308, Centre National de la Recherche Scientifique, École Normale Supérieure de Lyon, Lyon, France
| | - Guilaine Boursier
- Laboratoire de Génétique des Maladies Rares et Autoinflammatoires, Service de Génétique Moléculaire et Cytogénomique, National Reference Center for Autoinflammatory Diseases and AA Amyloidosis, Centre Hospitalier Universitaire Montpellier, Université de Montpellier, Montpellier, France
| | - Jean-Philippe Herbeuval
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France
| | - Sophie Georgin-Lavialle
- Department of Internal Medicine, National Reference Center for Autoinflammatory Diseases and Amyloid A Amyloidosis, Tenon Hospital, Sorbonne Université, Paris, France.
| | - Mathieu P Rodero
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Centre National de la Recherche Scientifique, Université Paris Cité, Paris, France.
| |
Collapse
|
20
|
Kanika, Khan R. Functionalized nanomaterials targeting NLRP3 inflammasome driven immunomodulation: Friend or Foe. NANOSCALE 2023; 15:15906-15928. [PMID: 37750698 DOI: 10.1039/d3nr03857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
The advancement in drug delivery systems in recent times has significantly enhanced therapeutic effects by enabling site-specific targeting through nanocarriers. These nanocarriers serve as invaluable tools for pharmacotherapeutic advancements against various disorders that enhance the effectiveness of encapsulated drugs by reducing their toxicity and increasing the efficacy of less potent drugs, thereby improving the therapeutic index. Inflammasomes, protein complexes located in the activated immune cell cytoplasm, regulate the activation of caspases involved in inflammation. However, aberrant activation of inflammasomes can result in uncontrolled tissue responses, contributing to the development of various diseases. Therefore, achieving a precise balance between inflammasome inhibition and activation is crucial for effectively treating inflammatory disorders through targeted functionalized nanocarriers. Despite the wealth of available data on the relevance of functionalized nanocarriers in inflammatory disorders, the nanotechnological potential to modulate inflammasomes has not been adequately explored. In this comprehensive review, we highlight the latest research on the modulation of the inflammasome cascade, both upregulating and downregulating its function, using nanocarriers in the context of inflammatory disorders. The utilization of nanocarriers as a therapeutic strategy holds immense potential for researchers aiming to effectively target and modulate inflammasomes in the treatment of inflammatory disorders, thus improving disease severity outcomes.
Collapse
Affiliation(s)
- Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, 5 Sahibzada Ajit Singh Nagar, Punjab, Pin - 140306, India.
| |
Collapse
|
21
|
Gu C, Can C, Liu J, Wei Y, Yang X, Guo X, Wang R, Jia W, Liu W, Ma D. The genetic polymorphisms of immune-related genes contribute to the susceptibility and survival of lymphoma. Cancer Med 2023; 12:14960-14978. [PMID: 37329186 PMCID: PMC10417154 DOI: 10.1002/cam4.6131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/09/2023] [Accepted: 05/14/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Though immunological abnormalities have been proven involved in the pathogenesis of lymphoma, the underlying mechanism remains unclear. METHODS We investigated 25 single nucleotide polymorphisms (SNPs) of 21 immune-related genes and explored their roles in lymphoma. The genotyping assay of the selected SNPs was used by the Massarray platform. Logistic regression and Cox proportional hazards models were used to analyze the associations of SNPs and the susceptibility of lymphoma or clinical characteristics of lymphoma patients. In addition, Least Absolute Shrinkage and Selection Operator regression was used to further analyze the relationships with the survival of lymphoma patients and candidate SNPs, and the significant difference between genotypes was verified by the expression of RNA. RESULTS By comparing 245 lymphoma patients with 213 healthy controls, we found eight important SNPs related to the susceptibility of lymphoma, which were involved in JAK-STAT, NF-κB and other functional pathways. We further analyzed the relationships between SNPs and clinical characteristics. Our results showed that both IL6R (rs2228145) and STAT5B (rs6503691) significantly contributed to the Ann Arbor stages of lymphoma. And the STAT3 (rs744166), IL2 (rs2069762), IL10 (rs1800871), and PARP1 (rs907187) manifested a significant relationship with the peripheral blood counts in lymphoma patients. More importantly, the IFNG (rs2069718) and IL12A (rs6887695) were associated with the overall survival (OS) of lymphoma patients remarkably, and the adverse effects of GC genotypes could not be offset by Bonferroni correction for multiple comparison in rs6887695 especially. Moreover, we determined that the mRNA expression levels of IFNG and IL12A were significantly decreased in patients with shorter-OS genotypes. CONCLUSIONS We used multiple methods of analysis to predict the correlations between lymphoma susceptibility, clinical characteristics or OS with SNPs. Our findings reveal that immune-related genetic polymorphisms contribute to the prognosis and treatment of lymphoma, which may serve as promising predictive targets.
Collapse
Affiliation(s)
- Chaoyang Gu
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Can Can
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Jinting Liu
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Yihong Wei
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Xinyu Yang
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Xiaodong Guo
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Ruiqing Wang
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Wenbo Jia
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Wancheng Liu
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| | - Daoxin Ma
- Department of HematologyQilu Hospital of Shandong UniversityJinanChina
| |
Collapse
|
22
|
Lu S, Xu J, Xu Y, Liu Y, Shi D, Wang J, Qiu F. Glycyrol attenuates colon injury via promotion of SQSTM1/p62 ubiquitination and autophagy by inhibiting the ubiquitin-specific protease USP8. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
23
|
Pei X, Liu D, Li J, Li L, Ding X, Zhang W, Li Z, Xu G, Li C, Li D. TFEB coordinates autophagy and pyroptosis as hepatotoxicity responses to ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161242. [PMID: 36587696 DOI: 10.1016/j.scitotenv.2022.161242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have drawn serious concerns about their biotoxicity due to their extensive applications in biological medicine, clinical therapeutic, daily chemical production, food and agricultural additives. In our present study, we clarified hepatotoxic mechanism of ZnO NPs through investigating the crosstalk between autophagy and pyroptosis, a remaining enigma in hepatocyte stimulated by ZnO NPs. Based on the effects of autophagy intervention by Rapamycin (Rap) and 3-Methyladenine (3-MA), and the observation of pyroptosis morphology and related indexes, the autophagy and pyroptosis simultaneously initiated by ZnO NPs were interrelated and the autophagy characterized by autophagosome production and increased expression of autophagy proteins was identified as a protective response of ZnO NPs against pyroptosis. According to the analysis of protein expression and fluorescence localization, the NLRP3 inflammasome assemble and the classical Caspase-1/GSDMD-dependent pyroptosis induced by ZnO NPs was modulated by autophagy. In this process, the adjustment of TFEB expression and nuclear translocation by gene knockout and gene overexpression, further altered the tendency of ZnO NPs-induced pyroptosis via the regulation of autophagy and lysosomal biogenesis. The knockout of TFEB gene exacerbated the pyroptosis via autophagy elimination and lysosome inhibition. While the alleviation of NLRP3 generation and pyroptosis activation was observed after treatment of TFEB gene overexpression. Additionally, the siRNA interference confirmed that TRAF-6 was involved in the TFEB-mediated global regulation of autophagy-lysosome-pyroptosis in response to ZnO NPs. Accordingly, pyroptosis induced by ZnO NPs in hepatocyte could be significantly avoided by TFEB-regulated autophagy and lysosome, further providing new insights for the risk assessment and therapeutic strategy.
Collapse
Affiliation(s)
- Xingyao Pei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Dingkuo Liu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China
| | - Jianjun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zibin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China.
| |
Collapse
|
24
|
Pasha U, Nisar H, Nisar H, Abid R, Ashraf NM, Sadaf S. Molecular Dynamic Simulations Unravel the Underlying Impact of Missense Mutation in Autoimmunity Gene PTPN22 on Predisposition to Rheumatoid Arthritis. J Interferon Cytokine Res 2023; 43:121-132. [PMID: 36811459 DOI: 10.1089/jir.2022.0216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Genetic mutations in various proteins have been implicated with increased risk or severity of rheumatoid arthritis (RA) in different population groups. In the present case-control study, we have investigated the risk association of single nucleotide mutations present in some of the highly reported anti-inflammatory proteins and/or cytokines, with RA susceptibility in the Pakistani subjects. The study involves 310 ethnically and demographically similar participants from whom blood samples were taken and processed for DNA extraction. Through extensive data mining, 5 hotspot mutations reported in 4 genes, that is, interleukin (IL)-4 (-590; rs2243250), IL-10 (-592; rs1800872), IL-10 (-1082; rs1800896), PTPN22 (C1858T; rs2476601), and TNFAIP3 (T380G; rs2230926), were selected for RA susceptibility analyses using genotyping assays. The results demonstrated the association of only 2 DNA variants [rs2243250 (odds ratio, OR = 2.025, 95% confidence interval, CI = 1.357-3.002, P = 0.0005 Allelic) and rs2476601 (OR = 4.25, 95% CI = 1.569-11.55, P = 0.004 Allelic)] with RA susceptibility in the local population. The former single nucleotide mutation was nonfunctional, whereas the latter, residing in the exonic region of a linkage-proven autoimmunity gene PTPN22, was involved in R620→W620 substitution. Comparative molecular dynamic simulations and free-energy calculations revealed a radical impact on the geometry/confirmation of key functional moieties in the mutant protein leading to a rather weak binding of W620 variant with the interacting receptor (SRC kinase). The interaction imbalance and binding instabilities provide convincing clues about the insufficient inhibition of T cell activation and/or ineffective clearance of autoimmune clones-a hallmark of several autoimmune disorders. In conclusion, the present research describes the association of 2 hotspot mutations in IL-4 promoter and PTPN22 gene with RA susceptibility in the Pakistani study cohort. It also details how a functional mutation in PTPN22 impacts the overall protein geometry, charge, and/or receptor interactions to contribute to RA susceptibility.
Collapse
Affiliation(s)
- Usman Pasha
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Haseeb Nisar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Department of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Hajira Nisar
- Emergency and Out Patient Department, Ali Fatima Hospital, Lahore, Pakistan
| | - Rizwan Abid
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
25
|
Yu C, Chen P, Miao L, Di G. The Role of the NLRP3 Inflammasome and Programmed Cell Death in Acute Liver Injury. Int J Mol Sci 2023; 24:3067. [PMID: 36834481 PMCID: PMC9959699 DOI: 10.3390/ijms24043067] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Acute liver injury (ALI) is a globally important public health issue that, when severe, rapidly progresses to acute liver failure, seriously compromising the life safety of patients. The pathogenesis of ALI is defined by massive cell death in the liver, which triggers a cascade of immune responses. Studies have shown that the aberrant activation of the nod-like receptor protein 3 (NLRP3) inflammasome plays an important role in various types of ALI and that the activation of the NLRP3 inflammasome causes various types of programmed cell death (PCD), and these cell death effectors can in turn regulate NLRP3 inflammasome activation. This indicates that NLRP3 inflammasome activation is inextricably linked to PCD. In this review, we summarize the role of NLRP3 inflammasome activation and PCD in various types of ALI (APAP, liver ischemia reperfusion, CCl4, alcohol, Con A, and LPS/D-GalN induced ALI) and analyze the underlying mechanisms to provide references for future relevant studies.
Collapse
Affiliation(s)
- Chaoqun Yu
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Peng Chen
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Longyu Miao
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
| | - Guohu Di
- School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, China
- Institute of Stem Cell and Regenerative Medicine, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| |
Collapse
|
26
|
Panda C, Mahapatra RK. Bi-Directional Relationship Between Autophagy and Inflammasomes in Neurodegenerative Disorders. Cell Mol Neurobiol 2023; 43:115-137. [PMID: 35066716 PMCID: PMC11415217 DOI: 10.1007/s10571-021-01184-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/12/2021] [Indexed: 01/18/2023]
Abstract
The innate immune system, as the first line of cellular defense, triggers a protective response called inflammation when encountered with invading pathogens. Inflammasome is a multi-protein cytosolic signaling complex that induces inflammation and is critical for inflammation-induced pyroptotic cell death. Inflammasome activation has been found associated with neurodegenerative disorders (NDs), inflammatory diseases, and cancer. Autophagy is a crucial intracellular quality control and homeostasis process which removes the dysfunctional organelles, damaged proteins, and pathogens by sequestering the cytosolic components in a double-membrane vesicle, which eventually fuses with lysosome resulting in cargo degradation. Autophagy disruption has been observed in many NDs presented with persistent neuroinflammation and excessive inflammasome activation. An interplay between inflammation activation and the autophagy process has been realized over the last decade. In the case of NDs, autophagy regulates neuroinflammation load and cellular damage either by engulfing the misfolded protein deposits, dysfunctional mitochondria, or the inflammasome complex itself. A healthy two-way regulation between both cellular processes has been realized for cell survival and cell defense during inflammatory conditions. Therefore, clinical interest in the modulation of inflammasome activation by autophagy inducers is rapidly growing. In this review, we discuss the structural basis of inflammasome activation and the mechanistic ideas of the autophagy process in NDs. Along with comments on multiple ways of neuroinflammation regulation by microglial autophagy, we also present a perspective on pharmacological opportunities in this molecular interplay pertaining to NDs.
Collapse
Affiliation(s)
- Chinmaya Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Rajani Kanta Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
27
|
Wang EJ, Wu MY, Ren ZY, Zheng Y, Ye RD, TAN CSH, Wang Y, Lu JH. Targeting macrophage autophagy for inflammation resolution and tissue repair in inflammatory bowel disease. BURNS & TRAUMA 2023; 11:tkad004. [PMID: 37152076 PMCID: PMC10157272 DOI: 10.1093/burnst/tkad004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 05/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific, recurrent inflammatory disease, majorly affecting the gastrointestinal tract. Due to its unclear pathogenesis, the current therapeutic strategy for IBD is focused on symptoms alleviation. Autophagy is a lysosome-mediated catabolic process for maintaining cellular homeostasis. Genome-wide association studies and subsequent functional studies have highlighted the critical role of autophagy in IBD via a number of mechanisms, including modulating macrophage function. Macrophages are the gatekeepers of intestinal immune homeostasis, especially involved in regulating inflammation remission and tissue repair. Interestingly, many autophagic proteins and IBD-related genes have been revealed to regulate macrophage function, suggesting that macrophage autophagy is a potentially important process implicated in IBD regulation. Here, we have summarized current understanding of macrophage autophagy function in pathogen and apoptotic cell clearance, inflammation remission and tissue repair regulation in IBD, and discuss how this knowledge can be used as a strategy for IBD treatment.
Collapse
Affiliation(s)
- Er-jin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ming-Yue Wu
- Center for Metabolic Liver Diseases and Center for Cholestatic Liver Diseases, Department of Gastroenterology, The First Affiliated Hospital (Southwest Hospital), Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zheng-yu Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | - Richard D Ye
- Kobilka Institute of Innovative Drug Discovery, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Chris Soon Heng TAN
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China
| | | |
Collapse
|
28
|
Role of NLRP3 Inflammasome and Its Inhibitors as Emerging Therapeutic Drug Candidate for Alzheimer's Disease: a Review of Mechanism of Activation, Regulation, and Inhibition. Inflammation 2023; 46:56-87. [PMID: 36006570 PMCID: PMC9403980 DOI: 10.1007/s10753-022-01730-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. The etiology and pathology of AD are complicated, variable, and yet to be completely discovered. However, the involvement of inflammasomes, particularly the NLRP3 inflammasome, has been emphasized recently. NLRP3 is a critical pattern recognition receptor involved in the expression of immune responses and has been found to play a significant role in the development of various immunological and neurological disorders such as multiple sclerosis, ulcerative colitis, gout, diabetes, and AD. It is a multimeric protein which releases various cytokines and causes caspase-1 activation through the process known as pyroptosis. Increased levels of cytokines (IL-1β and IL-18), caspase-1 activation, and neuropathogenic stimulus lead to the formation of proinflammatory microglial M1. Progressive researches have also shown that besides loss of neurons, the pathophysiology of AD primarily includes amyloid beta (Aβ) accumulation, generation of oxidative stress, and microglial damage leading to activation of NLRP3 inflammasome that eventually leads to neuroinflammation and dementia. It has been suggested in the literature that suppressing the activity of the NLRP3 inflammasome has substantial potential to prevent, manage, and treat Alzheimer's disease. The present review discusses the functional composition, various models, signaling molecules, pathways, and evidence of NLRP3 activation in AD. The manuscript also discusses the synthetic drugs, their clinical status, and projected natural products as a potential therapeutic approach to manage and treat NLRP3 mediated AD.
Collapse
|
29
|
Xia CY, Guo YX, Lian WW, Yan Y, Ma BZ, Cheng YC, Xu JK, He J, Zhang WK. The NLRP3 inflammasome in depression: Potential mechanisms and therapies. Pharmacol Res 2023; 187:106625. [PMID: 36563870 DOI: 10.1016/j.phrs.2022.106625] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022]
Abstract
Increasing evidence suggests that the failure of clinical antidepressants may be related with neuroinflammation. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is an intracellular multiprotein complex, and has been considered as a key contributor to the development of neuroinflammation. Inhibition of NLRP3 inflammasome is an effective method for depression treatment. In this review, we summarized current researches highlighting the role of NLRP3 inflammasome in the pathology of depression. Firstly, we discussed NLRP3 inflammasome activation in patients with depression and animal models. Secondly, we outlined the possible mechanisms driving the activation of NLRP3 inflammasome. Thirdly, we discussed the pathogenetic role of NLRP3 inflammasome in depression. Finally, we overviewed the current and potential antidepressants targeting the NLRP3 inflammasome. Overall, the inhibition of NLRP3 inflammasome activation may be a potential therapeutic strategy for inflammation-related depression.
Collapse
Affiliation(s)
- Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu-Xuan Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Bing-Zhi Ma
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, United States
| | - Jie-Kun Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| |
Collapse
|
30
|
Foster DS, Januszyk M, Delitto D, Yost KE, Griffin M, Guo J, Guardino N, Delitto AE, Chinta M, Burcham AR, Nguyen AT, Bauer-Rowe KE, Titan AL, Salhotra A, Jones RE, da Silva O, Lindsay HG, Berry CE, Chen K, Henn D, Mascharak S, Talbott HE, Kim A, Nosrati F, Sivaraj D, Ransom RC, Matthews M, Khan A, Wagh D, Coller J, Gurtner GC, Wan DC, Wapnir IL, Chang HY, Norton JA, Longaker MT. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell 2022; 40:1392-1406.e7. [PMID: 36270275 PMCID: PMC9669239 DOI: 10.1016/j.ccell.2022.09.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 01/09/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are integral to the solid tumor microenvironment. CAFs were once thought to be a relatively uniform population of matrix-producing cells, but single-cell RNA sequencing has revealed diverse CAF phenotypes. Here, we further probed CAF heterogeneity with a comprehensive multiomics approach. Using paired, same-cell chromatin accessibility and transcriptome analysis, we provided an integrated analysis of CAF subpopulations over a complex spatial transcriptomic and proteomic landscape to identify three superclusters: steady state-like (SSL), mechanoresponsive (MR), and immunomodulatory (IM) CAFs. These superclusters are recapitulated across multiple tissue types and species. Selective disruption of underlying mechanical force or immune checkpoint inhibition therapy results in shifts in CAF subpopulation distributions and affected tumor growth. As such, the balance among CAF superclusters may have considerable translational implications. Collectively, this research expands our understanding of CAF biology, identifying regulatory pathways in CAF differentiation and elucidating therapeutic targets in a species- and tumor-agnostic manner.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Michelle Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jason Guo
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Guardino
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea E Delitto
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Malini Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Austin R Burcham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan T Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Khristian E Bauer-Rowe
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oscar da Silva
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hunter G Lindsay
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charlotte E Berry
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E Talbott
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexia Kim
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fatemeh Nosrati
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dharshan Sivaraj
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - R Chase Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Matthews
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anum Khan
- Cell Sciences Imaging Facility, Stanford University, Stanford, CA 94305, USA
| | - Dhananjay Wagh
- Stanford Genomics Facility, Stanford University, Stanford, CA 94305, USA
| | - John Coller
- Stanford Genomics Facility, Stanford University, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Irene L Wapnir
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Jeffrey A Norton
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA.
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Surgery, Stanford University School of Medicine, Stanford CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Lang C, Roy S, Wang Y, Graves D, Xu Y, Serezani CH, Korrer M, Kim YJ. Efferocytosis drives myeloid NLRP3 dependent inflammasome signaling secretion of IL-1β to promote tumor growth. Front Immunol 2022; 13:993771. [PMID: 36439171 PMCID: PMC9681818 DOI: 10.3389/fimmu.2022.993771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022] Open
Abstract
Caspase-1 signaling in myeloid suppressor cells can promote T-cell independent cancer progression, but the regulation of inflammasome signaling within the highly heterogeneous myeloid population in the tumor milieu remains elusive. To resolve this complexity, single cell transcriptomic profile of Head and Neck Squamous Cell Carcinoma (HNSCC) identified distinct inflammasome-associated genes within specific clusters of tumor-infiltrating myeloid cells. Among these myeloid cells, the sensor protein, NLRP3, and downstream effector IL-1β transcripts were enriched in discreet monocytic and macrophage subtypes in the TME. We showed that deletion of NLRP3, but not AIM2, phenocopied caspase-1/IL-1β dependent tumor progression in vivo. Paradoxically, we found myeloid-intrinsic caspase-1 signaling increased myeloid survival contrary to what would be predicted from the canonical pyroptotic function of caspase-1. This myeloid NLRP3/IL-1β signaling axis promotion of tumor growth was found to be gasdermin D independent. Mechanistically, we found that phagocyte-mediated efferocytosis of dying tumor cells in the TME directly activated NLRP3-dependent inflammasome signaling to drive IL-1β secretion. Subsequently we showed that NLRP3-mediated IL-1β production drives tumor growth in vivo. Dynamic RNA velocity analysis showed a robust directional flow from efferocytosis gene-set high macrophages to an inflammasome gene-set high macrophage population. We provide a novel efferocytosis-dependent inflammasome signaling pathway which mediates homeostatic tumor cell apoptosis that characterizes chronic inflammation-induced malignancy.
Collapse
Affiliation(s)
- Cara Lang
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, United States
| | - Sohini Roy
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Diana Graves
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN, United States
| | - Yaomin Xu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - C. Henrique Serezani
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Michael Korrer
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Young J. Kim
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Young J. Kim,
| |
Collapse
|
32
|
Lin Y, Lv X, Sun C, Sun Y, Yang M, Ma D, Jing W, Zhao Y, Cheng Y, Xuan H, Han L. TRIM50 promotes NLRP3 inflammasome activation by directly inducing NLRP3 oligomerization. EMBO Rep 2022; 23:e54569. [PMID: 36178239 PMCID: PMC9638864 DOI: 10.15252/embr.202154569] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 09/05/2023] Open
Abstract
Tripartite motif protein (TRIM) 50 is a new member of the tripartite motif family, and its biological function and the molecular mechanism it is involved in remain largely unknown. The NOD-like receptor family protein (NLRP)3 inflammasome is actively involved in a wide array of biological processes while mechanisms of its regulation remain to be fully clarified. Here, we demonstrate the role of TRIM50 in NLRP3 inflammasome activation. In contrast to the conventional E3 ligase functions of TRIM proteins, TRIM50 mediates direct oligomerization of NLRP3, thereby suppressing its ubiquitination and promoting inflammasome activation. Mechanistically, TRIM50 directly interacts with NLRP3 through its RING domain and induces NLRP3 oligomerization via its coiled-coil domain. Finally, we show that TRIM50 promotes NLRP3 inflammasome-mediated diseases in mice. We thus reveal a novel regulatory mechanism of NLRP3 via TRIM50 and suggest that modulating TRIM50 might represent a therapeutic strategy for NLRP3-dependent pathologies.
Collapse
Affiliation(s)
- Yueke Lin
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Immune Diseases and GoutJinanChina
| | - Xiaoting Lv
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Immune Diseases and GoutJinanChina
| | - Caiyu Sun
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Immune Diseases and GoutJinanChina
| | - Yanlin Sun
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Min Yang
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Dapeng Ma
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Weiqiang Jing
- Department of Urology, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yunxue Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Yeping Cheng
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Haocheng Xuan
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
| | - Lihui Han
- Shandong Provincial Key Laboratory of Infection and Immunology, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Provincial Clinical Research Center for Immune Diseases and GoutJinanChina
| |
Collapse
|
33
|
Akbal A, Dernst A, Lovotti M, Mangan MSJ, McManus RM, Latz E. How location and cellular signaling combine to activate the NLRP3 inflammasome. Cell Mol Immunol 2022; 19:1201-1214. [PMID: 36127465 PMCID: PMC9622870 DOI: 10.1038/s41423-022-00922-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023] Open
Abstract
NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) is a cytosolic innate immune sensor of cellular stress signals, triggered by infection and sterile inflammation. Upon detection of an activating stimulus, NLRP3 transitions from an inactive homo-oligomeric multimer into an active multimeric inflammasome, which promotes the helical oligomeric assembly of the adaptor molecule ASC. ASC oligomers provide a platform for caspase-1 activation, leading to the proteolytic cleavage and activation of proinflammatory cytokines in the IL-1 family and gasdermin D, which can induce a lytic form of cell death. Recent studies investigating both the cellular requirement for NLRP3 activation and the structure of NLRP3 have revealed the complex regulation of NLRP3 and the multiple steps involved in its activation. This review presents a perspective on the biochemical and cellular processes controlling the assembly of the NLRP3 inflammasome with particular emphasis on structural regulation and the role of organelles. We also highlight the latest research on metabolic control of this inflammatory pathway and discuss promising clinical targets for intervention.
Collapse
Affiliation(s)
- Anil Akbal
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Alesja Dernst
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Marta Lovotti
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Matthew S J Mangan
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
| | - Róisín M McManus
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, 53127, Bonn, Germany.
- German Center for Neurodegenerative Diseases, 53127, Bonn, Germany.
- Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA, 01605, USA.
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| |
Collapse
|
34
|
Targeting autophagy regulation in NLRP3 inflammasome-mediated lung inflammation in COVID-19. Clin Immunol 2022; 244:109093. [PMID: 35944881 PMCID: PMC9356669 DOI: 10.1016/j.clim.2022.109093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.
Collapse
|
35
|
HU K, GAO Y, CHU S, CHEN N. Review of the effects and Mechanisms of microglial autophagy in ischemic stroke. Int Immunopharmacol 2022; 108:108761. [DOI: 10.1016/j.intimp.2022.108761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 04/03/2022] [Indexed: 12/30/2022]
|
36
|
Kang S, Dai A, Wang H, Ding PH. Interaction Between Autophagy and Porphyromonas gingivalis-Induced Inflammation. Front Cell Infect Microbiol 2022; 12:892610. [PMID: 35846745 PMCID: PMC9283780 DOI: 10.3389/fcimb.2022.892610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an immune homeostasis process induced by multiple intracellular and extracellular signals. Inflammation is a protective response to harmful stimuli such as pathogen microbial infection and body tissue damage. Porphyromonas gingivalis infection elicits both autophagy and inflammation, and dysregulation of autophagy and inflammation promotes pathology. This review focuses on the interaction between autophagy and inflammation caused by Porphyromonas gingivalis infection, aiming to elaborate on the possible mechanism involved in the interaction.
Collapse
|
37
|
Ye S, Tan C, Yang X, Wang J, Li Q, Xu L, Wang Z, Mao J, Wang J, Cheng K, Chen A, Zhou P, Li S. Transcriptome Analysis of Retinoic Acid-Inducible Gene I Overexpression Reveals the Potential Genes for Autophagy-Related Negative Regulation. Cells 2022; 11:2009. [PMID: 35805093 PMCID: PMC9265583 DOI: 10.3390/cells11132009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) serves as an essential viral RNA sensor for innate immune. The activation of the RIG-I-like receptors (RLRs) pathway triggers many regulations for the outcome of type I interferon, including ubiquitination, dephosphorylation, ISGylation, and autophagy. However, the autophagy-related regulation of RIG-I is still not fully understood. To investigate the potentially unknown genes related to autophagy-related regulation of RIG-I, we firstly confirm the induction of autophagy derived by overexpression of RIG-I. Furthermore, the autophagy inducer and inhibitor drugs were used in different assays. The results showed autophagy could control the activation of RLRs pathway and expression of exogenous RIG-I. In addition, we carried out the transcriptome analysis of overexpression of RIG-I in vitro. Differentially expressed genes (DEGs) in GO and KEGG signaling pathways enrichment provided a newly complex network. Finally, the validation of qPCR indicated that the DEGs PTPN22, PRKN, OTUD7B, and SIRT2 were correlated to the negative regulation of excessive expression of RIG-I. Taken together, our study contributed new insights into a more comprehensive understanding of the regulation of excessive expression of RIG-I. It provided the potential candidate genes for autophagy-related negative regulation for further investigation.
Collapse
Affiliation(s)
- Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Chen Tan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China;
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, 4000 Liege, Belgium
| | - Xiaoyun Yang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526000, China;
| | - Ji Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Qi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Liang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jianwei Mao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Kui Cheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Aolei Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| |
Collapse
|
38
|
Nanda SK, Vollmer S, Perez-Oliva AB. Posttranslational Regulation of Inflammasomes, Its Potential as Biomarkers and in the Identification of Novel Drugs Targets. Front Cell Dev Biol 2022; 10:887533. [PMID: 35800898 PMCID: PMC9253692 DOI: 10.3389/fcell.2022.887533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we have summarized classical post-translational modifications (PTMs) such as phosphorylation, ubiquitylation, and SUMOylation of the different components of one of the most studied NLRP3, and other emerging inflammasomes. We will highlight how the discovery of these modifications have provided mechanistic insight into the biology, function, and regulation of these multiprotein complexes not only in the context of the innate immune system but also in adaptive immunity, hematopoiesis, bone marrow transplantation, as well and their role in human diseases. We have also collected available information concerning less-studied modifications such as acetylation, ADP-ribosylation, nitrosylation, prenylation, citrullination, and emphasized their relevance in the regulation of inflammasome complex formation. We have described disease-associated mutations affecting PTMs of inflammasome components. Finally, we have discussed how a deeper understanding of different PTMs can help the development of biomarkers and identification of novel drug targets to treat diseases caused by the malfunctioning of inflammasomes.
Collapse
Affiliation(s)
- Sambit K. Nanda
- Bioscience Immunology, Research and Early Development, Respiratory and Immunology (R&I), Gaithersburg, MD, United States
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Stefan Vollmer
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), Gothenburg, Sweden
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| | - Ana B. Perez-Oliva
- Instituto Murciano de Investigación Biosanitaria (IMIB)-Arrixaca, Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Sambit K. Nanda, ; Stefan Vollmer, ; Ana B. Perez-Oliva,
| |
Collapse
|
39
|
López-Armada MJ, Fernández-Rodríguez JA, Blanco FJ. Mitochondrial Dysfunction and Oxidative Stress in Rheumatoid Arthritis. Antioxidants (Basel) 2022; 11:antiox11061151. [PMID: 35740048 PMCID: PMC9220001 DOI: 10.3390/antiox11061151] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Control of excessive mitochondrial oxidative stress could provide new targets for both preventive and therapeutic interventions in the treatment of chronic inflammation or any pathology that develops under an inflammatory scenario, such as rheumatoid arthritis (RA). Increasing evidence has demonstrated the role of mitochondrial alterations in autoimmune diseases mainly due to the interplay between metabolism and innate immunity, but also in the modulation of inflammatory response of resident cells, such as synoviocytes. Thus, mitochondrial dysfunction derived from several danger signals could activate tricarboxylic acid (TCA) disruption, thereby favoring a vicious cycle of oxidative/mitochondrial stress. Mitochondrial dysfunction can act through modulating innate immunity via redox-sensitive inflammatory pathways or direct activation of the inflammasome. Besides, mitochondria also have a central role in regulating cell death, which is deeply altered in RA. Additionally, multiple evidence suggests that pathological processes in RA can be shaped by epigenetic mechanisms and that in turn, mitochondria are involved in epigenetic regulation. Finally, we will discuss about the involvement of some dietary components in the onset and progression of RA.
Collapse
Affiliation(s)
- María José López-Armada
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| | - Jennifer Adriana Fernández-Rodríguez
- Grupo de Investigación en Envejecimiento e Inflamación (ENVEINF), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain;
| | - Francisco Javier Blanco
- Grupo de Investigación de Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña, 15001 A Coruña, Spain
- Correspondence: (M.J.L.-A.); (F.J.B.); Tel./Fax: +34-981-178272-73 (M.J.L.-A.)
| |
Collapse
|
40
|
Meng Z, Zhu B, Gao M, Wang G, Zhou H, Lu J, Guan S. Apigenin alleviated PA-induced pyroptosis by activating autophagy in hepatocytes. Food Funct 2022; 13:5559-5570. [PMID: 35481558 DOI: 10.1039/d1fo03771d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Apigenin is a kind of natural flavonoid that abundantly exists in fruits and vegetables. Pyroptosis is a new, pro-inflammatory type of programmed necrosis cell death, and the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the key molecule to induce pyroptosis. Excessive hepatic pyroptosis results in liver injury. In the study, we found for the first time that apigenin could alleviate palmitic acid (PA)-induced NLRP3 inflammasome activation and pyroptosis in HepG2 cells and primary mouse hepatic cells. Meanwhile, apigenin could promote the autophagy of hepatocytes. When the autophagy inhibitor chloroquine (CQ) was added, the data showed that the recovery effect of apigenin on PA-induced pyroptosis was weakened, indicating that apigenin could alleviate PA-induced pyroptosis by activating autophagy. Further mechanistic studies showed that apigenin regulated the NLRP3 inflammasome through two ways, so as to alleviate PA-induced pyroptosis. On the one hand, apigenin eliminated damaged mitochondria by activating autophagy, thereby clearing reactive oxygen species (ROS) production and inhibiting the activation of the NLRP3 inflammasome, and on the other hand, activation of autophagy could directly degrade the NLRP3 inflammasome. Our study provides a new idea and target for the use of functional factors in food to alleviate liver injury.
Collapse
Affiliation(s)
- Zhuoqun Meng
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Beiwei Zhu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China. .,School of Food Science & Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, P. R. China
| | - Min Gao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Guang Wang
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Hongjiang Zhou
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Jing Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| | - Shuang Guan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, P. R. China.
| |
Collapse
|
41
|
Banerjee SK, Chatterjee A, Gupta S, Nagar A. Activation and Regulation of NLRP3 by Sterile and Infectious Insults. Front Immunol 2022; 13:896353. [PMID: 35663964 PMCID: PMC9161712 DOI: 10.3389/fimmu.2022.896353] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Nod-Like Receptor (NLR) is the largest family of Pathogen Recognition Receptors (PRRs) that patrols the cytosolic environment. NLR engagement drives caspase-1 activation that cleaves pro-IL-1B which then gets secreted. Released IL-1B recruits immune cells to the site of infection/injury. Caspase-1 also cleaves Gasdermin-D (GSDM-D) that forms pores within the plasma membrane driving inflammatory cell death called pyroptosis. NLRP3 is the most extensively studied NLR. The NLRP3 gene is encoded by 9 exons, where exon 1 codes for pyrin domain, exon 3 codes for NACHT domain, and Leucine Rich Repeat (LRR) domain is coded by exon 4-9. Exon 2 codes for a highly disorganized loop that connects the rest of the protein to the pyrin domain and may be involved in NLRP3 regulation. The NLRP3 inflammasome is activated by many structurally divergent agonists of microbial, environmental, and host origin. Activated NLRP3 interacts with an adaptor protein, ASC, that bridges it to pro-Caspase-1 forming a multi-protein complex called inflammasome. Dysregulation of NLRP3 inflammasome activity is a hallmark of pathogenesis in several human diseases, indicating its highly significant clinical relevance. In this review, we summarize the existing knowledge about the mechanism of activation of NLRP3 and its regulation during activation by infectious and sterile triggers.
Collapse
Affiliation(s)
- Srijon K. Banerjee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ayan Chatterjee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Shamba Gupta
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Abhinit Nagar
- Flow Cytometry, Luminex Corporation, Austin, TX, United States
- *Correspondence: Abhinit Nagar,
| |
Collapse
|
42
|
Murakami T, Nakaminami Y, Takahata Y, Hata K, Nishimura R. Activation and Function of NLRP3 Inflammasome in Bone and Joint-Related Diseases. Int J Mol Sci 2022; 23:ijms23105365. [PMID: 35628185 PMCID: PMC9141484 DOI: 10.3390/ijms23105365] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a pivotal response to a variety of stimuli, and inflammatory molecules such as cytokines have central roles in the pathogenesis of various diseases, including bone and joint diseases. Proinflammatory cytokines are mainly produced by immune cells and mediate inflammatory and innate immune responses. Additionally, proinflammatory cytokines accelerate bone resorption and cartilage destruction, resulting in the destruction of bone and joint tissues. Thus, proinflammatory cytokines are involved in regulating the pathogenesis of bone and joint diseases. Interleukin (IL)-1 is a representative inflammatory cytokine that strongly promotes bone and cartilage destruction, and elucidating the regulation of IL-1 will advance our understanding of the onset and progression of bone and joint diseases. IL-1 has two isoforms, IL-1α and IL-1β. Both isoforms signal through the same IL-1 receptor type 1, but the activation mechanisms are completely different. In particular, IL-1β is tightly regulated by protein complexes termed inflammasomes. Recent research using innovative technologies has led to a series of discoveries about inflammasomes. This review highlights the current understanding of the activation and function of the NLRP3 (NOD-like receptor family, pyrin domain-containing 3) inflammasome in bone and joint diseases.
Collapse
|
43
|
Wei C, Ma L, Xiang D, Huang C, Wang H, Wang X, Zhang S, Qi X, Shi W, Gao H. Enhanced autophagy alleviated corneal allograft rejection via inhibiting NLRP3 inflammasome activity. Am J Transplant 2022; 22:1362-1371. [PMID: 35092164 DOI: 10.1111/ajt.16968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Autophagy has been reported to be involved in many aspects of innate and adaptive immunity. Manipulating autophagy is recognized as a promising therapeutic approach for treating immunological diseases, including allograft rejection, and graft-versus-host disease. However, whether autophagy was closely associated with the pathogenesis of corneal allograft rejection remains largely unknown. Here, we showed that rapamycin (RAPA)-induced autophagy alleviated corneal allograft rejection. By contrast, blocking autophagic activity using 3-methyladeine (3-MA) aggravated corneal transplantation rejection. Mechanistically, we revealed that the enhanced autophagic turnover by RAPA inhibited NLRP3 inflammasome activity through NLRP3 degradation. While blocking the fusion of autophagosomes with lysosomes by bafilomycin A1(BafA1), the reduced NLRP3 inflammasome activity induced by RAPA was significantly restored, with increased protein levels of NLRP3 and cleaved Casp-1(p10), as well as IL-1β secretion. Moreover, we further revealed that pharmacologically blocking NLRP3 inflammasome signaling prolonged the survival of corneal allografts. Taken together, these findings underscored the critical roles of enhanced autophagy in treating corneal allograft rejection, which provided an alternative intervention strategy to control corneal transplantation rejection.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Demeng Xiang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Cixin Huang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Huijin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xin Wang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Sai Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Xiaolin Qi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.,Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of ophthalmology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
44
|
Niu Y, Zhang Y, Zhang W, Lu J, Chen Y, Hao W, Zhou J, Wang L, Xie W. Canagliflozin Ameliorates NLRP3 Inflammasome-Mediated Inflammation Through Inhibiting NF-κB Signaling and Upregulating Bif-1. Front Pharmacol 2022; 13:820541. [PMID: 35418866 PMCID: PMC8996145 DOI: 10.3389/fphar.2022.820541] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is an important component of the innate immune system that mediates the secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. However, current studies have shown that the abnormal activation of the NLRP3 inflammasome is associated with inflammatory diseases such as atherosclerosis, diabetes, and pneumonia. In this study, we found that canagliflozin (CAN) transcriptionally inhibited NLRP3 inflammasome-related proteins by inhibiting the transduction of the nuclear factor κB signal. Autophagy is largely involved in the post-translational modifications of the NLRP3 inflammasome and is an important regulator of NLRP3 inflammasome assembly and activation. Bax-interacting factor 1 (Bif-1) plays an important role in autophagosome formation during early-stage autophagy. Our results are the first to indicate that CAN, a hypoglycemic drug, can inhibit the activation of NLRP3 inflammasome and inflammation by upregulating Bif-1 and autophagy in a non-hypoglycemic manner. This study provides new information regarding the treatment of patients with pneumonia, particularly those with concurrent diabetes.
Collapse
Affiliation(s)
- Yaoyun Niu
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yuehui Zhang
- Department of Critical Care Medicine, The People's Hospital of Baoan, Shenzhen, China.,Department of Critical Care Medicine, Second Affiliated Hospital of Shenzhen University, Shenzhen, China.,The Second School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Wanqiu Zhang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jinghua Lu
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yang Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wenhui Hao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Lijun Wang
- Department of Critical Care Medicine, The People's Hospital of Baoan, Shenzhen, China.,Department of Critical Care Medicine, Second Affiliated Hospital of Shenzhen University, Shenzhen, China.,The Second School of Clinical Medicine, Southern Medical University, Shenzhen, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Shenzhen Key Lab of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
45
|
Choi J, Jo M, Lee E, Kim SE, Lee DY, Choi D. Inhibition of the NLRP3 inflammasome by progesterone is attenuated by abnormal autophagy induction in endometriotic cyst stromal cells: implications for endometriosis. Mol Hum Reprod 2022; 28:6554203. [PMID: 35333355 DOI: 10.1093/molehr/gaac007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/22/2022] [Indexed: 11/14/2022] Open
Abstract
The NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic multi-protein complex that induces inflammation and is known to be regulated negatively by autophagy. Previous studies reported an abnormal induction of autophagy linked to progesterone resistance in human endometriotic cells. Therefore, an aberrant autophagy induction response to progesterone might contribute to the altered inflammatory response observed in endometriotic tissues. To evaluate this hypothesis, we elucidate whether regulation of the NLRP3 inflammasome by ovarian steroids is mediated by autophagy in human endometrial stromal cells (NESCs) from patients with uterine leiomyoma (presumed normal) and whether abnormal autophagy induction in endometriotic cyst stromal cells (ECSCs) affects NLRP3 inflammasome-induced interleukin-1β (IL-1β) production. Our results show that estrogen enhanced NLRP3 inflammasome activation in NESCs, resulting in increased IL-1β production. Progesterone decreased NLRP3 inflammasome activity with an increase in autophagy induction in estrogen-treated NESCs. Inhibition of NLRP3 inflammasome activity by progesterone was blocked by autophagy inhibition. However, progesterone failed to change NLRP3 inflammasome activity and autophagy induction in estrogen-treated ECSCs. By contrast, dienogest, a specific progesterone receptor agonist, reduced NLRP3 inflammasome-mediated IL-1β production through autophagy induction in ECSCs. Furthermore, autophagy induction was decreased and NLRP3 inflammasome activity was increased in endometriotic tissues, which was reversed by pre-operative administration of dienogest. In conclusion, our results suggest that progesterone inhibits NLRP3 inflammasome activation through autophagy in endometrial stromal cells. However, this inhibitory effect is attenuated in endometriotic stromal cells due to an aberrant autophagic response to progesterone, which could lead to an altered inflammatory response in endometriosis.
Collapse
Affiliation(s)
- JongYeob Choi
- Infertility Clinic, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - MinWha Jo
- Center for Clinical Research, Samsung Biomedical Research Institute, Seoul, 06351, Korea
| | - EunYoung Lee
- Infertility Clinic, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Sung Eun Kim
- Infertility Clinic, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - Dong-Yun Lee
- Infertility Clinic, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| | - DooSeok Choi
- Infertility Clinic, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea
| |
Collapse
|
46
|
Fréville A, Gnangnon B, Khelifa AS, Gissot M, Khalife J, Pierrot C. Deciphering the Role of Protein Phosphatases in Apicomplexa: The Future of Innovative Therapeutics? Microorganisms 2022; 10:microorganisms10030585. [PMID: 35336160 PMCID: PMC8949495 DOI: 10.3390/microorganisms10030585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/10/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum still represent a major public health and world-wide socioeconomic burden that is greatly amplified by the spread of resistances against known therapeutic drugs. Therefore, it is essential to provide the scientific and medical communities with innovative strategies specifically targeting these organisms. In this review, we present an overview of the diversity of the phosphatome as well as the variety of functions that phosphatases display throughout the Apicomplexan parasites’ life cycles. We also discuss how this diversity could be used for the design of innovative and specific new drugs/therapeutic strategies.
Collapse
Affiliation(s)
- Aline Fréville
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Tropical Medicine and Hygiene, Keppel Street, London WC1E 7HT, UK
- Correspondence: (A.F.); (C.P.)
| | - Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Department of Epidemiology, Center for Communicable Diseases Dynamics, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Asma S. Khelifa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Mathieu Gissot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Jamal Khalife
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Centre d’Infection et d’Immunité de Lille, 59000 Lille, France; (B.G.); (A.S.K.); (M.G.); (J.K.)
- Correspondence: (A.F.); (C.P.)
| |
Collapse
|
47
|
Kuang W, Wang X, Ding J, Li J, Ji M, Chen W, Wang L, Yang P. PTPN2, A Key Predictor of Prognosis for Pancreatic Adenocarcinoma, Significantly Regulates Cell Cycles, Apoptosis, and Metastasis. Front Immunol 2022; 13:805311. [PMID: 35154122 PMCID: PMC8829144 DOI: 10.3389/fimmu.2022.805311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Objective This study conducted a comprehensive analysis of the members of the PTPN family and emphasized the key role of PTPN2 as a potential therapeutic target and diagnostic biomarker in improving the survival rate of PAAD. Method Oncomine was used to analyze the pan-cancer expression of the PTPN gene family. The Cancer Genome Atlas (TCGA) data as well as Genotype-Tissue Expression (GTEx) data were downloaded to analyze the expression and prognosis of PTPNs. The diagnosis of PTPNs was evaluated by the experimental ROC curve. The protein-protein interaction (PPI) network was constructed by combining STRING and Cytoscape. The genes of 50 proteins most closely related to PTPN2 were screened and analyzed by GO and KEGG enrichment. The differentially expressed genes of PTPN2 were found by RNA sequencing, and GSEA enrichment analysis was carried out to find the downstream pathways and targets, which were verified by online tools and experiments. Finally, the relationship between PTPN2 and immune cell infiltration in PAAD, and the relationship with immune score and immune checkpoint were studied. Result The expression patterns and the prognostic value of multiple PTPNs in PAAD have been reported through bioinformatic analyzes. Among these members, PTPN2 is the most important prognostic signature that regulates the progression of PAAD by activating JAK-STAT signaling pathway. Comparison of two PAAD cell lines with normal pancreatic epithelial cell lines revealed that PTPN2 expression was up-regulated as a key regulator of PAAD, which was associated with poor prognosis. Knockdown of PTPN2 caused a profound decrease in PAAD cell growth, migration, invasion, and induced PAAD cell cycle and apoptosis. In addition, we conducted a series of enrichment analyses to investigate the PTPN2-binding proteins and the PTPN2 expression-correlated genes. We suggest that STAT1 and EGFR are the key factors to regulate PTPN2, which are involved in the progression of PAAD. Meanwhile, the silencing of PTPN2 induced the repression of STAT1 and EGFR expression. Conclusion These findings provide a comprehensive analysis of the PTPN family members, and for PAAD, they also demonstrate that PTPN2 is a diagnostic biomarker and a therapeutic target.
Collapse
Affiliation(s)
- Wenbin Kuang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxing Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minghui Ji
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
48
|
Harapas CR, Idiiatullina E, Al-Azab M, Hrovat-Schaale K, Reygaerts T, Steiner A, Laohamonthonkul P, Davidson S, Yu CH, Booty L, Masters SL. Organellar homeostasis and innate immune sensing. Nat Rev Immunol 2022; 22:535-549. [PMID: 35197578 DOI: 10.1038/s41577-022-00682-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
A cell is delimited by numerous borders that define specific organelles. The walls of some organelles are particularly robust, such as in mitochondria or endoplasmic reticulum, but some are more fluid such as in phase-separated stress granules. Either way, all organelles can be damaged at times, leading their contents to leak out into the surrounding environment. Therefore, an elegant way to construct an innate immune defence system is to recognize host molecules that do not normally reside within a particular compartment. Here, we provide several examples where organellar homeostasis is lost, leading to the activation of a specific innate immune sensor; these include NLRP3 activation owing to a disrupted trans-Golgi network, Pyrin activation due to cytoskeletal damage, and cGAS-STING activation following the leakage of nuclear or mitochondrial DNA. Frequently, organelle damage is observed downstream of pathogenic infection but it can also occur in sterile settings as associated with auto-inflammatory disease. Therefore, understanding organellar homeostasis is central to efforts that will identify new innate immune pathways, and therapeutics that balance organellar homeostasis, or target the breakdown pathways that trigger innate immune sensors, could be useful treatments for infection and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Cassandra R Harapas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Elina Idiiatullina
- Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Mahmoud Al-Azab
- Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Katja Hrovat-Schaale
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Thomas Reygaerts
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Annemarie Steiner
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Institute of Structural Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Pawat Laohamonthonkul
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Sophia Davidson
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Chien-Hsiung Yu
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Lee Booty
- Immunology Network, Immunology Research Unit, GSK, Stevenage, UK
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. .,Immunology Laboratory, Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Jiang C, Xie S, Yang G, Wang N. Spotlight on NLRP3 Inflammasome: Role in Pathogenesis and Therapies of Atherosclerosis. J Inflamm Res 2022; 14:7143-7172. [PMID: 34992411 PMCID: PMC8711145 DOI: 10.2147/jir.s344730] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammation is an intricate biological response of body tissues to detrimental stimuli. Cardiovascular disease (CVD) is the leading cause of death worldwide, and inflammation is well documented to play a role in the development of CVD, especially atherosclerosis (AS). Emerging evidence suggests that activation of the NOD-like receptor (NLR) family and the pyridine-containing domain 3 (NLRP3) inflammasome is instrumental in inflammation and may result in AS. The NLRP3 inflammasome acts as a molecular platform that triggers the activation of caspase-1 and the cleavage of pro-interleukin (IL)-1β, pro-IL-18, and gasdermin D (GSDMD). The cleaved GSDMD forms pores in the cell membrane and initiates pyroptosis, inducing cell death and the discharge of intracellular pro-inflammatory factors. Hence, the NLRP3 inflammasome is a promising target for anti-inflammatory therapy against AS. In this review, we systematically summarized the current understanding of the activation mechanism of NLRP3 inflammasome, and the pathological changes in AS involving NLRP3. We also discussed potential therapeutic strategies targeting NLRP3 inflammasome to combat AS.
Collapse
Affiliation(s)
- Chunteng Jiang
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China.,Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University of Göttingen, Göttingen, Lower Saxony, Germany
| | - Santuan Xie
- Department of Internal Medicine, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Guang Yang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Ningning Wang
- Department of Food Nutrition and Safety, School of Public Health, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| |
Collapse
|
50
|
Liu J, Ma W, Zang CH, Wang GD, Zhang SJ, Wu HJ, Zhu KW, Xiang XL, Li CY, Liu KP, Guo JH, Li LY. Salidroside inhibits NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 9:1694. [PMID: 34988203 PMCID: PMC8667139 DOI: 10.21037/atm-21-5752] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023]
Abstract
Background The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an important mediator of neuroinflammatory responses that regulates inflammatory injury following cerebral ischemia and may be a potential target. Salidroside (Sal) has good anti-inflammatory effects; however, it remains unclear whether Sal can regulate NLRP3 inflammasome activation through the Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) signaling pathway after cerebral ischemia to alleviate inflammatory injury. Methods We established an oxygen-glucose deprivation and reoxygenation (OGD/R) model of BV2 cells and a middle cerebral artery occlusion/reperfusion (MCAO/R) rat model. Cell Counting Kit-8 (CCK-8), flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay were used to detect the viability and apoptosis of BV2 cells. Enzyme-linked immunosorbent assay (ELISA) was used to detect the level of inflammatory factors. 2,3,5-triphenyltetrazolium chloride (TTC) staining and modified Neurological Severity Score (mNSS) were used to detect cerebral infarction volume and neurological deficit in rats. Western blot, immunohistochemistry and immunofluorescence staining were used to detect the protein expression levels. Results Our results showed that Sal increased viability, inhibited lactate dehydrogenase (LDH) release, and reduced apoptosis in OGD/R-induced BV2 cells. Sal reduced the levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-8. Following induction by OGD/R, BV2 cells exhibited NLRP3 inflammasome activation and increased protein levels of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1, IL-1β, and IL-18. Protein levels of key TLR4 signaling pathway elements, such as TLR4, myeloid differentiation primary response 88 (MyD88), and phosphorylated nuclear factor kappa B p65 (p-NF-κB p65)/NF-κB p65 were upregulated. Interestingly, it was revealed that Sal could reverse these changes. In addition, TAK242, a specific inhibitor of TLR4, had the same effect as Sal treatment on BV2 cells following induction by OGD/R. In the MCAO/R rat model, Sal was also observed to inhibit NLRP3 inflammasome activation in microglia, reduce cerebral infarction volume, and inhibit apoptosis. Conclusions In summary, we found that Sal inhibited NLRP3 inflammasome activation and apoptosis in microglia induced by cerebral ischemia/reperfusion injury by inhibiting the TLR4/NF-κB signaling pathway, thus playing a protective role. Therefore, Sal may be a promising drug for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jie Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Cheng-Hao Zang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Guo-Dong Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Si-Jia Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Hong-Jie Wu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Ke-Wei Zhu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Xiang-Lin Xiang
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|