1
|
Dhar KS, Townsend B, Montgomery AP, Danon JJ, Pagan JK, Kassiou M. Enhancing CNS mitophagy: drug development and disease-relevant models. Trends Pharmacol Sci 2024; 45:982-996. [PMID: 39419743 DOI: 10.1016/j.tips.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Mitophagy, the selective degradation of mitochondria, is impaired in many neurodegenerative diseases (NDs), resulting in an accumulation of dysfunctional mitochondria and neuronal damage. Although enhancing mitophagy shows promise as a therapeutic strategy, the clinical significance of mitophagy activators remains uncertain due to limited understanding and poor representation of mitophagy in the central nervous system (CNS). This review explores recent insights into which mitophagy pathways to target and the extent of modulation necessary to be therapeutic towards NDs. We also highlight the complexities of mitophagy in the CNS, highlighting the need for disease-relevant models. Last, we outline crucial aspects of in vitro models to consider during drug discovery, aiming to bridge the gap between preclinical research and clinical applications in treating NDs through mitophagy modulation.
Collapse
Affiliation(s)
- Krishayant S Dhar
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Brendan Townsend
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Andrew P Montgomery
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Danon
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia
| | - Julia K Pagan
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Narendra DP, Youle RJ. The role of PINK1-Parkin in mitochondrial quality control. Nat Cell Biol 2024; 26:1639-1651. [PMID: 39358449 DOI: 10.1038/s41556-024-01513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
Mitophagy mediated by the recessive Parkinson's disease genes PINK1 and Parkin responds to mitochondrial damage to preserve mitochondrial function. In the pathway, PINK1 is the damage sensor, probing the integrity of the mitochondrial import pathway, and activating Parkin when import is blocked. Parkin is the effector, selectively marking damaged mitochondria with ubiquitin for mitophagy and other quality-control processes. This selective mitochondrial quality-control pathway may be especially critical for dopamine neurons affected in Parkinson's disease, in which the mitochondrial network is widely distributed throughout a highly branched axonal arbor. Here we review the current understanding of the role of PINK1-Parkin in the quality control of mitophagy, including sensing of mitochondrial distress by PINK1, activation of Parkin by PINK1 to induce mitophagy, and the physiological relevance of the PINK1-Parkin pathway.
Collapse
Affiliation(s)
- Derek P Narendra
- Mitochondrial Biology and Neurodegeneration Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Richard J Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Earnshaw R, Zhang YT, Heymann G, Fujisawa K, Hui S, Kapadia M, Kalia LV, Kalia SK. Disease-associated mutations in C-terminus of HSP70 interacting protein (CHIP) impair its ability to negatively regulate mitophagy. Neurobiol Dis 2024; 200:106625. [PMID: 39117117 DOI: 10.1016/j.nbd.2024.106625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
C-terminus of HSP70 interacting protein (CHIP) is an E3 ubiquitin ligase and HSP70 cochaperone. Mutations in the CHIP encoding gene are the cause of two neurodegenerative conditions: spinocerebellar ataxia autosomal dominant type 48 (SCA48) and autosomal recessive type 16 (SCAR16). The mechanisms underlying CHIP-associated diseases are currently unknown. Mitochondrial dysfunction, specifically dysfunction in mitochondrial autophagy (mitophagy), is increasingly implicated in neurodegenerative diseases and loss of CHIP has been demonstrated to result in mitochondrial dysfunction in multiple animal models, although how CHIP is involved in mitophagy regulation has been previously unknown. Here, we demonstrate that CHIP acts as a negative regulator of the PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy pathway, promoting the degradation of PINK1, impairing Parkin translocation to the mitochondria, and suppressing mitophagy in response to mitochondrial stress. We also show that loss of CHIP enhances neuronal mitophagy in a PINK1 and Parkin dependent manner in Caenorhabditis elegans. Furthermore, we find that multiple disease-associated mutations in CHIP dysregulate mitophagy both in vitro and in vivo in C. elegans neurons, a finding which could implicate mitophagy dysregulation in CHIP-associated diseases.
Collapse
Affiliation(s)
- Rebecca Earnshaw
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yu Tong Zhang
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Gregory Heymann
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Kazuko Fujisawa
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Sarah Hui
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Neurology, Department of Medicine, University of Toronto, 399 Bathurst Street, Toronto, ON M5T 2S8, Canada; CRANIA, University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, 60 Leonard Avenue, Toronto, ON M5T 0S8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; CRANIA, University Health Network, 550 University Avenue, Toronto, ON M5G 2A2, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, 399 Bathurst Street, Toronto M5T 2S8, ON, Canada.
| |
Collapse
|
4
|
Kramer J, Chatham JC, Young ME, Darley-Usmar V, Zhang J. Impact of O -GlcNAcylation elevation on mitophagy and glia in the dentate gyrus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613771. [PMID: 39345468 PMCID: PMC11430020 DOI: 10.1101/2024.09.19.613771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
O -GlcNAcylation is a dynamic and reversible protein post-translational modification of serine or threonine residues which modulates the activity of transcriptional and signaling pathways and controls cellular responses to metabolic and inflammatory stressors. We and others have shown that O -GlcNAcylation has the potential to regulate autophagy and mitophagy to play a critical role in mitochondrial quality control, but this has not been assessed in vivo in the brain. This is important since mitochondrial dysfunction contributes to the development of neurodegenerative disease. We used mito-QC reporter mice to assess mitophagy in diverse cells in the dentate gyrus in response to pharmacological inhibition of OGA with thiamet G which leads to elevation of protein O -GlcNAcylation. We demonstrate that mitophagy occurs predominantly in the GFAP positive astrocytes and is significantly decreased in response to elevated O -GlcNAcylation. Furthermore, with increased O -GlcNAcylation, the levels of astrocyte makers GFAP and S100B, and microglial cell marker IBA1 were decreased in the dentate gyrus, while the levels of microglial cell marker TMEM119 were increased, indicating significant changes in glia homeostasis. These results provide strong evidence of the regulation of mitophagy and glia signatures by the O -GlcNAc pathway.
Collapse
|
5
|
Jiménez-Loygorri JI, Jiménez-García C, Viedma-Poyatos Á, Boya P. Fast and quantitative mitophagy assessment by flow cytometry using the mito-QC reporter. Front Cell Dev Biol 2024; 12:1460061. [PMID: 39324068 PMCID: PMC11422238 DOI: 10.3389/fcell.2024.1460061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondrial quality control is finely tuned by mitophagy, the selective degradation of mitochondria through autophagy, and mitochondrial biogenesis. Removal of damaged mitochondria is essential to preserve cellular bioenergetics and prevent detrimental events such as sustained mitoROS production, pro-apoptotic cytochrome c release or mtDNA leakage. The array of tools available to study mitophagy is very limited but in constant development. Almost a decade ago, we developed a method to assess mitophagy flux using MitoTracker Deep Red in combination with lysosomal inhibitors. Now, using the novel tandem-fluorescence reporter mito-QC (mCherry-GFP-FIS1101-152) that allows to differentiate between healthy mitochondria (mCherry+GFP+) and mitolysosomes (mCherry+GFP-), we have developed a robust and quantitative method to assess mitophagy by flow cytometry. This approach has been validated in ARPE-19 cells using PINK1/Parkin-dependent (CCCP) and PINK1/Parkin-independent (DFP) positive controls and complementary techniques. Furthermore, we show that the mito-QC reporter can be multiplexed, especially if using spectral flow cytometry, to simultaneously study other cellular parameters such as viability or ROS production. Using this technique, we evaluated and characterized two prospective mitophagy inducers and further dissected their mechanism of action. Finally, using mito-QC reporter mice, we developed a protocol to measure mitophagy levels in the retina ex vivo. This novel methodology will propel mitophagy research forward and accelerate the discovery of novel mitophagy modulators.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Carlos Jiménez-García
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Álvaro Viedma-Poyatos
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
- Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Shang A, Shao S, Zhao L, Liu B. Far-Red Fluorescent Proteins: Tools for Advancing In Vivo Imaging. BIOSENSORS 2024; 14:359. [PMID: 39194588 DOI: 10.3390/bios14080359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.
Collapse
Affiliation(s)
- Angyang Shang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Luming Zhao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Wang ZH, Wang J, Liu F, Sun S, Zheng Q, Hu X, Yin Z, Xie C, Wang H, Wang T, Zhang S, Wang YP. THAP3 recruits SMYD3 to OXPHOS genes and epigenetically promotes mitochondrial respiration in hepatocellular carcinoma. FEBS Lett 2024; 598:1513-1531. [PMID: 38664231 DOI: 10.1002/1873-3468.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria harbor the oxidative phosphorylation (OXPHOS) system to sustain cellular respiration. However, the transcriptional regulation of OXPHOS remains largely unexplored. Through the cancer genome atlas (TCGA) transcriptome analysis, transcription factor THAP domain-containing 3 (THAP3) was found to be strongly associated with OXPHOS gene expression. Mechanistically, THAP3 recruited the histone methyltransferase SET and MYND domain-containing protein 3 (SMYD3) to upregulate H3K4me3 and promote OXPHOS gene expression. The levels of THAP3 and SMYD3 were altered by metabolic cues. They collaboratively supported liver cancer cell proliferation and colony formation. In clinical human liver cancer, both of them were overexpressed. THAP3 positively correlated with OXPHOS gene expression. Together, THAP3 cooperates with SMYD3 to epigenetically upregulate cellular respiration and liver cancer cell proliferation.
Collapse
Affiliation(s)
- Zi-Hao Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingyi Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Fuchen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Third Affiliated Hospital, Naval Medical University, Shanghai, China
| | - Sijun Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaotian Hu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zihan Yin
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Haiyan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Tianshi Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, China
| | - Shengjie Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yi-Ping Wang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
8
|
Baninameh Z, Watzlawik JO, Hou X, Richardson T, Kurchaba NW, Yan T, Di Florio DN, Fairweather D, Kang L, Nguyen JH, Kanekiyo T, Dickson DW, Noda S, Sato S, Hattori N, Goldberg MS, Ganley IG, Stauch KL, Fiesel FC, Springer W. Alterations of PINK1-PRKN signaling in mice during normal aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591753. [PMID: 38746191 PMCID: PMC11092476 DOI: 10.1101/2024.04.29.591753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.
Collapse
|
9
|
Watzlawik JO, Fiesel FC, Fiorino G, Bustillos BA, Baninameh Z, Markham BN, Hou X, Hayes CS, Bredenberg JM, Kurchaba NW, Fričová D, Siuda J, Wszolek ZK, Noda S, Sato S, Hattori N, Prasad AA, Kirik D, Fox HS, Stauch KL, Goldberg MS, Springer W. Basal activity of PINK1 and PRKN in cell models and rodent brain. Autophagy 2024; 20:1147-1158. [PMID: 38041584 PMCID: PMC11135862 DOI: 10.1080/15548627.2023.2286414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
The ubiquitin kinase-ligase pair PINK1-PRKN recognizes and transiently labels damaged mitochondria with ubiquitin phosphorylated at Ser65 (p-S65-Ub) to mediate their selective degradation (mitophagy). Complete loss of PINK1 or PRKN function unequivocally leads to early-onset Parkinson disease, but it is debated whether impairments in mitophagy contribute to disease later in life. While the pathway has been extensively studied in cell culture upon acute and massive mitochondrial stress, basal levels of activation under endogenous conditions and especially in vivo in the brain remain undetermined. Using rodent samples, patient-derived cells, and isogenic neurons, we here identified age-dependent, brain region-, and cell type-specific effects and determined expression levels and extent of basal and maximal activation of PINK1 and PRKN. Our work highlights the importance of defining critical risk and therapeutically relevant levels of PINK1-PRKN signaling which will further improve diagnosis and prognosis and will lead to better stratification of patients for future clinical trials.
Collapse
Affiliation(s)
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | - Gabriella Fiorino
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| | | | - Zahra Baninameh
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Xu Hou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb S. Hayes
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Joanna Siuda
- Department of Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Sachiko Noda
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeto Sato
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Asheeta A. Prasad
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Deniz Kirik
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kelly L. Stauch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Matthew S. Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, USA
| |
Collapse
|
10
|
Rasool S, Shomali T, Truong L, Croteau N, Veyron S, Bustillos BA, Springer W, Fiesel FC, Trempe JF. Identification and structural characterization of small molecule inhibitors of PINK1. Sci Rep 2024; 14:7739. [PMID: 38565869 PMCID: PMC10987619 DOI: 10.1038/s41598-024-58285-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Mutations in PINK1 and Parkin cause early-onset Parkinson's Disease (PD). PINK1 is a kinase which functions as a mitochondrial damage sensor and initiates mitochondrial quality control by accumulating on the damaged organelle. There, it phosphorylates ubiquitin, which in turn recruits and activates Parkin, an E3 ubiquitin ligase. Ubiquitylation of mitochondrial proteins leads to the autophagic degradation of the damaged organelle. Pharmacological modulation of PINK1 constitutes an appealing avenue to study its physiological function and develop therapeutics. In this study, we used a thermal shift assay with insect PINK1 to identify small molecules that inhibit ATP hydrolysis and ubiquitin phosphorylation. PRT062607, an SYK inhibitor, is the most potent inhibitor in our screen and inhibits both insect and human PINK1, with an IC50 in the 0.5-3 µM range in HeLa cells and dopaminergic neurons. The crystal structures of insect PINK1 bound to PRT062607 or CYC116 reveal how the compounds interact with the ATP-binding pocket. PRT062607 notably engages with the catalytic aspartate and causes a destabilization of insert-2 at the autophosphorylation dimer interface. While PRT062607 is not selective for PINK1, it provides a scaffold for the development of more selective and potent inhibitors of PINK1 that could be used as chemical probes.
Collapse
Affiliation(s)
- Shafqat Rasool
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Tara Shomali
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Luc Truong
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Nathalie Croteau
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | - Simon Veyron
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada
| | | | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Fabienne C Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Neuroscience PhD Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, FL, 32224, USA
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics, Centre de Recherche en Biologie Structurale, and Structural Genomics Consortium, McGill University, 3655 Prom Sir William Osler, Montréal, QC, H3G 1Y6, Canada.
| |
Collapse
|
11
|
Liu B, Hua D, Shen L, Li T, Tao Z, Fu C, Tang Z, Yang J, Zhang L, Nie A, Jiang Y, Wang J, Li Y, Gu Y, Ning G. NPC1 is required for postnatal islet β cell differentiation by maintaining mitochondria turnover. Theranostics 2024; 14:2058-2074. [PMID: 38505613 PMCID: PMC10945349 DOI: 10.7150/thno.90946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024] Open
Abstract
Rationale: NPC1 is a protein localized on the lysosome membrane regulating intracellular cholesterol transportation and maintaining normal lysosome function. GWAS studies have found that NPC1 variants in T2D was a pancreatic islet expression quantitative trait locus, suggesting a potential role of NPC1 in T2D islet pathophysiology. Methods: Two-week-old Npc1-/- mice and wild type littermates were employed to examine pancreatic β cell morphology and functional changes induced by loss of Npc1. Single cell RNA sequencing was conducted on primary islets. Npc1-/- Min6 cell line was generated using CRISPR/Cas9 gene editing. Seahorse XF24 was used to analyze primary islet and Min6 cell mitochondria respiration. Ultra-high-resolution cell imaging with Lattice SIM2 and electron microscope imaging were used to observe mitochondria and lysosome in primary islet β and Min6 cells. Mitophagy Dye and mt-Keima were used to measure β cell mitophagy. Results: In Npc1-/- mice, we found that β cell survival and pancreatic β cell mass expansion as well as islet glucose induced insulin secretion in 2-week-old mice were reduced. Npc1 loss retarded postnatal β cell differentiation and growth as well as impaired mitochondria oxidative phosphorylation (OXPHOS) function to increase mitochondrial superoxide production, which might be attributed to impaired autophagy flux particularly mitochondria autophagy (mitophagy) induced by dysfunctional lysosome in Npc1 null β cells. Conclusion: Our study revealed that NPC1 played an important role in maintaining normal lysosome function and mitochondria turnover, which ensured establishment of sufficient mitochondria OXPHOS for islet β cells differentiation and maturation.
Collapse
Affiliation(s)
- Bei Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duanyi Hua
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyan Shen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheying Tao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenyang Fu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongzheng Tang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aifang Nie
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yanyun Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Jiang C, Huang H, Yang X, Le Q, Liu X, Ma L, Wang F. Targeting mitochondrial dynamics of morphine-responsive dopaminergic neurons ameliorates opiate withdrawal. J Clin Invest 2024; 134:e171995. [PMID: 38236644 PMCID: PMC10904060 DOI: 10.1172/jci171995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024] Open
Abstract
Converging studies demonstrate the dysfunction of the dopaminergic neurons following chronic opioid administration. However, the therapeutic strategies targeting opioid-responsive dopaminergic ensembles that contribute to the development of opioid withdrawal remain to be elucidated. Here, we used the neuronal activity-dependent Tet-Off system to label dopaminergic ensembles in response to initial morphine exposure (Mor-Ens) in the ventral tegmental area (VTA). Fiber optic photometry recording and transcriptome analysis revealed downregulated spontaneous activity and dysregulated mitochondrial respiratory, ultrastructure, and oxidoreductase signal pathways after chronic morphine administration in these dopaminergic ensembles. Mitochondrial fragmentation and the decreased mitochondrial fusion gene mitofusin 1 (Mfn1) were found in these ensembles after prolonged opioid withdrawal. Restoration of Mfn1 in the dopaminergic Mor-Ens attenuated excessive oxidative stress and the development of opioid withdrawal. Administration of Mdivi-1, a mitochondrial fission inhibitor, ameliorated the mitochondrial fragmentation and maladaptation of the neuronal plasticity in these Mor-Ens, accompanied by attenuated development of opioid withdrawal after chronic morphine administration, without affecting the analgesic effect of morphine. These findings highlighted the plastic architecture of mitochondria as a potential therapeutic target for opioid analgesic-induced substance use disorders.
Collapse
Affiliation(s)
- Changyou Jiang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Han Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xiao Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Qiumin Le
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Xing Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| | - Feifei Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and School of Basic Medical Sciences, Departments of Neurosurgery and Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai, China
| |
Collapse
|
13
|
Zhu Q, Combs ME, Liu J, Bai X, Wang WB, Herring LE, Liu J, Locasale JW, Bowles DE, Gross RT, Pla MM, Mack CP, Taylor JM. GRAF1 integrates PINK1-Parkin signaling and actin dynamics to mediate cardiac mitochondrial homeostasis. Nat Commun 2023; 14:8187. [PMID: 38081847 PMCID: PMC10713658 DOI: 10.1038/s41467-023-43889-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The serine/threonine kinase, PINK1, and the E3 ubiquitin ligase, Parkin, are known to facilitate LC3-dependent autophagosomal encasement and lysosomal clearance of dysfunctional mitochondria, and defects in this process contribute to a variety of cardiometabolic and neurological diseases. Although recent evidence indicates that dynamic actin remodeling plays an important role in PINK1/Parkin-mediated mitochondrial autophagy (mitophagy), the underlying signaling mechanisms remain unknown. Here, we identify the RhoGAP GRAF1 (Arhgap26) as a PINK1 substrate that regulates mitophagy. GRAF1 promotes the release of damaged mitochondria from F-actin anchors, regulates mitochondrial-associated Arp2/3-mediated actin remodeling and facilitates Parkin-LC3 interactions to enhance mitochondria capture by autophagosomes. Graf1 phosphorylation on PINK1-dependent sites is dysregulated in human heart failure, and cardiomyocyte-restricted Graf1 depletion in mice blunts mitochondrial clearance and attenuates compensatory metabolic adaptations to stress. Overall, we identify GRAF1 as an enzyme that coordinates cytoskeletal and metabolic remodeling to promote cardioprotection.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew E Combs
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Wenbo B Wang
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jiandong Liu
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dawn E Bowles
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ryan T Gross
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michelle Mendiola Pla
- Division of Surgical Sciences, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher P Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA
- McAllister Heart Institute University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Joan M Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
14
|
Liu T, Wetzel L, Zhu Z, Kumaraguru P, Gorthi V, Yan Y, Bukhari MZ, Ermekbaeva A, Jeon H, Kee TR, Woo JAA, Kang DE. Disruption of Mitophagy Flux through the PARL-PINK1 Pathway by CHCHD10 Mutations or CHCHD10 Depletion. Cells 2023; 12:2781. [PMID: 38132101 PMCID: PMC10741529 DOI: 10.3390/cells12242781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS-FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL-PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10-PARL-PINK1 pathway.
Collapse
Affiliation(s)
- Tian Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Liam Wetzel
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Zexi Zhu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Pavan Kumaraguru
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Viraj Gorthi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Yan Yan
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Mohammed Zaheen Bukhari
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Aizara Ermekbaeva
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Hanna Jeon
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - Teresa R. Kee
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Byrd Alzheimer’s Center & Research Institute, Department of Molecular Medicine, USF Health Morsani College of Medicine, Tampa, FL 33613, USA
| | - Jung-A Alexa Woo
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
| | - David E. Kang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA (Z.Z.); (Y.Y.)
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Kane MS, Benavides GA, Osuma E, Johnson MS, Collins HE, He Y, Westbrook D, Litovsky SH, Mitra K, Chatham JC, Darley-Usmar V, Young ME, Zhang J. The interplay between sex, time of day, fasting status, and their impact on cardiac mitochondrial structure, function, and dynamics. Sci Rep 2023; 13:21638. [PMID: 38062139 PMCID: PMC10703790 DOI: 10.1038/s41598-023-49018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria morphology and function, and their quality control by mitophagy, are essential for heart function. We investigated whether these are influenced by time of the day (TOD), sex, and fed or fasting status, using transmission electron microscopy (EM), mitochondrial electron transport chain (ETC) activity, and mito-QC reporter mice. We observed peak mitochondrial number at ZT8 in the fed state, which was dependent on the intrinsic cardiac circadian clock, as hearts from cardiomyocyte-specific BMAL1 knockout (CBK) mice exhibit different TOD responses. In contrast to mitochondrial number, mitochondrial ETC activities do not fluctuate across TOD, but decrease immediately and significantly in response to fasting. Concurrent with the loss of ETC activities, ETC proteins were decreased with fasting, simultaneous with significant increases of mitophagy, mitochondrial antioxidant protein SOD2, and the fission protein DRP1. Fasting-induced mitophagy was lost in CBK mice, indicating a direct role of BMAL1 in regulating mitophagy. This is the first of its kind report to demonstrate the interactions between sex, fasting, and TOD on cardiac mitochondrial structure, function and mitophagy. These studies provide a foundation for future investigations of mitochondrial functional perturbation in aging and heart diseases.
Collapse
Affiliation(s)
- Mariame S Kane
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Birmingham VA Health Care System (BVACS), Birmingham, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Edie Osuma
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Baylor College of Medicine, Houston, USA
| | - Michelle S Johnson
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Helen E Collins
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Department of Medicine, University of Louisville, Louisville, USA
| | - Yecheng He
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, Jiangsu, China
| | - David Westbrook
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Silvio H Litovsky
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- Ashoka University, Sonipat, NCR (Delhi), India
| | - John C Chatham
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA
| | - Martin E Young
- Department of Medicine, University of Alabama at Birmingham, 703 19th St. S., ZRB 308, Birmingham, AL, 35294, USA.
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, 901 19th Street S., Birmingham, AL, BMRII-53435294-0017, USA.
| |
Collapse
|
16
|
Brooks CD, Kodati B, Stankowska DL, Krishnamoorthy RR. Role of mitophagy in ocular neurodegeneration. Front Neurosci 2023; 17:1299552. [PMID: 37965225 PMCID: PMC10641468 DOI: 10.3389/fnins.2023.1299552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Neurons in the central nervous system are among the most metabolically active cells in the body, characterized by high oxygen consumption utilizing glucose both aerobically and anaerobically. Neurons have an abundance of mitochondria which generate adequate ATP to keep up with the high metabolic demand. One consequence of the oxidative phosphorylation mechanism of ATP synthesis, is the generation of reactive oxygen species which produces cellular injury as well as damage to mitochondria. Mitochondria respond to injury by fusion which serves to ameliorate the damage through genetic complementation. Mitochondria also undergo fission to meet an increased energy demand. Loss of mitochondria is also compensated by increased biogenesis to generate new mitochondria. Damaged mitochondria are removed by mitophagy, an autophagic process, in which damaged mitochondria are surrounded by a membrane to form an autophagosome which ultimately fuses with the lysosome resulting in degradation of faulty mitochondria. Dysregulation of mitophagy has been reported in several central nervous system disorders, including, Alzheimer's disease and Parkinson's disease. Recent studies point to aberrant mitophagy in ocular neurodegenerative disorders which could be an important contributor to the disease etiology/pathology. This review article highlights some of the recent findings that point to dysregulation of mitophagy and it's underlying mechanisms in ocular neurodegenerative diseases, including, glaucoma, age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Calvin D. Brooks
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Raghu R. Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
17
|
Uoselis L, Nguyen TN, Lazarou M. Mitochondrial degradation: Mitophagy and beyond. Mol Cell 2023; 83:3404-3420. [PMID: 37708893 DOI: 10.1016/j.molcel.2023.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
Mitochondria are central hubs of cellular metabolism that also play key roles in signaling and disease. It is therefore fundamentally important that mitochondrial quality and activity are tightly regulated. Mitochondrial degradation pathways contribute to quality control of mitochondrial networks and can also regulate the metabolic profile of mitochondria to ensure cellular homeostasis. Here, we cover the many and varied ways in which cells degrade or remove their unwanted mitochondria, ranging from mitophagy to mitochondrial extrusion. The molecular signals driving these varied pathways are discussed, including the cellular and physiological contexts under which the different degradation pathways are engaged.
Collapse
Affiliation(s)
- Louise Uoselis
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA
| | - Thanh Ngoc Nguyen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia; Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD 20185, USA.
| |
Collapse
|
18
|
Levi-D'Ancona E, Sidarala V, Soleimanpour SA. Complementary Approaches to Interrogate Mitophagy Flux in Pancreatic β-Cells. J Vis Exp 2023:10.3791/65789. [PMID: 37782087 PMCID: PMC10597842 DOI: 10.3791/65789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Mitophagy is a quality control mechanism necessary to maintain optimal mitochondrial function. Dysfunctional β-cell mitophagy results in insufficient insulin release. Advanced quantitative assessments of mitophagy often require the use of genetic reporters. The mt-Keima mouse model, which expresses a mitochondria-targeted pH-sensitive dual-excitation ratiometric probe for quantifying mitophagy via flow cytometry, has been optimized in β-cells. The ratio of acidic-to-neutral mt-Keima wavelength emissions can be used to robustly quantify mitophagy. However, using genetic mitophagy reporters can be challenging when working with complex genetic mouse models or difficult-to-transfect cells, such as primary human islets. This protocol describes a novel complementary dye-based method to quantify β-cell mitophagy in primary islets using MtPhagy. MtPhagy is a pH-sensitive, cell-permeable dye that accumulates in the mitochondria and increases its fluorescence intensity when mitochondria are in low pH environments, such as lysosomes during mitophagy. By combining the MtPhagy dye with Fluozin-3-AM, a Zn2+ indicator that selects for β-cells, and Tetramethylrhodamine, ethyl ester (TMRE) to assess mitochondrial membrane potential, mitophagy flux can be quantified specifically in β-cells via flow cytometry. These two approaches are highly complementary, allowing for flexibility and precision in assessing mitochondrial quality control in numerous β-cell models.
Collapse
Affiliation(s)
- Elena Levi-D'Ancona
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor; Graduate Program in Immunology, University of Michigan Medical School
| | - Vaibhav Sidarala
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor
| | - Scott A Soleimanpour
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor; VA Ann Arbor Healthcare System;
| |
Collapse
|
19
|
Jiménez-Loygorri JI, Benítez-Fernández R, Viedma-Poyatos Á, Zapata-Muñoz J, Villarejo-Zori B, Gómez-Sintes R, Boya P. Mitophagy in the retina: Viewing mitochondrial homeostasis through a new lens. Prog Retin Eye Res 2023; 96:101205. [PMID: 37454969 DOI: 10.1016/j.preteyeres.2023.101205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Rocío Benítez-Fernández
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Álvaro Viedma-Poyatos
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
20
|
Han R, Liu Y, Li S, Li XJ, Yang W. PINK1-PRKN mediated mitophagy: differences between in vitro and in vivo models. Autophagy 2023; 19:1396-1405. [PMID: 36282767 PMCID: PMC10240983 DOI: 10.1080/15548627.2022.2139080] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/02/2022] Open
Abstract
Mitophagy is a key intracellular process that selectively removes damaged mitochondria to prevent their accumulation that can cause neuronal degeneration. During mitophagy, PINK1 (PTEN induced kinase 1), a serine/threonine kinase, works with PRKN/parkin, an E3 ubiquitin ligase, to target damaged mitochondria to the lysosome for degradation. Mutations in the PINK1 and PRKN genes cause early-onset Parkinson disease that is also associated with mitochondrial dysfunction. There are a large number of reports indicating the critical role of PINK1 in mitophagy. However, most of these findings were obtained from in vitro experiments with exogenous PINK1 expression and acute damage of mitochondria by toxins. Recent studies using novel animal models suggest that PINK1-PRKN can also function independent of mitochondria. In this review, we highlight the major differences between in vitro and in vivo models for investigating PINK1 and discuss the potential mechanisms underlying these differences with the aim of understanding how PINK1 functions under different circumstances.Abbreviations: AAV: adeno-associated viruses;AD: Alzheimer disease; CCCP: carbonyl cyanidem-chlorophenyl hydrazone; HD: Huntington disease; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MTS: mitochondrial targeting sequence; PD: Parkinson diseases; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; UIM, ubiquitin interacting motif.
Collapse
Affiliation(s)
- Rui Han
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yanting Liu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Weili Yang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Rybarski M, Mrohs D, Osenberg K, Hemmersbach M, Pfeffel K, Steinkamp J, Schmidt D, Violou K, Schäning R, Schmidtke K, Bader V, Andriske M, Bohne P, Mark MD, Winklhofer KF, Lübbert H, Zhu XR. Loss of parkin causes endoplasmic reticulum calcium dyshomeostasis by upregulation of reticulocalbin 1. Eur J Neurosci 2023; 57:739-761. [PMID: 36656174 DOI: 10.1111/ejn.15917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Increasing evidence suggests that astrocytes play an important role in the progression of Parkinson's disease (PD). Previous studies on our parkin knockout mouse demonstrated a higher accumulation of damaged mitochondria in astrocytes than in surrounding dopaminergic (DA) neurons, suggesting that Parkin plays a crucial role regarding their interaction during PD pathogenesis. In the current study, we examined primary mesencephalic astrocytes and neurons in a direct co-culture system and discovered that the parkin deletion causes an impaired differentiation of mesencephalic neurons. This effect required the parkin mutation in astrocytes as well as in neurons. In Valinomycin-treated parkin-deficient astrocytes, ubiquitination of Mitofusin 2 was abolished, whereas there was no significant degradation of the outer mitochondrial membrane protein Tom70. This result may explain the accumulation of damaged mitochondria in parkin-deficient astrocytes. We examined differential gene expression in the substantia nigra region of our parkin-KO mouse by RNA sequencing and identified an upregulation of the endoplasmic reticulum (ER) Ca2+ -binding protein reticulocalbin 1 (RCN1) expression, which was validated using qPCR. Immunostaining of the SN brain region revealed RCN1 expression mainly in astrocytes. Our subcellular fractionation of brain extract has shown that RCN1 is located in the ER and in mitochondria-associated membranes (MAM). Moreover, a loss of Parkin function reduced ATP-stimulated calcium-release in ER mesencephalic astrocytes that could be attenuated by siRNA-mediated RCN1 knockdown. Our results indicate that RCN1 plays an important role in ER-associated calcium dyshomeostasis caused by the loss of Parkin function in mesencephalic astrocytes, thereby highlighting the relevance of astrocyte function in PD pathomechanisms.
Collapse
Affiliation(s)
- Max Rybarski
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - David Mrohs
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Osenberg
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Biofrontera Pharmaceuticals AG, Leverkusen, Germany
| | - Maren Hemmersbach
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Pfeffel
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Joy Steinkamp
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - David Schmidt
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Karina Violou
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Ruth Schäning
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Katja Schmidtke
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael Andriske
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany
| | - Pauline Bohne
- Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Melanie D Mark
- Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Hermann Lübbert
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Biofrontera Pharmaceuticals AG, Leverkusen, Germany
| | - Xin-Ran Zhu
- Department of Animal Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Behavioral Neuroscience, Ruh University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Usher JL, Sanchez‐Martinez A, Terriente‐Felix A, Chen P, Lee JJ, Chen C, Whitworth AJ. Parkin drives pS65-Ub turnover independently of canonical autophagy in Drosophila. EMBO Rep 2022; 23:e53552. [PMID: 36250243 PMCID: PMC9724668 DOI: 10.15252/embr.202153552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/05/2022] [Accepted: 09/20/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease-related proteins, PINK1 and Parkin, act in a common pathway to maintain mitochondrial quality control. While the PINK1-Parkin pathway can promote autophagic mitochondrial turnover (mitophagy) following mitochondrial toxification in cell culture, alternative quality control pathways are suggested. To analyse the mechanisms by which the PINK1-Parkin pathway operates in vivo, we developed methods to detect Ser65-phosphorylated ubiquitin (pS65-Ub) in Drosophila. Exposure to the oxidant paraquat led to robust, Pink1-dependent pS65-Ub production, while pS65-Ub accumulates in unstimulated parkin-null flies, consistent with blocked degradation. Additionally, we show that pS65-Ub specifically accumulates on disrupted mitochondria in vivo. Depletion of the core autophagy proteins Atg1, Atg5 and Atg8a did not cause pS65-Ub accumulation to the same extent as loss of parkin, and overexpression of parkin promoted turnover of both basal and paraquat-induced pS65-Ub in an Atg5-null background. Thus, we have established that pS65-Ub immunodetection can be used to analyse Pink1-Parkin function in vivo as an alternative to reporter constructs. Moreover, our findings suggest that the Pink1-Parkin pathway can promote mitochondrial turnover independently of canonical autophagy in vivo.
Collapse
Affiliation(s)
- Joanne L Usher
- MRC Mitochondrial Biology UnitCambridgeUK
- PNAC Division, MRC Laboratory of Molecular BiologyCambridgeUK
- Present address:
MSD R&D Innovation CentreLondonUK
| | | | | | - Po‐Lin Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | | - Chun‐Hong Chen
- National Institute of Infectious Diseases and VaccinologyNational Health Research InstitutesZhunanTaiwan
| | | |
Collapse
|
23
|
Liu S, Liu S, Jiang H. Multifaceted roles of mitochondrial stress responses under ETC dysfunction - repair, destruction and pathogenesis. FEBS J 2022; 289:6994-7013. [PMID: 34918460 DOI: 10.1111/febs.16323] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 01/13/2023]
Abstract
Electron transport chain (ETC) dysfunction is a common feature of mitochondrial diseases and induces severe cellular stresses, including mitochondrial membrane potential (Δψm ) reduction, mitochondrial matrix acidification, metabolic derangements and proteostatic stresses. Extensive studies of ETC dysfunction in yeast, Caenorhabditis elegans, cultured cells and mouse models have revealed multiple mitochondrial stress response pathways. Here, we summarise the current understanding of the triggers, sensors, signalling mechanisms and the functional outcomes of mitochondrial stress responses in different species. We highlight Δψm reduction as a major trigger of stress responses in different species, but the responses are species-specific and the outcomes are context-dependent. ETC dysfunction elicits a mitochondrial unfolded protein response (UPRmt ) to repair damaged mitochondria in C. elegans, and activates a global adaptive programme to maintain Δψm in yeast. Yeast and C. elegans responses are remarkably similar at the downstream responses, although they are activated by different signalling mechanisms. UPRmt generally protects ETC-defective worms, but its constitutive activation is toxic for wildtype worms and worms carrying mutant mtDNA. In contrast to lower organisms, ETC dysfunction in mammals mainly activates a mitochondrial integrated stress response (ISRmt ) to reprogramme metabolism and a PINK1-Parkin mitophagy pathway to degrade damaged mitochondria. Accumulating in vivo results suggest that the ATF4 branch of ISRmt exacerbates metabolic derangements to accelerate mitochondrial disease progression. The in vivo roles of mitophagy in mitochondrial diseases are also context-dependent. These results thus reveal the common and unique aspects of mitochondrial stress responses in different species and highlight their multifaceted roles in mitochondrial diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Siqi Liu
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Hui Jiang
- National Institute of Biological Sciences, Beijing, China.,Beijing Key Laboratory of Cell Biology for Animal Aging, China.,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Palozzi JM, Jeedigunta SP, Minenkova AV, Monteiro VL, Thompson ZS, Lieber T, Hurd TR. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab 2022; 34:1809-1823.e6. [PMID: 36323236 DOI: 10.1016/j.cmet.2022.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria have their own DNA (mtDNA), which is susceptible to the accumulation of disease-causing mutations. To prevent deleterious mutations from being inherited, the female germline has evolved a conserved quality control mechanism that remains poorly understood. Here, through a large-scale screen, we uncover a unique programmed germline mitophagy (PGM) that is essential for mtDNA quality control. We find that PGM is developmentally triggered as germ cells enter meiosis by inhibition of the target of rapamycin complex 1 (TORC1). We identify a role for the RNA-binding protein Ataxin-2 (Atx2) in coordinating the timing of PGM with meiosis. We show that PGM requires the mitophagy receptor BNIP3, mitochondrial fission and translation factors, and members of the Atg1 complex, but not the mitophagy factors PINK1 and Parkin. Additionally, we report several factors that are critical for germline mtDNA quality control and show that pharmacological manipulation of one of these factors promotes mtDNA quality control.
Collapse
Affiliation(s)
- Jonathan M Palozzi
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Anastasia V Minenkova
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Vernon L Monteiro
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Zoe S Thompson
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Toby Lieber
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
25
|
Xiao B, Kuruvilla J, Tan EK. Mitophagy and reactive oxygen species interplay in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:135. [PMID: 36257956 PMCID: PMC9579202 DOI: 10.1038/s41531-022-00402-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Mitophagy impairment and oxidative stress are cardinal pathological hallmarks in Parkinson's disease (PD), a common age-related neurodegenerative condition. The specific interactions between mitophagy and reactive oxygen species (ROS) have attracted considerable attention even though their exact interplay in PD has not been fully elucidated. We highlight the interactions between ROS and mitophagy, with a focus on the signalling pathways downstream to ROS that triggers mitophagy and draw attention to potential therapeutic compounds that target these pathways in both experimental and clinical models. Identifying a combination of ROS inhibitors and mitophagy activators to provide a physiologic balance in this complex signalling pathways may lead to a more optimal outcome. Deciphering the exact temporal relationship between mitophagy and oxidative stress and their triggers early in the course of neurodegeneration can unravel mechanistic clues that potentially lead to the development of compounds for clinical drug trials focusing on prodromic PD or at-risk individuals.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Joshua Kuruvilla
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
26
|
Goiran T, Eldeeb MA, Zorca CE, Fon EA. Hallmarks and Molecular Tools for the Study of Mitophagy in Parkinson’s Disease. Cells 2022; 11:cells11132097. [PMID: 35805181 PMCID: PMC9265644 DOI: 10.3390/cells11132097] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
The best-known hallmarks of Parkinson’s disease (PD) are the motor deficits that result from the degeneration of dopaminergic neurons in the substantia nigra. Dopaminergic neurons are thought to be particularly susceptible to mitochondrial dysfunction. As such, for their survival, they rely on the elaborate quality control mechanisms that have evolved in mammalian cells to monitor mitochondrial function and eliminate dysfunctional mitochondria. Mitophagy is a specialized type of autophagy that mediates the selective removal of damaged mitochondria from cells, with the net effect of dampening the toxicity arising from these dysfunctional organelles. Despite an increasing understanding of the molecular mechanisms that regulate the removal of damaged mitochondria, the detailed molecular link to PD pathophysiology is still not entirely clear. Herein, we review the fundamental molecular pathways involved in PINK1/Parkin-mediated and receptor-mediated mitophagy, the evidence for the dysfunction of these pathways in PD, and recently-developed state-of-the art assays for measuring mitophagy in vitro and in vivo.
Collapse
|
27
|
Zhu W, Huang X, Yoon E, Bandres-Ciga S, Blauwendraat C, Billingsley KJ, Cade JH, Wu BP, Williams VH, Schindler AB, Brooks J, Gibbs JR, Hernandez DG, Ehrlich D, Singleton AB, Narendra DP. Heterozygous PRKN mutations are common but do not increase the risk of Parkinson's disease. Brain 2022; 145:2077-2091. [PMID: 35640906 PMCID: PMC9423714 DOI: 10.1093/brain/awab456] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022] Open
Abstract
PRKN mutations are the most common recessive cause of Parkinson's disease and are a promising target for gene and cell replacement therapies. Identification of biallelic PRKN patients at the population scale, however, remains a challenge, as roughly half are copy number variants and many single nucleotide polymorphisms are of unclear significance. Additionally, the true prevalence and disease risk associated with heterozygous PRKN mutations is unclear, as a comprehensive assessment of PRKN mutations has not been performed at a population scale. To address these challenges, we evaluated PRKN mutations in two cohorts with near complete genotyping of both single nucleotide polymorphisms and copy number variants: the NIH-PD + AMP-PD cohort, the largest Parkinson's disease case-control cohort with whole genome sequencing data from 4094 participants, and the UK Biobank, the largest cohort study with whole exome sequencing and genotyping array data from 200 606 participants. Using the NIH-PD participants, who were genotyped using whole genome sequencing, genotyping array, and multi-plex ligation-dependent probe amplification, we validated genotyping array for the detection of copy number variants. Additionally, in the NIH-PD cohort, functional assays of patient fibroblasts resolved variants of unclear significance in biallelic carriers and suggested that cryptic loss of function variants in monoallelic carriers are not a substantial confounder for association studies. In the UK Biobank, we identified 2692 PRKN copy number variants from genotyping array data from nearly half a million participants (the largest collection to date). Deletions or duplications involving exon 2 accounted for roughly half of all copy number variants and the vast majority (88%) involved exons 2, 3, or 4. In the UK Biobank, we found a pathogenic PRKN mutation in 1.8% of participants and two mutations in ∼1/7800 participants. Those with one PRKN pathogenic variant were as likely as non-carriers to have Parkinson's disease [odds ratio = 0.91 (0.58-1.38), P-value 0.76] or a parent with Parkinson's disease [odds ratio = 1.12 (0.94-1.31), P-value = 0.19]. Similarly, those in the NIH-PD + AMP + PD cohort with one PRKN pathogenic variant were as likely as non-carriers to have Parkinson's disease [odds ratio = 1.29 (0.74-2.38), P-value = 0.43]. Together our results demonstrate that heterozygous pathogenic PRKN mutations are common in the population but do not increase the risk of Parkinson's disease.
Collapse
Affiliation(s)
- William Zhu
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Xiaoping Huang
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Esther Yoon
- Parkinson’s Disease Clinic, Office of the Clinical Director, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Kimberly J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Joshua H Cade
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Beverly P Wu
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Victoria H Williams
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Alice B Schindler
- National Institute of Neurological Disorders and Stroke, Neurogenetics Branch, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Janet Brooks
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - J Raphael Gibbs
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Dena G Hernandez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Debra Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-3705, USA
- Center for Alzheimer’s and Related Dementias, National Institutes of Health, Bethesda, MD 20892-3705, USA
| | - Derek P Narendra
- Inherited Disorders Unit, Neurogenetics Branch, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3705, USA
| |
Collapse
|
28
|
Ke PY, Chang CW, Hsiao YC. Baicalein Activates Parkin-Dependent Mitophagy through NDP52 and OPTN. Cells 2022; 11:cells11071132. [PMID: 35406696 PMCID: PMC8997844 DOI: 10.3390/cells11071132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022] Open
Abstract
The elimination of intracellular components by autophagy maintains metabolic homeostasis and is a quality-control pathway that enables organelle regeneration. Mitophagy is a type of selective autophagy that regulates mitochondrial turnover, and the dysregulation of mitophagy has been implicated in the pathogenesis of liver diseases. However, the detailed molecular mechanism underlying mitophagy regulation in liver cells remains unclear, and the small molecules that may potentially modulate hepatic mitophagy are still unavailable. Here, we report that baicalein, a flavonoid extracted from Scutellaria baicalensis, induces the entire autophagy that proceeds through the autolysosome maturation stage in human hepatoma cells. In addition, baicalein-induced autophagy is demonstrated to target mitochondria for degradation. Further studies show that baicalein triggers the translocation of Parkin and TBK1 to mitochondria to induce mitophagy. Moreover, the phosphorylation of TBK1 at Ser172 and ubiquitin at Ser65 is shown to trigger mitophagy in baicalein-treated cells. Furthermore, two specific autophagy cargo receptors, NDP52 and OPTN, that function in baicalein-activated mitophagy are identified. Taken together, these findings not only delineate the molecular process of Parkin-dependent mitophagy in liver cells, but also reveal baicalein as a novel inducer of hepatic mitophagy.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-W.C.); (Y.-C.H.)
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: ; Tel.: +886-3-2118800 (ext. 5115); Fax: +886-3-211-8700
| | - Chih-Wei Chang
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-W.C.); (Y.-C.H.)
| | - Yuan-Chao Hsiao
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (C.-W.C.); (Y.-C.H.)
| |
Collapse
|
29
|
So B, Park J, Jang J, Lim W, Imdad S, Kang C. Effect of Aerobic Exercise on Oxidative Stress and Inflammatory Response During Particulate Matter Exposure in Mouse Lungs. Front Physiol 2022; 12:773539. [PMID: 35185596 PMCID: PMC8850364 DOI: 10.3389/fphys.2021.773539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
Regular exercise provides several health benefits that can improve the cardiovascular and musculoskeletal systems, but clear evidence on the effect of exercise-induced hyperventilation in particulate matter (PM) exposure is still lacking. This study aimed to investigate the effects of exercise in PM exposure on reactive oxygen species (ROS) generation, inflammatory response, and mitochondrial integrity in human lung epithelial cells (A549), as well as in mouse lung tissue. In in vitro experiments, PM treatment was shown to significantly increased ROS production, and reduced cell viability and mitochondrial function in A549 cells. The mice were divided into four groups for an in vivo exercise experiment: control (CON), PM inhalation (PI), PM inhalation during exercise (PIE), and exercise (EX) groups. The PI and PIE groups were exposed to 100 μg/m3 of PM for 1 h per day for a week. The PIE and EX groups performed treadmill exercises every day for 1 h at 20 m/min for a week. The levels of pro-inflammatory markers (IL-6 and TNF-α) were significantly higher in the PI group than in the CON group (P < 0.001 and P < 0.01, respectively). The carbonyl protein level was decreased in EX vs. PI (P < 0.001). Mitochondrial fission (Drp1) content was significantly decreased in the EX vs. CON group (P < 0.01), but anti-mitochondrial fission (P-Drp1 Ser637) was increased in the EX vs. PI group (P < 0.05). Mitochondrial autophagy (mitophagy), which is an assessment of mitochondrial integrity, was markedly increased in PI vs. CON (P < 0.001), but the level was reversed in PIE (P < 0.05). Lung fibrosis was increased in PI vs. CON group (P < 0.001), however, the cells were rescued in the PIE (P < 0.001). The number of apoptotic cells was remarkably increased in the PI vs. CON group (P < 0.001), whereas the level was decreased in the PIE (P < 0.001). Taken together, these results showed that short-term exposure to PM triggers oxidative stress, pro-inflammatory responses, and apoptosis in the lungs, but the PM-induced adverse effects on the lung tissue are not exacerbated by exercise-induced PM hyperventilation but rather has a protective effect.
Collapse
Affiliation(s)
- Byunghun So
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
| | - Jinhan Park
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
| | - Junho Jang
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Saba Imdad
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju, South Korea
| | - Chounghun Kang
- Molecular Metabolism in Health and Disease, Exercise Physiology Laboratory, Inha University, Incheon, South Korea
- Department of Physical Education, College of Education, Inha University, Incheon, South Korea
- *Correspondence: Chounghun Kang,
| |
Collapse
|
30
|
Potential Combination Drug Therapy to Prevent Redox Stress and Mitophagy Dysregulation in Retinal Müller Cells under High Glucose Conditions: Implications for Diabetic Retinopathy. Diseases 2021; 9:diseases9040091. [PMID: 34940029 PMCID: PMC8700204 DOI: 10.3390/diseases9040091] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic hyperglycemia-induced thioredoxin-interacting protein (TXNIP) expression, associated oxidative/nitrosative stress (ROS/RNS), and mitochondrial dysfunction play critical roles in the etiology of diabetic retinopathy (DR). However, there is no effective drug treatment to prevent or slow down the progression of DR. The purpose of this study is to examine if a combination drug treatment targeting TXNIP and the mitochondria-lysosome pathway prevents high glucose-induced mitochondrial stress and mitophagic flux in retinal Müller glial cells in culture, relevant to DR. We show that diabetes induces TXNIP expression, redox stress, and Müller glia activation (gliosis) in rat retinas when compared to non-diabetic rat retinas. Furthermore, high glucose (HG, 25 mM versus low glucose, LG 5.5 mM) also induces TXNIP expression and mitochondrial stress in a rat retinal Müller cell line, rMC1, in in vitro cultures. Additionally, we develop a mitochondria-targeted mCherry and EGFP probe tagged with two tandem COX8a mitochondrial target sequences (adenovirus-CMV-2×mt8a-CG) to examine mitophagic flux in rMC1. A triple drug combination treatment was applied using TXNIP-IN1 (which inhibits TXNIP interaction with thioredoxin), Mito-Tempo (mitochondrial anti-oxidant), and ML-SA1 (lysosome targeted activator of transient calcium channel MCOLN1/TRPML1 and of transcription factor TFEB) to study the mitochondrial-lysosomal axis dysregulation. We found that HG induces TXNIP expression, redox stress, and mitophagic flux in rMC1 versus LG. Treatment with the triple drug combination prevents mitophagic flux and restores transcription factor TFEB and PGC1α nuclear localization under HG, which is critical for lysosome biosynthesis and mitogenesis, respectively. Our results demonstrate that 2×mt8a-CG is a suitable probe for monitoring mitophagic flux, both in live and fixed cells in in vitro experiments, which may also be applicable to in vivo animal studies, and that the triple drug combination treatment has the potential for preventing retinal injury and disease progression in diabetes.
Collapse
|
31
|
Abstract
Mitochondria, which resemble their α-proteobacteria ancestors, are a major cellular asset, producing energy 'on the cheap' through oxidative phosphorylation. They are also a liability. Increased oxidative phosphorylation means increased oxidative stress, and damaged mitochondria incite inflammation through release of their bacteria-like macromolecules. Mitophagy (the selective macroautophagy of mitochondria) controls mitochondria quality and number to manage these risky assets. Parkin, BNIP3 and NIX were identified as being part of the first mitophagy pathways identified in mammals over a decade ago, with additional pathways, including that mediated by FUNDC1 reported more recently. Loss of Parkin or PINK1 function causes Parkinson's disease, highlighting the importance of mitophagy as a quality control mechanism in the brain. Additionally, mitophagy is induced in idiopathic Parkinson's disease and Alzheimer's disease, protects the heart and other organs against energy stress and lipotoxicity, regulates metabolism by controlling mitochondrial number in brown and beige fat, and clears mitochondria during terminal differentiation of glycolytic cells, such as red blood cells and neurons. Despite its importance in disease, mitophagy is likely dispensable under physiological conditions. This Review explores the in vivo roles of mitophagy in mammalian systems, focusing on the best studied examples - mitophagy in neurodegeneration, cardiomyopathy, metabolism, and red blood cell development - to draw out common themes.
Collapse
Affiliation(s)
- Derek P. Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Mitochondrial Quality Control in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2021; 58:5253-5271. [PMID: 34275087 DOI: 10.1007/s12035-021-02494-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/12/2021] [Indexed: 12/27/2022]
Abstract
Ischemic stroke is one of the leading causes of death and also a major cause of adult disability worldwide. Revascularization via reperfusion therapy is currently a standard clinical procedure for patients with ischemic stroke. Although the restoration of blood flow (reperfusion) is critical for the salvage of ischemic tissue, reperfusion can also, paradoxically, exacerbate neuronal damage through a series of cellular alterations. Among the various theories postulated for ischemia/reperfusion (I/R) injury, including the burst generation of reactive oxygen species (ROS), activation of autophagy, and release of apoptotic factors, mitochondrial dysfunction has been proposed to play an essential role in mediating these pathophysiological processes. Therefore, strict regulation of the quality and quantity of mitochondria via mitochondrial quality control is of great importance to avoid the pathological effects of impaired mitochondria on neurons. Furthermore, timely elimination of dysfunctional mitochondria via mitophagy is also crucial to maintain a healthy mitochondrial network, whereas intensive or excessive mitophagy could exacerbate cerebral I/R injury. This review will provide a comprehensive overview of the effect of mitochondrial quality control on cerebral I/R injury and introduce recent advances in the understanding of the possible signaling pathways of mitophagy and potential factors responsible for the double-edged roles of mitophagy in the pathological processes of cerebral I/R injury.
Collapse
|
33
|
Liu YT, Sliter DA, Shammas MK, Huang X, Wang C, Calvelli H, Maric SD, Narendra DP. Comment on "mt-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than mito-QC". Autophagy 2021; 17:4484-4485. [PMID: 33890546 DOI: 10.1080/15548627.2021.1909999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yi-Ting Liu
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Danielle A Sliter
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Mario K Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Chunxin Wang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Hannah Calvelli
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - S D Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Gonçalves FB, Morais VA. PINK1: A Bridge between Mitochondria and Parkinson's Disease. Life (Basel) 2021; 11:life11050371. [PMID: 33919398 PMCID: PMC8143285 DOI: 10.3390/life11050371] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are known as highly dynamic organelles essential for energy production. Intriguingly, in the recent years, mitochondria have revealed the ability to maintain cell homeostasis and ultimately regulate cell fate. This regulation is achieved by evoking mitochondrial quality control pathways that are capable of sensing the overall status of the cellular environment. In a first instance, actions to maintain a robust pool of mitochondria take place; however, if unsuccessful, measures that lead to overall cell death occur. One of the central key players of these mitochondrial quality control pathways is PINK1 (PTEN-induce putative kinase), a mitochondrial targeted kinase. PINK1 is known to interact with several substrates to regulate mitochondrial functions, and not only is responsible for triggering mitochondrial clearance via mitophagy, but also participates in maintenance of mitochondrial functions and homeostasis, under healthy conditions. Moreover, PINK1 has been associated with the familial form of Parkinson’s disease (PD). Growing evidence has strongly linked mitochondrial homeostasis to the central nervous system (CNS), a system that is replenished with high energy demanding long-lasting neuronal cells. Moreover, sporadic cases of PD have also revealed mitochondrial impairments. Thus, one could speculate that mitochondrial homeostasis is the common denominator in these two forms of the disease, and PINK1 may play a central role in maintaining mitochondrial homeostasis. In this review, we will discuss the role of PINK1 in the mitochondrial physiology and scrutinize its role in the cascade of PD pathology.
Collapse
|
35
|
Ganley IG, Whitworth AJ, McWilliams TG. Comment on "mt-Keima detects PINK1-PRKN mitophagy in vivo with greater sensitivity than mito-QC". Autophagy 2021; 17:4477-4479. [PMID: 33818280 PMCID: PMC8726702 DOI: 10.1080/15548627.2021.1907269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ian G Ganley
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | - Thomas G McWilliams
- Translational Stem Cell Biology and Metabolism, Research Programs Unit, Faculty of Medicine,University of Helsinki, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine,University of Helsinki, Helsinki, Finland
| |
Collapse
|