1
|
Huang L, Guo Z, Huang M, Zeng X, Huang H. Triiodothyronine (T3) promotes browning of white adipose through inhibition of the PI3K/AKT signalling pathway. Sci Rep 2024; 14:20370. [PMID: 39223267 PMCID: PMC11369215 DOI: 10.1038/s41598-024-71591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity arises from an imbalance between energy consumption and energy expenditure, and thyroid hormone levels serve as a determinant of energy expenditure. We conducted experiments at the animal and cellular levels and combined those findings with clinical data to elucidate the role of triiodothyronine (T3) in facilitating the browning of white adipose tissue (WAT) and its underlying mechanism. The results showed (i) the impaired metabolic function of local WAT and the compensatory elevation of systemic thermogenesis in obesity; (ii) T3 treatment of white adipocytes in vitro and local WAT in vivo induced a shift towards a morphologically "brown" phenotype, accompanied by upregulation of mRNA and protein expression of browning-related and mitochondrial function markers, which suggest that T3 intervention promotes the browning of WAT; and (iii) the aforementioned processes could be modulated through inhibition of the PI3K/AKT signalling pathway; however, whether T3 affects the PI3K/AKT signalling pathway by affecting insulin signalling remains to be studied and clarified. The results of our study indicate that T3 treatment promotes browning of WAT through inhibition of the PI3K/AKT signalling pathway; these findings offer novel perspectives regarding the potential of localised therapies for addressing WAT volume in individuals with obesity.
Collapse
Affiliation(s)
- LingHong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - ZhiFeng Guo
- Department of Respiratory Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - MingJing Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - XiYing Zeng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
2
|
Bhati KK, Luong AM, Dittrich-Domergue F, D'Andrea S, Moreau P, Batoko H. Possible crosstalk between the Arabidopsis TSPO-related protein and the transcription factor WRINKLED1. Biochimie 2024; 224:62-70. [PMID: 38734125 DOI: 10.1016/j.biochi.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
This study uncovers a regulatory interplay between WRINKLED1 (WRI1), a master transcription factor for glycolysis and lipid biosynthesis, and Translocator Protein (TSPO) expression in Arabidopsis thaliana seeds. We identified potential WRI1-responsive elements upstream of AtTSPO through bioinformatics, suggesting WRI1's involvement in regulating TSPO expression. Our analyses showed a significant reduction in AtTSPO levels in wri1 mutant seeds compared to wild type, establishing a functional link between WRI1 and TSPO. This connection extends to the coordination of seed development and lipid metabolism, with both WRI1 and AtTSPO levels decreasing post-imbibition, indicating their roles in seed physiology. Further investigations into TSPO's impact on fatty acid synthesis revealed that TSPO misexpression alters WRI1's post-translational modifications and significantly enhances seed oil content. Additionally, we noted a decrease in key reserve proteins, including 12 S globulin and oleosin 1, in seeds with TSPO misexpression, suggesting a novel energy storage strategy in these lines. Our findings reveal a sophisticated network involving WRI1 and AtTSPO, highlighting their crucial contributions to seed development, lipid metabolism, and the modulation of energy storage mechanisms in Arabidopsis.
Collapse
Affiliation(s)
- Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Ai My Luong
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Franziska Dittrich-Domergue
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140, Villenave d'Ornon, France
| | - Sabine D'Andrea
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Patrick Moreau
- CNRS, University of Bordeaux, Laboratoire de Biogenèse Membranaire, UMR 5200, 33140, Villenave d'Ornon, France
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain, Croix du Sud 4-5, L7.07.14, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
3
|
Bréhat J, Issop L, Morin D. History of Tspo deletion and induction in vivo: Phenotypic outcomes under physiological and pathological situations. Biochimie 2024; 224:80-90. [PMID: 38432291 DOI: 10.1016/j.biochi.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/05/2024]
Abstract
The mitochondrial translocator protein (TSPO) is an outer mitochondrial protein membrane with high affinity for cholesterol. It is expressed in most tissues but is more particularly enriched in steroidogenic tissues. TSPO is involved in various biological mechanisms and TSPO regulation has been related to several diseases. However, despite a considerable number of published studies interested in TSPO over the past forty years, the precise function of the protein remains obscure. Most of the functions attributed to TSPO have been identified using pharmacological ligands of this protein, leading to much debate about the accuracy of these findings. In addition, research on the physiological role of TSPO has been hampered by the lack of in vivo deletion models. Studies to perform genetic deletion of Tspo in animal models have long been unsuccessful, which led to the conclusions that the deletion was deleterious and the gene essential to life. During the last decades, thanks to the significant technical advances allowing genome modification, several models of animal genetically modified for TSPO have been developed. These models have modified our view regarding TSPO and profoundly improved our fundamental knowledge on this protein. However, to date, they did not allow to elucidate the precise molecular function of TSPO and numerous questions persist concerning the physiological role of TSPO and its future as a therapeutic target. This article chronologically reviews the development of deletion and induction models of TSPO.
Collapse
Affiliation(s)
- Juliette Bréhat
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Leeyah Issop
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France
| | - Didier Morin
- INSERM U955-IMRB, Team Ghaleh, UPEC, Ecole Nationale Vétérinaire d'Alfort, Créteil, France.
| |
Collapse
|
4
|
Modder M, Coomans CP, Saaltink DJ, Tersteeg MMH, Hoogduin J, Scholten L, Pronk ACM, Lalai RA, Boelen A, Kalsbeek A, Rensen PCN, Vreugdenhil E, Kooijman S. Doublecortin-like knockdown in mice attenuates obesity by stimulating energy expenditure in adipose tissue. Sci Rep 2024; 14:19517. [PMID: 39174821 PMCID: PMC11341836 DOI: 10.1038/s41598-024-70639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
Crosstalk between peripheral metabolic organs and the central nervous system is essential for body weight control. At the base of the hypothalamus, β-tanycytes surround the portal capillaries and function as gatekeepers to facilitate transfer of substances from the circulation into the cerebrospinal fluid and vice versa. Here, we investigated the role of the neuroplasticity gene doublecortin-like (DCL), highly expressed by β-tanycytes, in body weight control and whole-body energy metabolism. We demonstrated that DCL-knockdown through a doxycycline-inducible shRNA expression system prevents body weight gain by reducing adiposity in mice. DCL-knockdown slightly increased whole-body energy expenditure possibly as a result of elevated circulating thyroid hormones. In white adipose tissue (WAT) triglyceride uptake was increased while the average adipocyte cell size was reduced. At histological level we observed clear signs of browning, and thus increased thermogenesis in WAT. We found no indications for stimulated thermogenesis in brown adipose tissue (BAT). Altogether, we demonstrate an important, though subtle, role of tanycytic DCL in body weight control through regulation of energy expenditure, and specifically WAT browning. Elucidating mechanisms underlying the role of DCL in regulating brain-peripheral crosstalk further might identify new treatment targets for obesity.
Collapse
Affiliation(s)
- Melanie Modder
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Claudia P Coomans
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Dirk-Jan Saaltink
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Mayke M H Tersteeg
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Janna Hoogduin
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Leonie Scholten
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Amanda C M Pronk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Reshma A Lalai
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Anita Boelen
- Endocrine Laboratory, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Endocrine Laboratory, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Erno Vreugdenhil
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands
| | - Sander Kooijman
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
- Leiden University Medical Center, Albinusdreef 2, 2333ZA, Leiden, The Netherlands.
| |
Collapse
|
5
|
Brunner M, Lopez-Rodriguez D, Estrada-Meza J, Dali R, Rohrbach A, Deglise T, Messina A, Thorens B, Santoni F, Langlet F. Fasting induces metabolic switches and spatial redistributions of lipid processing and neuronal interactions in tanycytes. Nat Commun 2024; 15:6604. [PMID: 39098920 PMCID: PMC11298547 DOI: 10.1038/s41467-024-50913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
The ependyma lining the third ventricle (3V) in the mediobasal hypothalamus plays a crucial role in energy balance and glucose homeostasis. It is characterized by a high functional heterogeneity and plasticity, but the underlying molecular mechanisms governing its features are not fully understood. Here, 5481 hypothalamic ependymocytes were cataloged using FACS-assisted scRNAseq from fed, 12h-fasted, and 24h-fasted adult male mice. With standard clustering analysis, typical ependymal cells and β2-tanycytes appear sharply defined, but other subpopulations, β1- and α-tanycytes, display fuzzy boundaries with few or no specific markers. Pseudospatial approaches, based on the 3V neuroanatomical distribution, enable the identification of specific versus shared tanycyte markers and subgroup-specific versus general tanycyte functions. We show that fasting dynamically shifts gene expression patterns along the 3V, leading to a spatial redistribution of cell type-specific responses. Altogether, we show that changes in energy status induce metabolic and functional switches in tanycyte subpopulations, providing insights into molecular and functional diversity and plasticity within the tanycyte population.
Collapse
Affiliation(s)
- Maxime Brunner
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - David Lopez-Rodriguez
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Judith Estrada-Meza
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Rafik Dali
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Antoine Rohrbach
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tamara Deglise
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Andrea Messina
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Bernard Thorens
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Federico Santoni
- Service of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Institute for Genetic and Biomedical Research (IRGB) - CNR, Monserrato, Italy.
| | - Fanny Langlet
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, Beall C, Ellacott KLJ. Regulation of astrocyte metabolism by mitochondrial translocator protein 18 kDa. J Neurochem 2024; 168:1374-1401. [PMID: 38482552 DOI: 10.1111/jnc.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/26/2024]
Abstract
The mitochondrial translocator protein 18 kDa (TSPO) has been linked to functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in Leydig cells and microglia indicate that TSPO function may vary between cells depending on their specialized roles. Astrocytes are critical for providing trophic and metabolic support in the brain. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. Relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed extracellular metabolic flux analyses. We found that TSPO deficiency reduced basal cellular respiration and attenuated the bioenergetic response to glucopenia. Fatty acid oxidation was increased, and lactate production was reduced in TSPO-/- MPAs and U373 cells. Co-immunoprecipitation studies revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a in U373 and MPAs, presenting a mechanism wherein TSPO may regulate FAO in these cells. Compared to TSPO+/+ cells, in TSPO-/- MPAs we observed attenuated tumor necrosis factor release following 3 h lipopolysaccharide (LPS) stimulation, which was enhanced at 24 h post-LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility, TSPO deficiency does not appear to modulate the metabolic response of MPAs to inflammation, at least in response to the model used in this study.
Collapse
Affiliation(s)
- Wyn Firth
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Josephine L Robb
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daisy Stewart
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rosemary Bamford
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asami Oguro-Ando
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Craig Beall
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kate L J Ellacott
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Fan H, Tan Y. Lipid Droplet-Mitochondria Contacts in Health and Disease. Int J Mol Sci 2024; 25:6878. [PMID: 38999988 PMCID: PMC11240910 DOI: 10.3390/ijms25136878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The orchestration of cellular metabolism and redox balance is a complex, multifaceted process crucial for maintaining cellular homeostasis. Lipid droplets (LDs), once considered inert storage depots for neutral lipids, are now recognized as dynamic organelles critical in lipid metabolism and energy regulation. Mitochondria, the powerhouses of the cell, play a central role in energy production, metabolic pathways, and redox signaling. The physical and functional contacts between LDs and mitochondria facilitate a direct transfer of lipids, primarily fatty acids, which are crucial for mitochondrial β-oxidation, thus influencing energy homeostasis and cellular health. This review highlights recent advances in understanding the mechanisms governing LD-mitochondria interactions and their regulation, drawing attention to proteins and pathways that mediate these contacts. We discuss the physiological relevance of these interactions, emphasizing their role in maintaining energy and redox balance within cells, and how these processes are critical in response to metabolic demands and stress conditions. Furthermore, we explore the pathological implications of dysregulated LD-mitochondria interactions, particularly in the context of metabolic diseases such as obesity, diabetes, and non-alcoholic fatty liver disease, and their potential links to cardiovascular and neurodegenerative diseases. Conclusively, this review provides a comprehensive overview of the current understanding of LD-mitochondria interactions, underscoring their significance in cellular metabolism and suggesting future research directions that could unveil novel therapeutic targets for metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Hongjun Fan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yanjie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
8
|
Liu D, Wang T, Zhao X, Chen J, Yang T, Shen Y, Zhou YD. Saturated fatty acids stimulate cytokine production in tanycytes via the PP2Ac-dependent signaling pathway. J Cereb Blood Flow Metab 2024; 44:985-999. [PMID: 38069840 PMCID: PMC11318396 DOI: 10.1177/0271678x231219115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/18/2023] [Accepted: 11/10/2023] [Indexed: 05/18/2024]
Abstract
The hypothalamic tanycytes are crucial for free fatty acids (FFAs) detection, storage, and transport within the central nervous system. They have been shown to effectively respond to fluctuations in circulating FFAs, thereby regulating energy homeostasis. However, the precise molecular mechanisms by which tanycytes modulate lipid utilization remain unclear. Here, we report that the catalytic subunit of protein phosphatase 2 A (PP2Ac), a serine/threonine phosphatase, is expressed in tanycytes and its accumulation and activation occur in response to high-fat diet consumption. In vitro, tanycytic PP2Ac responds to palmitic acid (PA) exposure and accumulates and is activated at an early stage in an AMPK-dependent manner. Furthermore, activated PP2Ac boosts hypoxia-inducible factor-1α (HIF-1α) accumulation, resulting in upregulation of an array of cytokines. Pretreatment with a PP2Ac inhibitor, LB100, prevented the PA-induced elevation of vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF1), hepatocyte growth factor (HGF), and dipeptidyl peptidase IV (DPPIV or CD26). Our results disclose a mechanism of lipid metabolism in tanycytes that involves the activation of PP2Ac and highlight the physiological significance of PP2Ac in hypothalamic tanycytes in response to overnutrition and efficacious treatment of obesity.
Collapse
Affiliation(s)
- Danyang Liu
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Nanhu Brain-computer Interface Institute, Hangzhou 311100, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Tao Wang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Xingqi Zhao
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Juan Chen
- School of Mental Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Tianqi Yang
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yi Shen
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu-Dong Zhou
- Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
- Lingang Laboratory, Shanghai 200031, China
- Department of Ophthalmology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
9
|
Zhu Y, Ma XY, Cui LG, Xu YR, Li CX, Talukder M, Li XN, Li JL. Di (2-ethylhexyl) phthalate induced lipophagy-related renal ferroptosis in quail (Coturnix japonica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170724. [PMID: 38325449 DOI: 10.1016/j.scitotenv.2024.170724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a synthetic chemical applied as a plasticizer. As an environmental toxicant, DEHP poses a serious health threat. Many studies have revealed that DEHP can cause lead to various degrees of damage to the kidney. However, the evidence of DEHP-induced renal ferroptosis has not been reported. The purpose of this work was to probe the specific role of lipophagy in DEHP-induced renal injury and to investigate the relationship between lipophagy and ferroptosis. Quail were treated with DEHP (250 mg/kg BW/day, 500 mg/kg BW/day and 750 mg/kg BW/day) for 45 days. Microstructural and ultrastructural observations showed that DEHP caused damage to glomerular and tubular cells, and autophagy with multilayer structures were observed, suggesting that DEHP can induce lipophagy. The results indicated that the iron homeostasis was abnormal and the lipid peroxidation was increased. SLC7A11 and SLC3A2 were down-regulated. PTGS2, ACSL4 and LPCAT3 were elevated. In conclusion, DEHP could induce lipid peroxidation, lead to ferroptosis, and damage renal cells. Therefore, the relationship between lipophagy and ferroptosis was elucidated, which provided a new basis for intervention and prevention of DEHP increased diseases.
Collapse
Affiliation(s)
- Yu Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ling-Ge Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
10
|
Zhang J, Zhu Z, Huang J, Yang H, Wang Q, Zhang Y. Analyzing the impact and mechanism of bisphenol A on testicular lipid metabolism in Gobiocypris rarus through integrated lipidomics and transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115498. [PMID: 37742580 DOI: 10.1016/j.ecoenv.2023.115498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/15/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Bisphenol A (BPA) is one of the most common environmental endocrine chemicals, known for its estrogenic effects that can interfere with male spermatogenesis. Lipids play crucial roles in sperm production, capacitation, and motility as important components of the sperm plasma membrane. However, limited research has explored whether BPA affects lipid metabolism in the testes of male fish and subsequently impacts spermatogenesis. In this study, we employed Gobiocypris rarus rare minnow as a research model and exposed them to environmentally relevant concentrations of BPA (15 μg/L) for 5 weeks. We assessed sperm morphology and function and analyzed changes in testicular lipid composition and transcriptomics. The results demonstrated a significant increase in the sperm head membrane damage rate, along with reduced sperm motility and fertilization ability due to BPA exposure. Lipidomics analysis revealed that BPA increased the content of 11 lipids while decreasing the content of 6 lipids in the testes, particularly within glycerophospholipids, glycerolipids, and sphingolipid subclasses. Transcriptomics results indicated significant up-regulation in pathways such as cholesterol metabolism, peroxisome proliferator-activated receptor signaling, and fat digestion and absorption, with significant alterations in key genes related to lipid metabolism, including apolipoprotein A-I, apolipoprotein C-I, and translocator protein. These findings suggest that BPA exposure can induce testicular lipid metabolism disruption in rare minnows, potentially resulting in abnormalities in rare minnow spermatogenesis.
Collapse
Affiliation(s)
- Jianlu Zhang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China; College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiqin Huang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qijun Wang
- Shaanxi key laboratory of Qinling Ecological Security, Shaanxi Institute of Zoology, Xi'an 710032, China.
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
11
|
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, Beall C, Ellacott KLJ. Regulation of astrocyte metabolism by mitochondrial translocator protein 18kDa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560159. [PMID: 37873215 PMCID: PMC10592862 DOI: 10.1101/2023.09.29.560159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The mitochondrial translocator protein 18kDa (TSPO) has been linked to a variety of functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in the periphery using Leydig cells and hepatocytes, as well as work in microglia, indicate that the function of TSPO may vary between cells depending on their specialised roles. Astrocytes are critical for providing trophic and metabolic support in the brain as part of their role in maintaining brain homeostasis. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. However, relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed metabolic flux analyses. We found that loss of TSPO reduced basal astrocyte respiration and increased the bioenergetic response to glucose reintroduction following glucopenia, while increasing fatty acid oxidation (FAO). Lactate production was significantly reduced in TSPO-/- astrocytes. Co-immunoprecipitation studies in U373 cells revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a, which presents a mechanism wherein TSPO may regulate FAO in astrocytes. Compared to TSPO+/+ cells, inflammation induced by 3h lipopolysaccharide (LPS) stimulation of TSPO-/- MPAs revealed attenuated tumour necrosis factor release, which was enhanced in TSPO-/- MPAs at 24h LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility in astrocytes, loss of TSPO does not appear to modulate the metabolic response of astrocytes to inflammation, at least in response to the stimulus/time course used in this study.
Collapse
Affiliation(s)
- Wyn Firth
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Josephine L Robb
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daisy Stewart
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katherine R Pye
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rosemary Bamford
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asami Oguro-Ando
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Craig Beall
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kate LJ Ellacott
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
12
|
Zhang Y, Li Y, Liu Y, Wang H, Chen Y, Zhang B, Song M, Song L, Ding Q, Qiu J, Fan M, Qu L, Wang Z. Alcoholic Setdb1 suppression promotes hepatosteatosis in mice by strengthening Plin2. Metabolism 2023:155656. [PMID: 37419179 DOI: 10.1016/j.metabol.2023.155656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND AND AIMS Hepatosteatosis is one of the early features of alcoholic liver disease (ALD) and pharmaceutical or genetic interfering of the development of hepatosteatosis will efficiently alleviate the progression of ALD. Currently, the role of histone methyltransferase Setdb1 in ALD is not yet well understood. METHOD Lieber-De Carli diet mice model and NIAAA mice model were constructed to confirm the expression of Setdb1. The hepatocyte-specific Setdb1-knockout (Setdb1-HKO) mice was established to determine the effects of Setdb1 in vivo. Adenovirus-Setdb1 were produced to rescue the hepatic steatosis in both Setdb1-HKO and Lieber-De Carli mice. The enrichment of H3k9me3 in the upstream sequence of Plin2 and the chaperone-mediated autophagy (CMA) of Plin2 were identified by ChIP and co-IP. Dual-luciferase reporter assay was used to detect the interaction of Setdb1 3'UTR and miR216b-5p in AML12 or HEK 293 T cells. RESULTS We found that Setdb1 was downregulated in the liver of alcohol-fed mice. Setdb1 knockdown promoted lipid accumulation in AML12 hepatocytes. Meanwhile, hepatocyte-specific Setdb1-knockout (Setdb1-HKO) mice exhibited significant lipid accumulation in the liver. Overexpression of Setdb1 was performed with an adenoviral vector through tail vein injection, which ameliorated hepatosteatosis in both Setdb1-HKO and alcoholic diet-fed mice. Mechanistically, downregulated Setdb1 promoted the mRNA expression of Plin2 by desuppressing H3K9me3-mediated chromatin silencing in its upstream sequence. Pin2 acts as a critical membrane surface-associated protein to maintain lipid droplet stability and inhibit lipase degradation. The downregulation of Setdb1 also maintained the stability of Plin2 protein through inhibiting Plin2-recruited chaperone-mediated autophagy (CMA). To explore the reasons for Setdb1 suppression in ALD, we found that upregulated miR-216b-5p bound to the 3'UTR of Setdb1 mRNA, disturbed its mRNA stability, and eventually aggravated hepatic steatosis. CONCLUSIONS Setdb1 suppression plays an important role in the progression of alcoholic hepatosteatosis via elevating the expression of Plin2 mRNA and maintaining the stability of Plin2 protein. Targeting hepatic Setdb1 might be a promising diagnostic or therapeutic strategy for ALD.
Collapse
Affiliation(s)
- Yi Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University-Daqing Campus, Daqing, China; Departments of Laboratory Diagnosis, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Yanhui Li
- College of Medical Laboratory Science and Technology, Harbin Medical University-Daqing Campus, Daqing, China
| | - Yang Liu
- Clinical Laboratory, The First Hospital of Harbin, Harbin, China
| | - Hongzhi Wang
- Departments of Laboratory Diagnosis, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Yingli Chen
- College of Medical Laboratory Science and Technology, Harbin Medical University-Daqing Campus, Daqing, China
| | - Bing Zhang
- College of Medical Laboratory Science and Technology, Harbin Medical University-Daqing Campus, Daqing, China
| | - Meiqi Song
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, China
| | - Lei Song
- Department of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, China
| | - Qinchao Ding
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingjian Fan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, China
| | - Lihui Qu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhigang Wang
- College of Medical Laboratory Science and Technology, Harbin Medical University-Daqing Campus, Daqing, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, China.
| |
Collapse
|
13
|
Valencia-Olvera AC, Balu D, Faulk N, Amiridis A, Wang Y, Pham C, Avila-Munoz E, York JM, Thatcher GRJ, LaDu MJ. Inhibition of ACAT as a Therapeutic Target for Alzheimer's Disease Is Independent of ApoE4 Lipidation. Neurotherapeutics 2023; 20:1120-1137. [PMID: 37157042 PMCID: PMC10457278 DOI: 10.1007/s13311-023-01375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/10/2023] Open
Abstract
APOE4, encoding apolipoprotein E4 (apoE4), is the greatest genetic risk factor for Alzheimer's disease (AD), compared to the common APOE3. While the mechanism(s) underlying APOE4-induced AD risk remains unclear, increasing the lipidation of apoE4 is an important therapeutic target as apoE4-lipoproteins are poorly lipidated compared to apoE3-lipoproteins. ACAT (acyl-CoA: cholesterol-acyltransferase) catalyzes the formation of intracellular cholesteryl-ester droplets, reducing the intracellular free cholesterol (FC) pool. Thus, inhibiting ACAT increases the FC pool and facilitates lipid secretion to extracellular apoE-containing lipoproteins. Previous studies using commercial ACAT inhibitors, including avasimibe (AVAS), as well as ACAT-knock out (KO) mice, exhibit reduced AD-like pathology and amyloid precursor protein (APP) processing in familial AD (FAD)-transgenic (Tg) mice. However, the effects of AVAS with human apoE4 remain unknown. In vitro, AVAS induced apoE efflux at concentrations of AVAS measured in the brains of treated mice. AVAS treatment of male E4FAD-Tg mice (5xFAD+/-APOE4+/+) at 6-8 months had no effect on plasma cholesterol levels or distribution, the original mechanism for AVAS treatment of CVD. In the CNS, AVAS reduced intracellular lipid droplets, indirectly demonstrating target engagement. Surrogate efficacy was demonstrated by an increase in Morris water maze measures of memory and postsynaptic protein levels. Amyloid-beta peptide (Aβ) solubility/deposition and neuroinflammation were reduced, critical components of APOE4-modulated pathology. However, there was no increase in apoE4 levels or apoE4 lipidation, while amyloidogenic and non-amyloidogenic processing of APP were significantly reduced. This suggests that the AVAS-induced reduction in Aβ via reduced APP processing was sufficient to reduce AD pathology, as apoE4-lipoproteins remained poorly lipidated.
Collapse
Affiliation(s)
- Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Naomi Faulk
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | | | - Yueting Wang
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612 USA
- Present Address: AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064 USA
| | - Christine Pham
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Eva Avila-Munoz
- Syneos Health, Av. Gustavo Baz 309, La Loma, Tlalnepantla de Baz, 54060 Mexico
| | - Jason M. York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Gregory R. J. Thatcher
- Department of Pharmacology & Toxicology, University of Arizona, 1703 E Mabel St., Tucson, AZ 85721 USA
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612 USA
| |
Collapse
|
14
|
Wang Y, Shi J, Liu K, Wang Y, Xu Y, Liu Y. Metabolomics and gene expression levels reveal the positive effects of teaseed oil on lifespan and aging process in Caenorhabditis elegans. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
16
|
Wang X, Cong P, Wang X, Wang Z, Liu B, Xue C, Xu J. Docosahexaenoic acid-acylated astaxanthin monoester ameliorates chronic high-fat diet-induced autophagy dysfunction via ULK1 pathway in the hypothalamus of mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2378-2388. [PMID: 36606564 DOI: 10.1002/jsfa.12429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 11/21/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Dietary astaxanthin (AST) exhibits the ability to resist lipid accumulation and stimulate hepatic autophagy. Natural AST predominantly exists in stable esterified forms. More importantly, in our previous study, docosahexaenoic acid-acylated AST monoester (AST-DHA) possessed better stability, bioavailability, and neuroprotective ability than AST in free and diester form. However, the AST-DHA mechanisms of action in regulating the obese phenotype and autophagy of the central nervous system remain unclear. RESULTS High-fat diet (HFD)-fed C57BL/6J mice were orally administered AST-DHA (50 mg/kg body weight/d) for 3 days or 8 weeks. AST-DHA supplementation alleviated HFD-induced abnormal body weight gain, significantly enhanced autophagy with an increased microtubule-associated protein light chain 3 II/I (LC3II/I) ratio, and reduced the accumulation of p62/sequestosome 1 (SQSTM1) in the hypothalamus rather than in the hippocampus. Mechanistically, AST-DHA effectively promoted autophagy and autophagosome formation, and most notably rescued the HFD-impaired autophagosome-lysosome fusion (indicated by the colocalization of LC3 and LAMP1) by regulating mTOR- and AMPK-induced phosphorylation of ULK1. Consequently, AST-DHA enhanced hypothalamic autophagy, leading to pro-opiomelanocortin (POMC) cleavage to produce alpha-melanocyte-stimulating hormone (α-MSH). CONCLUSIONS This study identified AST-DHA as an enhancer of autophagy that plays a beneficial role in restoring hypothalamic autophagy, and as a new potential therapeutic agent against HFD-induced obesity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xincen Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhigao Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Bin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
17
|
Kusumoto J, Ataka K, Iwai H, Oga Y, Yamagata K, Marutani K, Ishikawa T, Asakawa A, Miyawaki S. Malocclusion impairs cognitive behavior via AgRP signaling in adolescent mice. Front Neurosci 2023; 17:1156523. [PMID: 37168929 PMCID: PMC10164942 DOI: 10.3389/fnins.2023.1156523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Occlusal disharmony induced by deteriorating oral health conditions, such as tooth loss and decreased masticatory muscle due to sarcopenia, is one of the causes of cognitive impairment. Chewing is an essential oral function for maintaining cognitive function not only in the elderly but also in young people. Malocclusion is an occlusal disharmony that commonly occurs in children. The connection between a decline in cognitive function and malocclusion in children has been shown with chronic mouth breathing, obstructive sleep apnea syndrome, and thumb/digit sucking habits. However, the mechanism of malocclusion-induced cognitive decline is not fully understood. We recently reported an association between feeding-related neuropeptides and cognitive decline in adolescent mice with activity-based anorexia. The aim of the present study was to assess the effects of malocclusion on cognitive behavior and clarify the connection between cognitive decline and hypothalamic feeding-related neuropeptides in adolescent mice with malocclusion. Methods Four-week-old mice were randomly assigned to the sham-operated solid diet-fed (Sham/solid), sham-operated powder diet-fed (Sham/powder), or malocclusion-operated powder diet-fed (Malocclusion/powder) group. We applied composite resin to the mandibular anterior teeth to simulate malocclusion. We evaluated cognitive behavior using a novel object recognition (NOR) test, measured hypothalamic feeding-related neuropeptide mRNA expression levels, and enumerated c-Fos-positive cells in the hypothalamus 1 month after surgery. We also evaluated the effects of central antibody administration on cognitive behavior impairment in the NOR test. Results The NOR indices were lower and the agouti-related peptide (AgRP) mRNA levels and number of c-Fos-positive cells were higher in the malocclusion/powder group than in the other groups. The c-Fos-positive cells were also AgRP-positive. We observed that the central administration of anti-AgRP antibody significantly increased the NOR indices. Discussion The present study suggests that elevated cerebral AgRP signaling contributes to malocclusion-induced cognitive decline in adolescents, and the suppression of AgRP signaling can be a new therapeutic target against cognitive decline in occlusal disharmony.
Collapse
Affiliation(s)
- Junya Kusumoto
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Koji Ataka
- Laboratory of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- *Correspondence: Koji Ataka,
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yasuhiko Oga
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keita Yamagata
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Kanako Marutani
- Department of Orthodontics, Center of Developmental Dentistry, Kagoshima University Hospital, Kagoshima, Japan
| | - Takanori Ishikawa
- Department of Orthodontics, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics and Dentofacial Orthopedics, Field of Developmental Medicine, Health Research Course, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
18
|
Tollefson S, Himes ML, Kozinski KM, Lopresti BJ, Mason NS, Hibbeln J, Muldoon MF, Narendran R. Imaging the Influence of Red Blood Cell Docosahexaenoic Acid Status on the Expression of the 18 kDa Translocator Protein in the Brain: A [ 11C]PBR28 Positron Emission Tomography Study in Young Healthy Men. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:998-1006. [PMID: 34607054 DOI: 10.1016/j.bpsc.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/09/2021] [Accepted: 09/18/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Docosahexaenoic acid (DHA) shows anti-inflammatory/proresolution effects in the brain. Higher red blood cell (RBC) DHA in humans is associated with improved cognitive performance and a lower risk for suicide. Here, we hypothesized that binding to the 18 kDa translocator protein (TSPO), a proxy for microglia levels, will be higher in individuals with low DHA relative to high DHA levels. We also postulated that higher TSPO would predict poor cognitive performance and impaired stress resilience. METHODS RBC DHA screening was performed in 320 healthy males. [11C]PBR28 positron emission tomography was used to measure binding to TSPO in 38 and 32 males in the lowest and highest RBC DHA quartiles. Volumes of distribution expressed relative to total plasma ligand concentration (VT) was derived using an arterial input function-based kinetic analysis in 14 brain regions. RESULTS [11C]PBR28 VT was significantly lower (by 12% and 20% in C/T and C/C rs6971 genotypes) in males with low RBC DHA than in males with high RBC DHA. Regional VT was correlated positively and negatively with RBC DHA and serum triglycerides, respectively. No relationships between VT and cognitive performance or stress resilience measures were present. CONCLUSIONS Contrary to our hypothesis, we found lower TSPO binding in low-DHA than in high-DHA subjects. It is unclear as to whether low TSPO binding reflects differences in microglia levels and/or triglyceride metabolism in this study. Future studies with specific targets are necessary to confirm the effect of DHA on microglia. These results underscore the need to consider lipid parameters as a factor when interpreting TSPO positron emission tomography clinical findings.
Collapse
Affiliation(s)
- Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michael L Himes
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katelyn M Kozinski
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - N Scott Mason
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Joseph Hibbeln
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Matthew F Muldoon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
19
|
Yu M, Wang D, Zhong D, Xie W, Luo J. Adropin Carried by Reactive Oxygen Species-Responsive Nanocapsules Ameliorates Renal Lipid Toxicity in Diabetic Mice. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37330-37344. [PMID: 35951354 DOI: 10.1021/acsami.2c06957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetes complication mainly caused by lipid toxicity characterized by oxidative stress. Studies have shown that adropin (Ad) regulates energy metabolism and may be an effective target to improve DKD. This study investigated the effect of exogenous Ad encapsulated in reactive oxygen species (ROS)-responsive nanocapsules (Ad@Gel) on DKD. HK2 cells were induced with high glucose (HG) and intervened with Ad@Gel. A diabetes mouse model was established using HG and high-fat diet combined with streptozotocin and treated with Ad@Gel to observe its effects on renal function, pathological damage, lipid metabolism, and oxidative stress. Results showed that Ad@Gel could protect HK2 from HG stimulation in vitro. It also effectively controls blood glucose and lipid levels, improves renal function, inhibits excessive production of ROS, protects mitochondria from damage, improves lipid deposition in renal tissues, and downregulates the expression of lipogenic proteins SEBP-1 and ADRP in DKD mice. In HG-induced HK2 cells or the kidney of DKD patients, the low expression of neuronatin (Nnat) and high expression of translocator protein (TSPO) were observed. Knockdown Nnat or overexpression of TSPO significantly reversed the effect of Ad@Gel on improving mitochondrial damage. In addition, knockdown Nnat also significantly reversed the effect of Ad@Gel on lipid metabolism. The results suggest that the effect of Ad on DKD may be achieved by activating Nnat to improve lipid metabolism and inhibit TSPO activity, thereby enhancing mitochondrial function.
Collapse
Affiliation(s)
- Mingchuan Yu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Di Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| | - Da Zhong
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Weichang Xie
- Nanchang University, Nanchang 330006, Jiangxi, P. R. China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, P. R. China
| |
Collapse
|
20
|
Jimenez IA, Stilin AP, Morohaku K, Hussein MH, Koganti PP, Selvaraj V. Mitochondrial translocator protein deficiency exacerbates pathology in acute experimental ulcerative colitis. Front Physiol 2022; 13:896951. [PMID: 36060674 PMCID: PMC9437295 DOI: 10.3389/fphys.2022.896951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In human patients and animal models of ulcerative colitis (UC), upregulation of the mitochondrial translocator protein (TSPO) in the colon is consistent with inflammation. Although the molecular function for TSPO remains unclear, it has been investigated as a therapeutic target for ameliorating UC pathology. In this study, we examined the susceptibility of Tspo gene-deleted (Tspo -/- ) mice to insults as provided by the dextran sodium sulfate (DSS)-induced acute UC model. Our results show that UC clinical signs and pathology were severely exacerbated in Tspo -/- mice compared to control Tspo fl/fl cohorts. Histopathology showed extensive inflammation and epithelial loss in Tspo -/- mice that caused an aggravated disease. Colonic gene expression in UC uncovered an etiology linked to precipitous loss of epithelial integrity and disproportionate mast cell activation assessed by tryptase levels in Tspo -/- colons. Evaluation of baseline homeostatic shifts in Tspo -/- colons revealed gene expression changes noted in elevated epithelial Cdx2, mast cell Cd36 and Mcp6, with general indicators of lower proliferation capacity and elevated mitochondrial fatty acid oxidation. These findings demonstrate that intact physiological TSPO function serves to limit inflammation in acute UC, and provide a systemic basis for investigating TSPO-targeting mechanistic therapeutics.
Collapse
Affiliation(s)
- Isabel A. Jimenez
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Allison P. Stilin
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Kanako Morohaku
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,School of Science and Technology, Institute of Agriculture, Shinshu University, Nagano, Japan
| | - Mahmoud H. Hussein
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States,*Correspondence: Vimal Selvaraj,
| |
Collapse
|
21
|
Nampoothiri S, Nogueiras R, Schwaninger M, Prevot V. Glial cells as integrators of peripheral and central signals in the regulation of energy homeostasis. Nat Metab 2022; 4:813-825. [PMID: 35879459 PMCID: PMC7613794 DOI: 10.1038/s42255-022-00610-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/15/2022] [Indexed: 01/03/2023]
Abstract
Communication between the periphery and the brain is key for maintaining energy homeostasis. To do so, peripheral signals from the circulation reach the brain via the circumventricular organs (CVOs), which are characterized by fenestrated vessels lacking the protective blood-brain barrier (BBB). Glial cells, by virtue of their plasticity and their ideal location at the interface of blood vessels and neurons, participate in the integration and transmission of peripheral information to neuronal networks in the brain for the neuroendocrine control of whole-body metabolism. Metabolic diseases, such as obesity and type 2 diabetes, can disrupt the brain-to-periphery communication mediated by glial cells, highlighting the relevance of these cell types in the pathophysiology of such complications. An improved understanding of how glial cells integrate and respond to metabolic and humoral signals has become a priority for the discovery of promising therapeutic strategies to treat metabolic disorders. This Review highlights the role of glial cells in the exchange of metabolic signals between the periphery and the brain that are relevant for the regulation of whole-body energy homeostasis.
Collapse
Affiliation(s)
- Sreekala Nampoothiri
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France
| | - Ruben Nogueiras
- Universidade de Santiago de Compostela-Instituto de Investigation Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrition, Santiago de Compostela, Spain
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, EGID, DISTALZ, Lille, France.
| |
Collapse
|
22
|
Wang Y, Shi J, Jiang F, Xu YJ, Liu Y. Metabolomics reveals the impact of saturation of dietary lipids on aging and longevity of C. elegans. Mol Omics 2022; 18:430-438. [DOI: 10.1039/d2mo00041e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Saturation differences in dietary lipids modify their digestive and absorption profiles, endpoints that may influence the nutrition and health. This study tests the hypothesis that dietary with elevated unsaturated fats...
Collapse
|
23
|
Morrissey NA, Beall C, Ellacott KLJ. Absence of the mitochondrial translocator protein 18 kDa in mice does not affect body weight or food intake responses to altered energy availability. J Neuroendocrinol 2021; 33:e13027. [PMID: 34423477 PMCID: PMC11475361 DOI: 10.1111/jne.13027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
Changes in mitochondrial function in a variety of cells/tissues are critical for orchestrating systemic energy homeostasis and are linked to the development of obesity and many of its comorbidities. The mitochondrial translocator protein of 18 kDa (TSPO) is expressed in organs throughout the body, including the brain, liver, adipose tissue, gonads and adrenal glands, where it is implicated in regulating steroidogenesis and cellular metabolism. Prior work from our group and others has shown that, in rodents, TSPO levels are altered in adipose tissue by obesity and that modulation of TSPO activity may impact systemic glucose homeostasis. Furthermore, in vitro studies in a variety of cell types have implicated TSPO in mediating cellular energetics and substrate utilisation. Although mice with germline global TSPO deficiency (TSPO-/- ) have no reported changes in body weight under standard husbandry conditions, we hypothesised that, given the roles of TSPO in regulating mitochondrial function and cellular metabolic flexibility, these animals may have alterations in their systemic response to altered energy availability, either nutritional excess or insufficiency. In agreement with published work, compared to wild-type (TSPO+/+ ) littermates, TSPO-/- mice of both sexes did not exhibit differences in body weight on standard chow. Furthermore, following a 12-hour overnight fast, there was no difference in weight loss or compensatory food intake during re-feeding. Five weeks of feeding a high-fat diet (HFD) did not reveal any impact of the absence of TSPO on body weight gain in either male or female mice. Basal blood glucose levels and glucose clearance in a glucose tolerance test were influenced by feeding a HFD diet but not by genotype. In conclusion, in the paradigms examined, germline global deletion of TSPO did not change the physiological response to deviations in systemic energy availability at the whole organism level.
Collapse
Affiliation(s)
- Nicole A. Morrissey
- Neuroendocrine Research GroupInstitute of Biomedical & Clinical SciencesCollege of Medicine & HealthUniversity of ExeterExeterUK
| | - Craig Beall
- Neuroendocrine Research GroupInstitute of Biomedical & Clinical SciencesCollege of Medicine & HealthUniversity of ExeterExeterUK
| | - Kate L. J. Ellacott
- Neuroendocrine Research GroupInstitute of Biomedical & Clinical SciencesCollege of Medicine & HealthUniversity of ExeterExeterUK
| |
Collapse
|
24
|
Wang J, Beecher K. TSPO: an emerging role in appetite for a therapeutically promising biomarker. Open Biol 2021; 11:210173. [PMID: 34343461 PMCID: PMC8331234 DOI: 10.1098/rsob.210173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is accumulating evidence that an obesogenic Western diet causes neuroinflammatory damage to the brain, which then promotes further appetitive behaviour. Neuroinflammation has been extensively studied by analysing the translocator protein of 18 kDa (TSPO), a protein that is upregulated in the inflamed brain following a damaging stimulus. As a result, there is a rich supply of TSPO-specific agonists, antagonists and positron emission tomography ligands. One TSPO ligand, etifoxine, is also currently used clinically for the treatment of anxiety with a minimal side-effect profile. Despite the neuroinflammatory pathogenesis of diet-induced obesity, and the translational potential of targeting TSPO, there is sparse literature characterizing the effect of TSPO on appetite. Therefore, in this review, the influence of TSPO on appetite is discussed. Three putative mechanisms for TSPO's appetite-modulatory effect are then characterized: the TSPO–allopregnanolone–GABAAR signalling axis, glucosensing in tanycytes and association with the synaptic protein RIM-BP1. We highlight that, in addition to its plethora of functions, TSPO is a regulator of appetite. This review ultimately suggests that the appetite-modulating function of TSPO should be further explored due to its potential therapeutic promise.
Collapse
Affiliation(s)
- Joshua Wang
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kate Beecher
- Addiction Neuroscience and Obesity Laboratory, School of Clinical Sciences, Faculty of Health, Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
26
|
Suthar SK, Alam MM, Lee J, Monga J, Joseph A, Lee SY. Bioinformatic Analyses of Canonical Pathways of TSPOAP1 and its Roles in Human Diseases. Front Mol Biosci 2021; 8:667947. [PMID: 34212002 PMCID: PMC8239723 DOI: 10.3389/fmolb.2021.667947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
TSPO-associated protein 1 (TSPOAP1) is a cytoplasmic protein and is closely associated with its mitochondrial transmembrane protein partner translocator protein (TSPO). To decipher the canonical signalling pathways of TSPOAP1, its role in human diseases and disorders, and relationship with TSPO; expression analyses of TSPOAP1- and TSPO-associated human genes were performed by Qiagen Ingenuity Pathway Analysis (IPA). In the expression analysis, necroptosis and sirtuin signalling pathways, mitochondrial dysfunction, and inflammasome were the top canonical pathways for both TSPOAP1 and TSPO, confirming the close relationship between these two proteins. A distribution analysis of common proteins in all the canonical pathways predicted for TSPOAP1 revealed that tumor necrosis factor receptor 1 (TNFR1), vascular cell adhesion molecule 1 (VCAM1), cyclic AMP response element-binding protein 1 (CREB1), T-cell receptor (TCR), nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3), DNA-dependent protein kinase (DNA-PK or PRKDC), and mitochondrial permeability transition pore (mPTP) were the major interaction partners of TSPOAP1, highlighting the role of TSPOAP1 in inflammation, particularly neuroinflammation. An analysis of the overlap between TSPO and TSPOAP1 Homo sapiens genes and top-ranked canonical pathways indicated that TSPO and TSPOAP1 interact via voltage-dependent anion-selective channels (VDAC1/2/3). A heat map analysis indicated that TSPOAP1 has critical roles in inflammatory, neuroinflammatory, psychiatric, and metabolic diseases and disorders, and cancer. Taken together, this information improves our understanding of the mechanism of action and biological functions of TSPOAP1 as well as its relationship with TSPO; furthermore, these results could provide new directions for in-depth functional studies of TSPOAP1 aimed at unmasking its detailed functions.
Collapse
Affiliation(s)
- Sharad Kumar Suthar
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | | | - Jihye Lee
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
| | - Jitender Monga
- Department of Urology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alex Joseph
- Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, India
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, South Korea
- Department of Neuroscience, College of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
27
|
Mirra S, García-Arroyo R, B Domènech E, Gavaldà-Navarro A, Herrera-Úbeda C, Oliva C, Garcia-Fernàndez J, Artuch R, Villarroya F, Marfany G. CERKL, a retinal dystrophy gene, regulates mitochondrial function and dynamics in the mammalian retina. Neurobiol Dis 2021; 156:105405. [PMID: 34048907 DOI: 10.1016/j.nbd.2021.105405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/06/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022] Open
Abstract
The retina is a highly active metabolic organ that displays a particular vulnerability to genetic and environmental factors causing stress and homeostatic imbalance. Mitochondria constitute a bioenergetic hub that coordinates stress response and cellular homeostasis, therefore structural and functional regulation of the mitochondrial dynamic network is essential for the mammalian retina. CERKL (ceramide kinase like) is a retinal degeneration gene whose mutations cause Retinitis Pigmentosa in humans, a visual disorder characterized by photoreceptors neurodegeneration and progressive vision loss. CERKL produces multiple isoforms with a dynamic subcellular localization. Here we show that a pool of CERKL isoforms localizes at mitochondria in mouse retinal ganglion cells. The depletion of CERKL levels in CerklKD/KO(knockdown/knockout) mouse retinas cause increase of autophagy, mitochondrial fragmentation, alteration of mitochondrial distribution, and dysfunction of mitochondrial-dependent bioenergetics and metabolism. Our results support CERKL as a regulator of autophagy and mitochondrial biology in the mammalian retina.
Collapse
Affiliation(s)
- Serena Mirra
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona- Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain.
| | - Rocío García-Arroyo
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Elena B Domènech
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Aleix Gavaldà-Navarro
- Institut de Biomedicina de la Universitat de Barcelona- Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Barcelona, Spain; CIBEROBN, Instituto de Salud Carlos III, Spain
| | - Carlos Herrera-Úbeda
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Clara Oliva
- Clinical Biochemistry Department, Hospital Sant Joan de Déu, Spain
| | - Jordi Garcia-Fernàndez
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Clinical Biochemistry Department, Hospital Sant Joan de Déu, Spain
| | - Francesc Villarroya
- Institut de Biomedicina de la Universitat de Barcelona- Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Barcelona, Spain; CIBEROBN, Instituto de Salud Carlos III, Spain
| | - Gemma Marfany
- Department of Genetics, Microbiology and Statistics and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona- Institut de Recerca Hospital Sant Joan de Déu, IBUB-IRSJD, Barcelona, Spain.
| |
Collapse
|
28
|
Salgado M, García-Robles MÁ, Sáez JC. Purinergic signaling in tanycytes and its contribution to nutritional sensing. Purinergic Signal 2021; 17:607-618. [PMID: 34018139 DOI: 10.1007/s11302-021-09791-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022] Open
Abstract
Tanycytes are hypothalamic radial glial-like cells with an important role in the regulation of neuroendocrine axes and energy homeostasis. These cells have been implicated in glucose, amino acids, and fatty acid sensing in the hypothalamus of rodents, where they are strategically positioned. While their cell bodies contact the cerebrospinal fluid, their extensive processes contact neurons of the arcuate and ventromedial nuclei, protagonists in the regulation of food intake. A growing body of evidence has shown that purinergic signaling plays a relevant role in this homeostatic role of tanycytes, likely regulating the release of gliotransmitters that will modify the activity of satiety-controlling hypothalamic neurons. Connexin hemichannels have proven to be particularly relevant in these mechanisms since they are responsible for the release of ATP from tanycytes in response to nutritional signals. On the other hand, either ionotropic or metabotropic ATP receptors are involved in the generation of intracellular Ca2+ waves in response to hypothalamic nutrients, which can spread between glial cells and towards neighboring neurons. This review will summarize recent evidence that supports a nutrient sensor role for tanycytes, highlighting the participation of purinergic signaling in this process.
Collapse
Affiliation(s)
- Magdiel Salgado
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - María Á García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| | - Juan C Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
29
|
Li Y, Chen L, Li L, Sottas C, Petrillo SK, Lazaris A, Metrakos P, Wu H, Ishida Y, Saito T, Golden-Mason L, Rosen HR, Wolff JJ, Silvescu CI, Garza S, Cheung G, Huang T, Fan J, Culty M, Stiles B, Asahina K, Papadopoulos V. Cholesterol-binding translocator protein TSPO regulates steatosis and bile acid synthesis in nonalcoholic fatty liver disease. iScience 2021; 24:102457. [PMID: 34013171 PMCID: PMC8113880 DOI: 10.1016/j.isci.2021.102457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Translocator protein (TSPO, 18 kDa) levels increase in parallel with the evolution of simple steatosis (SS) to nonalcoholic steatohepatitis (NASH) in nonalcoholic fatty liver disease (NAFLD). However, TSPO function in SS and NASH is unknown. Loss of TSPO in hepatocytes in vitro downregulated acetyl-CoA acetyltransferase 2 and increased free cholesterol (FC). FC accumulation induced endoplasmic reticulum stress via IRE1A and protein kinase RNA-like ER kinase/ATF4/CCAAT-enhancer-binding protein homologous protein pathways and autophagy. TSPO deficiency activated cellular adaptive antioxidant protection; this adaptation was lost upon excessive FC accumulation. A TSPO ligand 19-Atriol blocked cholesterol binding and recapitulated many of the alterations seen in TSPO-deficient cells. These data suggest that TSPO deficiency accelerated the progression of SS. In NASH, however, loss of TSPO ameliorated liver fibrosis through downregulation of bile acid synthesis by reducing CYP7A1 and CYP27A1 levels and increasing farnesoid X receptor expression. These studies indicate a dynamic and complex role for TSPO in the evolution of NAFLD.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Lu Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephanie K. Petrillo
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Anthoula Lazaris
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Peter Metrakos
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada
| | - Hangyu Wu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | - Lucy Golden-Mason
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | - Hugo R. Rosen
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
| | | | | | - Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Tiffany Huang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjiang Fan
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Martine Culty
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Bangyan Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Kinji Asahina
- University of Southern California Research Center for Liver Diseases, Los Angeles, CA 90089, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90089, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Research Institute of the McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Corresponding author
| |
Collapse
|
30
|
Bolborea M, Langlet F. What is the physiological role of hypothalamic tanycytes in metabolism? Am J Physiol Regul Integr Comp Physiol 2021; 320:R994-R1003. [PMID: 33826442 DOI: 10.1152/ajpregu.00296.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In vertebrates, the energy balance process is tightly controlled by complex neural circuits that sense metabolic signals and adjust food intake and energy expenditure in line with the physiological requirements of optimal conditions. Within neural networks controlling energy balance, tanycytes are peculiar ependymoglial cells that are nowadays recognized as multifunctional players in the metabolic hypothalamus. However, the physiological function of hypothalamic tanycytes remains unclear, creating a number of ambiguities in the field. Here, we review data accumulated over the years that demonstrate the physiological function of tanycytes in the maintenance of metabolic homeostasis, opening up new research avenues. The presumed involvement of tanycytes in the pathophysiology of metabolic disorders and age-related neurodegenerative diseases will be finally discussed.
Collapse
Affiliation(s)
- Matei Bolborea
- Central and Peripheral Mechanisms of Neurodegeneration, INSERM U1118, Université de Strasbourg, Strasbourg, France.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Fanny Langlet
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
31
|
Lim Y, Kim S, Kim EK. Palmitate reduces starvation-induced ER stress by inhibiting ER-phagy in hypothalamic cells. Mol Brain 2021; 14:65. [PMID: 33823883 PMCID: PMC8025501 DOI: 10.1186/s13041-021-00777-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Palmitate is a saturated fatty acid that is well known to induce endoplasmic reticulum (ER) stress and autophagy. A high-fat diet increases the palmitate level in the hypothalamus, the main region of the brain regulating energy metabolism. Interestingly, hypothalamic palmitate level is also increased under starvation, urging the study to distinguish the effects of elevated hypothalamic palmitate level under different nutrient conditions. Herein, we show that ER-phagy (ER-targeted selective autophagy) is required for progress of ER stress and that palmitate decreases ER stress by inhibiting ER-phagy in hypothalamic cells under starvation. Palmitate inhibited starvation-induced ER-phagy by increasing the level of B-cell lymphoma 2 (Bcl-2) protein, which inhibits autophagy initiation. These findings suggest that, unlike the induction of ER stress under nutrient-rich conditions, palmitate protects hypothalamic cells from starvation-induced stress by inhibiting ER-phagy.
Collapse
Affiliation(s)
- Yun Lim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seolsong Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea. .,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
32
|
Tanycytes in the infundibular nucleus and median eminence and their role in the blood-brain barrier. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:253-273. [PMID: 34225934 DOI: 10.1016/b978-0-12-820107-7.00016-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier is generally attributed to endothelial cells. However, in circumventricular organs, such as the median eminence, tanycytes take over the barrier function. These ependymoglial cells form the wall of the third ventricle and send long extensions into the parenchyma to contact blood vessels and hypothalamic neurons. The shape and location of tanycytes put them in an ideal position to connect the periphery with central nervous compartments. In line with this, tanycytes control the transport of hormones and key metabolites in and out of the hypothalamus. They function as sensors of peripheral homeostasis for central regulatory networks. This chapter discusses current evidence that tanycytes play a key role in regulating glucose balance, food intake, endocrine axes, seasonal changes, reproductive function, and aging. The understanding of how tanycytes perform these diverse tasks is only just beginning to emerge and will probably lead to a more differentiated view of how the brain and the periphery interact.
Collapse
|
33
|
Koganti PP, Selvaraj V. Lack of adrenal TSPO/PBR expression in hamsters reinforces correlation to triglyceride metabolism. J Endocrinol 2020; 247:1-10. [PMID: 32698131 PMCID: PMC8011561 DOI: 10.1530/joe-20-0189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022]
Abstract
Despite being a highly conserved protein, the precise role of the mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), remains elusive. The void created by studies that overturned a presumptive model that described TSPO/PBR as a mitochondrial cholesterol transporter for steroidogenesis has been filled with evidence that it can affect mitochondrial metabolic functions across different model systems. We previously reported that TSPO/PBR deficient steroidogenic cells upregulate mitochondrial fatty acid oxidation and presented a strong positive correlation between TSPO/PBR expression and tissues active in triglyceride metabolism or lipid storage. Nevertheless, the highlighting of inconsistencies in prior work has provoked reprisals that threaten to stifle progress. One frequent factoid presented as being supportive of a cholesterol import function is that there are no steroid-synthesizing cell types without high TSPO/PBR expression. In this study, we examine the hamster adrenal gland that is devoid of lipid droplets in the cortex and largely relies on de novo cholesterol biosynthesis and uptake for steroidogenesis. We find that Tspo expression in the hamster adrenal is imperceptible compared to the mouse. This observation is consistent with a substantially low expression of Cpt1a in the hamster adrenal, indicating minimal mitochondrial fatty acid oxidation capacity compared to the mouse. These findings provide further reinforcement that the much sought-after mechanism of TSPO/PBR function remains correlated with the extent of cellular triglyceride metabolism. Thus, TSPO/PBR could have a homeostatic function relevant only to steroidogenic systems that manage triglycerides associated with lipid droplets.
Collapse
Affiliation(s)
- Prasanthi P. Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| |
Collapse
|
34
|
Farmer BC, Walsh AE, Kluemper JC, Johnson LA. Lipid Droplets in Neurodegenerative Disorders. Front Neurosci 2020; 14:742. [PMID: 32848541 PMCID: PMC7403481 DOI: 10.3389/fnins.2020.00742] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge of lipid droplets (LDs) has evolved from simple depots of lipid storage to dynamic and functionally active organelles involved in a variety of cellular functions. Studies have now informed significant roles for LDs in cellular signaling, metabolic disease, and inflammation. While lipid droplet biology has been well explored in peripheral organs such as the liver and heart, LDs within the brain are relatively understudied. The presence and function of these dynamic organelles in the central nervous system has recently gained attention, especially in the context of neurodegeneration. In this review, we summarize the current understanding of LDs within the brain, with an emphasis on their relevance in neurodegenerative diseases.
Collapse
Affiliation(s)
- Brandon C Farmer
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Jude C Kluemper
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
35
|
Lee Y, Park Y, Nam H, Lee JW, Yu SW. Translocator protein (TSPO): the new story of the old protein in neuroinflammation. BMB Rep 2020. [PMID: 31818362 PMCID: PMC6999824 DOI: 10.5483/bmbrep.2020.53.1.273] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translocator protein (TSPO), also known as peripheral benzodiazepine receptor, is a transmembrane protein located on the outer mitochondria membrane (OMM) and mainly expressed in glial cells in the brain. Because of the close correlation of its expression level with neuropathology and therapeutic efficacies of several TSPO binding ligands under many neurological conditions, TSPO has been regarded as both biomarker and therapeutic target, and the biological functions of TSPO have been a major research focus. However, recent genetic studies with animal and cellular models revealed unexpected results contrary to the anticipated biological importance of TSPO and cast doubt on the action modes of the TSPO-binding drugs. In this review, we summarize recent controversial findings on the discrepancy between pharmacological and genetic studies of TSPO and suggest some future direction to understand this old and mysterious protein.
Collapse
Affiliation(s)
- Younghwan Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Youngjin Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeri Nam
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Ji-Won Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Seong-Woon Yu
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
36
|
Betlazar C, Middleton RJ, Banati R, Liu GJ. The Translocator Protein (TSPO) in Mitochondrial Bioenergetics and Immune Processes. Cells 2020; 9:cells9020512. [PMID: 32102369 PMCID: PMC7072813 DOI: 10.3390/cells9020512] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
The translocator protein (TSPO) is an outer mitochondrial membrane protein that is widely used as a biomarker of neuroinflammation, being markedly upregulated in activated microglia in a range of brain pathologies. Despite its extensive use as a target in molecular imaging studies, the exact cellular functions of this protein remain in question. The long-held view that TSPO plays a fundamental role in the translocation of cholesterol through the mitochondrial membranes, and thus, steroidogenesis, has been disputed by several groups with the advent of TSPO knockout mouse models. Instead, much evidence is emerging that TSPO plays a fundamental role in cellular bioenergetics and associated mitochondrial functions, also part of a greater role in the innate immune processes of microglia. In this review, we examine the more direct experimental literature surrounding the immunomodulatory effects of TSPO. We also review studies which highlight a more central role for TSPO in mitochondrial processes, from energy metabolism, to the propagation of inflammatory responses through reactive oxygen species (ROS) modulation. In this way, we highlight a paradigm shift in approaches to TSPO functioning.
Collapse
Affiliation(s)
- Calina Betlazar
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| | - Ryan J. Middleton
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
| | - Richard Banati
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
| | - Guo-Jun Liu
- Human Health, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia; (R.J.M.); (R.B.)
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, NSW 2050, Australia
- Correspondence: (C.B.); (G-J.L.)
| |
Collapse
|
37
|
Langlet F. Targeting Tanycytes: Balance between Efficiency and Specificity. Neuroendocrinology 2020; 110:574-581. [PMID: 31986518 DOI: 10.1159/000505549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/18/2019] [Indexed: 11/19/2022]
Abstract
Tanycytes are peculiar ependymoglial cells lining the bottom and the lateral wall of the third ventricle. For a decade, the utilization of molecular genetic approaches allowed us to make important discoveries about their diverse physiological functions. Here, I review the current methods used to target tanycytes, focusing on their specificity, their efficiency, their limitations, as well as their potential future improvements.
Collapse
Affiliation(s)
- Fanny Langlet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,
| |
Collapse
|
38
|
Müller-Fielitz H, Schwaninger M. The Role of Tanycytes in the Hypothalamus-Pituitary-Thyroid Axis and
the Possibilities for Their Genetic Manipulation. Exp Clin Endocrinol Diabetes 2019; 128:388-394. [DOI: 10.1055/a-1065-1855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractThyroid hormone (TH) regulation is important for development, energy homeostasis,
heart function, and bone formation. To control the effects of TH in target
organs, the hypothalamus-pituitary-thyroid (HPT) axis and the tissue-specific
availability of TH are highly regulated by negative feedback. To exert a central
feedback, TH must enter the brain via specific transport mechanisms and cross
the blood-brain barrier. Here, tanycytes, which are located in the ventral walls
of the 3rd ventricle in the mediobasal hypothalamus (MBH), function as
gatekeepers. Tanycytes are able to transport, sense, and modify the release of
hormones of the HPT axis and are involved in feedback regulation. In this
review, we focus on the relevance of tanycytes in thyrotropin-releasing hormone
(TRH) release and review available genetic tools to investigate the
physiological functions of these cells.
Collapse
Affiliation(s)
- Helge Müller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology,
Lübeck, University of Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology,
Lübeck, University of Lübeck, Germany
| |
Collapse
|
39
|
Park S, Oh TS, Kim S, Kim EK. Palmitate-induced autophagy liberates monounsaturated fatty acids and increases Agrp expression in hypothalamic cells. Anim Cells Syst (Seoul) 2019; 23:384-391. [PMID: 31853375 PMCID: PMC6913639 DOI: 10.1080/19768354.2019.1696407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/13/2022] Open
Abstract
Fatty acids regulate food intake, although the exact mechanism remains unknown. Emerging evidence suggests that intracellular free fatty acids generated by starvation-induced autophagy regulate food intake. Starvation for 6 h elevated fatty acids such as palmitate, oleate, arachidonate, eicosatrienoate, and docosahexaenoate in the mouse serum. Among them, palmitate induced lipophagy, an autophagic degradation of cellular lipid droplets, in agouti-related peptide (Agrp)-expressing hypothalamic cells. Palmitate-induced lipophagy increased both Agrp expression and the contents of monounsaturated fatty acids such as palmitoleate, oleate, and (E)-9-octadecanoate, whereas these effects were blunted by autophagy deficiency. These findings support the role of free fatty acids in hypothalamic autophagy that regulates the appetite by changing the expression of orexigenic neuropeptides.
Collapse
Affiliation(s)
- Seokjae Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Tae Seok Oh
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Seolsong Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Eun-Kyoung Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea.,Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| |
Collapse
|