1
|
Zhang Q, Guo S, Ge H, Wang H. The protective role of baicalin regulation of autophagy in cancers. Cytotechnology 2025; 77:33. [PMID: 39760060 PMCID: PMC11699138 DOI: 10.1007/s10616-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis. The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Hangwei Ge
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
2
|
Du J, Meng X, Yang M, Chen G, Li J, Zhu Z, Wu X, Hu W, Tian M, Li T, Ren S, Zhao P. NGR-Modified CAF-Derived exos Targeting Tumor Vasculature to Induce Ferroptosis and Overcome Chemoresistance in Osteosarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410918. [PMID: 39889249 DOI: 10.1002/advs.202410918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/13/2024] [Indexed: 02/02/2025]
Abstract
Osteosarcoma (OS) chemoresistance presents a significant clinical challenge. This study aims to investigate the potential of using tumor vascular-targeting peptide NGR-modified cancer-associated fibroblasts (CAFs)-derived exosomes (exos) to deliver circ_0004872-encoded small peptides promoting autophagy-dependent ferroptosis to reverse chemoresistance in OS. Through combined single-cell transcriptome analysis and high-throughput sequencing, it identified circ_0004872 associated with chemoresistance. Subsequent experiments demonstrated that the small peptide encoded by this Circular RNA (circRNA) can effectively reverse chemoresistance by enhancing OS cell sensitivity to chemotherapy via the mechanism of promoting autophagy-dependent ferroptosis. Moreover, in vitro and in vivo results confirmed the efficient delivery of NGR-modified CAFs-derived exo-packaged circ_0004872-109aa to tumor cells, thereby improving targeted therapy efficacy. This study not only offers a novel strategy to overcome chemoresistance in OS but also highlights the potential application value of utilizing exos for drug delivery.
Collapse
Affiliation(s)
- Jianxin Du
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036, China
| | - Xiangwei Meng
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036, China
| | - Minghao Yang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Guancheng Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jigang Li
- Department of Orthopedics, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036, China
| | - Zengjun Zhu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261042, China
| | - Xuanxuan Wu
- School of Medical Laboratory, Shandong Second Medical University, Weifang, 261042, China
| | - Wei Hu
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036, China
| | - Maojin Tian
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036, China
| | - Tao Li
- Department of Orthopedics, Nanjing Jiangbei Hospital, Nanjing, 210044, China
| | - Shuai Ren
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036, China
| | - Peiqing Zhao
- Center of Translational Medicine, Zibo Central Hospital Affiliated to Binzhou Medical University, Zibo, 255036, China
| |
Collapse
|
3
|
Li R, Ma Y, He A, Pu Y, Wan X, Sun H, Wang N, Luo M, Wang G, Xia Y. Fasting enhances the efficacy of Sorafenib in breast cancer via mitophagy mediated ROS-driven p53 pathway. Free Radic Biol Med 2025; 229:350-363. [PMID: 39864757 DOI: 10.1016/j.freeradbiomed.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The multi-kinase inhibitor sorafenib has shown potential to inhibit tumor cell growth and intra-tumoral angiogenesis by targeting several kinases, including VEGFR2 and RAF. Abnormal activation of the Ras/Raf/MAPK/ERK kinase cascade and the VEGF pathway is a common feature in breast cancer. However, the efficacy of sorafenib in breast cancer treatment remains limited. Recently, fasting has emerged as a promising non-pharmacological approach to modulate cancer metabolism and enhance the effectiveness of cancer therapies. In this study, we found that fasting significantly enhances the anti-cancer effects of sorafenib monotherapy and its combination with immunotherapy in breast cancer models without causing obvious side effects. This combined treatment effectively inhibits tumor cell proliferation and intra-tumoral angiogenesis. The fasting-induced reduction in peripheral blood glucose levels strongly correlated with enhanced sensitivity to sorafenib. Mechanistically, the combined treatment induced mitophagy, characterized by mitochondrial dysfunction and activation of the PINK1-Parkin pathway. Consequently, increased mitochondrial ROS levels promoted p53 expression, amplifying cell cycle arrest and apoptosis in breast cancer cells. Furthermore, fasting reduced lactate levels within the tumor, and the consequent glucose limitation synergized with sorafenib to activate AMPK, which in turn elevated PD-L1 expression in tumor cells, potentially enhancing their sensitivity to immunotherapy. In summary, our findings demonstrate that fasting and sorafenib, as a rational combination therapy, induce mitophagy, thereby enhancing sorafenib's efficacy in treating breast cancer through the ROS-driven p53 pathway. This study underscores the potential of fasting in breast cancer therapy and provides a foundation for optimizing the clinical application of sorafenib.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yimei Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Anqi He
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yamin Pu
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanting Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Min Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Hao J, Yang Y, Xie L, Li Z, Ma B, Wang B, Chen J, Zeng Z, Zhou X. Actl6a regulates autophagy via Sox2-dependent Atg5 and Atg7 expression to inhibit apoptosis in spinal cord injury. J Adv Res 2025:S2090-1232(25)00057-8. [PMID: 39875055 DOI: 10.1016/j.jare.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Spinal cord injury (SCI) is a severe central nervous system disorder with limited treatment options. While autophagy plays a protective role in neural repair, its regulatory mechanisms in SCI remain unclear. Actin-like protein 6A (Actl6a) influences cell fate and neural development, yet its specific role in SCI repair is not well understood. This study investigates Actl6a's function in regulating autophagy and apoptosis via the transcription factor Sox2 in SCI. OBJECTIVES This study aims to determine if Actl6a promotes neural survival post-SCI by regulating autophagy-related genes Atg5 and Atg7 through Sox2. It also examines how the demethylase Fto modulates Actl6a mRNA stability via m6A methylation. METHODS In vitro experiments were conducted using primary neurons and HT-22 hippocampal cells exposed to hydrogen peroxide (H2O2)-induced oxidative stress. Actl6a expression was manipulated by knockdown or overexpression. For in vivo studies, a rat SCI model was established with AAV-Actl6a injected at the injury site to induce Actl6a overexpression. Autophagy and apoptosis markers were analyzed using immunofluorescence, Western blotting, and qPCR. Additionally, m6A dot blot and RNA immunoprecipitation (RIP) assays were performed to assess Fto's role in regulating Actl6a mRNA methylation and stability. RESULTS Actl6a expression significantly decreased after SCI, resulting in increased apoptosis. Overexpressing Actl6a enhanced autophagy, reduced apoptosis, and improved neurological function in SCI models. Mechanistically, Actl6a and Sox2 collaboratively upregulated Atg5 and Atg7 expression, promoting autophagy. Fto's modulation of Actl6a mRNA stability via m6A demethylation further influenced autophagy and apoptosis. CONCLUSION Actl6a, through interaction with Sox2, plays a critical role in modulating autophagy and reducing apoptosis in SCI, with Fto's m6A modification affecting Actl6a stability. This Fto/Actl6a/Sox2 axis is a promising therapeutic target for SCI repair.
Collapse
Affiliation(s)
- Jian Hao
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| | - Yubiao Yang
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China
| | - Li Xie
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Zhenhan Li
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Boyuan Ma
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Bitao Wang
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Jinyu Chen
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhi Zeng
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Xianhu Zhou
- the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
5
|
Xing Y, Wang MM, Zhang F, Xin T, Wang X, Chen R, Sui Z, Dong Y, Xu D, Qian X, Lu Q, Li Q, Cai W, Hu M, Wang Y, Cao JL, Cui D, Qi J, Wang W. Lysosomes finely control macrophage inflammatory function via regulating the release of lysosomal Fe 2+ through TRPML1 channel. Nat Commun 2025; 16:985. [PMID: 39856099 PMCID: PMC11760952 DOI: 10.1038/s41467-025-56403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Lysosomes are best known for their roles in inflammatory responses by engaging in autophagy to remove inflammasomes. Here, we describe an unrecognized role for the lysosome, showing that it finely controls macrophage inflammatory function by manipulating the lysosomal Fe2+-prolyl hydroxylase domain enzymes (PHDs)-NF-κB-interleukin 1 beta (IL1B) transcription pathway that directly links lysosomes with inflammatory responses. TRPML1, a lysosomal cationic channel, is activated secondarily to ROS elevation upon inflammatory stimuli, which in turn suppresses IL1B transcription, thus limiting the excessive production of IL-1β in macrophages. Mechanistically, the suppression of IL1B transcription caused by TRPML1 activation results from its modulation on the release of lysosomal Fe2+, which subsequently activates PHDs. The activated PHDs then represses transcriptional activity of NF-κB, ultimately resulting in suppressed IL1B transcription. More importantly, in vivo stimulation of TRPML1 ameliorates multiple clinical signs of Dextran sulfate sodium-induced colitis in mice, suggesting TRPML1 has potential in treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng-Meng Wang
- Department of Otolaryngology and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feifei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinyan Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rong Chen
- The First People's Hospital of Yancheng, Yancheng, China
| | - Zhongheng Sui
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Yawei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongxue Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xingyu Qian
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weijie Cai
- New Cornerstone Science Laboratory, Liangzhu Laboratory & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Meiqin Hu
- New Cornerstone Science Laboratory, Liangzhu Laboratory & School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Wang
- Department of Medicine and Biosystemic Science, Faculty of Medicine, Kyushu University, Fukuoka, Kyushu, Japan
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Derong Cui
- Department of Anesthesiology, The Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiansong Qi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Zhang J, Zhang J, Yang C. Autophagy in brain tumors: molecular mechanisms, challenges, and therapeutic opportunities. J Transl Med 2025; 23:52. [PMID: 39806481 PMCID: PMC11727735 DOI: 10.1186/s12967-024-06063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors. Hence, having knowledge of the role of molecular processes in the advancement of brain tumors is enlightening, and the current review specifically examines the role of autophagy. The discussion would focus on the molecular pathways that control autophagy in brain tumors, and its dual role as a tumor suppressor and a supporter of tumor survival. Autophagy can control the advancement of different types of brain tumors like glioblastoma, glioma, and ependymoma, demonstrating its potential for treatment. Autophagy mechanisms can influence metastasis and drug resistance in glioblastoma, and there is a complex interplay between autophagy and cellular responses to stress like hypoxia and starvation. Autophagy can inhibit the growth of brain tumors by promoting apoptosis. Hence, focusing on autophagy could offer fresh perspectives on creating successful treatments.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jinan Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| | - Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
| |
Collapse
|
7
|
Li F, Deng L, Xu T, Xu L, Xu Z, Lai S, Ai Y, Wang Y, Yan G, Zhu L. Getah virus triggers ROS-mediated autophagy in mouse Leydig cells. Front Microbiol 2025; 15:1519694. [PMID: 39872815 PMCID: PMC11771000 DOI: 10.3389/fmicb.2024.1519694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Getah virus (GETV) is a zoonotic virus transmitted via a mosquito-vertebrate cycle. While previous studies have explored the epidemiology and pathogenicity of GETV in various species, its molecular mechanisms remain largely unexplored. Methods This study investigated the impact of GETV infection and associated molecular mechanisms on reactive oxygen species (ROS) and autophagy levels in mouse Leydig cells both in vivo and in vitro. The male mice and TM3 cells were treatment with N-acetylcysteine (NAC) to reduce cellular ROS levels. Rapamycin (Rapa) and 3-Methyladenine (3- MA) were used to change autophagy in both infected and uninfected TM3 cells. Results and Discussion The findings revealed that GETV infection in mouse testes speciffcally targeted Leydig cells and induced oxidative stress while enhancing autophagy in testicular tissue. Using TM3 cells as an in vitro model, the study confirmed GETV replication in this cell line, triggering increased ROS and autophagy levels. Treatment with N-acetylcysteine (NAC) to reduce cellular ROS levels markedly reduced autophagy in testicular tissue and TM3 cells infected with GETV. Interestingly, the use of rapamycin (Rapa) and 3-Methyladenine (3- MA) led to autophagy change in both infected and uninfected TM3 cells, with no signiffcant alterations in cellular ROS levels. These results indicate that GETV infection elevates ROS levels, subsequently inducing autophagy in mouse Leydig cells. We also found that autophagy plays an important role in GETV replication. When autophagy levels were reduced using NAC and 3-MA, a corresponding decrease in TCID50 was observed. Conversely, upregulation of autophagy using Rapa resulted in an increase in TCID50 of GETV. Therefore, we speculate that GETV may exploit the autophagy pathway to facilitate its replication. These ffndings illuminate the interplay between GETV and host cells, providing valuable insights for therapeutic strategies targeting autophagy in GETV infections.
Collapse
Affiliation(s)
- Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Animal Science, Xichang University, Xichang, China
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yanqun Wang
- College of Animal Science, Xichang University, Xichang, China
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, China
| | - Guangwen Yan
- College of Animal Science, Xichang University, Xichang, China
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Zou P, Tao Z, Yang Z, Xiong T, Deng Z, Chen Q. The contribution of the novel CLTC-VMP1 fusion gene to autophagy regulation and energy metabolism in cisplatin-resistant osteosarcoma. Am J Physiol Cell Physiol 2025; 328:C148-C167. [PMID: 39466176 DOI: 10.1152/ajpcell.00302.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024]
Abstract
Osteosarcoma (OS) is a highly malignant tumor, and chemotherapy resistance is a major challenge in the treatment of this disease. This study aims to explore the role of the CLTC-VMP1 gene fusion in the mechanism of chemotherapy resistance in OS and investigate its molecular mechanisms in mediating energy metabolism reprogramming by regulating autophagy and apoptosis balance. Using single-cell transcriptome analysis, the heterogeneity of OS cells and their correlation with resistance to platinum drugs were revealed. Cisplatin-resistant cell lines were established in human OS cell lines for subsequent experiments. Based on transcriptomic analysis, the importance of VMP1 in chemotherapy resistance was confirmed. Lentiviral vectors overexpressing or interfering with VMP1 were used, and it was observed that inhibiting VMP1 could reverse cisplatin resistance, promote cell apoptosis, and inhibit autophagy, and mitochondrial respiration and glycolysis. Furthermore, the presence of CLTC-VMP1 gene fusion was validated, and its ability to regulate autophagy and apoptosis balance, promote mitochondrial respiration, and glycolysis was demonstrated. Mouse model experiments further confirmed the promoting effect of CLTC-VMP1 on tumor growth and chemotherapy resistance. In summary, the CLTC-VMP1 gene fusion mediates energy metabolism reprogramming by regulating autophagy and apoptosis balance, which promotes chemotherapy resistance in OS.NEW & NOTEWORTHY This study identifies the CLTC-VMP1 gene fusion as a key driver of chemotherapy resistance in osteosarcoma by regulating autophagy and reprogramming cellular energy metabolism. Through single-cell transcriptomics, the research reveals the heterogeneity of tumor cells and the role of VMP1 in promoting resistance to cisplatin. The findings suggest that targeting the CLTC-VMP1 fusion gene may offer new therapeutic strategies to overcome chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Pingan Zou
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Zhiwei Tao
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Zhengxu Yang
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Tao Xiong
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Zhi Deng
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| | - Qincan Chen
- Bone and Soft Tissue Sarcoma Department, Jiangxi Cancer Hospital, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Wang X, Wang W, Zeng H, Hu X, Chen F, Shen L, Tao J. Molecular structure of polysaccharide mediated autophagy markers KIF23 and PRC1 proteins and their regulatory role in triple negative cancer through the p53 signaling pathway. Int J Biol Macromol 2024; 291:139155. [PMID: 39725112 DOI: 10.1016/j.ijbiomac.2024.139155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
As a process of intracellular degradation and recycling of its own components, abnormal regulation of autophagy has been strongly associated with the development of multiple cancer types, including triple-negative breast cancer. The amino acid sequences of KIF23 and PRC1 proteins were analyzed by bioinformatics method, their three-dimensional structures were predicted, and their interactions with polysaccharides were studied by molecular docking technology. The localization and expression patterns of KIF23 and PRC1 in cells were studied by cell biology techniques. By constructing breast cancer cell lines that stably overexpress or knock down KIF23 and PRC1, we evaluated the effect of these proteins on autophagy activity. Finally, molecular biological methods such as Western blot and real-time quantitative PCR were used to detect the expression changes of proteins related to p53 signaling pathway and the levels of autophagy markers such as LC3 and p62, thereby revealing the regulatory effects of KIF23 and PRC1 on autophagy of triple-negative breast cancer cells through p53 signaling pathway. The study found that the KIF23 and PRC1 proteins have complex three-dimensional structures, and their interactions with polysaccharides may affect their function during cell division and autophagy. In triple-negative breast cancer cells, overexpression of KIF23 and PRC1 significantly enhanced autophagy activity, while knockdown of these proteins inhibited autophagy. Further experiments showed that KIF23 and PRC1 regulate the expression of autophagy related proteins by influencing the activity of p53 signaling pathway. Overexpression of KIF23 and PRC1 led to inhibition of the p53 signaling pathway, while knocking down these proteins activated the p53 signaling pathway, which was consistent with reduced autophagy activity.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Clinical Research Institute, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Wei Wang
- GCP Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Hanling Zeng
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China
| | - Xinru Hu
- Department of Public Health, School of Medicine and Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fangyi Chen
- Department of Public Health, School of Medicine and Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Shen
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China.
| | - Jing Tao
- Department of General Surgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China.
| |
Collapse
|
10
|
Bao Y, Ma Y, Huang W, Bai Y, Gao S, Xiu L, Xie Y, Wan X, Shan S, Chen C, Qu L. Regulation of autophagy and cellular signaling through non-histone protein methylation. Int J Biol Macromol 2024; 291:139057. [PMID: 39710032 DOI: 10.1016/j.ijbiomac.2024.139057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that is precisely regulated and plays a significant role in maintaining cellular metabolic balance and intracellular homeostasis. Abnormal autophagy is directly linked to the development of various diseases, particularly immune disorders, neurodegenerative conditions, and tumors. The precise regulation of proteins is crucial for proper cellular function, and post-translational modifications (PTMs) are key epigenetic mechanisms in the regulation of numerous biological processes. Multiple proteins undergo PTMs that influence autophagy regulation. Methylation modifications on non-histone lysine and arginine residues have been identified as common PTMs critical to various life processes. This paper focused on the regulatory effects of non-histone methylation modifications on autophagy, summarizing related research on signaling pathways involved in autophagy-related non-histone methylation, and discussing current challenges and clinical significance. Our review concludes that non-histone methylation plays a pivotal role in the regulation of autophagy and its associated signaling pathways. Targeting non-histone methylation offers a promising strategy for therapeutic interventions in diseases related to autophagy dysfunction, such as cancer and neurodegenerative disorders. These findings provide a theoretical basis for the development of non-histone-methylation-targeted drugs for clinical use.
Collapse
Affiliation(s)
- Yongfen Bao
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Yaoyao Ma
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China
| | - Wentao Huang
- Department of Physiology, Hunan Normal University School of Medicine, Changsha 410013, China
| | - Yujie Bai
- Department of Scientific Research and Education, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330000, China
| | - Siying Gao
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Luyao Xiu
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuyang Xie
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinrong Wan
- Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shigang Shan
- School of Public Health and Nursing, Hubei University of Science and Technology, Hubei 437000, China
| | - Chao Chen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihua Qu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Pharmacy, Hubei University of Science and Technology, Xianning 437000, China; School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, China.
| |
Collapse
|
11
|
Lan Y, Peng Q, Fu B, Liu H. Effective analysis of thyroid toxicity and mechanisms of acetyltributyl citrate using network toxicology, molecular docking and machine learning strategies. Toxicology 2024; 511:154029. [PMID: 39657862 DOI: 10.1016/j.tox.2024.154029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
The growing prevalence of environmental pollutants has raised concerns about their potential role in thyroid dysfunction and related disorders. Previous research suggests that various chemicals, including plasticizers like acetyl tributyl citrate (ATBC), may adversely affect thyroid health, yet the precise mechanisms remain poorly understood. The objective of this study was to elucidate the complex effects of acetyl tributyl citrate (ATBC) on the thyroid gland and to clarify the potential molecular mechanisms by which environmental pollutants influence the disease process. Through an exhaustive exploration of databases such as ChEMBL, STITCH, and GEO, we identified a comprehensive list of 19 potential targets closely associated with ATBC and the thyroid gland. After rigorous screening using the STRING platform and Cytoscape software, we narrowed this list to 15 candidate targets, ultimately identifying five core targets: CBX5, HADHB, TRIM33, TP53, and CUL4A, utilizing three well-established machine learning methods. In-depth Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses conducted in the DAVID database revealed that the primary pathways through which ATBC affects the thyroid gland involve key signaling cascades, including the FoxO signaling pathway and metabolic pathways such as fatty acid metabolism. Furthermore, molecular docking simulations using Molecular Operating Environment software confirmed strong binding interactions between ATBC and these core targets, enhancing our understanding of their interactions. Overall, our findings provide a theoretical framework for comprehending the intricate molecular mechanisms underlying ATBC's effects on thyroid damage and pave the way for the development of preventive and therapeutic strategies against thyroid disorders caused by exposure to ATBC-containing plastics or overexposure to ATBC.
Collapse
Affiliation(s)
- Yujian Lan
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Orthopaedics,The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qingping Peng
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, Sichuan, 646000, China; Department of Orthopaedics,The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Bowen Fu
- Guangdong Medical Innovation Platform for Translation of 3D Printing Application, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, Guangdong, China; Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510145, Guangdong, China; Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, Guangdong, China.
| | - Huan Liu
- Department of Orthopaedics,The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
12
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Zheng Y, Sun J, Luo Z, Li Y, Huang Y. Emerging mechanisms of lipid peroxidation in regulated cell death and its physiological implications. Cell Death Dis 2024; 15:859. [PMID: 39587094 PMCID: PMC11589755 DOI: 10.1038/s41419-024-07244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Regulated cell death (RCD) refers to the form of cell death that can be regulated by various biomacromolecules. Each cell death modalities have their distinct morphological changes and molecular mechanisms. However, intense evidences suggest that lipid peroxidation can be the common feature that initiates and propagates the cell death. Excessive lipid peroxidation alters the property of membrane and further damage the proteins and nucleic acids, which is implicated in various human pathologies. Here, we firstly review the classical chain process of lipid peroxidation, and further clarify the current understanding of the myriad roles and molecular mechanisms of lipid peroxidation in various RCD types. We also discuss how lipid peroxidation involves in diseases and how such intimate association between lipid peroxidation-driven cell death and diseases can be leveraged to develop rational therapeutic strategies.
Collapse
Affiliation(s)
- Yongxin Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Junlu Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhiting Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Yimin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Yongbo Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
| |
Collapse
|
14
|
Sun YQ, Wu Y, Li MR, Wei YY, Guo M, Zhang ZL. Elafibranor alleviates alcohol-related liver fibrosis by restoring intestinal barrier function. World J Gastroenterol 2024; 30:4660-4668. [PMID: 39575408 PMCID: PMC11572637 DOI: 10.3748/wjg.v30.i43.4660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 10/31/2024] Open
Abstract
We discuss the article by Koizumi et al published in the World Journal of Gastroenterology. Our focus is on the therapeutic targets for fibrosis associated with alcohol-related liver disease (ALD) and the mechanism of action of elafibranor (EFN), a dual agonist of peroxisome proliferator-activated receptor α (PPARα) and peroxisome PPAR δ (PPARδ). EFN is currently in phase III clinical trials for the treatment of metabolic dysfunction-associated fatty liver disease and primary biliary cholangitis. ALD progresses from alcoholic fatty liver to alcoholic steatohepatitis (ASH), with chronic ASH eventually leading to fibrosis, cirrhosis, and, in some cases, hepatocellular carcinoma. The pathogenesis of ALD is driven by hepatic steatosis, oxidative stress, and acetaldehyde toxicity. Alcohol consumption disrupts lipid metabolism by inactivating PPARα, exacerbating the progression of ALD. EFN primarily activates PPARα, promoting lipolysis and β-oxidation in ethanol-stimulated HepG2 cells, which significantly reduces hepatic steatosis, apoptosis, and fibrosis in an ALD mouse model. Additionally, alcohol disrupts the gut-liver axis at several interconnected levels, contributing to a proinflammatory environment in the liver. EFN helps alleviate intestinal hyperpermeability by restoring tight junction protein expression and autophagy, inhibiting apoptosis and inflammatory responses, and enhancing intestinal barrier function through PPARδ activation.
Collapse
Affiliation(s)
- Yu-Qi Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yang Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Meng-Ran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yu-Yao Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Mei Guo
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Zi-Li Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
15
|
Chen A, Huang H, Fang S, Hang Q. ROS: A "booster" for chronic inflammation and tumor metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189175. [PMID: 39218404 DOI: 10.1016/j.bbcan.2024.189175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Reactive oxygen species (ROS) are a group of highly active molecules produced by normal cellular metabolism and play a crucial role in the human body. In recent years, researchers have increasingly discovered that ROS plays a vital role in the progression of chronic inflammation and tumor metastasis. The inflammatory tumor microenvironment established by chronic inflammation can induce ROS production through inflammatory cells. ROS can then directly damage DNA or indirectly activate cellular signaling pathways to promote tumor metastasis and development, including breast cancer, lung cancer, liver cancer, colorectal cancer, and so on. This review aims to elucidate the relationship between ROS, chronic inflammation, and tumor metastasis, explaining how chronic inflammation can induce tumor metastasis and how ROS can contribute to the evolution of chronic inflammation toward tumor metastasis. Interestingly, ROS can have a "double-edged sword" effect, promoting tumor metastasis in some cases and inhibiting it in others. This article also highlights the potential applications of ROS in inhibiting tumor metastasis and enhancing the precision of tumor-targeted therapy. Combining ROS with nanomaterials strategies may be a promising approach to enhance the efficacy of tumor treatment.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng 224006, China; Department of Laboratory Medicine, Yancheng Clinical Medical College of Jiangsu University, Yancheng 224006, China
| | - Sumeng Fang
- School of Mathematics, Tianjin University, Tianjin 300350, China
| | - Qinglei Hang
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, Suining 221200, China; Key Laboratory of Jiangsu Province University for Nucleic Acid & Cell Fate Manipulation, Yangzhou University, Yangzhou 225009, China; Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
16
|
Yang Q, Sun K, Gao T, Gao Y, Yang Y, Li Z, Zuo D. SIRT1 silencing promotes EMT and Crizotinib resistance by regulating autophagy through AMPK/mTOR/S6K signaling pathway in EML4-ALK L1196M and EML4-ALK G1202R mutant non-small cell lung cancer cells. Mol Carcinog 2024; 63:2133-2144. [PMID: 39078281 DOI: 10.1002/mc.23799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024]
Abstract
Most EML4-ALK rearrangement non-small cell lung cancer (NSCLC) patients inevitably develop acquired drug resistance after treatment. The main mechanism of drug resistance is the acquired secondary mutation of ALK kinase domain. L1196M and G1202R are classical mutation sites. We urgently need to understand the underlying molecular mechanism of drug resistance to study the therapeutic targets of mutant drug-resistant NSCLC cells. The silent information regulator sirtuin1 (SIRT1) can regulate the normal energy metabolism of cells, but its role in cancer is still unclear. In our report, it was found that the SIRT1 in EML4-ALK G1202R and EML4-ALK L1196M mutant drug-resistant cells was downregulated compared with EML4-ALK NSCLC cells. The high expression of SIRT1 was related to the longer survival time of patients with lung cancer. Activation of SIRT1 induced autophagy and suppressed the invasion and migration of mutant cells. Further experiments indicated that the activation of SIRT1 inhibited the phosphorylation level of mTOR and S6K by upregulating the expression of AMPK, thus activating autophagy. SIRT1 can significantly enhanced the sensitivity of mutant cells to crizotinib, improved its ability to promote apoptosis of mutant cells, and inhibited cell proliferation. In conclusion, SIRT1 is a key regulator of drug resistant in EML4-ALK L1196M and G1202R mutant cells. SIRT1 may be a novel therapeutic target for EML4-ALK drug resistant NSCLC.
Collapse
Affiliation(s)
- Qian Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Keyan Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Tianyu Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Ying Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Yuying Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| | - Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Shenhe District, China
| |
Collapse
|
17
|
Lei S, Lai Z, Hou S, Liu Y, Li M, Zhao D. Abnormal HCK/glutamine/autophagy axis promotes endometriosis development by impairing macrophage phagocytosis. Cell Prolif 2024; 57:e13702. [PMID: 38956970 PMCID: PMC11533058 DOI: 10.1111/cpr.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024] Open
Abstract
The presence of extensive infiltrated macrophages with impaired phagocytosis is widely recognised as a significant regulator for the development of endometriosis (EMs). Nevertheless, the metabolic characteristics and the fundamental mechanism of impaired macrophage phagocytosis are yet to be clarified. Here, we observe that there is the decreased expression of haematopoietic cellular kinase (HCK) in macrophage of peritoneal fluid from EMs patients, which might be attributed to high oestrogen and hypoxia condition. Of note, HCK deficiency resulted in impaired macrophage phagocytosis, and increased number and weight of ectopic lesions in vitro and in vivo. Mechanistically, this process was mediated via regulation of glutamine metabolism, and further upregulation of macrophage autophagy in a c-FOS/c-JUN dependent manner. Additionally, macrophages of EMs patients displayed insufficient HCK, excessive autophagy and phagocytosis dysfunction. In therapeutic studies, supplementation with glutamine-pre-treated macrophage or Bafilomycin A1 (an autophagy inhibitor)-pre-treated macrophage leads to the induction of macrophage phagocytosis and suppression of EMs development. This observation reveals that the aberrant HCK-glutamine-autophagy axis results in phagocytosis obstacle of macrophage and further increase the development risk of Ems. Additionally, it offers potential therapeutic approaches to prevent EMs, especially patients with insufficient HCK and macrophage phagocytosis dysfunction.
Collapse
Affiliation(s)
- Sha‐Ting Lei
- Department of Obstetrics and Gynecology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and GynecologyFudan UniversityShanghaiChina
- Department of Gynecology, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Zhen‐Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and GynecologyFudan UniversityShanghaiChina
| | - Shu‐Hui Hou
- Department of Obstetrics and Gynecology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Gynecology, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Yu‐Kai Liu
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and GynecologyFudan UniversityShanghaiChina
| | - Ming‐Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and GynecologyFudan UniversityShanghaiChina
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Dong Zhao
- Department of Obstetrics and Gynecology, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
18
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Zhong J, Zhang L, Chen K, Yuan X, Cui Z, Tang S, Zheng F, Li Y, Héroux P, Wu Y, Xia D. Environmentally relevant concentration PFNA promotes degradation of SMAD7 to drive progression of ovarian cancer via TGF-β/SMADs signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116907. [PMID: 39205352 DOI: 10.1016/j.ecoenv.2024.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/09/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Perfluorononanoic acid (PFNA), an acknowledged environmental endocrine disruptor, is increasingly utilized as a substitute for perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). Despite its growing use, limited research has been conducted to investigate its potential impact on tumorigenesis and progression, and the potential molecular mechanisms. Earlier studies linked perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure to breast and gynecological cancer progression in humans, lacking a clear understanding of the underlying mechanisms, notably in ovarian cancer. Our investigation into PFNA's effects at environmental concentrations (0.25-2 mM) showed no significant impact on cell proliferation but a notable increase in invasion and migration of ovarian cancer cells. This led to alterations in epithelial-mesenchymal transition (EMT) markers, including Claudin1, Vimentin, and Snail. Notably, PFNA exposure activated the TGF-β/SMADs signaling pathway. Crucially, SMAD7 degradation through the ubiquitin-proteasome system emerged as PFNA's pivotal molecular target for inducing EMT, corroborated in mouse models. In summary, this study presented evidence that environmentally relevant concentrations of PFNA could induce SMAD7 degradation via the proteasome pathway, subsequently activating the TGF-β/SMADs signaling pathway, and promoting EMT in ovarian cancer. These results illuminated the association between PFNA exposure and metastasis of ovarian cancer.
Collapse
Affiliation(s)
- Jiamin Zhong
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Lihuan Zhang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenyan Cui
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Tang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gynecology and Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Ying Li
- Department of Epidemiology, Biostatistics and Occupational Health, 2001 McGill University, Suite 1200, Montreal H3A 1G1, Canada
| | - Paul Héroux
- Department of Epidemiology, Biostatistics and Occupational Health, 2001 McGill University, Suite 1200, Montreal H3A 1G1, Canada
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Li Y, Feng Y, Geng S, Xu F, Guo H. The role of liquid-liquid phase separation in defining cancer EMT. Life Sci 2024; 353:122931. [PMID: 39038510 DOI: 10.1016/j.lfs.2024.122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Cancer EMT is a pivotal process that drives carcinogenesis, metastasis, and cancer recurrence, with its initiation and regulation intricately governed by biochemical pathways in a precise spatiotemporal manner. Recently, the membrane-less biomolecular condensates formed via liquid-liquid phase separation (LLPS) have emerged as a universal mechanism underlying the spatiotemporal collaboration of biological activities in cancer EMT. In this review, we first elucidate the current understanding of LLPS formation and its cellular functions, followed by an overview of valuable tools for investigating LLPS. Secondly, we examine in detail the LLPS-mediated biological processes crucial for the initiation and regulation of cancer EMT. Lastly, we address current challenges in advancing LLPS research and explore the potential modulation of LLPS using therapeutic agents.
Collapse
Affiliation(s)
- Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
21
|
Wang Y, Xu Y, Zhao T, Ma YJ, Qin W, Hu WL. PEI/MMNs@LNA-542 nanoparticles alleviate ICU-acquired weakness through targeted autophagy inhibition and mitochondrial protection. Open Life Sci 2024; 19:20220952. [PMID: 39290495 PMCID: PMC11406224 DOI: 10.1515/biol-2022-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Intensive care unit-acquired weakness (ICU-AW) is prevalent in critical care, with limited treatment options. Certain microRNAs, like miR-542, are highly expressed in ICU-AW patients. This study investigates the regulatory role and mechanisms of miR-542 in ICU-AW and explores the clinical potential of miR-542 inhibitors. ICU-AW models were established in C57BL/6 mice through cecal ligation and puncture (CLP) and in mouse C2C12 myoblasts through TNF-α treatment. In vivo experiments demonstrated decreased muscle strength, muscle fiber atrophy, widened intercellular spaces, and increased miR-542-3p/5p expression in ICU-AW mice model. In vitro experiments indicated suppressed ATG5, ATG7 and LC3II/I, elevated MDA and ROS levels, decreased SOD levels, and reduced MMP in the model group. Similar to animal experiments, the expression of miR-542-3p/5p was upregulated. Gel electrophoresis explored the binding of polyethyleneimine/mesoporous silica nanoparticles (PEI/MMNs) to locked nucleic acid (LNA) miR-542 inhibitor (LNA-542). PEI/MMNs@LNA-542 with positive charge (3.03 ± 0.363 mV) and narrow size (206.94 ± 6.19 nm) were characterized. Immunofluorescence indicated significant internalization with no apparent cytotoxicity. Biological activity, examined through intraperitoneal injection, showed that PEI/MMNs@LNA-542 alleviated muscle strength decline, restored fiber damage, and recovered mitochondrial injury in mice. In conclusion, PEI/MMNs nanoparticles effectively delivered LNA-542, targeting ATG5 to inhibit autophagy and alleviate mitochondrial damage, thereby improving ICU-AW.
Collapse
Affiliation(s)
- Yun Wang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tun Zhao
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Jun Ma
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Qin
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen-Li Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
22
|
Liu B, Li N, Liu Y, Zhang Y, Qu L, Cai H, Li Y, Wu X, Geng Q. BRD3308 suppresses macrophage oxidative stress and pyroptosis via upregulating acetylation of H3K27 in sepsis-induced acute lung injury. BURNS & TRAUMA 2024; 12:tkae033. [PMID: 39224841 PMCID: PMC11367671 DOI: 10.1093/burnst/tkae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/04/2024] [Indexed: 09/04/2024]
Abstract
Background Sepsis-induced acute lung injury (ALI) leads to severe hypoxemia and respiratory failure, contributing to poor prognosis in septic patients. Endotoxin dissemination triggers oxidative stress and the release of inflammatory cytokines in macrophages, initiating diffuse alveolar damage. The role of epigenetic histone modifications in organ injury is increasingly recognized. The present study aimed to investigate the use of a histone modification inhibitor to alleviate sepsis-induced ALI, revealing a new strategy for improving sepsis patient survival. Methods In vivo models of ALI were established through the intraperitoneal injection of lipopolysaccharide and cecal ligation and puncture surgery. Furthermore, the disease process was simulated in vitro by stimulating Tamm-Horsfall protein-1 (THP-1) cells with lipopolysaccharide. Hematoxylin and eosin staining, blood gas analysis and pulmonary function tests were utilized to assess the extent of lung tissue damage. Western blot analysis, real-time polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescence were used to measure the levels and distribution of the indicated indicators within cells and tissues. Reactive oxygen species and autophagic flux alterations were detected using specific probes. Results BRD3308, which is a inhibitor of histone deacetylase 3, improved lung tissue damage, inflammatory infiltration and edema in ALI by inhibiting Nod-like receptor protein3-mediated pyroptosis in macrophages. By upregulating autophagy, BRD3308 improved the disruption of redox balance in macrophages and reduced the accumulation of reactive oxygen species. Mechanistically, BRD3308 inhibited histone deacetylase 3 activity by binding to it and altering its conformation. Following histone deacetylase 3 inhibition, acetylation of H3K27 was significantly increased. Moreover, the increase in H3K27Ac led to the upregulation of autophagy-related gene 5, a key component of autophagosomes, thereby activating autophagy. Conclusions BRD3308 inhibits oxidative stress and pyroptosis in macrophages by modulating histone acetylation, thereby preventing sepsis-induced ALI. The present study provides a potential strategy and theoretical basis for the clinical treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, China
| | - Yan Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Limei Qu
- Department of Pathology, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Yang Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
- Organ Transplantation Center, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, Jilin, 130021, China
| | - Xiaojing Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, China
| |
Collapse
|
23
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
24
|
Kundu M, Das S, Dey A, Mandal M. Dual perspective on autophagy in glioma: Detangling the dichotomous mechanisms of signaling pathways for therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189168. [PMID: 39121913 DOI: 10.1016/j.bbcan.2024.189168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Autophagy is a normal physiological process that aids the recycling of cellular nutrients, assisting the cells to cope with stressed conditions. However, autophagy's effect on cancer, including glioma, is uncertain and involves complicated molecular mechanisms. Several contradictory reports indicate that autophagy may promote or suppress glioma growth and progression. Autophagy inhibitors potentiate the efficacy of chemotherapy or radiation therapy in glioma. Numerous compounds stimulate autophagy to cause glioma cell death. Autophagy is also involved in the therapeutic resistance of glioma. This review article aims to detangle the complicated molecular mechanism of autophagy to provide a better perception of the two-sided role of autophagy in glioma and its therapeutic implications. The protein and epigenetic modulators of the cytoprotective and cytotoxic role of autophagy are described in this article. Moreover, several signaling pathways are associated with autophagy and its effects on glioma. We have reviewed the molecular pathways and highlighted the signaling axis involved in cytoprotective and cytotoxic autophagy. Additionally, this article discusses the role of autophagy in therapeutic resistance, including glioma stem cell maintenance and tumor microenvironment regulation. It also summarizes several investigations on the anti-glioma effects of autophagy modulators to understand the associated mechanisms and provide insights regarding its therapeutic implications.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India; Department of Pharmaceutical Technology, Brainware University, Barasat, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Allied Health Sciences, Brainware University, Barasat, India
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
25
|
Xiao M, Yang J, Dong M, Mao X, Pan H, Lei Y, Tong X, Yu X, Yu X, Shi S. NLRP4 renders pancreatic cancer resistant to olaparib through promotion of the DNA damage response and ROS-induced autophagy. Cell Death Dis 2024; 15:620. [PMID: 39187531 PMCID: PMC11347561 DOI: 10.1038/s41419-024-06984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Olaparib has been approved as a therapeutic option for metastatic pancreatic ductal adenocarcinoma patients with BRCA1/2 mutations. However, a significant majority of pancreatic cancer patients have inherent resistance or develop tolerance to olaparib. It is crucial to comprehend the molecular mechanism underlying olaparib resistance to facilitate the development of targeted therapies for pancreatic cancer. In this study, we conducted an analysis of the DepMap database to investigate gene expression variations associated with olaparib sensitivity. Our findings revealed that NLRP4 upregulation contributes to increased resistance to olaparib in pancreatic cancer cells, both in vitro and in vivo. RNA sequencing and Co-IP MS analysis revealed that NLRP4 is involved in the DNA damage response and autophagy pathway. Our findings confirmed that NLRP4 enhances the capacity for DNA repair and induces the production of significant levels of reactive oxygen species (ROS) and autophagy in response to treatment with olaparib. Specifically, NLRP4-generated mitochondrial ROS promote autophagy in pancreatic cancer cells upon exposure to olaparib. However, NLRP4-induced ROS do not affect DNA damage. The inhibition of mitochondrial ROS using MitoQ and autophagy using chloroquine (CQ) may render cells more susceptible to the effects of olaparib. Taken together, our findings highlight the significant roles played by NLRP4 in the processes of autophagy and DNA repair when pancreatic cancer cells are treated with olaparib, thereby suggesting the potential therapeutic utility of olaparib in pancreatic cancer patients with low NLRP4 expression.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jing Yang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mingwei Dong
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Haoqi Pan
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaoning Yu
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Zhu Y, Li J, Li S, Yang Z, Qiao Z, Gu X, He Z, Wu D, Ma X, Yao S, Yang C, Yang M, Cao L, Zhang J, Wang W, Rong P. ZMAT2 condensates regulate the alternative splicing of TRIM28 to reduce cellular ROS accumulation, thereby promoting the proliferation of HCC cells. Cell Commun Signal 2024; 22:407. [PMID: 39164737 PMCID: PMC11337747 DOI: 10.1186/s12964-024-01790-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Dysregulation of splicing factor expression plays a crucial role in the progression of hepatocellular carcinoma (HCC). Our research found that the expression level of splicing factor ZMAT2 was increased in HCC, promoting the proliferation of HCC cells. RNAseq data indicated that the absence of ZMAT2 induced skipping exon of mRNA, while RIPseq data further revealed the mRNA binding motifs of ZMAT2. A comprehensive analysis of RNAseq and RIPseq data indicateed that ZMAT2 played a crucial role in the maturation process of TRIM28 mRNA. Knocking down of ZMAT2 led to the deletion of 25 bases in exon 11 of TRIM28, ultimately resulting in nonsense-mediated decay (NMD). Our data revealed that ZMAT2 could regulate TRIM28 to reduce the accumulation of ROS in HCC cells, thereby promoting their proliferation. Our research also discovered that ZMAT2 was capable of undergoing phase separation, resulting in the formation of liquid droplet condensates within HCC cells. Additionally, it was found that ZMAT2 was able to form protein-nucleic acid condensates with TRIM28 mRNA. In summary, this study is the first to reveal that ZMAT2 and TRIM28 mRNA form protein-nucleic acid condensates, thereby regulating the splicing of TRIM28 mRNA. The increased expression of ZMAT2 in HCC leads to upregulated TRIM28 expression and reduced ROS accumulation, ultimately accelerating the proliferation of HCC cells.
Collapse
Affiliation(s)
- Yaning Zhu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiong Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Postdoctoral Station of Medical Aspects of Specific Environments, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sang Li
- Engineering and Technology Research Center for Xenotransplantation of Human Province, Changsha, China
| | - Zhe Yang
- College of Life Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory of Chronic Disease Occurrence and Nutrition Intervention, College of Life Sciences, Liaoning University, Shenyang, China
| | - Zhengkang Qiao
- College of Life Science, Liaoning University, Shenyang, China
| | - Xingshi Gu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Di Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shanhu Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cejun Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Cao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Zhang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Yuan Y, Zhang Q, Qiu F, Kang N, Zhang Q. Targeting TRPs in autophagy regulation and human diseases. Eur J Pharmacol 2024; 977:176681. [PMID: 38821165 DOI: 10.1016/j.ejphar.2024.176681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Transient receptor potential channels (TRPs) are widely recognized as a group of ion channels involved in various sensory perceptions, such as temperature, taste, pressure, and vision. While macroautophagy (hereafter referred to as autophagy) is primarily regulated by core machinery, the ion exchange mediated by TRPs between intracellular and extracellular compartments, as well as within organelles and the cytoplasm, plays a crucial role in autophagy regulation as an important signaling transduction mechanism. Moreover, certain TRPs can directly interact with autophagy regulatory proteins to participate in autophagy regulation. In this article, we provide an in-depth review of the current understanding of the regulatory mechanisms of autophagy, with a specific focus on TRPs. Furthermore, we highlight the potential prospects for drug development targeting TRPs in autophagy for the treatment of human diseases.
Collapse
Affiliation(s)
- Yongkang Yuan
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Qiuju Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Feng Qiu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
| | - Ning Kang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
| |
Collapse
|
28
|
Qi J, Li Q, Xin T, Lu Q, Lin J, Zhang Y, Luo H, Zhang F, Xing Y, Wang W, Cui D, Wang M. MCOLN1/TRPML1 in the lysosome: a promising target for autophagy modulation in diverse diseases. Autophagy 2024; 20:1712-1722. [PMID: 38522082 PMCID: PMC11262240 DOI: 10.1080/15548627.2024.2333715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/18/2024] [Indexed: 03/26/2024] Open
Abstract
MCOLN1/TRPML1 is a nonselective cationic channel specifically localized to the late endosome and lysosome. With its property of mediating the release of several divalent cations such as Ca2+, Zn2+ and Fe2+ from the lysosome to the cytosol, MCOLN1 plays a pivotal role in regulating a variety of cellular events including endocytosis, exocytosis, lysosomal biogenesis, lysosome reformation, and especially in Macroautophagy/autophagy. Autophagy is a highly conserved catabolic process that maintains cytoplasmic integrity by removing superfluous proteins and damaged organelles. Acting as the terminal compartments, lysosomes are crucial for the completion of the autophagy process. This review delves into the emerging role of MCOLN1 in controlling the autophagic process by regulating lysosomal ionic homeostasis, thereby governing the fundamental functions of lysosomes. Furthermore, this review summarizes the physiological relevance as well as molecular mechanisms through which MCOLN1 orchestrates autophagy, consequently influencing mitochondria turnover, cell apoptosis and migration. In addition, we have illustrated the implications of MCOLN1-regulated autophagy in the pathological process of cancer and myocardial ischemia-reperfusion (I/R) injury. In summary, given the involvement of MCOLN1-mediated autophagy in the pathogenesis of cancer and myocardial I/R injury, targeting MCOLN1 May provide clues for developing new therapeutic strategies for the treatment of these diseases. Exploring the regulation of MCOLN1-mediated autophagy in diverse diseases contexts will surely broaden our understanding of this pathway and offer its potential as a promising drug target.Abbreviation: CCCP:carbonyl cyanide3-chlorophenylhydrazone; CQ:chloroquine; HCQ: hydroxychloroquine;I/R: ischemia-reperfusion; MAP1LC3/LC3:microtubule associated protein 1 light chain 3; MCOLN1/TRPML1:mucolipin TRP cation channel 1; MLIV: mucolipidosis type IV; MTORC1:MTOR complex 1; ROS: reactive oxygenspecies; SQSTM1/p62: sequestosome 1.
Collapse
Affiliation(s)
- Jiansong Qi
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingqing Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tianli Xin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qixia Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinyi Lin
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Haiting Luo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Feifei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhong Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Derong Cui
- Department of Anesthesiology, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengmeng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital, China of Medical University, Shenyang, LiaoningChina
| |
Collapse
|
29
|
Sun J, Zhang H, Xie B, Shen Y, Zhu Y, Xu W, Zhang B, Song X. Transient stimulation of TRPMLs enhance the functionality of hDPCs and facilitate hair growth in mice. Cell Signal 2024; 119:111167. [PMID: 38604341 DOI: 10.1016/j.cellsig.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Autophagy is essential for eliminating aging and organelle damage that maintaining cellular homeostasis. However, the dysfunction of autophagy has been proven in hair loss such as AGA. Despite the crucial role of TRPML channels in regulating autophagy, their specific function in hair growth remains unclarified. To investigate the biological functions and associated molecular mechanisms of TRPMLs in hair growth, Animal experiments were conducted to confirm the function of TRLMLs activation in promoting hair growth. Subsequently, we analyzed molecular mechanisms in human dermal papilla cells (hDPCs) activated by TRPMLs through transcriptome sequencing analysis. MLSA1(a TRPML agonist) promoted hair regeneration and accelerated hair cycle transition in mice. The activation of TRPMLs upregulated calcium signaling inducing hDPCs to secrete hair growth promoting factors and decrease hair growth inhibiting factors. In addition, activation of TRPMLs triggered autophagy and reduced the generation of ROS, thereby delaying the senescence of hDPCs. All these findings suggested that TRPMLs activation could promote hair growth by regulating hDPCs secretion of hair growth-related factors. Moreover, it may play a prominent role in preventing hDPCs from ROS damage induced by H2O2 or DHT. Targeting TRPMLs may represent a promising therapeutic strategy for treating hair loss.
Collapse
Affiliation(s)
- Jiayi Sun
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyan Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuqing Shen
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuqi Zhu
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Beilei Zhang
- Department of Dermatology, Hangzhou Third People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
30
|
Zhang HL, Hu BX, Ye ZP, Li ZL, Liu S, Zhong WQ, Du T, Yang D, Mai J, Li LC, Chen YH, Zhu XY, Li X, Feng GK, Zhu XF, Deng R. TRPML1 triggers ferroptosis defense and is a potential therapeutic target in AKT-hyperactivated cancer. Sci Transl Med 2024; 16:eadk0330. [PMID: 38924427 DOI: 10.1126/scitranslmed.adk0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Targeting ferroptosis for cancer therapy has slowed because of an incomplete understanding of ferroptosis mechanisms under specific pathological contexts such as tumorigenesis and cancer treatment. Here, we identify TRPML1-mediated lysosomal exocytosis as a potential anti-ferroptotic process through genome-wide CRISPR-Cas9 activation and kinase inhibitor library screening. AKT directly phosphorylated TRPML1 at Ser343 and inhibited K552 ubiquitination and proteasome degradation of TRPML1, thereby promoting TRPML1 binding to ARL8B to trigger lysosomal exocytosis. This boosted ferroptosis defense of AKT-hyperactivated cancer cells by reducing intracellular ferrous iron and enhancing membrane repair. Correlation analysis and functional analysis revealed that TRPML1-mediated ferroptosis resistance is a previously unrecognized feature of AKT-hyperactivated cancers and is necessary for AKT-driven tumorigenesis and cancer therapeutic resistance. TRPML1 inactivation or blockade of the interaction between TRPML1 and ARL8B inhibited AKT-driven tumorigenesis and cancer therapeutic resistance in vitro and in vivo by promoting ferroptosis. A synthetic peptide targeting TRPML1 inhibited AKT-driven tumorigenesis and enhanced the sensitivity of AKT-hyperactivated tumors to ferroptosis inducers, radiotherapy, and immunotherapy by boosting ferroptosis in vivo. Together, our findings identified TRPML1 as a therapeutic target in AKT-hyperactivated cancer.
Collapse
Affiliation(s)
- Hai-Liang Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bing-Xin Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Peng Ye
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhi-Ling Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Medical Oncology, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Wen-Qing Zhong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tian Du
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Dong Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jia Mai
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Laboratory Medicine, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li-Chao Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yu-Hong Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xian-Ying Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Gong-Kan Feng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
31
|
Juknevičienė M, Balnytė I, Valančiūtė A, Alonso MM, Preikšaitis A, Sužiedėlis K, Stakišaitis D. Differential Impact of Valproic Acid on SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 Expression in Adult Glioblastoma Cells. Biomedicines 2024; 12:1416. [PMID: 39061990 PMCID: PMC11274075 DOI: 10.3390/biomedicines12071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
Valproic acid (VPA) has anticancer, anti-inflammatory, and epigenetic effects. The study aimed to determine the expression of carcinogenesis-related SLC5A8, SLC12A2, SLC12A5, CDH1, and CDH2 in adult glioblastoma U87 MG and T98G cells and the effects of 0.5 mM, 0.75 mM, and 1.5 mM doses of VPA. RNA gene expression was determined by RT-PCR. GAPDH was used as a control. U87 and T98G control cells do not express SLC5A8 or CDH1. SLC12A5 was expressed in U87 control but not in T98G control cells. The SLC12A2 expression in the U87 control was significantly lower than in the T98G control. T98G control cells showed significantly higher CDH2 expression than U87 control cells. VPA treatment did not affect SLC12A2 expression in U87 cells, whereas treatment dose-dependently increased SLC12A2 expression in T98G cells. Treatment with 1.5 mM VPA induced SLC5A8 expression in U87 cells, while treatment of T98G cells with VPA did not affect SLC5A8 expression. Treatment of U87 cells with VPA significantly increased SLC12A5 expression. VPA increases CDH1 expression depending on the VPA dose. CDH2 expression was significantly increased only in the U87 1.5 mM VPA group. Tested VPA doses significantly increased CDH2 expression in T98G cells. When approaching treatment tactics, assessing the cell's sensitivity to the agent is essential.
Collapse
Affiliation(s)
- Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
| | - Marta Marija Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Aidanas Preikšaitis
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Kęstutis Sužiedėlis
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| | - Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (M.J.); (I.B.); (A.V.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania;
| |
Collapse
|
32
|
Kang F, Wu J, Hong L, Zhang P, Song J. Iodine-125 seed inhibits proliferation and promotes apoptosis of cholangiocarcinoma cells by inducing the ROS/p53 axis. Funct Integr Genomics 2024; 24:114. [PMID: 38862667 PMCID: PMC11166828 DOI: 10.1007/s10142-024-01392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
With advances in radioactive particle implantation in clinical practice, Iodine-125 (125I) seed brachytherapy has emerged as a promising treatment for cholangiocarcinoma (CCA), showing good prognosis; however, the underlying molecular mechanism of the therapeutic effect of 125I seed is unclear. To study the effects of 125I seed on the proliferation and apoptosis of CCA cells. CCA cell lines, RBE and HCCC-9810, were treated with reactive oxygen species (ROS) scavenger acetylcysteine (NAC) or the p53 functional inhibitor, pifithrin-α hydrobromide (PFTα). Cell counting kit-8 (CCK-8) assay, 5-bromo-2-deoxy-uridine (BrdU) staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry assay were performed to test the radiation-sensitivity of 125I seed toward CCA cells at different radiation doses (0.4 mCi and 0.8 mCi). 2,7-dichlorofluorescein diacetate (DCF-DA) assay, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot analysis were performed to assess the effect of 125I seed on the ROS/p53 axis. A dose-dependent inhibitory effect of 125I seeds on the proliferation of CCA cells was observed. The 125I seed promoted apoptosis of CCA cells and induced the activation of the ROS/p53 pathway in a dose-dependent manner. NAC or PFTα treatment effectively reversed the stimulatory effect of 125I seed on the proliferation of CCA cells. NAC or PFTα suppressed apoptosis and p53 protein expression induced by the 125I seed. 125I seed can inhibit cell growth mainly through the apoptotic pathway. The mechanism may involve the activation of p53 and its downstream apoptotic pathway by up-regulating the level of ROS in cells.
Collapse
Affiliation(s)
- Fuping Kang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region, 750004, China
| | - Jing Wu
- Medical Experiment Center, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region, 750004, China
| | - Li Hong
- Department of Pediatrics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Peng Zhang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region, 750004, China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region, 750004, China.
| |
Collapse
|
33
|
Hao Z, Liu X, He H, Wei Z, Shu X, Wang J, Sun B, Zhou H, Wang J, Niu Y, Hu Z, Hu S, Liu Y, Fu Z. CYP2E1 deficit mediates cholic acid-induced malignant growth in hepatocellular carcinoma cells. Mol Med 2024; 30:79. [PMID: 38844847 PMCID: PMC11157842 DOI: 10.1186/s10020-024-00844-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Increased level of serum cholic acid (CA) is often accompanied with decreased CYP2E1 expression in hepatocellular carcinoma (HCC) patients. However, the roles of CA and CYP2E1 in hepatocarcinogenesis have not been elucidated. This study aimed to investigate the roles and the underlying mechanisms of CYP2E1 and CA in HCC cell growth. METHODS The proteomic analysis of liver tumors from DEN-induced male SD rats with CA administration was used to reveal the changes of protein expression in the CA treated group. The growth of CA-treated HCC cells was examined by colony formation assays. Autophagic flux was assessed with immunofluorescence and confocal microscopy. Western blot analysis was used to examine the expression of CYP2E1, mTOR, AKT, p62, and LC3II/I. A xenograft tumor model in nude mice was used to examine the role of CYP2E1 in CA-induced hepatocellular carcinogenesis. The samples from HCC patients were used to evaluate the clinical value of CYP2E1 expression. RESULTS CA treatment significantly increased the growth of HCC cells and promoted xenograft tumors accompanied by a decrease of CYP2E1 expression. Further studies revealed that both in vitro and in vivo, upregulated CYP2E1 expression inhibited the growth of HCC cells, blocked autophagic flux, decreased AKT phosphorylation, and increased mTOR phosphorylation. CYP2E1 was involved in CA-activated autophagy through the AKT/mTOR signaling. Finally, decreased CYP2E1 expression was observed in the tumor tissues of HCC patients and its expression level in tumors was negatively correlated with the serum level of total bile acids (TBA) and gamma-glutamyltransferase (GGT). CONCLUSIONS CYP2E1 downregulation contributes to CA-induced HCC development presumably through autophagy regulation. Thus, CYP2E1 may serve as a potential target for HCC drug development.
Collapse
Affiliation(s)
- Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Huanhuan He
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Xiji Shu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jianzhi Wang
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Binlian Sun
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Jiucheng Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Ying Niu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Zhiyong Hu
- Department of Pathology, Renmin Hospital of Huangpi District of Jianghan University, Wuhan, 430399, China
| | - Shaobo Hu
- Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Hubei Key Laboratory of Cognitive and Affective Disorders, Jianghan University, Wuhan, 430056, China.
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Liver transplant center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, 430056, China.
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
34
|
Chen Y, Xie B, Hu Y, Sun J, Xu J, Shen Y, Zhu Y, Song X. Transient receptor potential mucolipin 1 circumvents oxidative stress in primary human melanocytes. Skin Res Technol 2024; 30:e13772. [PMID: 38899729 PMCID: PMC11187810 DOI: 10.1111/srt.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Transient Receptor Potential Mucolipin 1 (TRPML1) serves as a pivotal reactive oxygen species (ROS) sensor in cells, which is implicated in the regulation of autophagy. However, its function in melanocyte autophagy under oxidative stress remains elusive. METHODS The expression and ion channel function of TRPML1 were investigated using immunofluorescence and calcium imaging in primary human melanocytes (MCs). After activating TRPML1 with MLSA1 (TRPML1 agonist), autophagy-related molecules were investigated via western blot. ROS level, apoptosis- and autophagy-related molecules were investigated after pretreatment with MLSA1. After interference with TRPML1 expression, mitochondrial structures were visualized by electron microscopy with hydrogen peroxide (H2O2)treatment. RESULTS TRPML1 was expressed and functionally active in primary human MCs, and its activation promotes elevated expression of LC3-II and reduced apoptosis and ROS levels under oxidative stress. TRPML1 downregulation caused mitochondrial swelling and disruption of cristae structures under oxidative stress in primary human MCs. CONCLUSIONS TRPML1 might mediate lysosomal autophagy in primary human MCs under oxidative stress, participating in mechanisms that maintain the oxidative and antioxidant systems in balance.
Collapse
Affiliation(s)
- Yi Chen
- Department of DermatologyHangzhou Third Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouPeople's Republic of China
| | - Bo Xie
- Department of DermatologyHangzhou Third People's HospitalHangzhouPeople's Republic of China
| | - Yebei Hu
- Department of DermatologyHangzhou Third People's HospitalHangzhouPeople's Republic of China
| | - Jiayi Sun
- Department of DermatologyHangzhou Third Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouPeople's Republic of China
| | - Jinhui Xu
- Department of DermatologyHangzhou Third People's HospitalHangzhouPeople's Republic of China
| | - Yuqing Shen
- Department of DermatologyHangzhou Third Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouPeople's Republic of China
| | - Yuqi Zhu
- Department of DermatologyHangzhou Third Hospital Affiliated to Zhejiang Chinese Medical UniversityHangzhouPeople's Republic of China
| | - Xiuzu Song
- Department of DermatologyHangzhou Third People's HospitalHangzhouPeople's Republic of China
| |
Collapse
|
35
|
Zhang X, Zhang M, Zhang Z, Zhou S. Salidroside induces mitochondrial dysfunction and ferroptosis to inhibit melanoma progression through reactive oxygen species production. Exp Cell Res 2024; 438:114034. [PMID: 38588875 DOI: 10.1016/j.yexcr.2024.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/14/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Reactive oxygen species (ROS) induces necroptotic and ferroptosis in melanoma cells. Salidroside (SAL) regulates ROS in normal cells and inhibits melanoma cell proliferation. This study used human malignant melanoma cells treated with SAL either alone or in combination with ROS scavenger (NAC) or ferroptosis inducer (Erastin). Through cell viability, wound healing assays, and a Seahorse analyze found that SAL inhibited cell proliferation, migration, extracellular acidification rate, and oxygen consumption rate. Metabolic flux analysis, complexes I, II, III, and IV activity of the mitochondrial respiratory chain assays, mitochondrial membrane potential assay, mitochondrial ROS, and transmission electron microscope revealed that SAL induced mitochondrial dysfunction and ultrastructural damage. Assessment of malondialdehyde, lipid ROS, iron content measurement, and Western blot analysis showed that SAL activated lipid peroxidation and promoted ferroptosis in A-375 cells. These effects were abolished after NAC treatment. Additionally, SAL and Erastin both inhibited cell proliferation and promoted cell death; SAL increased the Erastin sensitivity of cells while NAC antagonized it. In xenograft mice, SAL inhibited melanoma growth and promoted ROS-dependent ferroptosis. SAL induced mitochondrial dysfunction and ferroptosis to block melanoma progression through ROS production, which offers a scientific foundation for conducting SAL pharmacological research in the management of melanoma.
Collapse
Affiliation(s)
- Xianqi Zhang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China.
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi Province, China.
| | - Ziyan Zhang
- Department of Dermatology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Shengbo Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
36
|
Zhang H, Luan L, Li X, Sun X, Yang K. DNA damage-regulated autophagy modulator 1 prevents glioblastoma cells proliferation by regulating lysosomal function and autophagic flux stability. Exp Cell Res 2024; 437:114016. [PMID: 38537746 DOI: 10.1016/j.yexcr.2024.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and life-threatening brain tumor, characterized by its highly malignant and recurrent nature. DNA damage-regulated autophagy modulator 1 (DRAM-1) is a p53 target gene encoding a lysosomal protein that induces macro-autophagy and damage-induced programmed cell death in tumor growth. However, the precise mechanisms underlying how DRAM-1 affects tumor cell proliferation through regulation of lysosomal function and autophagic flux stability remain incompletely understood. We found that DRAM-1 expressions were evidently down-regulated in high-grade glioma and recurrent GBM tissues. The upregulation of DRAM-1 could increase mortality of primary cultured GBM cells. TEM analysis revealed an augmented accumulation of aberrant lysosomes in DRAM-1-overexpressing GBM cells. The assay for lysosomal pH and stability also demonstrated decreasing lysosomal membrane permeabilization (LMP) and impaired lysosomal acidity. Further research revealed the detrimental impact of lysosomal dysfunction, which impaired the autophagic flux stability and ultimately led to GBM cell death. Moreover, downregulation of mTOR phosphorylation was observed in GBM cells following upregulation of DRAM-1. In vivo and in vitro experiments additionally illustrated that the mTOR inhibitor rapamycin increased GBM cell mortality and exhibited an enhanced antitumor effect.
Collapse
Affiliation(s)
- Hongqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Lan Luan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xinyu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xu Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Kang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
37
|
Yang S, Hu C, Chen X, Tang Y, Li J, Yang H, Yang Y, Ying B, Xiao X, Li SZ, Gu L, Zhu Y. Crosstalk between metabolism and cell death in tumorigenesis. Mol Cancer 2024; 23:71. [PMID: 38575922 PMCID: PMC10993426 DOI: 10.1186/s12943-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
It is generally recognized that tumor cells proliferate more rapidly than normal cells. Due to such an abnormally rapid proliferation rate, cancer cells constantly encounter the limits of insufficient oxygen and nutrient supplies. To satisfy their growth needs and resist adverse environmental events, tumor cells modify the metabolic pathways to produce both extra energies and substances required for rapid growth. Realizing the metabolic characters special for tumor cells will be helpful for eliminating them during therapy. Cell death is a hot topic of long-term study and targeting cell death is one of the most effective ways to repress tumor growth. Many studies have successfully demonstrated that metabolism is inextricably linked to cell death of cancer cells. Here we summarize the recently identified metabolic characters that specifically impact on different types of cell deaths and discuss their roles in tumorigenesis.
Collapse
Affiliation(s)
- Shichao Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Caden Hu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Xiaomei Chen
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, P. R. China
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Chongqing, P. R. China
| | - Juanjuan Li
- Department of breast and thyroid surgery, Renmin hospital of Wuhan University, Wuhan, 430060, P. R. China
| | - Hanqing Yang
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China
| | - Yi Yang
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Key Laboratory of Tumor Immunopathology, Third Military Medical University (Army Medical University, Ministry of Education of China, Chongqing, 400038, P. R. China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, P. R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P. R. China.
| | - Shang-Ze Li
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| | - Li Gu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, P. R. China.
| | - Yahui Zhu
- School of Medicine, Chongqing University, Chongqing, 400030, P. R. China.
| |
Collapse
|
38
|
Huang ZJ, Li YJ, Yang J, Huang L, Zhao Q, Lu YF, Hu Y, Zhang WX, Liang JZ, Pan J, Pan YL, He QY, Wang Y. PTPLAD1 Regulates PHB-Raf Interaction to Orchestrate Epithelial-Mesenchymal and Mitofusion-Fission Transitions in Colorectal Cancer. Int J Biol Sci 2024; 20:2202-2218. [PMID: 38617530 PMCID: PMC11008263 DOI: 10.7150/ijbs.82361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/22/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The poor prognosis of this malignancy is attributed mainly to the persistent activation of cancer signaling for metastasis. Here, we showed that protein tyrosine phosphatase-like A domain containing 1 (PTPLAD1) is down-regulated in highly metastatic CRC cells and negatively associated with poor survival of CRC patients. Systematic analysis reveals that epithelial-to-mesenchymal transition (EMT) and mitochondrial fusion-to-fission (MFT) transition are two critical features for CRC patients with low expression of PTPLAD1. PTPLAD1 overexpression suppresses the metastasis of CRC in vivo and in vitro by inhibiting the Raf/ERK signaling-mediated EMT and mitofission. Mechanically, PTPLAD1 binds with PHB via its middle fragment (141-178 amino acids) and induces dephosphorylation of PHB-Y259 to disrupt the interaction of PHB-Raf, resulting in the inactivation of Raf/ERK signaling. Our results unveil a novel mechanism in which Raf/ERK signaling activated in metastatic CRC induces EMT and mitochondrial fission simultaneously, which can be suppressed by PTPLAD1. This finding may provide a new paradigm for developing more effective treatment strategies for CRC.
Collapse
Affiliation(s)
- Zi-Jia Huang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang-Jia Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jie Yang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Huang
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Qian Zhao
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi-Fan Lu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Xia Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jun-Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinghua Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yun-Long Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
39
|
Zou JY, Chen QL, Luo XC, Damdinjav D, Abdelmohsen UR, Li HY, Battulga T, Chen HB, Wang YQ, Zhang JY. Natural products reverse cancer multidrug resistance. Front Pharmacol 2024; 15:1348076. [PMID: 38572428 PMCID: PMC10988293 DOI: 10.3389/fphar.2024.1348076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.
Collapse
Affiliation(s)
- Jia-Yu Zou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiao-Ci Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hong-Yan Li
- Ministry of Education Engineering Research Center of Tibetan Medicine Detection Technology, Xizang Minzu University, Xianyang, China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yu-Qing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Affiliated TCM Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
40
|
Xu Y, Lai H, Pan S, Pan L, Liu T, Yang Z, Chen T, Zhu X. Selenium promotes immunogenic radiotherapy against cervical cancer metastasis through evoking P53 activation. Biomaterials 2024; 305:122452. [PMID: 38154440 DOI: 10.1016/j.biomaterials.2023.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Radiotherapy is still the recommended treatment for cervical cancer. However, radioresistance and radiation-induced side effects remain one of the biggest clinical problems. Selenium (Se) has been confirmed to exhibit radiation-enhancing effects for cancer treatment. However, Se species dominate the biological activities and which form of Se possesses better radiosensitizing properties and radiation safety remains elusive. Here, different Se species (the valence state of Se ranged from - 2, 0, +4 to + 6) synergy screen was carried out to identify the potential radiosensitizing effects and radiation safety of Se against cervical cancer. We found that the therapeutic effects varied with the changes in the Se valence state. Sodium selenite (+4) displayed strong cancer-killing effects but also possessed severe cytotoxicity. Sodium selenate (+6) neither enhanced the killing effects of X-ray nor possessed anticancer activity by its alone treatment. Although nano-selenium (0), especially Let-SeNPs, has better radiosensitizing activity, the - 2 organic Se, such as selenadiazole derivative SeD (-2) exhibited more potent anticancer effects and possessed a higher safe index. Overall, the selected Se drugs were able to synergize with X-ray to inhibit cell growth, clone formation, and cell migration by triggering G2/M phase arrest and apoptosis, and SeD (-2) was found to exhibit more potent enhancing capacity. Further mechanism studies showed that SeD mediated p53 pathway activation by inducing DNA damage through promoting ROS production. Additionally, SeD combined with X-ray therapy can induce an anti-tumor immune response in vivo. More importantly, SeD combined with X-ray significantly inhibited the liver metastasis of tumor cells and alleviated the side effects caused by radiation therapy in tumor-bearing mice. Taken together, this study demonstrates the radiosensitization and radiation safety effects of different Se species, which may shed light on the application of such Se-containing drugs serving as side effects-reducing agents for cervical cancer radiation treatment.
Collapse
Affiliation(s)
- Yanchao Xu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liuliu Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Ting Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Ziyi Yang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
41
|
Yu T, Rui L, Jiumei Z, Ziwei L, Ying H. Advances in the study of autophagy in breast cancer. Breast Cancer 2024; 31:195-204. [PMID: 38315272 PMCID: PMC10901946 DOI: 10.1007/s12282-023-01541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/25/2023] [Indexed: 02/07/2024]
Abstract
Breast cancer is the most prevalent malignant tumor among women, with a high incidence and mortality rate all year round, which seriously affects women's health. Autophagy, a well-conserved cellular process inherent in eukaryotic organisms, plays a pivotal role in degrading damaged proteins and organelles, recycling their breakdown products to aid cells in navigating stress and gradually restoring homeostatic equilibrium. Recent studies have unveiled the intricate connection between autophagy and breast cancer. Autophagy is a double-edged sword in breast cancer, demonstrating a dual role: restraining its onset and progression on one hand, while promoting its metastasis and advancement on the other. It is also because of this interrelationship between the two that regulation of autophagy in the treatment of breast cancer is now an important strategy in clinical treatment. In this article, we systematically survey the recent research findings, elucidating the multifaceted role of autophagy in breast cancer and its underlying mechanisms, with the aim of contributing new references to the clinical management of breast cancer.
Collapse
Affiliation(s)
- Tang Yu
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Rui
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Jiumei
- Chongqing Nanchuan District People's Hospital, Chongqing, China
| | - Li Ziwei
- Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hu Ying
- The Second Affiliatied Hospital of Kunming Medical University and Department of Clinical Larboratory, Kunming, China.
| |
Collapse
|
42
|
Strippoli R, Niayesh-Mehr R, Adelipour M, Khosravi A, Cordani M, Zarrabi A, Allameh A. Contribution of Autophagy to Epithelial Mesenchymal Transition Induction during Cancer Progression. Cancers (Basel) 2024; 16:807. [PMID: 38398197 PMCID: PMC10886827 DOI: 10.3390/cancers16040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial Mesenchymal Transition (EMT) is a dedifferentiation process implicated in many physio-pathological conditions including tumor transformation. EMT is regulated by several extracellular mediators and under certain conditions it can be reversible. Autophagy is a conserved catabolic process in which intracellular components such as protein/DNA aggregates and abnormal organelles are degraded in specific lysosomes. In cancer, autophagy plays a controversial role, acting in different conditions as both a tumor suppressor and a tumor-promoting mechanism. Experimental evidence shows that deep interrelations exist between EMT and autophagy-related pathways. Although this interplay has already been analyzed in previous studies, understanding mechanisms and the translational implications of autophagy/EMT need further study. The role of autophagy in EMT is not limited to morphological changes, but activation of autophagy could be important to DNA repair/damage system, cell adhesion molecules, and cell proliferation and differentiation processes. Based on this, both autophagy and EMT and related pathways are now considered as targets for cancer therapy. In this review article, the contribution of autophagy to EMT and progression of cancer is discussed. This article also describes the multiple connections between EMT and autophagy and their implication in cancer treatment.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
- National Institute for Infectious Diseases “Lazzaro Spallanzani”, I.R.C.C.S., 00149 Rome, Italy
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| | - Maryam Adelipour
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran;
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain;
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye;
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Science, Tarbiat Modares University, Tehran P.O. Box 14115-331, Iran;
| |
Collapse
|
43
|
Li YC, Zhang FC, Xu TW, Weng RX, Zhang HH, Chen QQ, Hu S, Gao R, Li R, Xu GY. Advances in the pathological mechanisms and clinical treatments of chronic visceral pain. Mol Pain 2024; 20:17448069241305942. [PMID: 39673493 PMCID: PMC11645724 DOI: 10.1177/17448069241305942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024] Open
Abstract
Chronic visceral pain stems from internal organs and is frequently associated with functional gastrointestinal disorders, like irritable bowel syndrome (IBS). Since the underlying mechanisms of visceral pain remain largely unclear, clinical management is often limited and ineffective. Comprehensive research into the pathogenesis of visceral pain, along with the development of personalized therapeutic strategies, is crucial for advancing treatment options. Studies suggest that imbalances in purinergic receptors and neural circuit function are closely linked to the onset of visceral pain. In this review, we will explore the etiology and pathological mechanisms underlying visceral pain, with a focus on ion channels, epigenetic factors, and neural circuits, using functional gastrointestinal disorders as case studies. Finally, we will summarize and evaluate emerging treatments and potential initiatives aimed at managing visceral pain.
Collapse
Affiliation(s)
- Yong-Chang Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fu-Chao Zhang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Timothy W Xu
- Department of Earth Sciences, University College London, London, UK
| | - Rui-Xia Weng
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qian-Qian Chen
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Shufen Hu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Rong Gao
- Translational Medicine Center, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
44
|
Cheng L, Xu L, Yuan H, Zhao Q, Yue W, Ma S, Wu X, Gu D, Sun Y, Shi H, Xu J. Jianpi Jiedu Recipe Inhibits Proliferation through Reactive Oxygen Species-Induced Incomplete Autophagy and Reduces PD-L1 Expression in Colon Cancer. Integr Cancer Ther 2024; 23:15347354241268064. [PMID: 39155544 PMCID: PMC11331576 DOI: 10.1177/15347354241268064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Jianpi Jiedu Recipe has been used to treat digestive tract tumors in China since ancient times, and its reliability has been proven by clinical research. Currently, the specific biological mechanism of JPJDR in treating tumors is unclear. METHODOLOGY CCK-8 assay was used to detect cell viability. Clone formation assay and EdU assay were used to detect cell proliferation potential. DCFH-DA probe and JC-1 probe were used to detect total intracellular reactive oxygen species and mitochondrial membrane potential, respectively. Western blotting and immunofluorescence were used to detect protein expression level and subcellular localization of cells. The RFP-GFP-LC3B reporter system was used to observe the type of autophagy in cells. The xenograft tumor model was used to study the therapeutic effect of JPJDR in vivo. RESULTS JPJDR has an excellent inhibitory effect on various colorectal cancer cells and effectively reduces the proliferation ability of HT29 cells. After treatment with JPJDR, the amount of reactive oxygen species in HT29 cells increased significantly, and the mitochondrial membrane potential decreased. JPJDR induced the accumulation of autophagosomes in HT29 cells and was shown to be incomplete autophagy. At the same time, JPJDR reduced the expression of PD-L1. Meanwhile, JPJDR can exert an excellent therapeutic effect in xenograft tumor mice. CONCLUSION JPJDR is a low-toxicity and effective anti-tumor agent that can effectively treat colon cancer in vitro and in vivo. Its mechanism may be inducing mitochondrial dysfunction and incomplete autophagy injury to inhibit the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Lingling Cheng
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Liangfeng Xu
- Sheyang County People’s Hospital, Yancheng, Jiangsu, China
| | - Hua Yuan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Qihao Zhao
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Wei Yue
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Shuang Ma
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Xiaojing Wu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Dandan Gu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Yurong Sun
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Haifeng Shi
- Sheyang County People’s Hospital, Yancheng, Jiangsu, China
| | - Jianlin Xu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
45
|
Qin Y, Xiong S, Ren J, Sethi G. Autophagy machinery in glioblastoma: The prospect of cell death crosstalk and drug resistance with bioinformatics analysis. Cancer Lett 2024; 580:216482. [PMID: 37977349 DOI: 10.1016/j.canlet.2023.216482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Brain tumors are common malignancies with high mortality and morbidity in which glioblastoma (GB) is a grade IV astrocytoma with heterogeneous nature. The conventional therapeutics for the GB mainly include surgery and chemotherapy, however their efficacy has been compromised due to the aggressiveness of tumor cells. The dysregulation of cell death mechanisms, especially autophagy has been reported as a factor causing difficulties in cancer therapy. As a mechanism contributing to cell homeostasis, the autophagy process is hijacked by tumor cells for the purpose of aggravating cancer progression and drug resistance. The autophagy function is context-dependent and its role can be lethal or protective in cancer. The aim of the current paper is to highlight the role of autophagy in the regulation of GB progression. The cytotoxic function of autophagy can promote apoptosis and ferroptosis in GB cells and vice versa. Autophagy dysregulation can cause drug resistance and radioresistance in GB. Moreover, stemness can be regulated by autophagy and overall growth as well as metastasis are affected by autophagy. The various interventions including administration of synthetic/natural products and nanoplatforms can target autophagy. Therefore, autophagy can act as a promising target in GB therapy.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Afflicted Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Shengjun Xiong
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Gautam Sethi
- Department of Pharmacology, National University of Singapore, NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, 16 Medical Drive, Singapore, 117600, Singapore.
| |
Collapse
|
46
|
Ma A, Nan N, Shi Y, Wang J, Guo P, Liu W, Zhou G, Yu J, Zhou D, Yun DJ, Li Y, Xu ZY. Autophagy receptor OsNBR1 modulates salt stress tolerance in rice. PLANT CELL REPORTS 2023; 43:17. [PMID: 38145426 DOI: 10.1007/s00299-023-03111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 12/26/2023]
Abstract
KEY MESSAGE Autophagy receptor OsNBR1 modulates salt stress tolerance by affecting ROS accumulation in rice. The NBR1 (next to BRCA1 gene 1), as important selective receptors, whose functions have been reported in animals and plants. Although the function of NBR1 responses to abiotic stress has mostly been investigated in Arabidopsis thaliana, the role of NBR1 under salt stress conditions remains unclear in rice (Oryza sativa). In this study, by screening the previously generated activation-tagged line, we identified a mutant, activation tagging 10 (AC10), which exhibited salt stress-sensitive phenotypes. TAIL-PCR (thermal asymmetric interlaced PCR) showed that the AC10 line carried a loss-of-function mutation in the OsNBR1 gene. OsNBR1 was found to be a positive regulator of salt stress tolerance and was localized in aggregates. A loss-of-function mutation in OsNBR1 increased salt stress sensitivity, whereas overexpression of OsNBR1 enhanced salt stress resistance. The osnbr1 mutants showed higher ROS (reactive oxygen species) production, whereas the OsNBR1 overexpression (OsNBR1OE) lines showed lower ROS production, than Kitaake plants under normal and salt stress conditions. Furthermore, RNA-seq analysis revealed that expression of OsRBOH9 (respiratory burst oxidase homologue) was increased in osnbr1 mutants, resulting in increased ROS accumulation in osnbr1 mutants. Together our results established that OsNBR1 responds to salt stress by influencing accumulation of ROS rather than by regulating transport of Na+ and K+ in rice.
Collapse
Affiliation(s)
- Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Yuejie Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Wenxin Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dongxiao Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Yu Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
47
|
Mei XC, Chen Q, Zuo S. Transient receptor potential-related risk model predicts prognosis of hepatocellular carcinoma patients. World J Gastrointest Oncol 2023; 15:2064-2076. [PMID: 38173438 PMCID: PMC10758653 DOI: 10.4251/wjgo.v15.i12.2064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Members of the transient receptor potential (TRP) protein family shape oncogenic development, but the specific relevance of TRP-related genes in hepatocellular carcinoma (HCC) has yet to be defined. AIM To investigate the role of TRP genes in HCC, their association with HCC development and treatment was examined. METHODS HCC patient gene expression and clinical data were downloaded from The Cancer Genome Atlas database, and univariate and least absolute shrinkage and selection operator Cox regression models were employed to explore the TRP-related risk spectrum. Based on these analyses, clinically relevant TRP family genes were selected, and the association between the key TRP canonical type 1 (TRPC1) gene and HCC patient prognosis was evaluated. RESULTS In total, 28 TRP family genes were screened for clinical relevance, with multivariate analyses ultimately revealing three of these genes (TRPC1, TRP cation channel subfamily M member 2, and TRP cation channel subfamily M member 6) to be significantly associated with HCC patient prognosis (P < 0.05). These genes were utilized to establish a TRP-related risk model. Patients were separated into low- and high-risk groups based on the expression of these genes, and high-risk patients exhibited a significantly poorer prognosis (P = 0.001). Functional analyses highlighted pronounced differences in the immune status of patients in these two groups and associated enriched immune pathways. TRPC1 was identified as a candidate gene in this family worthy of further study, with HCC patients expressing higher TRPC1 levels exhibiting poorer survival outcomes. Consistently, quantitative, immunohistochemistry, and western blot analyses revealed increased TRPC1 expression in HCC. CONCLUSION These three TRP genes help determine HCC patient prognosis, providing insight into tumor immune status and immunological composition. These findings will help design combination therapies including immunotherapeutic and anti-TRP agents.
Collapse
Affiliation(s)
- Xiao-Cai Mei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
48
|
Pan Y, Zhao Q, He H, Qi Y, Bai Y, Zhao J, Yang Y. TRPML1 as a potential therapeutic target for triple-negative breast cancer: a review. Front Oncol 2023; 13:1326023. [PMID: 38156109 PMCID: PMC10753766 DOI: 10.3389/fonc.2023.1326023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/01/2023] [Indexed: 12/30/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most refractory subtype of breast cancer, and effective treatments are urgently needed owing to its poor prognosis. Surgery, radiotherapy, and chemotherapy, alone or in combination, are the leading choices for TNBC therapy. Although promising approaches and procedures have emerged, several challenges, such as off-target effects, drug resistance, and severe side effects, remain to be addressed. Recently, transient receptor potential channel mucolipin 1 (TRPML1) has attracted the attention of researchers because its expression has been implicated in numerous diseases, including cancer. TRPML1 regulates biological events and signaling pathways, including autophagic flux, exocytosis, ionic homeostasis, and lysosomal biogenesis, all contributing to tumorigenesis and cancer progression. TRPML1 also functions as a building block for cancer cell growth, mitogenic signaling, priming tissues for metastasis, and activation of transcriptional programs, processes involved in several malignant tumors. This review provides an overview of breast cancer epidemiology and diagnostic techniques and then discusses the existing therapeutics. Additionally, we elaborate on the development of, and associated challenges to, TNBC diagnostics and treatment and the feasibility of TRPML1 as a therapeutic target for TNBC.
Collapse
Affiliation(s)
- Ying Pan
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qiancheng Zhao
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Haitao He
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yubo Qi
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Yujie Bai
- First Hospital of Jilin University, Changchun, Jilin, China
| | - Jia Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yiming Yang
- Department of Cell Biology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
49
|
Zhang Z, Zhao Y, Wang Y, Zhao Y, Guo J. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. ENVIRONMENTAL RESEARCH 2023; 238:117006. [PMID: 37669735 DOI: 10.1016/j.envres.2023.117006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/07/2023]
Abstract
The cell death mechanisms have a long history of being evaluated in diseases and pathological events. The ability of triggering cell death is considered to be a promising strategy in cancer therapy, but some mechanisms have dual functions in cancer, requiring more elucidation of underlying factors. Colorectal cancer (CRC) is a disease and malignant condition of colon and rectal that causes high mortality and morbidity. The autophagy targeting in CRC is therapeutic importance and this cell death mechanism can interact with apoptosis in inhibiting or increasing apoptosis. Autophagy has interaction with ferroptosis as another cell death pathway in CRC and can accelerate ferroptosis in suppressing growth and invasion. The dysregulation of autophagy affects the drug resistance in CRC and pro-survival autophagy can induce drug resistance. Therefore, inhibition of protective autophagy enhances chemosensitivity in CRC cells. Moreover, autophagy displays interaction with metastasis and EMT as a potent regulator of invasion in CRC cells. The same is true for ferroptosis, but the difference is that function of ferroptosis is determined and it can reduce viability. The lack of ferroptosis can cause development of chemoresistance in CRC cells and this cell death mechanism is regulated by various pathways and mechanisms that autophagy is among them. Therefore, current review paper provides a state-of-art analysis of autophagy, ferroptosis and their crosstalk in CRC. The nanoparticle-mediated regulation of cell death mechanisms in CRC causes changes in progression. The stimulation of ferroptosis and control of autophagy (induction or inhibition) by nanoparticles can impair CRC progression. The engineering part of nanoparticle synthesis to control autophagy and ferroptosis in CRC still requires more attention.
Collapse
Affiliation(s)
- Zhibin Zhang
- Chengde Medical College, College of Traditional Chinese Medicine, Chengde, Hebei, 067000, China.
| | - Yintao Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yuman Wang
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Yutang Zhao
- Chengde Medical College, Chengde, Hebei, 067000, China
| | - Jianen Guo
- Chengde Medical College, Chengde, Hebei, 067000, China
| |
Collapse
|
50
|
HU WEI, WARTMANN THOMAS, STRECKER MARCO, PERRAKIS ARISTOTELIS, CRONER ROLAND, SZALLASI ARPAD, SHI WENJIE, KAHLERT ULFD. Transient receptor potential channels as predictive marker and potential indicator of chemoresistance in colon cancer. Oncol Res 2023; 32:227-239. [PMID: 38188686 PMCID: PMC10767253 DOI: 10.32604/or.2023.043053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/13/2023] [Indexed: 01/09/2024] Open
Abstract
Transient receptor potential (TRP) channels are strongly associated with colon cancer development and progression. This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature, with further validation of signature in real world samples from our hospital treated patient samples. Kaplan-Meier (K-M) survival analysis and receiver operating characteristic (ROC) curves were employed to evaluate this gene signature's predictive accuracy and robustness in both training and testing cohorts, respectively. Additionally, the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature's immune infiltration landscape and underlying functional implications. The support vector machine algorithm was applied to evaluate the signature's potential in predicting chemotherapy outcomes. The findings unveiled a novel three TRP channels-related gene signature (MCOLN1, TRPM5, and TRPV4) in colon adenocarcinoma (COAD). The ROC and K-M survival curves in the training dataset (AUC = 0.761; p = 1.58e-05) and testing dataset (AUC = 0.699; p = 0.004) showed the signature's robust predictive capability for the overall survival of COAD patients. Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration, especially an increased presence of M2 macrophages, in high-risk group patients compared to their low-risk counterparts. High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy, evident through increased CD86 and PD-1 expression profiles. Moreover, the TRPM5 gene within the signature was highly expressed in the chemoresistance group (p = 0.00095) and associated with poor prognosis (p = 0.036) in COAD patients, highlighting its role as a hub gene of chemoresistance. Ultimately, this signature emerged as an independent prognosis factor for COAD patients (p = 6.48e-06) and expression of model gene are validated by public data and real-world patients. Overall, this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.
Collapse
Affiliation(s)
- WEI HU
- The Fourth Clinical Medical College of Yangzhou University, Nantong Rich Hospital, Nantong, China
| | - THOMAS WARTMANN
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - MARCO STRECKER
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ARISTOTELIS PERRAKIS
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ROLAND CRONER
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ARPAD SZALLASI
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - WENJIE SHI
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - ULF D. KAHLERT
- Molecular and Experimental Surgery, Clinic for General-, Visceral-, Vascular and Transplant Surgery, Faculty of Medicine and University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|