1
|
Richardson T, Hou X, Fiesel FC, Wszolek ZK, Dickson DW, Springer W. Hippocampal mitophagy alterations in MAPT-associated frontotemporal dementia with parkinsonism. Acta Neuropathol Commun 2025; 13:41. [PMID: 39994734 PMCID: PMC11849217 DOI: 10.1186/s40478-025-01955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
The enzyme pair PINK1 and PRKN together orchestrates a cytoprotective mitophagy pathway that selectively tags damaged mitochondria with phospho-serine 65 ubiquitin (pS65-Ub) and directs them for autophagic-lysosomal degradation (mitophagy). We previously demonstrated a significant accumulation of pS65-Ub signals in autopsy brains of sporadic Lewy body disease and Alzheimer's disease cases, which strongly correlated with early tau pathology. In this study, we extended our analysis to a series of pathologically confirmed cases of frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17) harboring different pathogenic mutations in MAPT, the gene encoding tau. We assessed the morphology, levels, and distribution of the mitophagy tag pS65-Ub in several affected brain regions and hippocampal subregions of these cases. While tau pathological burden was similarly increased across all FTDP-17 cases, pS65-Ub immunopositive signals were strongly accumulated in P301L cases and only weakly present in N279K cases. In the hippocampus of both mutation groups, the density of pS65-Ub positive cells was overall the greatest in the dentate gyrus followed by the subiculum, CA1, and CA2/3, with the CA4 showing only minimal presence. Notably, positive cells in the subiculum carried greater numbers and particularly vacuolar pS65-Ub structures, while cells in the dentate gyrus mostly contained fewer and rather granular pS65-Ub inclusions. Single cell analyses revealed differential co-localization of pS65-Ub with mitochondria, autophagosomes, and lysosomes in these two regions. Together, our study demonstrates distinct mitophagy alteration in different FTDP-17 MAPT cases and hint at selective organelle failure in the hippocampal subregions that was associated with the P301L mutation.
Collapse
Affiliation(s)
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
2
|
Baninameh Z, Watzlawik JO, Bustillos BA, Fiorino G, Yan T, Lewicki SL, Zhang H, Dickson DW, Siuda J, Wszolek ZK, Springer W, Fiesel FC. Development and validation of a sensitive sandwich ELISA against human PINK1. Autophagy 2025:1-16. [PMID: 39912496 DOI: 10.1080/15548627.2025.2457915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
The ubiquitin kinase and ligase PINK1 and PRKN together label damaged mitochondria for their elimination in lysosomes by selective autophagy (mitophagy). This cytoprotective quality control pathway is genetically linked to familial Parkinson disease but is also altered during aging and in other neurodegenerative disorders. However, the molecular mechanisms of these mitophagy changes remain uncertain. In healthy mitochondria, PINK1 protein is continuously imported, cleaved, and degraded, but swiftly accumulates on damaged mitochondria, where it triggers the activation of the mitophagy pathway by phosphorylating its substrates ubiquitin and PRKN. Levels of PINK1 protein can therefore be used as a proxy for mitochondrial damage and mitophagy initiation. However, validated methodologies to sensitively detect and quantify PINK1 protein are currently not available. Here, we describe the development and thorough validation of a novel immunoassay to measure human PINK1 on the Meso Scale Discovery platform. The final assay showed excellent linearity, parallelism, and sensitivity. Even in the absence of mitochondrial stress (i.e. at basal conditions), when PINK1 protein is usually not detectable by immunoblotting, significant differences were obtained when comparing samples from patient fibroblasts or differentiated neurons with and without PINK1 expression. Of note, PINK1 protein levels were found increased in human postmortem brain with normal aging, but not in brains with Alzheimer disease, suggesting that indeed different molecular mechanisms are at play. In summary, we have developed a novel sensitive PINK1 immunoassay that will complement other efforts to decipher the roles and biomarker potential of the PINK1-PRKN mitophagy pathway in the physiological and pathological context. Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ECL: electrochemiluminescence; ELISA: enzyme-linked immunosorbent assay; iPSC: induced pluripotent stem cell; KO: knockout; LLOQ: lower limit of quantification; MSD: Meso Scale Discovery; PD: Parkinson disease; p-S65-Ub: serine-65 phosphorylated ubiquitin; Ub: ubiquitin; ULOQ: upper limit of quantification; WT: wild-type.
Collapse
Affiliation(s)
- Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Haonan Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
3
|
Naddaf E, Nguyen TKO, Watzlawik JO, Gao H, Hou X, Fiesel FC, Mandrekar J, Kokesh E, Harmsen WS, Lanza IR, Springer W, Trushina E. NLRP3 Inflammasome Activation and Altered Mitophagy Are Key Pathways in Inclusion Body Myositis. J Cachexia Sarcopenia Muscle 2025; 16:e13672. [PMID: 39723571 DOI: 10.1002/jcsm.13672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM. METHODS The study population consisted of 38 IBM patients and 22 age- and sex-matched controls without a myopathy. Mean age was 62.9 years (SD = 9) in IBM group and 59.7 (10) in controls. Bulk RNA sequencing, Meso Scale Discovery electrochemiluminescence (ECL), western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. RESULTS We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome being the most upregulated pathway on RNA sequencing, along with increased expression of NLRP3 and ASC proteins in IBM group. NLRP3 RNA levels most strongly correlated with TLR7 (correlation coefficient ρ = 0.91) and complement activation-related genes, and inversely correlated with several mitochondria-related genes among others. On muscle histopathology, there was increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibres. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 inflammasome activation. Herein, we showed altered mitophagy, as witnessed by the elevated levels of p-S65-Ubiquitin, a mitophagy marker, in muscle lysates from IBM patients compared to controls (median of 114.3 vs. 81.25 ECL units, p = 0.005). The p-S65-Ubiquitin levels were most significantly elevated in IBM males compared to male controls (136 vs. 83.5 ECL units; p = 0.013), whereas IBM females had milder nonsignificant elevation compared to female controls (97.25 vs. 69 ECL units, p = 0.31). On muscle histopathology, p-S65-Ubiquitin aggregates accumulated in muscle fibres that were mostly Type 2 and devoid of cytochrome-c-oxidase reactivity. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes (males: ρ = 0.48, females: ρ = 0.54) but with loss of muscle strength, as reflected by the manual motor test score, only in males (males: ρ = 0.62, females: ρ = -0.14). Lastly, we identified sex-specific molecular pathways in IBM. Females had upregulation of pathways related to response to stress, which could conceivably offset some of the pathomechanisms of IBM, while males had upregulation of pathways related to cell adhesion and migration. CONCLUSIONS There is activation of the NLRP3 inflammasome in IBM, along with altered mitophagy, particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.
Collapse
Affiliation(s)
- Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Jens O Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - William S Harmsen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, Minnesota, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Sakurai M, Kuwahara T. Canonical and noncanonical autophagy: involvement in Parkinson's disease. Front Cell Dev Biol 2025; 13:1518991. [PMID: 39949604 PMCID: PMC11821624 DOI: 10.3389/fcell.2025.1518991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Autophagy is the major degradation process in cells and is involved in a variety of physiological and pathological functions. While macroautophagy, which employs a series of molecular cascades to form ATG8-coated double membrane autophagosomes for degradation, remains the well-known type of canonical autophagy, microautophagy and chaperon-mediated autophagy have also been characterized. On the other hand, recent studies have focused on the functions of autophagy proteins beyond intracellular degradation, including noncanonical autophagy, also known as the conjugation of ATG8 to single membranes (CASM), and autophagy-related extracellular secretion. In particular, CASM is unique in that it does not require autophagy upstream mechanisms, while the ATG8 conjugation system is involved in a manner different from canonical autophagy. There have been many reports on the involvement of these autophagy-related mechanisms in neurodegenerative diseases, with Parkinson's disease (PD) receiving particular attention because of the important roles of several causative and risk genes, including LRRK2. In this review, we will summarize and discuss the contributions of canonical and noncanonical autophagy to cellular functions, with a special focus on the pathogenesis of PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Antico O, Thompson PW, Hertz NT, Muqit MMK, Parton LE. Targeting mitophagy in neurodegenerative diseases. Nat Rev Drug Discov 2025:10.1038/s41573-024-01105-0. [PMID: 39809929 DOI: 10.1038/s41573-024-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
Mitochondrial dysfunction is a hallmark of idiopathic neurodegenerative diseases, including Parkinson disease, amyotrophic lateral sclerosis, Alzheimer disease and Huntington disease. Familial forms of Parkinson disease and amyotrophic lateral sclerosis are often characterized by mutations in genes associated with mitophagy deficits. Therefore, enhancing the mitophagy pathway may represent a novel therapeutic approach to targeting an underlying pathogenic cause of neurodegenerative diseases, with the potential to deliver neuroprotection and disease modification, which is an important unmet need. Accumulating genetic, molecular and preclinical model-based evidence now supports targeting mitophagy in neurodegenerative diseases. Despite clinical development challenges, small-molecule-based approaches for selective mitophagy enhancement - namely, USP30 inhibitors and PINK1 activators - are entering phase I clinical trials for the first time.
Collapse
Affiliation(s)
- Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Paul W Thompson
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK
| | | | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura E Parton
- Mission Therapeutics Ltd, Babraham Research Campus, Cambridge, UK.
| |
Collapse
|
6
|
Palmer JE, Wilson N, Son SM, Obrocki P, Wrobel L, Rob M, Takla M, Korolchuk VI, Rubinsztein DC. Autophagy, aging, and age-related neurodegeneration. Neuron 2025; 113:29-48. [PMID: 39406236 DOI: 10.1016/j.neuron.2024.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025]
Abstract
Autophagy is a conserved mechanism that degrades damaged or superfluous cellular contents and enables nutrient recycling under starvation conditions. Many neurodegeneration-associated proteins are autophagy substrates, and autophagy upregulation ameliorates disease in many animal models of neurodegeneration by enhancing the clearance of toxic proteins, proinflammatory molecules, and dysfunctional organelles. Autophagy inhibition also induces neuronal and glial senescence, a phenomenon that occurs with increasing age in non-diseased brains as well as in response to neurodegeneration-associated stresses. However, aging and many neurodegeneration-associated proteins and mutations impair autophagy. This creates a potentially detrimental feedback loop whereby the accumulation of these disease-associated proteins impairs their autophagic clearance, facilitating their further accumulation and aggregation. Thus, understanding how autophagy interacts with aging, senescence, and neurodegenerative diseases in a temporal, cellular, and genetic context is important for the future clinical application of autophagy-modulating therapies in aging and neurodegeneration.
Collapse
Affiliation(s)
- Jennifer E Palmer
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Niall Wilson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Sung Min Son
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Pawel Obrocki
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Lidia Wrobel
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Matea Rob
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Michael Takla
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK
| | - Viktor I Korolchuk
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK; UK Dementia Research Institute, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
7
|
Jiao F, Meng L, Du K, Li X. The autophagy-lysosome pathway: a potential target in the chemical and gene therapeutic strategies for Parkinson's disease. Neural Regen Res 2025; 20:139-158. [PMID: 38767483 PMCID: PMC11246151 DOI: 10.4103/nrr.nrr-d-23-01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 05/22/2024] Open
Abstract
Parkinson's disease is a common neurodegenerative disease with movement disorders associated with the intracytoplasmic deposition of aggregate proteins such as α-synuclein in neurons. As one of the major intracellular degradation pathways, the autophagy-lysosome pathway plays an important role in eliminating these proteins. Accumulating evidence has shown that upregulation of the autophagy-lysosome pathway may contribute to the clearance of α-synuclein aggregates and protect against degeneration of dopaminergic neurons in Parkinson's disease. Moreover, multiple genes associated with the pathogenesis of Parkinson's disease are intimately linked to alterations in the autophagy-lysosome pathway. Thus, this pathway appears to be a promising therapeutic target for treatment of Parkinson's disease. In this review, we briefly introduce the machinery of autophagy. Then, we provide a description of the effects of Parkinson's disease-related genes on the autophagy-lysosome pathway. Finally, we highlight the potential chemical and genetic therapeutic strategies targeting the autophagy-lysosome pathway and their applications in Parkinson's disease.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lingyan Meng
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Kang Du
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Xuezhi Li
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
8
|
Baninameh Z, Watzlawik JO, Hou X, Richardson T, Kurchaba NW, Yan T, Di Florio DN, Fairweather D, Kang L, Nguyen JH, Kanekiyo T, Dickson DW, Noda S, Sato S, Hattori N, Goldberg MS, Ganley IG, Stauch KL, Fiesel FC, Springer W. Alterations of PINK1-PRKN signaling in mice during normal aging. AUTOPHAGY REPORTS 2024; 3:2434379. [PMID: 40008113 PMCID: PMC11855339 DOI: 10.1080/27694127.2024.2434379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/27/2025]
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.
Collapse
Affiliation(s)
- Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Tingxiang Yan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lu Kang
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Justin H. Nguyen
- Division of Transplant Surgery, Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Matthew S. Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
9
|
Cavarischia-Rega C, Sharma K, Fitzgerald JC, Macek B. Proteome Dynamics in iPSC-Derived Human Dopaminergic Neurons. Mol Cell Proteomics 2024; 23:100838. [PMID: 39251023 PMCID: PMC11474371 DOI: 10.1016/j.mcpro.2024.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/11/2024] Open
Abstract
Dopaminergic neurons participate in fundamental physiological processes and are the cell type primarily affected in Parkinson's disease. Their analysis is challenging due to the intricate nature of their function, involvement in diverse neurological processes, and heterogeneity and localization in deep brain regions. Consequently, most of the research on the protein dynamics of dopaminergic neurons has been performed in animal cells ex vivo. Here we use iPSC-derived human mid-brain-specific dopaminergic neurons to study general features of their proteome biology and provide datasets for protein turnover and dynamics, including a human axonal translatome. We cover the proteome to a depth of 9409 proteins and use dynamic SILAC to measure the half-life of more than 4300 proteins. We report uniform turnover rates of conserved cytosolic protein complexes such as the proteasome and map the variable rates of turnover of the respiratory chain complexes in these cells. We use differential dynamic SILAC labeling in combination with microfluidic devices to analyze local protein synthesis and transport between axons and soma. We report 105 potentially novel axonal markers and detect translocation of 269 proteins between axons and the soma in the time frame of our analysis (120 h). Importantly, we provide evidence for local synthesis of 154 proteins in the axon and their retrograde transport to the soma, among them several proteins involved in RNA editing such as ADAR1 and the RNA helicase DHX30, involved in the assembly of mitochondrial ribosomes. Our study provides a workflow and resource for the future applications of quantitative proteomics in iPSC-derived human neurons.
Collapse
Affiliation(s)
- Claudia Cavarischia-Rega
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - Karan Sharma
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Julia C Fitzgerald
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| | - Boris Macek
- Quantitative Proteomics, Department of Biology, Interfaculty Institute of Cell Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Sharma V, Patial V. Insights into the molecular mechanisms of malnutrition-associated steatohepatitis: A review. Liver Int 2024; 44:2156-2173. [PMID: 38775001 DOI: 10.1111/liv.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 08/10/2024]
Abstract
Malnutrition is a public health epidemic mainly targeting poverty-stricken people, young ones, older people, pregnant women, and individuals with metabolic disorders. Severe malnutrition is linked with several metabolic defects, such as hepatic dysfunction, hypertension, cardiovascular disease, and osteoarthritis. The proper functioning of the liver plays a crucial role in ensuring the supply of nutrients to the body. Consequently, inadequate nutrition can lead to severe periportal hepatic steatosis due to compromised mitochondrial and peroxisome functions. Reduced protein intake disrupts essential metabolic processes like the TCA cycle, oxidative phosphorylation, and β-oxidation, ultimately affecting ATP production. Furthermore, this can trigger a cascade of events, including disturbances in amino acid metabolism, iron metabolism, and gut microbiota, which activate genes involved in de novo lipogenesis, leading to the accumulation of lipids in the liver. The condition, in prolonged cases, progresses to steatohepatitis and liver fibrosis. Limited therapeutic solutions are available; however, few dietary supplements and drugs have demonstrated positive effects on the growth and health of malnourished individuals. These supplements improve parameters such as inflammatory and oxidative status, reduce triglyceride accumulation, enhance insulin sensitivity, and downregulate gene expression in hepatic lipid metabolism. This review elucidates the various mechanisms involved in malnutrition-associated steatohepatitis and provides an overview of the available approaches for treating this condition.
Collapse
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Watzlawik JO, Hou X, Richardson T, Lewicki SL, Siuda J, Wszolek ZK, Cook CN, Petrucelli L, DeTure M, Dickson DW, Antico O, Muqit MMK, Fishman JB, Pirani K, Kumaran R, Polinski NK, Fiesel FC, Springer W. Development and characterization of phospho-ubiquitin antibodies to monitor PINK1-PRKN signaling in cells and tissue. Autophagy 2024; 20:2076-2091. [PMID: 38802071 PMCID: PMC11346534 DOI: 10.1080/15548627.2024.2356490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and enzyme-linked immunosorbent assay. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.Abbreviations: AD: Alzheimer disease; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; ELISA: enzyme-linked immunosorbent assay; HEK293E cell: human embryonic kidney E cell; ICC: immunocytochemistry; IHC: immunohistochemistry: KO: knockout; LoB: limit of blank; LoD: limit of detection; LoQ: limit of quantification; MEF: mouse embryonic fibroblast; MSD: Meso Scale Discovery; n.s.: non-significant; nonTg: non-transgenic; PBMC: peripheral blood mononuclear cell; PD: Parkinson disease; p-S65-PRKN: phosphorylated PRKN at serine 65; p-S65-Ub: phosphorylated Ub at serine 65; Ub: ubiquitin; WT: wild-type.
Collapse
Affiliation(s)
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | | | - Nicole K. Polinski
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| |
Collapse
|
12
|
Naddaf E, Nguyen TKO, Watzlawik JO, Gao H, Hou X, Fiesel FC, Mandrekar J, Kokesh E, Harmsen WS, Lanza IR, Springer W, Trushina E. NLRP3 inflammasome activation and altered mitophagy are key pathways in inclusion body myositis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.15.24308845. [PMID: 38947067 PMCID: PMC11213039 DOI: 10.1101/2024.06.15.24308845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Inclusion body myositis (IBM) is the most prevalent muscle disease in adults for which no current treatment exists. The pathogenesis of IBM remains poorly defined. Inflammation and mitochondrial dysfunction are the most common histopathological findings. In this study, we aimed to explore the interplay between inflammation and mitochondrial dysfunction in IBM patients, highlighting sex differences. Methods We included 38 IBM patients and 22 age- and sex-matched controls without myopathy. Bulk RNA sequencing, Meso Scale Discovery ELISA, western blotting, histochemistry and immunohistochemistry were performed on frozen muscle samples from the study participants. Results We demonstrated activation of the NLRP3 inflammasome in IBM muscle samples, with the NLRP3 inflammasome pathway being the most upregulated. On muscle histopathology, there is increased NRLP3 immunoreactivity in both inflammatory cells and muscle fibers. Mitophagy is critical for removing damaged mitochondria and preventing the formation of a vicious cycle of mitochondrial dysfunction-NLRP3 activation. In the IBM muscle samples, we showed altered mitophagy, most significantly in males, with elevated levels of p-S65-Ubiquitin, a mitophagy marker. Furthermore, p-S65-Ubiquitin aggregates accumulated in muscle fibers that were mostly type 2 and devoid of cytochrome-c-oxidase reactivity. Type 2 muscle fibers are known to be more prone to mitochondrial dysfunction. NLRP3 RNA levels correlated with p-S65-Ubiquitin levels in both sexes but with loss of in muscle strength only in males. Finally, we identified sex-specific molecular pathways in IBM, with females having activation of pathways that could offset some of the pathomechanisms of IBM. Conclusions NLRP3 inflammasome is activated in IBM, along with altered mitophagy particularly in males, which is of potential therapeutic significance. These findings suggest sex-specific mechanisms in IBM that warrant further investigation.
Collapse
Affiliation(s)
- Elie Naddaf
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Jay Mandrekar
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Eileen Kokesh
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - William S. Harmsen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ian R. Lanza
- Division of Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Hertz N, Chin R, Rakhit R, Ditsworth D, Wang C, Bartholomeus J, Liu S, Mody A, Laihsu A, Eastes A, Tai C, Kim R, Li J, Khasnavis S, Rafalski V, Heerendeen D, Garda V, Phung J, de Roulet D, Ordureau A, Harper JW, Johnstone S, Stöhr J. Pharmacological PINK1 activation ameliorates Pathology in Parkinson's Disease models. RESEARCH SQUARE 2024:rs.3.rs-4356493. [PMID: 38765977 PMCID: PMC11100876 DOI: 10.21203/rs.3.rs-4356493/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction, and impairs mitophagy as evidenced by the accumulation of the PINK1 substrate pS65-Ubiquitin (pUb). We discovered MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes its active complex, resulting in increased rates of mitophagy. Treatment with MTK458 mediates clearance of accumulated pUb and α-synuclein pathology in α-synuclein pathology models in vitro and in vivo. Our findings from preclinical PD models suggest that pharmacological activation of PINK1 warrants further clinical evaluation as a therapeutic strategy for disease modification in PD.
Collapse
|
14
|
Qin P, Sun Y, Li L. Mitochondrial dysfunction in chronic neuroinflammatory diseases (Review). Int J Mol Med 2024; 53:47. [PMID: 38577947 PMCID: PMC10999227 DOI: 10.3892/ijmm.2024.5371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/06/2024] Open
Abstract
Chronic neuroinflammation serves a key role in the onset and progression of neurodegenerative disorders. Mitochondria serve as central regulators of neuroinflammation. In addition to providing energy to cells, mitochondria also participate in the immunoinflammatory response of neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, multiple sclerosis and epilepsy, by regulating processes such as cell death and inflammasome activation. Under inflammatory conditions, mitochondrial oxidative stress, epigenetics, mitochondrial dynamics and calcium homeostasis imbalance may serve as underlying regulatory mechanisms for these diseases. Therefore, investigating mechanisms related to mitochondrial dysfunction may result in therapeutic strategies against chronic neuroinflammation and neurodegeneration. The present review summarizes the mechanisms of mitochondria in chronic neuroinflammatory diseases and the current treatment approaches that target mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Pei Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
15
|
Baninameh Z, Watzlawik JO, Hou X, Richardson T, Kurchaba NW, Yan T, Di Florio DN, Fairweather D, Kang L, Nguyen JH, Kanekiyo T, Dickson DW, Noda S, Sato S, Hattori N, Goldberg MS, Ganley IG, Stauch KL, Fiesel FC, Springer W. Alterations of PINK1-PRKN signaling in mice during normal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591753. [PMID: 38746191 PMCID: PMC11092476 DOI: 10.1101/2024.04.29.591753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.
Collapse
|
16
|
Watzlawik JO, Fiesel FC, Fiorino G, Bustillos BA, Baninameh Z, Markham BN, Hou X, Hayes CS, Bredenberg JM, Kurchaba NW, Fričová D, Siuda J, Wszolek ZK, Noda S, Sato S, Hattori N, Prasad AA, Kirik D, Fox HS, Stauch KL, Goldberg MS, Springer W. Basal activity of PINK1 and PRKN in cell models and rodent brain. Autophagy 2024; 20:1147-1158. [PMID: 38041584 PMCID: PMC11135862 DOI: 10.1080/15548627.2023.2286414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN recognizes and transiently labels damaged mitochondria with ubiquitin phosphorylated at Ser65 (p-S65-Ub) to mediate their selective degradation (mitophagy). Complete loss of PINK1 or PRKN function unequivocally leads to early-onset Parkinson disease, but it is debated whether impairments in mitophagy contribute to disease later in life. While the pathway has been extensively studied in cell culture upon acute and massive mitochondrial stress, basal levels of activation under endogenous conditions and especially in vivo in the brain remain undetermined. Using rodent samples, patient-derived cells, and isogenic neurons, we here identified age-dependent, brain region-, and cell type-specific effects and determined expression levels and extent of basal and maximal activation of PINK1 and PRKN. Our work highlights the importance of defining critical risk and therapeutically relevant levels of PINK1-PRKN signaling which will further improve diagnosis and prognosis and will lead to better stratification of patients for future clinical trials.
Collapse
Affiliation(s)
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Gabriella Fiorino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | - Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb S. Hayes
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Asheeta A. Prasad
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Deniz Kirik
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew S. Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| |
Collapse
|
17
|
Walton RL, Koga S, Beasley AI, White LJ, Griesacker T, Murray ME, Kasanuki K, Hou X, Fiesel FC, Springer W, Uitti RJ, Fields JA, Botha H, Ramanan VK, Kantarci K, Lowe VJ, Jack CR, Ertekin-Taner N, Savica R, Graff-Radford J, Petersen RC, Parisi JE, Reichard RR, Graff-Radford NR, Ferman TJ, Boeve BF, Wszolek ZK, Dickson DW, Ross OA, Heckman MG. Role of GBA variants in Lewy body disease neuropathology. Acta Neuropathol 2024; 147:54. [PMID: 38472443 PMCID: PMC11049671 DOI: 10.1007/s00401-024-02699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 03/14/2024]
Abstract
Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (β: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.
Collapse
Affiliation(s)
- Ronald L Walton
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Launia J White
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA
| | | | | | - Koji Kasanuki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ryan J Uitti
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Julie A Fields
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Kejal Kantarci
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Val J Lowe
- Department of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
| | - Clifford R Jack
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, USA
| | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Joseph E Parisi
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - R Ross Reichard
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, USA.
| |
Collapse
|
18
|
Jiménez-Loygorri JI, Villarejo-Zori B, Viedma-Poyatos Á, Zapata-Muñoz J, Benítez-Fernández R, Frutos-Lisón MD, Tomás-Barberán FA, Espín JC, Area-Gómez E, Gomez-Duran A, Boya P. Mitophagy curtails cytosolic mtDNA-dependent activation of cGAS/STING inflammation during aging. Nat Commun 2024; 15:830. [PMID: 38280852 PMCID: PMC10821893 DOI: 10.1038/s41467-024-45044-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024] Open
Abstract
Macroautophagy decreases with age, and this change is considered a hallmark of the aging process. It remains unknown whether mitophagy, the essential selective autophagic degradation of mitochondria, also decreases with age. In our analysis of mitophagy in multiple organs in the mito-QC reporter mouse, mitophagy is either increased or unchanged in old versus young mice. Transcriptomic analysis shows marked upregulation of the type I interferon response in the retina of old mice, which correlates with increased levels of cytosolic mtDNA and activation of the cGAS/STING pathway. Crucially, these same alterations are replicated in primary human fibroblasts from elderly donors. In old mice, pharmacological induction of mitophagy with urolithin A attenuates cGAS/STING activation and ameliorates deterioration of neurological function. These findings point to mitophagy induction as a strategy to decrease age-associated inflammation and increase healthspan.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Álvaro Viedma-Poyatos
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Juan Zapata-Muñoz
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Rocío Benítez-Fernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Department of Neuroscience and Movement Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - María Dolores Frutos-Lisón
- Food & Health Lab, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Francisco A Tomás-Barberán
- Food & Health Lab, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Juan Carlos Espín
- Food & Health Lab, Research Group on Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, Murcia, Spain
| | - Estela Area-Gómez
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Aurora Gomez-Duran
- Department of Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- MitoPhenomics Lab, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
- Department of Neuroscience and Movement Science, Section of Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
19
|
Markham BN, Ramnarine C, Kim S, Grever WE, Soto-Beasley AI, Heckman M, Ren Y, Osborne AC, Bhagwate AV, Liu Y, Wang C, Kim J, Wszolek ZK, Ross OA, Springer W, Fiesel FC. miRNA family miR-29 inhibits PINK1-PRKN dependent mitophagy via ATG9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576122. [PMID: 38293184 PMCID: PMC10827147 DOI: 10.1101/2024.01.17.576122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Loss-of-function mutations in the genes encoding PINK1 and PRKN result in early-onset Parkinson disease (EOPD). Together the encoded enzymes direct a neuroprotective pathway that ensures the elimination of damaged mitochondria via autophagy. We performed a genome-wide high content imaging miRNA screen for inhibitors of the PINK1-PRKN pathway and identified all three members of the miRNA family 29 (miR-29). Using RNAseq we identified target genes and found that siRNA against ATG9A phenocopied the effects of miR-29 and inhibited the initiation of PINK1-PRKN mitophagy. Furthermore, we discovered two rare, potentially deleterious, missense variants (p.R631W and p.S828L) in our EOPD cohort and tested them experimentally in cells. While expression of wild-type ATG9A was able to rescue the effects of miR-29a, the EOPD-associated variants behaved like loss-of-function mutations. Together, our study validates miR-29 and its target gene ATG9A as novel regulators of mitophagy initiation. It further serves as proof-of-concept of finding novel, potentially disease-causing EOPD-linked variants specifically in mitophagy regulating genes. The nomination of genetic variants and biological pathways is important for the stratification and treatment of patients that suffer from devastating diseases, such as EOPD.
Collapse
Affiliation(s)
- Briana N Markham
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chloe Ramnarine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Songeun Kim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Michael Heckman
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Science, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Andrew C Osborne
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya V Bhagwate
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanhang Liu
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Chen Wang
- Department of Quantitative Health Science, Mayo Clinic, Rochester, MN 55905, USA
| | - Jungsu Kim
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
20
|
Watzlawik JO, Hou X, Richardson T, Lewicki SL, Siuda J, Wszolek ZK, Cook CN, Petrucelli L, DeTure M, Dickson DW, Antico O, Muqit MMK, Fishman JB, Pirani K, Kumaran R, Polinski NK, Fiesel FC, Springer W. Development and characterization of phospho-ubiquitin antibodies to monitor PINK1-PRKN signaling in cells and tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575715. [PMID: 38293125 PMCID: PMC10827112 DOI: 10.1101/2024.01.15.575715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The selective removal of dysfunctional mitochondria, a process termed mitophagy, is critical for cellular health and impairments have been linked to aging, Parkinson disease, and other neurodegenerative conditions. A central mitophagy pathway is orchestrated by the ubiquitin (Ub) kinase PINK1 together with the E3 Ub ligase PRKN/Parkin. The decoration of damaged mitochondrial domains with phosphorylated Ub (p-S65-Ub) mediates their elimination though the autophagy system. As such p-S65-Ub has emerged as a highly specific and quantitative marker of mitochondrial damage with significant disease relevance. Existing p-S65-Ub antibodies have been successfully employed as research tools in a range of applications including western blot, immunocytochemistry, immunohistochemistry, and ELISA. However, physiological levels of p-S65-Ub in the absence of exogenous stress are very low, therefore difficult to detect and require reliable and ultrasensitive methods. Here we generated and characterized a collection of novel recombinant, rabbit monoclonal p-S65-Ub antibodies with high specificity and affinity in certain applications that allow the field to better understand the molecular mechanisms and disease relevance of PINK1-PRKN signaling. These antibodies may also serve as novel diagnostic or prognostic tools to monitor mitochondrial damage in various clinical and pathological specimens.
Collapse
Affiliation(s)
- Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Szymon L. Lewicki
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice 40-055, Poland
| | | | - Casey N. Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Miratul M. K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | - Karima Pirani
- ImmunoPrecise Antibodies Ltd., Victoria, BC V8Z 7X8, Canada
| | | | - Nicole K. Polinski
- The Michael J. Fox Foundation for Parkinson’s Research, New York, NY 10163, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL 32224, USA
| |
Collapse
|
21
|
Payne T, Burgess T, Bradley S, Roscoe S, Sassani M, Dunning MJ, Hernandez D, Scholz S, McNeill A, Taylor R, Su L, Wilkinson I, Jenkins T, Mortiboys H, Bandmann O. Multimodal assessment of mitochondrial function in Parkinson's disease. Brain 2024; 147:267-280. [PMID: 38059801 PMCID: PMC10766247 DOI: 10.1093/brain/awad364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/02/2023] [Accepted: 09/27/2023] [Indexed: 12/08/2023] Open
Abstract
The heterogenous aetiology of Parkinson's disease is increasingly recognized; both mitochondrial and lysosomal dysfunction have been implicated. Powerful, clinically applicable tools are required to enable mechanistic stratification for future precision medicine approaches. The aim of this study was to characterize bioenergetic dysfunction in Parkinson's disease by applying a multimodal approach, combining standardized clinical assessment with midbrain and putaminal 31-phosphorus magnetic resonance spectroscopy (31P-MRS) and deep phenotyping of mitochondrial and lysosomal function in peripheral tissue in patients with recent-onset Parkinson's disease and control subjects. Sixty participants (35 patients with Parkinson's disease and 25 healthy controls) underwent 31P-MRS for quantification of energy-rich metabolites [ATP, inorganic phosphate (Pi) and phosphocreatine] in putamen and midbrain. In parallel, skin biopsies were obtained from all research participants to establish fibroblast cell lines for subsequent quantification of total intracellular ATP and mitochondrial membrane potential (MMP) as well as mitochondrial and lysosomal morphology, using high content live cell imaging. Lower MMP correlated with higher intracellular ATP (r = -0.55, P = 0.0016), higher mitochondrial counts (r = -0.72, P < 0.0001) and higher lysosomal counts (r = -0.62, P = 0.0002) in Parkinson's disease patient-derived fibroblasts only, consistent with impaired mitophagy and mitochondrial uncoupling. 31P-MRS-derived posterior putaminal Pi/ATP ratio variance was considerably greater in Parkinson's disease than in healthy controls (F-tests, P = 0.0036). Furthermore, elevated 31P-MRS-derived putaminal, but not midbrain Pi/ATP ratios (indicative of impaired oxidative phosphorylation) correlated with both greater mitochondrial (r = 0.37, P = 0.0319) and lysosomal counts (r = 0.48, P = 0.0044) as well as lower MMP in both short (r = -0.52, P = 0.0016) and long (r = -0.47, P = 0.0052) mitochondria in Parkinson's disease. Higher 31P-MRS midbrain phosphocreatine correlated with greater risk of rapid disease progression (r = 0.47, P = 0.0384). Our data suggest that impaired oxidative phosphorylation in the striatal dopaminergic nerve terminals exceeds mitochondrial dysfunction in the midbrain of patients with early Parkinson's disease. Our data further support the hypothesis of a prominent link between impaired mitophagy and impaired striatal energy homeostasis as a key event in early Parkinson's disease.
Collapse
Affiliation(s)
- Thomas Payne
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Toby Burgess
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Stephen Bradley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Sarah Roscoe
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Matilde Sassani
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, The University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Dunning
- The Bioinformatics Core, Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Dena Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, NIA, NIH, Bethesda, MD 20814, USA
| | - Sonja Scholz
- Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20814, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA
| | - Alisdair McNeill
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Rosie Taylor
- Statistical Services Unit, The University of Sheffield, Shefield S3 7RH, UK
| | - Li Su
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
| | - Iain Wilkinson
- Academic Unit of Radiology, University of Sheffield, Sheffield S10 2JF, UK
| | - Thomas Jenkins
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Department of Neurology, Royal Perth Hospital, Perth WA6000, Australia
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
22
|
Vijiaratnam N, Foltynie T. How should we be using biomarkers in trials of disease modification in Parkinson's disease? Brain 2023; 146:4845-4869. [PMID: 37536279 PMCID: PMC10690028 DOI: 10.1093/brain/awad265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
The recent validation of the α-synuclein seed amplification assay as a biomarker with high sensitivity and specificity for the diagnosis of Parkinson's disease has formed the backbone for a proposed staging system for incorporation in Parkinson's disease clinical studies and trials. The routine use of this biomarker should greatly aid in the accuracy of diagnosis during recruitment of Parkinson's disease patients into trials (as distinct from patients with non-Parkinson's disease parkinsonism or non-Parkinson's disease tremors). There remain, however, further challenges in the pursuit of biomarkers for clinical trials of disease modifying agents in Parkinson's disease, namely: optimizing the distinction between different α-synucleinopathies; the selection of subgroups most likely to benefit from a candidate disease modifying agent; a sensitive means of confirming target engagement; and the early prediction of longer-term clinical benefit. For example, levels of CSF proteins such as the lysosomal enzyme β-glucocerebrosidase may assist in prognostication or allow enrichment of appropriate patients into disease modifying trials of agents with this enzyme as the target; the presence of coexisting Alzheimer's disease-like pathology (detectable through CSF levels of amyloid-β42 and tau) can predict subsequent cognitive decline; imaging techniques such as free-water or neuromelanin MRI may objectively track decline in Parkinson's disease even in its later stages. The exploitation of additional biomarkers to the α-synuclein seed amplification assay will, therefore, greatly add to our ability to plan trials and assess the disease modifying properties of interventions. The choice of which biomarker(s) to use in the context of disease modifying clinical trials will depend on the intervention, the stage (at risk, premotor, motor, complex) of the population recruited and the aims of the trial. The progress already made lends hope that panels of fluid biomarkers in tandem with structural or functional imaging may provide sensitive and objective methods of confirming that an intervention is modifying a key pathophysiological process of Parkinson's disease. However, correlation with clinical progression does not necessarily equate to causation, and the ongoing validation of quantitative biomarkers will depend on insightful clinical-genetic-pathophysiological comparisons incorporating longitudinal biomarker changes from those at genetic risk with evidence of onset of the pathophysiology and those at each stage of manifest clinical Parkinson's disease.
Collapse
Affiliation(s)
- Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
23
|
Hou X, Heckman MG, Fiesel FC, Koga S, Soto-Beasley AI, Watzlawik JO, Zhao J, Valentino RR, Johnson PW, White LJ, Quicksall ZS, Reddy JS, Bras J, Guerreiro R, Zhao N, Bu G, Dickson DW, Ross OA, Springer W. Genome-wide association study identifies APOE and ZMIZ1 variants as mitophagy modifiers in Lewy body disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.16.23297100. [PMID: 37905059 PMCID: PMC10615013 DOI: 10.1101/2023.10.16.23297100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; β : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; β : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.
Collapse
|
24
|
Nechushtai L, Frenkel D, Pinkas-Kramarski R. Autophagy in Parkinson's Disease. Biomolecules 2023; 13:1435. [PMID: 37892117 PMCID: PMC10604695 DOI: 10.3390/biom13101435] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Parkinson's disease (PD) is a devastating disease associated with accumulation of α-synuclein (α-Syn) within dopaminergic neurons, leading to neuronal death. PD is characterized by both motor and non-motor clinical symptoms. Several studies indicate that autophagy, an important intracellular degradation pathway, may be involved in different neurodegenerative diseases including PD. The autophagic process mediates the degradation of protein aggregates, damaged and unneeded proteins, and organelles, allowing their clearance, and thereby maintaining cell homeostasis. Impaired autophagy may cause the accumulation of abnormal proteins. Incomplete or impaired autophagy may explain the neurotoxic accumulation of protein aggregates in several neurodegenerative diseases including PD. Indeed, studies have suggested the contribution of impaired autophagy to α-Syn accumulation, the death of dopaminergic neurons, and neuroinflammation. In this review, we summarize the recent literature on the involvement of autophagy in PD pathogenesis.
Collapse
Affiliation(s)
| | | | - Ronit Pinkas-Kramarski
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, Tel-Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel; (L.N.); (D.F.)
| |
Collapse
|
25
|
Hou X, Chen TH, Koga S, Bredenberg JM, Faroqi AH, Delenclos M, Bu G, Wszolek ZK, Carr JA, Ross OA, McLean PJ, Murray ME, Dickson DW, Fiesel FC, Springer W. Alpha-synuclein-associated changes in PINK1-PRKN-mediated mitophagy are disease context dependent. Brain Pathol 2023; 33:e13175. [PMID: 37259617 PMCID: PMC10467041 DOI: 10.1111/bpa.13175] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 06/02/2023] Open
Abstract
Alpha-synuclein (αsyn) aggregates are pathological features of several neurodegenerative conditions including Parkinson disease (PD), dementia with Lewy bodies, and multiple system atrophy (MSA). Accumulating evidence suggests that mitochondrial dysfunction and impairments of the autophagic-lysosomal system can contribute to the deposition of αsyn, which in turn may interfere with health and function of these organelles in a potentially vicious cycle. Here we investigated a potential convergence of αsyn with the PINK1-PRKN-mediated mitochondrial autophagy pathway in cell models, αsyn transgenic mice, and human autopsy brain. PINK1 and PRKN identify and selectively label damaged mitochondria with phosphorylated ubiquitin (pS65-Ub) to mark them for degradation (mitophagy). We found that disease-causing multiplications of αsyn resulted in accumulation of the ubiquitin ligase PRKN in cells. This effect could be normalized by starvation-induced autophagy activation and by CRISPR/Cas9-mediated αsyn knockout. Upon acute mitochondrial damage, the increased levels of PRKN protein contributed to an enhanced pS65-Ub response. We further confirmed increased pS65-Ub-immunopositive signals in mouse brain with αsyn overexpression and in postmortem human disease brain. Of note, increased pS65-Ub was associated with neuronal Lewy body-type αsyn pathology, but not glial cytoplasmic inclusions of αsyn as seen in MSA. While our results add another layer of complexity to the crosstalk between αsyn and the PINK1-PRKN pathway, distinct mechanisms may underlie in cells and brain tissue despite similar outcomes. Notwithstanding, our finding suggests that pS65-Ub may be useful as a biomarker to discriminate different synucleinopathies and may serve as a potential therapeutic target for Lewy body disease.
Collapse
Affiliation(s)
- Xu Hou
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | - Ayman H. Faroqi
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Guojun Bu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | | | - Jonathan A. Carr
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Owen A. Ross
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Pamela J. McLean
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Melissa E. Murray
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Dennis W. Dickson
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Fabienne C. Fiesel
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Wolfdieter Springer
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Neuroscience PhD ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| |
Collapse
|
26
|
Suresh K, Mattern M, Goldberg MS, Butt TR. The Ubiquitin Proteasome System as a Therapeutic Area in Parkinson's Disease. Neuromolecular Med 2023; 25:313-329. [PMID: 36739586 DOI: 10.1007/s12017-023-08738-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/28/2023] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder. There are no available therapeutics that slow or halt the progressive loss of dopamine-producing neurons, which underlies the primary clinical symptoms. Currently approved PD drugs can provide symptomatic relief by increasing brain dopamine content or activity; however, the alleviation is temporary, and the effectiveness diminishes with the inevitable progression of neurodegeneration. Discovery and development of disease-modifying neuroprotective therapies has been hampered by insufficient understanding of the root cause of PD-related neurodegeneration. The etiology of PD involves a combination of genetic and environmental factors. Although a single cause has yet to emerge, genetic, cell biological and neuropathological evidence implicates mitochondrial dysfunction and protein aggregation. Postmortem PD brains show pathognomonic Lewy body intraneuronal inclusions composed of aggregated α-synuclein, indicative of failure to degrade misfolded protein. Mutations in the genes that code for α-synuclein, as well as the E3 ubiquitin ligase Parkin, cause rare inherited forms of PD. While many ubiquitin ligases label proteins with ubiquitin chains to mark proteins for degradation by the proteasome, Parkin has been shown to mark dysfunctional mitochondria for degradation by mitophagy. The ubiquitin proteasome system participates in several aspects of the cell's response to mitochondrial damage, affording numerous therapeutic opportunities to augment mitophagy and potentially stop PD progression. This review examines the role and therapeutic potential of such UPS modulators, exemplified by both ubiquitinating and deubiquitinating enzymes.
Collapse
Affiliation(s)
- Kumar Suresh
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA.
| | - Michael Mattern
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA
| | - Matthew S Goldberg
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tauseef R Butt
- Progenra Inc., 271A Great Valley Parkway, Malvern, PA, 19355, USA
| |
Collapse
|
27
|
Gargano A, Olabiyi BF, Palmisano M, Zimmer A, Bilkei-Gorzo A. Possible role of locus coeruleus neuronal loss in age-related memory and attention deficits. Front Neurosci 2023; 17:1264253. [PMID: 37694113 PMCID: PMC10492095 DOI: 10.3389/fnins.2023.1264253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Aging is associated with a decline in cognitive abilities, including memory and attention. It is generally accepted that age-related histological changes such as increased neuroinflammatory glial activity and a reduction in the number of specific neuronal populations contribute to cognitive aging. Noradrenergic neurons in the locus coeruleus (LC) undergo an approximately 20 % loss during ageing both in humans and mice, but whether this change contributes to cognitive deficits is not known. To address this issue, we asked whether a similar loss of LC neurons in young animals as observed in aged animals impairs memory and attention, cognitive domains that are both influenced by the noradrenergic system and impaired in aging. Methods For that, we treated young healthy mice with DSP-4, a toxin that specifically kills LC noradrenergic neurons. We compared the performance of DSP-4 treated young mice with the performance of aged mice in models of attention and memory. To do this, we first determined the dose of DSP-4, which causes a similar 20 % neuronal loss as is typical in aged animals. Results Young mice treated with DSP-4 showed impaired attention in the presence of distractor and memory deficits in the 5-choice serial reaction time test (5-CSRTT). Old, untreated mice showed severe deficits in both the 5-CSRTT and in fear extinction tests. Discussion Our data now suggest that a reduction in the number of LC neurons contributes to impaired working memory and greater distractibility in attentional tasks but not to deficits in fear extinction. We hypothesize that the moderate loss of LC noradrenergic neurons during aging contributes to attention deficits and working memory impairments.
Collapse
Affiliation(s)
| | | | | | | | - Andras Bilkei-Gorzo
- Medical Faculty, Institute of Molecular Psychiatry, University of Bonn, Venusberg-Campus, Bonn, Germany
| |
Collapse
|
28
|
Chen C, McDonald D, Blain A, Mossman E, Atkin K, Marusich MF, Capaldi R, Bone L, Smith A, Filby A, Erskine D, Russell O, Hudson G, Vincent AE, Reeve AK. Parkinson's disease neurons exhibit alterations in mitochondrial quality control proteins. NPJ Parkinsons Dis 2023; 9:120. [PMID: 37553379 PMCID: PMC10409763 DOI: 10.1038/s41531-023-00564-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.
Collapse
Affiliation(s)
- Chun Chen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - David McDonald
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Mossman
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kiera Atkin
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | | | - Laura Bone
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Smith
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Filby
- Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Erskine
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver Russell
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
29
|
Ligezka AN, Budhraja R, Nishiyama Y, Fiesel FC, Preston G, Edmondson A, Ranatunga W, Van Hove JLK, Watzlawik JO, Springer W, Pandey A, Morava E, Kozicz T. Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG. Genes (Basel) 2023; 14:1585. [PMID: 37628636 PMCID: PMC10454768 DOI: 10.3390/genes14081585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.
Collapse
Affiliation(s)
- Anna N. Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Yurika Nishiyama
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Edmondson
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Johan L. K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80309, USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biophysics, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Anatomy, University of Pecs Medical School, 7624 Pecs, Hungary
| |
Collapse
|
30
|
Mehellou Y. Parkinson's Disease: Are PINK1 Activators Inching Closer to the Clinic? ACS Med Chem Lett 2023; 14:870-874. [PMID: 37465300 PMCID: PMC10350934 DOI: 10.1021/acsmedchemlett.3c00070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/31/2023] [Indexed: 07/20/2023] Open
Abstract
The activation of PINK1 by small molecules has emerged as a promising strategy in treating Parkinson's disease (PD). Recent progress in this area has raised excitement around PINK1 activators as PD treatments, and herein we offer insight into these developments and their potential to deliver much needed novel PD treatments.
Collapse
|
31
|
Lambourne O, Bell S, Wilhelm LP, Yarbrough EB, Holly GG, Russell OM, Alghamdi AM, Fdel AM, Varricchio C, Lane EL, Ganley IG, Jones AT, Goldberg MS, Mehellou Y. PINK1-Dependent Mitophagy Inhibits Elevated Ubiquitin Phosphorylation Caused by Mitochondrial Damage. J Med Chem 2023; 66:7645-7656. [PMID: 37248632 PMCID: PMC10258795 DOI: 10.1021/acs.jmedchem.3c00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 05/31/2023]
Abstract
Ubiquitin phosphorylation by the mitochondrial protein kinase PTEN-induced kinase 1 (PINK1), upon mitochondrial depolarization, is an important intermediate step in the recycling of damaged mitochondria via mitophagy. As mutations in PINK1 can cause early-onset Parkinson's disease (PD), there has been a growing interest in small-molecule activators of PINK1-mediated mitophagy as potential PD treatments. Herein, we show that N6-substituted adenosines, such as N6-(2-furanylmethyl)adenosine (known as kinetin riboside) and N6-benzyladenosine, activate PINK1 in HeLa cells and induce PINK1-dependent mitophagy in primary mouse fibroblasts. Interestingly, pre-treatment of HeLa cells and astrocytes with these compounds inhibited elevated ubiquitin phosphorylation that is induced by established mitochondrial depolarizing agents, carbonyl cyanide m-chlorophenyl-hydrazine and niclosamide. Together, this highlights N6-substituted adenosines as progenitor PINK1 activators that could potentially be developed, in the future, as treatments for aged and sporadic PD patients who have elevated phosphorylated ubiquitin levels in the brain.
Collapse
Affiliation(s)
- Olivia
A. Lambourne
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
| | - Shane Bell
- Wellcome
Centre for Mitochondrial Research, Newcastle
University, Tyne NE2 4HH, U.K.
| | - Léa P. Wilhelm
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 4HN, U.K.
| | - Erika B. Yarbrough
- Center
for Neurodegeneration and Experimental Therapeutics, Department of
Neurology, The University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| | - Gabriel G. Holly
- Center
for Neurodegeneration and Experimental Therapeutics, Department of
Neurology, The University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| | - Oliver M. Russell
- Wellcome
Centre for Mitochondrial Research, Newcastle
University, Tyne NE2 4HH, U.K.
| | - Arwa M. Alghamdi
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
| | - Azeza M. Fdel
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
| | - Carmine Varricchio
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
| | - Emma L. Lane
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
| | - Ian G. Ganley
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 4HN, U.K.
| | - Arwyn T. Jones
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
| | - Matthew S. Goldberg
- Center
for Neurodegeneration and Experimental Therapeutics, Department of
Neurology, The University of Alabama at
Birmingham, Birmingham, Alabama 35294, United States
| | - Youcef Mehellou
- Cardiff
School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K.
| |
Collapse
|
32
|
Stevens MU, Croteau N, Eldeeb MA, Antico O, Zeng ZW, Toth R, Durcan TM, Springer W, Fon EA, Muqit MM, Trempe JF. Structure-based design and characterization of Parkin-activating mutations. Life Sci Alliance 2023; 6:e202201419. [PMID: 36941054 PMCID: PMC10027901 DOI: 10.26508/lsa.202201419] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Autosomal recessive mutations in the Parkin gene cause Parkinson's disease. Parkin encodes an ubiquitin E3 ligase that functions together with the kinase PINK1 in a mitochondrial quality control pathway. Parkin exists in an inactive conformation mediated by autoinhibitory domain interfaces. Thus, Parkin has become a target for the development of therapeutics that activate its ligase activity. Yet, the extent to which different regions of Parkin can be targeted for activation remained unknown. Here, we have used a rational structure-based approach to design new activating mutations in both human and rat Parkin across interdomain interfaces. Out of 31 mutations tested, we identified 11 activating mutations that all cluster near the RING0:RING2 or REP:RING1 interfaces. The activity of these mutants correlates with reduced thermal stability. Furthermore, three mutations V393D, A401D, and W403A rescue a Parkin S65A mutant, defective in mitophagy, in cell-based studies. Overall our data extend previous analysis of Parkin activation mutants and suggests that small molecules that would mimic RING0:RING2 or REP:RING1 destabilisation offer therapeutic potential for Parkinson's disease patients harbouring select Parkin mutations.
Collapse
Affiliation(s)
- Michael U Stevens
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale, Montpellier, France
| | - Mohamed A Eldeeb
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Odetta Antico
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Zhi Wei Zeng
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas M Durcan
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Edward A Fon
- McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Miratul Mk Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Canada
- Centre de Recherche en Biologie Structurale, Montpellier, France
| |
Collapse
|
33
|
Trempe JF, Gehring K. Structural mechanisms of mitochondrial quality control mediated by PINK1 and parkin. J Mol Biol 2023:168090. [PMID: 37054910 DOI: 10.1016/j.jmb.2023.168090] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and represents a looming public health crisis as the global population ages. While the etiology of the more common, idiopathic form of the disease remains unknown, the last ten years have seen a breakthrough in our understanding of the genetic forms related to two proteins that regulate a quality control system for the removal of damaged or non-functional mitochondria. Here, we review the structure of these proteins, PINK1, a protein kinase, and parkin, a ubiquitin ligase with an emphasis on the molecular mechanisms responsible for their recognition of dysfunctional mitochondria and control of the subsequent ubiquitination cascade. Recent atomic structures have revealed the basis of PINK1 substrate specificity and the conformational changes responsible for activation of PINK1 and parkin catalytic activity. Progress in understanding the molecular basis of mitochondrial quality control promises to open new avenues for therapeutic interventions in PD.
Collapse
Affiliation(s)
- Jean-François Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale
| |
Collapse
|
34
|
Pitcairn C, Murata N, Zalon AJ, Stojkovska I, Mazzulli JR. Impaired Autophagic-Lysosomal Fusion in Parkinson's Patient Midbrain Neurons Occurs through Loss of ykt6 and Is Rescued by Farnesyltransferase Inhibition. J Neurosci 2023; 43:2615-2629. [PMID: 36788031 PMCID: PMC10082462 DOI: 10.1523/jneurosci.0610-22.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Macroautophagy is a catabolic process that coordinates with lysosomes to degrade aggregation-prone proteins and damaged organelles. Loss of macroautophagy preferentially affects neuron viability and is associated with age-related neurodegeneration. We previously found that α-synuclein (α-syn) inhibits lysosomal function by blocking ykt6, a farnesyl-regulated soluble NSF attachment protein receptor (SNARE) protein that is essential for hydrolase trafficking in midbrain neurons. Using Parkinson's disease (PD) patient iPSC-derived midbrain cultures, we find that chronic, endogenous accumulation of α-syn directly inhibits autophagosome-lysosome fusion by impairing ykt6-SNAP-29 complexes. In wild-type (WT) cultures, ykt6 depletion caused a near-complete block of autophagic flux, highlighting its critical role for autophagy in human iPSC-derived neurons. In PD, macroautophagy impairment was associated with increased farnesyltransferase (FTase) activity, and FTase inhibitors restored macroautophagic flux through promoting active forms of ykt6 in human cultures, and male and female mice. Our findings indicate that ykt6 mediates cellular clearance by coordinating autophagic-lysosomal fusion and hydrolase trafficking, and that macroautophagy impairment in PD can be rescued by FTase inhibitors.SIGNIFICANCE STATEMENT The pathogenic mechanisms that lead to the death of neurons in Parkinson's disease (PD) and Dementia with Lewy bodies (LBD) are currently unknown. Furthermore, disease modifying treatments for these diseases do not exist. Our study indicates that a cellular clearance pathway termed autophagy is impaired in patient-derived culture models of PD and in vivo We identified a novel druggable target, a soluble NSF attachment protein receptor (SNARE) protein called ykt6, that rescues autophagy in vitro and in vivo upon blocking its farnesylation. Our work suggests that farnesyltransferase (FTase) inhibitors may be useful therapies for PD and DLB through enhancing autophagic-lysosomal clearance of aggregated proteins.
Collapse
Affiliation(s)
- Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Naomi Murata
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Annie J Zalon
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Iva Stojkovska
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
35
|
Chin RM, Rakhit R, Ditsworth D, Wang C, Bartholomeus J, Liu S, Mody A, Laishu A, Eastes A, Tai C, Kim RY, Li J, Hansberry S, Khasnavis S, Rafalski V, Herendeen D, Garda V, Phung J, de Roulet D, Ordureau A, Harper JW, Johnstone S, Stöhr J, Hertz NT. Pharmacological PINK1 activation ameliorates Pathology in Parkinson's Disease models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528378. [PMID: 36824886 PMCID: PMC9949154 DOI: 10.1101/2023.02.14.528378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
PINK1 loss-of-function mutations and exposure to mitochondrial toxins are causative for Parkinson's disease (PD) and Parkinsonism, respectively. We demonstrate that pathological α-synuclein deposition, the hallmark pathology of idiopathic PD, induces mitochondrial dysfunction and impairs mitophagy, driving accumulation of the PINK1 substrate pS65-Ubiquitin (pUb) in primary neurons and in vivo. We synthesized MTK458, a brain penetrant small molecule that binds to PINK1 and stabilizes an active heterocomplex, thereby increasing mitophagy. MTK458 mediates clearance of α-synuclein pathology in PFF seeding models in vitro and in vivo and reduces pUb. We developed an ultrasensitive assay to quantify pUb levels in plasma and observed an increase in pUb in PD subjects that correlates with disease progression, paralleling our observations in PD models. Our combined findings from preclinical PD models and patient biofluids suggest that pharmacological activation of PINK1 is worthy of further study as a therapeutic strategy for disease modification in PD. Highlights Discovery of a plasma Parkinson's Disease biomarker candidate, pS65-Ubiquitin (pUb)Plasma pUb levels correlate with disease status and progression in PD patients.Identification of a potent, brain penetrant PINK1 activator, MTK458MTK458 selectively activates PINK1 by stimulating dimerization and stabilization of the PINK1/TOM complexMTK458 drives clearance of α-synuclein pathology and normalizes pUb in in vivo Parkinson's models.
Collapse
|
36
|
Li J, Yang D, Li Z, Zhao M, Wang D, Sun Z, Wen P, Dai Y, Gou F, Ji Y, Zhao D, Yang L. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Res Rev 2023; 84:101817. [PMID: 36503124 DOI: 10.1016/j.arr.2022.101817] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Mitochondria play key roles in bioenergetics, metabolism, and signaling; therefore, stable mitochondrial function is essential for cell survival, particularly in energy-intensive neuronal cells. In neurodegenerative diseases, damaged mitochondria accumulate in neurons causing associated bioenergetics deficiency, impaired cell signaling, defective cytoplasmic calcium buffering, and other pathological changes. Mitochondrial quality control is an important mechanism to ensure the maintenance of mitochondrial health, homeostasis, and mitophagy, the latter of which is a pathway that delivers defective mitochondria to the lysosome for degradation. Defective mitophagy is thought to be responsible for the accumulation of damaged mitochondria, which leads to cellular dysfunction and/or death in neurodegenerative diseases. PINK1/Parkin mainly regulates ubiquitin-dependent mitophagy, which is crucial for many aspects of mitochondrial physiology, particularly the initiation of autophagic mechanisms. Therefore, in the present review, we summarize the current knowledge of the conventional mitophagy pathway, focusing on the molecular mechanisms underlying mitophagy dysregulation in prion disease and other age-related neurodegenerative diseases, especially in relation to the PINK1/Parkin pathway. Moreover, we list the inducers of mitophagy that possess neuroprotective effects, in addition to their mechanisms related to the PINK1/Parkin pathway. These mechanisms may provide potential interventions centered on the regulation of mitophagy and offer therapeutic strategies for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jie Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongming Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhiping Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Mengyang Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Dongdong Wang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Zhixin Sun
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Pei Wen
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yuexin Dai
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Fengting Gou
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Yilan Ji
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, State Key Laboratories for Agrobiotechnology, Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, China.
| |
Collapse
|
37
|
Tufi R, Clark EH, Hoshikawa T, Tsagkaraki C, Stanley J, Takeda K, Staddon JM, Briston T. High-content phenotypic screen to identify small molecule enhancers of Parkin-dependent ubiquitination and mitophagy. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:73-87. [PMID: 36608804 DOI: 10.1016/j.slasd.2022.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/13/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023]
Abstract
Mitochondrial dysfunction and aberrant mitochondrial homeostasis are key aspects of Parkinson's disease (PD) pathophysiology. Mutations in PINK1 and Parkin proteins lead to autosomal recessive PD, suggesting that defective mitochondrial clearance via mitophagy is key in PD etiology. Accelerating the identification and/or removal of dysfunctional mitochondria could therefore provide a disease-modifying approach to treatment. To that end, we performed a high-content phenotypic screen (HCS) of ∼125,000 small molecules to identify compounds that positively modulate mitochondrial accumulation of the PINK1-Parkin-dependent mitophagy initiation marker p-Ser65-Ub in Parkin haploinsufficiency (Parkin +/R275W) human fibroblasts. Following confirmatory counter-screening and orthogonal assays, we selected compounds of interest that enhance mitophagy-related biochemical and functional endpoints in patient-derived fibroblasts. Identification of inhibitors of the ubiquitin-specific peptidase and negative regulator of mitophagy USP30 within our hits further validated our approach. The compounds identified in this work provide a novel starting point for further investigation and optimization.
Collapse
Affiliation(s)
- Roberta Tufi
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Emily H Clark
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Tamaki Hoshikawa
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Christiana Tsagkaraki
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Jack Stanley
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Kunitoshi Takeda
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - James M Staddon
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom
| | - Thomas Briston
- Neurology Innovation Centre, Hatfield Research Laboratories, Eisai Ltd., Hatfield AL10 9SN, United Kingdom.
| |
Collapse
|
38
|
Soutar MPM, Melandri D, O’Callaghan B, Annuario E, Monaghan AE, Welsh NJ, D’Sa K, Guelfi S, Zhang D, Pittman A, Trabzuni D, Verboven AHA, Pan KS, Kia DA, Bictash M, Gandhi S, Houlden H, Cookson MR, Kasri NN, Wood NW, Singleton AB, Hardy J, Whiting PJ, Blauwendraat C, Whitworth AJ, Manzoni C, Ryten M, Lewis PA, Plun-Favreau H. Regulation of mitophagy by the NSL complex underlies genetic risk for Parkinson's disease at 16q11.2 and MAPT H1 loci. Brain 2022; 145:4349-4367. [PMID: 36074904 PMCID: PMC9762952 DOI: 10.1093/brain/awac325] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a common incurable neurodegenerative disease. The identification of genetic variants via genome-wide association studies has considerably advanced our understanding of the Parkinson's disease genetic risk. Understanding the functional significance of the risk loci is now a critical step towards translating these genetic advances into an enhanced biological understanding of the disease. Impaired mitophagy is a key causative pathway in familial Parkinson's disease, but its relevance to idiopathic Parkinson's disease is unclear. We used a mitophagy screening assay to evaluate the functional significance of risk genes identified through genome-wide association studies. We identified two new regulators of PINK1-dependent mitophagy initiation, KAT8 and KANSL1, previously shown to modulate lysine acetylation. These findings suggest PINK1-mitophagy is a contributing factor to idiopathic Parkinson's disease. KANSL1 is located on chromosome 17q21 where the risk associated gene has long been considered to be MAPT. While our data do not exclude a possible association between the MAPT gene and Parkinson's disease, they provide strong evidence that KANSL1 plays a crucial role in the disease. Finally, these results enrich our understanding of physiological events regulating mitophagy and establish a novel pathway for drug targeting in neurodegeneration.
Collapse
Affiliation(s)
- Marc P M Soutar
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Daniela Melandri
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Benjamin O’Callaghan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Emily Annuario
- Department of Basic and Clinical Neuroscience, King’s College, London, UK
| | - Amy E Monaghan
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Natalie J Welsh
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Karishma D’Sa
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Francis Crick Institute, London, UK
| | - Sebastian Guelfi
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - David Zhang
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alan Pittman
- Genetics Research Centre, Molecular and Clinical Sciences, St Georges University, London, UK
| | - Daniah Trabzuni
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Anouk H A Verboven
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Kylie S Pan
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Demis A Kia
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Magda Bictash
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Sonia Gandhi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Francis Crick Institute, London, UK
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Nicholas W Wood
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, UK
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- UCL Dementia Research Institute, London, UK
| | - Paul J Whiting
- UCL Alzheimer’s Research UK, Drug Discovery Institute, London, UK
- UCL Dementia Research Institute, London, UK
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Claudia Manzoni
- Department of Pharmacology, UCL School of Pharmacy, London, UK
| | - Mina Ryten
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Patrick A Lewis
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Comparative Biomedical Sciences, Royal Veterinary College, LondonUK
| | - Hélène Plun-Favreau
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
39
|
Kolicheski A, Turcano P, Tamvaka N, McLean PJ, Springer W, Savica R, Ross OA. Early-Onset Parkinson's Disease: Creating the Right Environment for a Genetic Disorder. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2353-2367. [PMID: 36502340 PMCID: PMC9837689 DOI: 10.3233/jpd-223380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) by its common understanding is a late-onset sporadic movement disorder. However, there is a need to recognize not only the fact that PD pathogenesis expands beyond (or perhaps to) the brain but also that many early-onset patients develop motor signs before the age of 50 years. Indeed, studies have shown that it is likely the protein aggregation observed in the brains of patients with PD precedes the motor symptoms by perhaps a decade. Studies on early-onset forms of PD have shown it to be a heterogeneous disease with multiple genetic and environmental factors determining risk of different forms of disease. Genetic and neuropathological evidence suggests that there are α-synuclein centric forms (e.g., SNCA genomic triplication), and forms that are driven by a breakdown in mitochondrial function and specifically in the process of mitophagy and clearance of damaged mitochondria (e.g., PARKIN and PINK1 recessive loss-of-function mutations). Aligning genetic forms with recognized environmental influences will help better define patients, aid prognosis, and hopefully lead to more accurately targeted clinical trial design. Work is now needed to understand the cross-talk between these two pathomechanisms and determine a sense of independence, it is noted that autopsies studies for both have shown the presence or absence of α-synuclein aggregation. The integration of genetic and environmental data is critical to understand the etiology of early-onset forms of PD and determine how the different pathomechanisms crosstalk.
Collapse
Affiliation(s)
- Ana Kolicheski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Pierpaolo Turcano
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA,
Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Nicole Tamvaka
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Pamela J. McLean
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,
Mayo Graduate School, Neuroscience Track, Mayo Clinic, Jacksonville, FL, USA,
Department of Medicine, University College Dublin, Dublin, Ireland,
Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, USA,Department of Biology, University of NorthFlorida, Jacksonville, FL, USA,Correspondence to: Owen A. Ross, PhD, Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA. Tel.: +1 904 953 6280; Fax: +1 904 953 7370; E-mail:
| |
Collapse
|
40
|
Jorge-Oliva M, Smits JFM, Wiersma VI, Hoozemans JJM, Scheper W. Granulovacuolar degeneration bodies are independently induced by tau and α-synuclein pathology. Alzheimers Res Ther 2022; 14:187. [PMID: 36517915 PMCID: PMC9749177 DOI: 10.1186/s13195-022-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Granulovacuolar degeneration bodies (GVBs) are intracellular vesicular structures that commonly accompany pathological tau accumulations in neurons of patients with tauopathies. Recently, we developed the first model for GVBs in primary neurons, that requires exogenous tau seeds to elicit tau aggregation. This model allowed the identification of GVBs as proteolytically active lysosomes induced by tau pathology. GVBs selectively accumulate cargo in a dense core, that shows differential and inconsistent immunopositivity for (phosphorylated) tau epitopes. Despite the strong evidence connecting GVBs to tau pathology, these structures have been reported in neurons without apparent pathology in brain tissue of tauopathy patients. Additionally, GVBs and putative GVBs have also been reported in the brain of patients with non-tau proteinopathies. Here, we investigated the connection between pathological protein assemblies and GVBs in more detail. METHODS This study combined newly developed primary neuron models for tau and α-synuclein pathology with observations in human brain tissue from tauopathy and Parkinson's disease patients. Immunolabeling and imaging techniques were employed for extensive characterisation of pathological proteins and GVBs. Quantitative data were obtained by high-content automated microscopy as well as single-cell analysis of confocal images. RESULTS Employing a novel seed-independent neuronal tau/GVB model, we show that in the context of tauopathy, GVBs are inseparably associated with the presence of cytosolic pathological tau and that intracellular tau aggregation precedes GVB formation, strengthening the causal relationship between pathological accumulation of tau and GVBs. We also report that GVBs are inseparably associated with pathological tau at the single-cell level in the hippocampus of tauopathy patients. Paradoxically, we demonstrate the presence of GVBs in the substantia nigra of Parkinson's disease patients and in a primary neuron model for α-synuclein pathology. GVBs in this newly developed α-synuclein/GVB model are induced in the absence of cytosolic pathological tau accumulations. GVBs in the context of tau or α-synuclein pathology showed similar immunoreactivity for different phosphorylated tau epitopes. The phosphorylated tau immunoreactivity signature of GVBs is therefore independent of the presence of cytosolic tau pathology. CONCLUSION Our data identify the emergence of GVBs as a more generalised response to cytosolic protein pathology.
Collapse
Affiliation(s)
- Marta Jorge-Oliva
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Jasper F. M. Smits
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Vera I. Wiersma
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jeroen J. M. Hoozemans
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Wiep Scheper
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
41
|
Usher JL, Sanchez‐Martinez A, Terriente‐Felix A, Chen P, Lee JJ, Chen C, Whitworth AJ. Parkin drives pS65-Ub turnover independently of canonical autophagy in Drosophila. EMBO Rep 2022; 23:e53552. [PMID: 36250243 PMCID: PMC9724668 DOI: 10.15252/embr.202153552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease-related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1-Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1-Parkin pathway operates in vivo, we developed methods to detect Ser65-phosphorylated ubiquitin (pS65-Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1-dependent pS65-Ub production, while pS65-Ub accumulates in unstimulated parkin-null flies, consistent with blocked degradation. Additionally, we show that pS65-Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65-Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat-induced pS65-Ub in an Atg5-null background. Thus, we have established that pS65-Ub immunodetection can be used to analyse Pink1-Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1-Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo.
Collapse
Affiliation(s)
- Joanne L Usher
- MRC Mitochondrial Biology UnitCambridgeUK
- PNAC Division, MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
MSD R&D Innovation CentreLondonUK
| | | | | | - Po‐Lin Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | | - Chun‐Hong Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | |
Collapse
|
42
|
Caponio D, Veverová K, Zhang SQ, Shi L, Wong G, Vyhnalek M, Fang EF. Compromised autophagy and mitophagy in brain ageing and Alzheimer's diseases. AGING BRAIN 2022; 2:100056. [PMID: 36908880 PMCID: PMC9997167 DOI: 10.1016/j.nbas.2022.100056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most persistent and devastating neurodegenerative disorders of old age, and is characterized clinically by an insidious onset and a gradual, progressive deterioration of cognitive abilities, ranging from loss of memory to impairment of judgement and reasoning. Despite years of research, an effective cure is still not available. Autophagy is the cellular 'garbage' clearance system which plays fundamental roles in neurogenesis, neuronal development and activity, and brain health, including memory and learning. A selective sub-type of autophagy is mitophagy which recognizes and degrades damaged or superfluous mitochondria to maintain a healthy and necessary cellular mitochondrial pool. However, emerging evidence from animal models and human samples suggests an age-dependent reduction of autophagy and mitophagy, which are also compromised in AD. Upregulation of autophagy/mitophagy slows down memory loss and ameliorates clinical features in animal models of AD. In this review, we give an overview of autophagy and mitophagy and their link to the progression of AD. We also summarize approaches to upregulate autophagy/mitophagy. We hypothesize that age-dependent compromised autophagy/mitophagy is a cause of brain ageing and a risk factor for AD, while restoration of autophagy/mitophagy to more youthful levels could return the brain to health.
Collapse
Affiliation(s)
- Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Kateřina Veverová
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Shi-qi Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, UK
- Novo Nordisk Research Centre Oxford (NNRCO)
| | - Garry Wong
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Evandro F. Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
43
|
Inhibition of mTOR improves malnutrition induced hepatic metabolic dysfunction. Sci Rep 2022; 12:19948. [PMID: 36402829 PMCID: PMC9675758 DOI: 10.1038/s41598-022-24428-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/15/2022] [Indexed: 11/21/2022] Open
Abstract
Severe malnutrition accounts for half-a-million deaths annually in children under the age of five. Despite improved WHO guidelines, inpatient mortality remains high and is associated with metabolic dysfunction. Previous studies suggest a correlation between hepatic metabolic dysfunction and impaired autophagy. We aimed to determine the role of mTORC1 inhibition in a murine model of malnutrition-induced hepatic dysfunction. Wild type weanling C57/B6 mice were fed a 18 or 1% protein diet for two weeks. A third low-protein group received daily rapamycin injections, an mTORC1 inhibitor. Hepatic metabolic function was assessed by histology, immunofluorescence, gene expression, metabolomics and protein levels. Low protein-fed mice manifested characteristics of severe malnutrition, including weight loss, hypoalbuminemia, hypoglycemia, hepatic steatosis and cholestasis. Low protein-fed mice had fewer mitochondria and showed signs of impaired mitochondrial function. Rapamycin prevented hepatic steatosis, restored ATP levels and fasted plasma glucose levels compared to untreated mice. This correlated with increased content of LC3-II, and decreased content mitochondrial damage marker, PINK1. We demonstrate that hepatic steatosis and disturbed mitochondrial function in a murine model of severe malnutrition can be partially prevented through inhibition of mTORC1. These findings suggest that stimulation of autophagy could be a novel approach to improve metabolic function in severely malnourished children.
Collapse
|
44
|
Rappe A, McWilliams TG. Mitophagy in the aging nervous system. Front Cell Dev Biol 2022; 10:978142. [PMID: 36303604 PMCID: PMC9593040 DOI: 10.3389/fcell.2022.978142] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/07/2022] [Indexed: 02/01/2024] Open
Abstract
Aging is characterised by the progressive accumulation of cellular dysfunction, stress, and inflammation. A large body of evidence implicates mitochondrial dysfunction as a cause or consequence of age-related diseases including metabolic disorders, neuropathies, various forms of cancer and neurodegenerative diseases. Because neurons have high metabolic demands and cannot divide, they are especially vulnerable to mitochondrial dysfunction which promotes cell dysfunction and cytotoxicity. Mitophagy neutralises mitochondrial dysfunction, providing an adaptive quality control strategy that sustains metabolic homeostasis. Mitophagy has been extensively studied as an inducible stress response in cultured cells and short-lived model organisms. In contrast, our understanding of physiological mitophagy in mammalian aging remains extremely limited, particularly in the nervous system. The recent profiling of mitophagy reporter mice has revealed variegated vistas of steady-state mitochondrial destruction across different tissues. The discovery of patients with congenital autophagy deficiency provokes further intrigue into the mechanisms that underpin neural integrity. These dimensions have considerable implications for targeting mitophagy and other degradative pathways in age-related neurological disease.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas G. McWilliams
- Translational Stem Cell Biology and Metabolism Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
The RING finger protein family in health and disease. Signal Transduct Target Ther 2022; 7:300. [PMID: 36042206 PMCID: PMC9424811 DOI: 10.1038/s41392-022-01152-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 02/05/2023] Open
Abstract
Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.
Collapse
|
46
|
Gao XY, Yang T, Gu Y, Sun XH. Mitochondrial Dysfunction in Parkinson’s Disease: From Mechanistic Insights to Therapy. Front Aging Neurosci 2022; 14:885500. [PMID: 35795234 PMCID: PMC9250984 DOI: 10.3389/fnagi.2022.885500] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative movement disorders worldwide. There are currently no cures or preventative treatments for PD. Emerging evidence indicates that mitochondrial dysfunction is closely associated with pathogenesis of sporadic and familial PD. Because dopaminergic neurons have high energy demand, cells affected by PD exhibit mitochondrial dysfunction that promotes the disease-defining the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The mitochondrion has a particularly important role as the cellular “powerhouse” of dopaminergic neurons. Therefore, mitochondria have become a promising therapeutic target for PD treatments. This review aims to describe mitochondrial dysfunction in the pathology of PD, outline the genes associated with familial PD and the factors related to sporadic PD, summarize current knowledge on mitochondrial quality control in PD, and give an overview of therapeutic strategies for targeting mitochondria in neuroprotective interventions in PD.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
| | - Tuo Yang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Hong Sun
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Science Experiment Center, China Medical University, Shenyang, China
- *Correspondence: Xiao-Hong Sun,
| |
Collapse
|
47
|
Ondaro J, Hernandez-Eguiazu H, Garciandia-Arcelus M, Loera-Valencia R, Rodriguez-Gómez L, Jiménez-Zúñiga A, Goikolea J, Rodriguez-Rodriguez P, Ruiz-Martinez J, Moreno F, Lopez de Munain A, Holt IJ, Gil-Bea FJ, Gereñu G. Defects of Nutrient Signaling and Autophagy in Neurodegeneration. Front Cell Dev Biol 2022; 10:836196. [PMID: 35419363 PMCID: PMC8996160 DOI: 10.3389/fcell.2022.836196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.
Collapse
Affiliation(s)
- Jon Ondaro
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Haizea Hernandez-Eguiazu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maddi Garciandia-Arcelus
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Raúl Loera-Valencia
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Laura Rodriguez-Gómez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrés Jiménez-Zúñiga
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Julen Goikolea
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Javier Ruiz-Martinez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Fermín Moreno
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Adolfo Lopez de Munain
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Ian James Holt
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Francisco Javier Gil-Bea
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gorka Gereñu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), Leioa, Spain
| |
Collapse
|
48
|
Jetto CT, Nambiar A, Manjithaya R. Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Front Cell Dev Biol 2022; 10:837337. [PMID: 35392168 PMCID: PMC8981085 DOI: 10.3389/fcell.2022.837337] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (henceforth autophagy) an evolutionary conserved intracellular pathway, involves lysosomal degradation of damaged and superfluous cytosolic contents to maintain cellular homeostasis. While autophagy was initially perceived as a bulk degradation process, a surfeit of studies in the last 2 decades has revealed that it can also be selective in choosing intracellular constituents for degradation. In addition to the core autophagy machinery, these selective autophagy pathways comprise of distinct molecular players that are involved in the capture of specific cargoes. The diverse organelles that are degraded by selective autophagy pathways are endoplasmic reticulum (ERphagy), lysosomes (lysophagy), mitochondria (mitophagy), Golgi apparatus (Golgiphagy), peroxisomes (pexophagy) and nucleus (nucleophagy). Among these, the main focus of this review is on the selective autophagic pathway involved in mitochondrial turnover called mitophagy. The mitophagy pathway encompasses diverse mechanisms involving a complex interplay of a multitude of proteins that confers the selective recognition of damaged mitochondria and their targeting to degradation via autophagy. Mitophagy is triggered by cues that signal the mitochondrial damage such as disturbances in mitochondrial fission-fusion dynamics, mitochondrial membrane depolarisation, enhanced ROS production, mtDNA damage as well as developmental cues such as erythrocyte maturation, removal of paternal mitochondria, cardiomyocyte maturation and somatic cell reprogramming. As research on the mechanistic aspects of this complex pathway is progressing, emerging roles of new players such as the NIPSNAP proteins, Miro proteins and ER-Mitochondria contact sites (ERMES) are being explored. Although diverse aspects of this pathway are being investigated in depth, several outstanding questions such as distinct molecular players of basal mitophagy, selective dominance of a particular mitophagy adapter protein over the other in a given physiological condition, molecular mechanism of how specific disease mutations affect this pathway remain to be addressed. In this review, we aim to give an overview with special emphasis on molecular and signalling pathways of mitophagy and its dysregulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Cuckoo Teresa Jetto
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Akshaya Nambiar
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Ravi Manjithaya
- Autophagy Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
- *Correspondence: Ravi Manjithaya,
| |
Collapse
|
49
|
Tönges L, Kwon EH, Klebe S. Monogenetic Forms of Parkinson’s Disease – Bridging the Gap Between Genetics and Biomarkers. Front Aging Neurosci 2022; 14:822949. [PMID: 35317530 PMCID: PMC8934414 DOI: 10.3389/fnagi.2022.822949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
The therapy of neurodegenerative diseases such as Parkinson’s disease (PD) is still limited to the treatment of symptoms and primarily aimed at compensating for dopaminergic hypofunction. Numerous disease-modifying therapies currently in the pipeline attempt to modify the underlying pathomechanisms. In recent decades, the results of molecular genetics and biomarker research have raised hopes of earlier diagnosis and new neuroprotective therapeutic approaches. As the disease-causing processes in monogenetic forms of PD are better understood than in sporadic PD, these disease subsets are likely to benefit first from disease-modifying therapies. Recent studies have suggested that disease-relevant changes found in genetically linked forms of PD (i.e., PARK-LRRK2, PARK-GBA) can also be reproduced in patients in whom no genetic cause can be found, i.e., those with sporadic PD. It can, therefore, be assumed that as soon as the first causal therapy for genetic forms of PD is approved, more patients with PD will undergo genetic testing and counseling. Regarding future neuroprotective trials in neurodegenerative diseases and objective parameters such as biomarkers with high sensitivity and specificity for the diagnosis and course of the disease are needed. These biomarkers will also serve to monitor treatment success in clinical trials. Promising examples in PD, such as alpha-synuclein species, lysosomal enzymes, markers of amyloid and tau pathology, and neurofilament light chain, are under investigation in blood and CSF. This paper provides an overview of the opportunities and current limitations of monogenetic diagnostic and biomarker research in PD and aims to build a bridge between current knowledge and association with PD genetics and biomarkers.
Collapse
Affiliation(s)
- Lars Tönges
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
- Center for Protein Diagnostics (ProDi), Ruhr University Bochum, Bochum, Germany
| | - Eun Hae Kwon
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephan Klebe
- Department of Neurology, University Hospital Essen, Essen, Germany
- *Correspondence: Stephan Klebe,
| |
Collapse
|
50
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|