1
|
Zhang L, Gao M, Wu Y, Liu H, Zhuang X, Zhou Y, Song Q, Bi S, Zhang W, Cui Y. MST1 interactomes profiling across cell death in esophageal squamous cell carcinoma. MEDICAL REVIEW (2021) 2024; 4:531-543. [PMID: 39664081 PMCID: PMC11629308 DOI: 10.1515/mr-2024-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/27/2024] [Indexed: 12/13/2024]
Abstract
Objectives Resistance to apoptosis in esophageal squamous cell carcinoma (ESCC) constitutes a significant impediment to treatment efficacy. Exploring alternative cell death pathways and their regulatory factors beyond apoptosis is crucial for overcoming drug resistance and enhancing therapeutic outcomes in ESCC. Methods Mammalian Ste 20-like kinase 1 (MST1) is implicated in regulating various cell deaths, including apoptosis, autophagy, and pyroptosis. Employing enhanced ascorbate peroxidase 2 (APEX2) proximity labeling coupled with immunoprecipitation-mass spectrometry (IP-MS), we elucidated the interactomes of MST1 across these three cell death paradigms. Results Proteomic profiling unveiled the functional roles and subcellular localization of MST1 and its interacting proteins during normal proliferation and various cell death processes. Notably, MST1 exhibited an expanded interactome during cell death compared to normal proliferation and chromosome remodeling functions consistently. In apoptosis, there was a notable increase of mitosis-associated proteins such as INCENP, ANLN, KIF23, SHCBP1 and SUPT16H, which interacted with MST1, alongside decreased expression of the pre-apoptotic protein STK3. During autophagy, the bindings of DNA repair-related proteins CBX8 and m6A reader YTHDC1 to MST1 were enhanced. In pyroptosis, LRRFIP2 and FLII which can inhibit pyroptosis increasingly binding to MST1. Conclusions Our findings delineate potential mechanisms through which MST1 and its interactomes regulate cell death, paving the way for further investigation to validate and consolidate these observations.
Collapse
Affiliation(s)
- Li Zhang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Mingwei Gao
- Department of Oncology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yueguang Wu
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Huijuan Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xuehan Zhuang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yan Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Qiqin Song
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Shanshan Bi
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Weimin Zhang
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - Yongping Cui
- Cancer Institute, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Lopes N, Salta S, Flores BT, Miranda-Gonçalves V, Correia MP, Gigliano D, Guimarães R, Henrique R, Jerónimo C. Anti-tumour activity of Panobinostat in oesophageal adenocarcinoma and squamous cell carcinoma cell lines. Clin Epigenetics 2024; 16:102. [PMID: 39097736 PMCID: PMC11297794 DOI: 10.1186/s13148-024-01700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/21/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Oesophageal cancer remains a challenging disease with high mortality rates and few therapeutic options. In view of these difficulties, epigenetic drugs have emerged as potential alternatives for patient care. The goal of this study was to evaluate the effect and biological consequences of Panobinostat treatment, an HDAC (histone deacetylase) inhibitor already approved for treatment of patients with multiple myeloma, in oesophageal cell lines of normal and malignant origin, with the latter being representative of the two main histological subtypes: adenocarcinoma and squamous cell carcinoma. RESULTS Panobinostat treatment inhibited growth and hindered proliferation, colony formation and invasion of oesophageal cancer cells. Considering HDAC tissue expression, HDAC1 was significantly upregulated in normal oesophageal epithelium in comparison with tumour tissue, whereas HDAC3 was overexpressed in oesophageal cancer compared to non-malignant mucosa. No differences between normal and tumour tissue were observed for HDAC2 and HDAC8 expression. CONCLUSIONS Panobinostat exposure effectively impaired malignant features of oesophageal cancer cells. Because HDAC3 was shown to be overexpressed in oesophageal tumour samples, this epigenetic drug may represent an alternative therapeutic option for oesophageal cancer patients.
Collapse
Affiliation(s)
- Nair Lopes
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Sofia Salta
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Doctoral Program in Pathology and Molecular Genetics, ICBAS - School of Medicine and Biomedical Sciences - University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Bianca Troncarelli Flores
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Vera Miranda-Gonçalves
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Margareta P Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Davide Gigliano
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rita Guimarães
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP) - CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Research Center-LAB 3, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
- Department of Pathology and Molecular Immunology, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
3
|
Xia WF, Zheng XL, Liu WY, Huang YT, Wen CJ, Zhou HH, Wu QC, Wu LX. Romidepsin exhibits anti-esophageal squamous cell carcinoma activity through the DDIT4-mTORC1 pathway. Cancer Gene Ther 2024; 31:778-789. [PMID: 38480975 DOI: 10.1038/s41417-024-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/19/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common human malignancies worldwide and is associated with high morbidity and mortality. Current treatment options are limited, highlighting the need for development of novel effective agents. Here, a high-throughput drug screening (HTS) was performed using ESCC cell lines in both two- and three-dimensional culture systems to screen compounds that have anti-ESCC activity. Our screen identified romidepsin, a histone deactylase inhibitor, as a potential anti-ESCC agent. Romidepsin treatment decreased cell viability, induced apoptosis and cell cycle arrest in ESCC cell lines, and these findings were confirmed in ESCC cell line-derived xenografted (CDX) mouse models. Mechanically, romidepsin induced transcriptional upregulation of DNA damage-inducible transcript 4 (DDIT4) gene by histone hyperacetylation at its promoter region, leading to the inhibition of mammalian target of rapamycin complex 1 (mTORC1) pathway. Furthermore, romidepsin exhibited better efficacy and safety compared to the conventional therapeutic drugs in ESCC patient-derived xenografted (PDX) mouse models. These data indicate that romidepsin may be a novel option for anti-ESCC therapy.
Collapse
Affiliation(s)
- Wei-Feng Xia
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiao-Li Zheng
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Wen-Yi Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu-Tang Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Jie Wen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Hong-Hao Zhou
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, 410078, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Shi H, Cui W, Qin Y, Chen L, Yu T, Lv J. A glimpse into novel acylations and their emerging role in regulating cancer metastasis. Cell Mol Life Sci 2024; 81:76. [PMID: 38315203 PMCID: PMC10844364 DOI: 10.1007/s00018-023-05104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Metastatic cancer is a major cause of cancer-related mortality; however, the complex regulation process remains to be further elucidated. A large amount of preliminary investigations focus on the role of epigenetic mechanisms in cancer metastasis. Notably, the posttranslational modifications were found to be critically involved in malignancy, thus attracting considerable attention. Beyond acetylation, novel forms of acylation have been recently identified following advances in mass spectrometry, proteomics technologies, and bioinformatics, such as propionylation, butyrylation, malonylation, succinylation, crotonylation, 2-hydroxyisobutyrylation, lactylation, among others. These novel acylations play pivotal roles in regulating different aspects of energy mechanism and mediating signal transduction by covalently modifying histone or nonhistone proteins. Furthermore, these acylations and their modifying enzymes show promise regarding the diagnosis and treatment of tumors, especially tumor metastasis. Here, we comprehensively review the identification and characterization of 11 novel acylations, and the corresponding modifying enzymes, highlighting their significance for tumor metastasis. We also focus on their potential application as clinical therapeutic targets and diagnostic predictors, discussing the current obstacles and future research prospects.
Collapse
Affiliation(s)
- Huifang Shi
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Weigang Cui
- Central Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Yan Qin
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Lei Chen
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China
| | - Tao Yu
- Center for Regenerative Medicine, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Clinical Laboratory, The Rizhao People's Hospital Affiliated to Jining Medical University, No. 126 Taian Road, Rizhao, 276826, Shandong, China.
| |
Collapse
|
5
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
6
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
7
|
Cheng M, Xin Q, Ma S, Ge M, Wang F, Yan X, Jiang B. Advances in the Theranostics of Oesophageal Squamous Carcinoma. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202200251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Indexed: 01/04/2025]
Abstract
AbstractOesophageal squamous carcinoma (ESCC) is one of the most lethal human malignancies, and it is a more aggressive form of oesophageal cancer (EC) that comprises over 90% of all EC cases in China compared with oesophageal adenocarcinoma (EAC). The high mortality of ESCC is attributed to the late‐stage diagnosis, chemoradiotherapy resistance, and lack of appropriate therapeutic targets and corresponding therapeutic formulations. Recently, emerging clinical and translational investigations have involved genome analyses, diagnostic biomarkers, and targeted therapy for ESCC, and these studies provide a new horizon for improving the clinical outcomes of patients with ESCC. Here, the latest research advances in the theranostics of ESCC are reviewed and the unique features of ESCC (including differences from EAC, genomic alterations, and microbe infections), tissue and circulating biomarkers, chemoradiotherapy resistance, clinical targeted therapy for ESCC, identification of novel therapeutic targets, and designation of nanotherapeutic systems for ESCC are particularly focused on. Finally, the perspectives for future clinical and translational theranostic research of ESCC are discussed and the obstacles that must be overcome in ESCC theranostics are described.
Collapse
Affiliation(s)
- Miaomiao Cheng
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Qi Xin
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Saiyu Ma
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Mengyue Ge
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
| | - Feng Wang
- Oncology Department The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 China
| | - Xiyun Yan
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Protein and Peptide Pharmaceuticals Institute of Biophysics Chinese Academy of Sciences Beijing 100101 China
| | - Bing Jiang
- Nanozyme Medical Center School of Basic Medical Sciences Zhengzhou University Zhengzhou 450001 China
- State Key Laboratory of Esophageal Cancer Prevention &Treatment Zhengzhou Henan 450001 China
| |
Collapse
|
8
|
He W, Yuan K, He J, Wang C, Peng L, Han Y, Chen N. Network and pathway-based analysis of genes associated with esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:102. [PMID: 36819552 PMCID: PMC9929830 DOI: 10.21037/atm-22-6512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Background Although diagnostic methods and treatments have improved over the last few years, the 5-year survival rate of esophageal squamous cell carcinoma (ESCC) patients remains generally poor. The development of high-throughput technology has facilitated great achievements in localization of ESCC-related genes. To take a further step toward a thorough understanding of ESCC at a molecular level, the potential pathogenesis of ESCC needs to be deciphered. Methods The interaction of ESCC-related genes was explored by collecting genes associated with ESCC and then performing gene enrichment assays, pathway enrichment assays, pathway crosstalk analysis, and extraction of ESCC-specific subnetwork to describe the relevant biochemical processes. Results Through Gene Ontology (GO) enrichment analysis, many molecular functions related to response to chemical, cellular response to stimulus, and cell proliferation were found to be significantly enriched in ESCC-related genes. The results of pathway and pathway crosstalk analysis showed that pathways associated with multiple malignant tumors, the immune system, and metabolic processes were significantly enriched in ESCC-related genes. Through the analysis of specific subnetworks, we obtained some novel ESCC-related potential genes, such as MUC13, GSTO1, FIN, GRB2, CDC25C, and others. Conclusions The molecular mechanism of ESCC is extremely complex. Some inducing factors change the expression status of many genes. The abnormal expression of genes mediates the biological processes involved in immunity and metabolism, apoptosis, and cell proliferation, leading to the occurrence of tumors. The genes MUC13, RYK, and FIN may be potential prognostic indicators of ESCC; GRB2 and CDC25C may be potential targets of ESCC in proliferation. Our work may provide valuable information for further understanding the molecular mechanisms for the development of ESCC.
Collapse
Affiliation(s)
- Wenwu He
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China;,Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Kun Yuan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jinlan He
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chenghao Wang
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Peng
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Yongtao Han
- Department of Thoracic Surgery, Sichuan Cancer Hospital and Research Institute, Sichuan Cancer Center, Cancer Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| | - Nianyong Chen
- Department of Head and Neck Oncology and Department of Radiation Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Liu WJ, Zhao Y, Chen X, Miao ML, Zhang RQ. Epigenetic modifications in esophageal cancer: An evolving biomarker. Front Genet 2023; 13:1087479. [PMID: 36704345 PMCID: PMC9871503 DOI: 10.3389/fgene.2022.1087479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Esophageal cancer is a widespread cancer of the digestive system that has two main subtypes: esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EA). In the diverse range of cancer therapy schemes, the side effects of conventional treatments remain an urgent challenge to be addressed. Therefore, the pursuit of novel drugs with multiple targets, good efficacy, low side effects, and low cost has become a hot research topic in anticancer therapy. Based on this, epigenetics offers an attractive target for the treatment of esophageal cancer, where major mechanisms such as DNA methylation, histone modifications, non-coding RNA regulation, chromatin remodelling and nucleosome localization offer new opportunities for the prevention and treatment of esophageal cancer. Recently, research on epigenetics has remained at a high level of enthusiasm, focusing mainly on translating the basic research into the clinical setting and transforming epigenetic alterations into targets for cancer screening and detection in the clinic. With the increasing emergence of tumour epigenetic markers and antitumor epigenetic drugs, there are also more possibilities for anti-esophageal cancer treatment. This paper focuses on esophageal cancer and epigenetic modifications, with the aim of unravelling the close link between them to facilitate precise and personalized treatment of esophageal cancer.
Collapse
Affiliation(s)
- Wen-Jian Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuan Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xu Chen
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Man-Li Miao
- School of Basic Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ren-Quan Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
10
|
Karati D, Kumar D. A Comprehensive Review on Targeted Cancer Therapy: New Face of Treatment Approach. Curr Pharm Des 2023; 29:3282-3294. [PMID: 38038008 DOI: 10.2174/0113816128272203231121034814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cancer is one of life's most difficult difficulties and a severe health risk everywhere. Except for haematological malignancies, it is characterized by unchecked cell growth and a lack of cell death, which results in an aberrant tissue mass or tumour. Vascularization promotes tumor growth, which eventually aids metastasis and migration to other parts of the body, ultimately resulting in death. The genetic material of the cells is harmed or mutated by environmental or inherited influences, which results in cancer. Presently, anti-neoplastic medications (chemotherapy, hormone, and biological therapies) are the treatment of choice for metastatic cancers, whilst surgery and radiotherapy are the mainstays for local and non-metastatic tumors. Regrettably, chemotherapy disturbs healthy cells with rapid proliferation, such as those in the gastrointestinal tract and hair follicles, leading to the typical side effects of chemotherapy. Finding new, efficient, targeted therapies based on modifications in the molecular biology of tumor cells is essential because current chemotherapeutic medications are harmful and can cause the development of multidrug resistance. These new targeted therapies, which are gaining popularity as demonstrated by the FDA-approved targeted cancer drugs in recent years, enter molecules directly into tumor cells, diminishing the adverse reactions. A form of cancer treatment known as targeted therapy goes after the proteins that regulate how cancer cells proliferate, divide, and disseminate. Most patients with specific cancers, such as chronic myelogenous leukemia (commonly known as CML), will have a target for a particular medicine, allowing them to be treated with that drug. Nonetheless, the tumor must typically be examined to determine whether it includes drug targets.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal 900017, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharti Vidyapeeth, Pune, Maharashtra 411038, India
| |
Collapse
|
11
|
Naa10p promotes cell invasiveness of esophageal cancer by coordinating the c-Myc and PAI1 regulatory axis. Cell Death Dis 2022; 13:995. [PMID: 36433943 PMCID: PMC9700753 DOI: 10.1038/s41419-022-05441-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022]
Abstract
N-α-acetyltransferase 10 protein, Naa10p, is involved in various cellular functions impacting tumor progression. Due to its capacity to acetylate a large spectrum of proteins, both oncogenic and tumor-suppressive roles of Naa10p have been documented. Here, we report an oncogenic role of Naa10p in promoting metastasis of esophageal cancer. NAA10 is more highly expressed in esophageal cancer tissues compared to normal tissues. Higher NAA10 expression also correlates with poorer survival of esophageal cancer patients. We found that NAA10 expression was transcriptionally regulated by the critical oncogene c-Myc in esophageal cancer. Furthermore, activation of the c-Myc-Naa10p axis resulted in upregulated cell invasiveness of esophageal cancer. This increased cell invasiveness was also elucidated to depend on the enzymatic activity of Naa10p. Moreover, Naa10p cooperated with Naa15p to interact with the protease inhibitor, PAI1, and prevent its secretion. This inhibition of PAI1 secretion may derive from the N-terminal acetylation effect of the Naa10p/Naa15p complex. Our results establish the significance of Naa10p in driving metastasis in esophageal cancer by coordinating the c-Myc-PAI1 axis, with implications for its potential use as a prognostic biomarker and therapeutic target for esophageal cancer.
Collapse
|
12
|
Matani H, Sahu D, Paskewicz M, Gorbunova A, Omstead AN, Wegner R, Finley GG, Jobe BA, Kelly RJ, Zaidi AH, Goel A. Prognostic and predictive biomarkers for response to neoadjuvant chemoradiation in esophageal adenocarcinoma. Biomark Res 2022; 10:81. [PMCID: PMC9664643 DOI: 10.1186/s40364-022-00429-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Esophageal adenocarcinoma is a lethal disease. For locally advanced patients, neoadjuvant chemoradiotherapy followed by surgery is the standard of care. Risk stratification relies heavily on clinicopathologic features, particularly pathologic response, which is inadequate, therefore establishing the need for new and reliable biomarkers for risk stratification.
Methods
Thirty four patients with locally advanced esophageal adenocarcinoma were analyzed, of which 21 received a CROSS regimen with carboplatin, paclitaxel, and radiation. Capture-based targeted sequencing was performed on the paired baseline and post-treatment samples. Differentially mutated gene analysis between responders and non-responders of treatment was performed to determine predictors of response. A univariate Cox proportional hazard regression was used to examine associations between gene mutation status and overall survival.
Results
A 3-gene signature, based on mutations in EPHA5, BCL6, and ERBB2, was identified that robustly predicts response to the CROSS regimen. For this model, sensitivity was 84.6% and specificity was 100%. Independently, a 9 gene signature was created using APC, MAP3K6, ETS1, CSF3R, PDGFRB, GATA2, ARID1A, PML, and FGF6, which significantly stratifies patients into risk categories, prognosticating for improved relapse-free (p = 4.73E-03) and overall survival (p = 3.325E-06). The sensitivity for this model was 73.33% and the specificity was 94.74%.
Conclusion
We have identified a 3-gene signature (EPHA5, BCL6, and ERBB2) that is predictive of response to neoadjuvant chemoradiotherapy and a separate prognostic 9-gene classifier that predicts survival outcomes. These panels provide significant potential for personalized management of locally advanced esophageal cancer.
Collapse
|
13
|
Enhanced Cytotoxicity on Cancer Cells by Combinational Treatment of PARP Inhibitor and 5-Azadeoxycytidine Accompanying Distinct Transcriptional Profiles. Cancers (Basel) 2022; 14:cancers14174171. [PMID: 36077707 PMCID: PMC9454563 DOI: 10.3390/cancers14174171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary We investigated the effect of combinational use of PARP inhibitors on cytotoxicity of 5-aza-dC in human cancer cell lines. The combinational treatment of 5-aza-dC and PARP inhibitor PJ-34 exhibited a stronger cytotoxicity compared with their treatment alone in blood cancer HL-60, U937, and colon cancer HCT116 and RKO cells. In microarray analysis, combinational treatment with PJ-34 and 5-aza-dC caused different broad changes in gene expression profiles compared with their single treatments in both HCT116 and RKO cells. The profiles of reactivation of silenced genes were also different in combination of PJ-34 and 5-aza-dC and their single treatments. The results suggest that a combination of 5-aza-dC and PARP inhibitor may be useful by inducing distinct transcriptional profile changes. Abstract Poly(ADP-ribose) polymerase (PARP) is involved in DNA repair and chromatin regulation. 5-Aza-2′-deoxycytidine (5-aza-dC) inhibits DNA methyltransferases, induces hypomethylation, blocks DNA replication, and causes DNA single strand breaks (SSBs). As the PARP inhibitor is expected to affect both DNA repair and transcriptional regulations, we investigated the effect of combinational use of PARP inhibitors on cytotoxicity of 5-aza-dC in human cancer cell lines. The combinational treatment of 5-aza-dC and PARP inhibitor PJ-34 exhibited a stronger cytotoxicity compared with their treatment alone in blood cancer HL-60, U937, and colon cancer HCT116 and RKO cells. Treatment with 5-aza-dC but not PJ-34 caused SSBs in HCT116 cell lines. Global genome DNA demethylation was observed after treatment with 5-aza-dC but not with PJ-34. Notably, in microarray analysis, combinational treatment with PJ-34 and 5-aza-dC caused dissimilar broad changes in gene expression profiles compared with their single treatments in both HCT116 and RKO cells. The profiles of reactivation of silenced genes were also different in combination of PJ-34 and 5-aza-dC and their single treatments. The results suggest that the combinational use of 5-aza-dC and PARP inhibitor may be useful by causing distinct transcriptional profile changes.
Collapse
|
14
|
Jian Z, Han Y, Zhang W, Li C, Guo W, Feng X, Li B, Li H. Anti-tumor effects of dual PI3K-HDAC inhibitor CUDC-907 on activation of ROS-IRE1α-JNK-mediated cytotoxic autophagy in esophageal cancer. Cell Biosci 2022; 12:135. [PMID: 35989326 PMCID: PMC9394063 DOI: 10.1186/s13578-022-00855-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background PI3K-Akt pathway activation and the expression of histone deacetylases (HDACs) are highly increased in esophageal cancer, suggesting that inhibition of such targets may be a viable therapeutic strategy. Herein, we aimed to evaluate the anti-tumor effect of CUDC-907, a dual PI3K-HDAC inhibitor, in esophageal squamous cell carcinoma (ESCC). Methods The anti-tumor effects of CUDC-907 in ESCC were evaluated using cell counting kit-8, flow cytometry, and western blot. mRNA-sequencing was used to explore the mechanism underlying CUDC-907 anti-tumor effects. The relations of reactive oxygen species (ROS), lipocalin 2 (LCN2), and CUDC-907 were determined by flow cytometry, rescue experiments, and western blot. The activation of the IRE1α-JNK-CHOP signal cascade was confirmed by western blot. The in vivo inhibitory effects of CUDC-907 were examined by a subcutaneous xenograft model in nude mice. Results CUDC-907 displayed effective inhibition in the proliferation, migration, and invasion of ESCC cells. Through an mRNA-sequencing and functional enrichment analysis, autophagy was found to be associated with cancer cells death. CUDC-907 not only inhibited the PI3K-Akt-mTOR pathways to result in autophagy, but also induced ROS accumulation to activate IRE1α-JNK-CHOP-mediated cytotoxic autophagy by downregulating LCN2 expression. Consistently, the in vivo anti-tumor effects of CUDC-907 accompanied by the downregulated expression of p-mTOR and LCN2 and upregulated expression of p-IRE1α and LC3B-II were evaluated in a xenograft mouse model. Conclusion Our findings suggested the clinical development and administration of CUDC-907 might act as a novel treatment strategy for ESCC. A more in-depth understanding of the anti-tumor effect of CUDC-907 in ESCC will benefit the clinically targeted treatment of ESCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00855-x.
Collapse
|
15
|
Enhanced Cytotoxic Effects in Human Oral Squamous Cell Carcinoma Cells Treated with Combined Methyltransferase Inhibitors and Histone Deacetylase Inhibitors. Biomedicines 2022; 10:biomedicines10040763. [PMID: 35453513 PMCID: PMC9029187 DOI: 10.3390/biomedicines10040763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Combined treatment of human oral squamous cell carcinoma (OSCCs) with DNA methyltransferase inhibitors (DNMTis), histone methyltransferase inhibitors (HMTis), and histone deacetylase inhibitors (HDACis), and the molecular mechanisms underlying their anticancer effects, have not been fully elucidated. Herein, we investigated the cytotoxic effects of combined DNMTis (5-Aza-deoxycytidine: 5-Aza-dC, RG108), HMTis (3-deazaneplanocin A: DZNep), and HDACis (trichostatin A: TSA) treatment on human OSCC cells and explored their molecular mechanisms. Combined 5-Aza-dC, or RG108, and TSA treatment significantly decreased HSC-2 and Ca9-22 cell viability. Combinatorial DZNep and TSA treatment also decreased Ca9-22 cell viability. Although caspase 3/7 activation was not observed in HSC-2 cells following combined treatment, caspase activity was significantly increased in Ca9-22 cells treated with DZNep and TSA. Moreover, combined treatment with 5-Aza-dC, RG108, and TSA increased the proportion of HSC-2 and Ca9-22 cells in the S and G2/M phases. Meanwhile, increased phosphorylation of the histone variant H2A.X, a marker of double-stranded DNA breaks, was observed in both cells after combination treatment. Hence, the decreased viability induced by combined treatment with epigenomic inhibitors results from apoptosis and cell cycle arrest in S and G2/M phases. Thus, epigenomic therapy comprising combined low concentrations of DNMTi, HMTi, and HDACi is effective against OSCC.
Collapse
|
16
|
Zhang X, Wang Y, Meng L. Comparative genomic analysis of esophageal squamous cell carcinoma and adenocarcinoma: New opportunities towards molecularly targeted therapy. Acta Pharm Sin B 2022; 12:1054-1067. [PMID: 35530133 PMCID: PMC9069403 DOI: 10.1016/j.apsb.2021.09.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer is one of the most lethal cancers worldwide because of its rapid progression and poor prognosis. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are two major subtypes of esophageal cancer. ESCC predominantly affects African and Asian populations, which is closely related to chronic smoking and alcohol consumption. EAC typically arises in Barrett's esophagus with a predilection for Western countries. While surgical operation and chemoradiotherapy have been applied to combat this deadly cancer, molecularly targeted therapy is still at the early stages. With the development of large-scale next-generation sequencing, various genomic alterations in ESCC and EAC have been revealed and their potential roles in the initiation and progression of esophageal cancer have been studied. Potential therapeutic targets have been identified and novel approaches have been developed to combat esophageal cancer. In this review, we comprehensively analyze the genomic alterations in EAC and ESCC and summarize the potential role of the genetic alterations in the development of esophageal cancer. Progresses in the therapeutics based on the different tissue types and molecular signatures have also been reviewed and discussed.
Collapse
|
17
|
Panda A, Bhanot G, Ganesan S, Bajpai M. Gene Expression in Barrett's Esophagus Cell Lines Resemble Esophageal Squamous Cell Carcinoma Instead of Esophageal Adenocarcinoma. Cancers (Basel) 2021; 13:5971. [PMID: 34885081 PMCID: PMC8656995 DOI: 10.3390/cancers13235971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/16/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is strongly associated with Barrett's esophagus (BE), a pre-malignant condition resulting from gastric reflux. Esophageal squamous cell carcinoma (ESCC), the other major subtype of esophageal cancer, shows strong association with smoking and alcohol intake and no association with gastric reflux. In this study, we constructed and validated gene expression signatures of EAC vs. ESCC tumors using publicly available datasets, and subsequently assessed the enrichment levels of these signatures in commonly used EAC and ESCC cell lines, normal esophageal tissues and normal esophageal cell lines, and primary BE tissues and BE cell lines. We found that unlike ESCC cell lines which were quite similar to primary ESCC tumors, EAC cell lines were considerably different from primary EAC tumors but still more similar to EAC tumors than ESCC tumors, as the genes up in EAC vs. ESCC (EAChi) had considerably lower expression in EAC cell lines than EAC tumors. However, more surprisingly, unlike various normal cell lines (EPC2, Het-1A) which were very similar to various tissues from normal esophagus, BE cell lines (BAR-T, CP-A) were extremely different from primary BE tissues, as BE cell lines had substantially lower levels of EAChi and substantially higher levels of ESCChi gene expression. This ESCC-like profile of the BAR-T remained unaltered even after prolonged exposure to an acidic bile mixture in vitro resulting in malignant transformation of this cell line. However, primary BE tissues had EAC-like gene expression profiles as expected. Only one EAC case from the Cancer Genome Atlas resembled BE cell lines, and while it had the clinical profile and some mutational features of EAC, it had some mutational features, the copy number alteration profile, and the gene expression profile of ESCC instead. These incomprehensible changes in gene expression patterns may result in ambiguous changes in the phenotype and warrants careful evaluation to inform selection of appropriate in vitro tools for future studies on esophageal adenocarcinoma.
Collapse
Affiliation(s)
- Anshuman Panda
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (A.P.); (G.B.); (S.G.)
| | - Gyan Bhanot
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Shridar Ganesan
- Department of Medical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; (A.P.); (G.B.); (S.G.)
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Medicine—Medical Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Manisha Bajpai
- Department of Medicine—Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
- Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
18
|
Hodjat M, Jourshari PB, Amirinia F, Asadi N. 5-Azacitidine and Trichostatin A induce DNA damage and apoptotic responses in tongue squamous cell carcinoma: An in vitro study. Arch Oral Biol 2021; 133:105296. [PMID: 34735927 DOI: 10.1016/j.archoralbio.2021.105296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present in vitro study aims to investigate the potential use of epigenetic inhibitors as treatment modalities in tongue squamous cell carcinoma. DESIGN The human tongue squamous cell carcinoma cell line (CAL-27) was cultured and exposed to varying concentrations of 5-Azacitidine (5-Aza) or Trichostatin A (TSA) in the culture medium. The cell apoptosis was evaluated using Annexin V/PI by flow cytometry. To evaluate DNA damage response, γH2AX foci analysis was performed using immunofluorescence. Single cell gel electrophoresis (SCGE) was applied to measure DNA strand breaks. Gene expression was assessed by quantitative real-time PCR. RESULTS The results showed that 5-Aza and TSA had apoptotic effects on the SCC cell line at concentrations of 50-200 µM and 0.5-5 µM, respectively. Immunofluorescence analysis showed increased expression of γH2AX, the marker of DNA damage response after treatment of 5-Aza and TSA that was associated with increased DNA strand breaks. The expressions of urokinase plasminogen activator, its receptor and matrix metalloproteinase-2, were significantly reduced in TSA- and 5-Aza-treated cells. CONCLUSIONS Our results showed that 5-Aza and TSA increase apoptotic and DNA damage response in squamous cell carcinoma cell line while reducing the expression of tumor invasion genes that further indicating the potential therapeutic value of two epigenetic modifiers in squamous cell carcinoma.
Collapse
Affiliation(s)
- Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Parisa Bina Jourshari
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Amirinia
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nasrin Asadi
- Department of Biochemistry, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
19
|
Yu S, Jia B, Liu N, Yu D, Zhang S, Wu A. Fumonisin B1 triggers carcinogenesis via HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147405. [PMID: 34000555 DOI: 10.1016/j.scitotenv.2021.147405] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Fumonisin B1 (FB1) is a contaminant that commonly present in the global environment, especially in food and feed. Epidemiologic studies have shown that esophageal cancer is associated with fumonisin toxicity. However, the molecular mechanism of FB1-induced esophageal cancer is unclear. In this research, the molecular mechanism of FB1-induced cell carcinogenesis in human esophageal epithelial cells line (HEEC) was explored. We found that FB1 (0.3125-5 μM) could promote cell proliferation, and the same phenomenon was found in a 3D cell model. FB1 could also accelerate cell migration. The expression levels of DNA damage markers were significantly increased after FB1 exposure. Meanwhile, the expression levels of cell cycle-regulated proteins and cancer-related genes were abnormal. Furthermore, FB1 significantly upregulated the histone deacetylase (HDAC) expression and activated the phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt) signalling pathway. The HDAC inhibitor trichostatin A (TSA) could repressed FB1-promoted cell proliferation and abnormal phenomenon induced by FB1. Moreover, myriocin (ISP-1) could relieve FB1-enhanced HDAC expression and cell proliferation, which implied that ISP-1 may be used to block the fumonisin toxicity in the future. Our findings suggested that the HDAC/PI3K/Akt signalling pathway is a novel mechanism for FB1-induced cell carcinogenesis in HEEC and provided new ideas for the prevention and control of fumonisin toxicity, subsequently avoiding adverse effects on the ecosystem and human health.
Collapse
Affiliation(s)
- Song Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bingxuan Jia
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuo Zhang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
20
|
Pickering OJ, Breininger SP, Underwood TJ, Walters ZS. Histone Modifying Enzymes as Targets for Therapeutic Intervention in Oesophageal Adenocarcinoma. Cancers (Basel) 2021; 13:4084. [PMID: 34439236 PMCID: PMC8392153 DOI: 10.3390/cancers13164084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
Oesophageal adenocarcinoma (OAC) has a dismal prognosis, where curable disease occurs in less than 40% of patients, and many of those with incurable disease survive for less than a year from diagnosis. Despite the widespread use of systematic chemotherapy in OAC treatment, many patients receive no benefit. New treatments are urgently needed for OAC patients. There is an emerging interest in epigenetic regulators in cancer pathogenesis, which are now translating into novel cancer therapeutic strategies. Histone-modifying enzymes (HMEs) are key epigenetic regulators responsible for dynamic covalent histone modifications that play roles in both normal and dysregulated cellular processes including tumorigenesis. Several HME inhibitors are in clinical use for haematological malignancies and sarcomas, with numerous on-going clinical trials for their use in solid tumours. This review discusses the current literature surrounding HMEs in OAC pathogenesis and their potential use in targeted therapies for this disease.
Collapse
Affiliation(s)
| | | | | | - Zoë S. Walters
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK; (O.J.P.); (S.P.B.); (T.J.U.)
| |
Collapse
|
21
|
Wang X, Zhu L, Lin X, Huang Y, Lin Z. MiR-133a-3p inhibits the malignant progression of esophageal cancer by targeting CDCA8. J Biochem 2021; 170:689-698. [PMID: 34117764 DOI: 10.1093/jb/mvab071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/05/2021] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To explore the interaction between miR-133a-3p and CDCA8 in esophageal cancer (EC) and their effect on malignant behavior of EC cells. METHODS Differential miRNAs and mRNAs were obtained from The Cancer Genome Atlas (TCGA) database. Quantitative real-time PCR (qRT-PCR) was used to detect the expression levels of miR-133a-3p and CDCA8 mRNA in EC cells. Western blot was used to detect the expression of CDCA8 protein. CCK-8, flow cytometry, and Transwell assays were conducted to detect cell proliferation, cell cycle and apoptosis, as well as migration and invasion, respectively. The targeting relationship between miR-133a-3p and CDCA8 was verified by dual-luciferase reporter gene assay. RESULTS In EC, miR-133a-3p expression was evidently low and CDCA8 expression was prominently high. MiR-133a-3p down-regulated CDCA8 expression. A range of cell function experiments revealed that CDCA8 promoted the proliferation, migration and invasion of EC cells, reduced cell cycle arrest in G0/G1 phase and inhibited cell apoptosis, while miR-133a-3p could reverse the above effects by regulating CDCA8. CONCLUSION MiR-133a-3p is a crucial tumor suppressor miRNA in EC, playing a tumor suppressor role by targeting CDCA8.
Collapse
Affiliation(s)
- Xin Wang
- Department of Thoracic Surgery, Nanyang Central Hospital, Nanyang City, Henan Province, 473006, China
| | - Lihuan Zhu
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Xing Lin
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Yangyun Huang
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, China
| | - Zhaoxian Lin
- Department of Thoracic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou City, Fujian Province, 350001, China
| |
Collapse
|
22
|
Shi Y, Xiang Z, Yang H, Khan S, Li R, Zhou S, Ullah S, Zhang J, Liu B. Pharmacological targeting of TNS3 with histone deacetylase inhibitor as a therapeutic strategy in esophageal squamous cell carcinoma. Aging (Albany NY) 2021; 13:15336-15352. [PMID: 34047714 PMCID: PMC8221360 DOI: 10.18632/aging.203091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/06/2021] [Indexed: 01/19/2023]
Abstract
Histone acetylation which regulates about 2-10% of genes has been demonstrated to be involved in tumorigenesis of esophageal squamous cell carcinoma (ESCC). In this study, we investigated the treatment response of ESCC to selective histone deacetylase inhibitor (HDACi) LMK-235 and potential biomarker predicting the treatment sensitivity. We identified tensin-3 (TNS3) which was highly over-expressed in ESCC as one of the down-regulated genes in response to LMK-235 treatment. TNS3 was found positively correlated with the tumor malignancy and poor prognosis in the patients. Silencing TNS3 significantly inhibited ESCC cell proliferation both in vitro and in vivo, sensitizing the treatment response to LMK-235. Our findings provide an insight into understanding the oncogenic role of TNS3 in ESCC and its clinical application for HDAC targeted therapy of ESCC.
Collapse
Affiliation(s)
- Yang Shi
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Zheng Xiang
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou 450003, China
| | - Huiyu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruizhe Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Siran Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Saif Ullah
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Jiyu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| | - Bingrong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
23
|
Wang L, Ahn YJ, Asmis R. Inhibition of myeloid HDAC2 upregulates glutaredoxin 1 expression, improves protein thiol redox state and protects against high-calorie diet-induced monocyte dysfunction and atherosclerosis. Atherosclerosis 2021; 328:23-32. [PMID: 34077868 DOI: 10.1016/j.atherosclerosis.2021.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS The thiol transferase glutaredoxin 1 controls redox signaling and cellular functions by regulating the S-glutathionylation status of critical protein thiols. Here we tested the hypothesis that by derepressing the expression of glutaredoxin 1, inhibition of histone deacetylase 2 prevents nutrient stress-induced protein S-glutathionylation and monocyte dysfunction and protects against atherosclerosis. METHODS Using both a pharmacological inhibitor and shRNA-mediated knockdown of histone deacetylase 2, we determine the role of this deacetylase on glutaredoxin 1 expression and nutrient stress-induced inactivation of mitogen-activated protein kinase phosphatase 1 activity and monocyte and macrophage dysfunction. To assess whether histone deacetylase 2 inhibition in myeloid cells protects against atherosclerosis, we fed eight-week-old female and male HDAC2-/-MyeloidLDLR-/- mice and age and sex-matched LysMcretg/wtLDLR-/- control mice a high-calorie diet for 12 weeks and assessed monocyte function and atherosclerotic lesion size. RESULTS Myeloid histone deacetylase 2 deficiency in high-calorie diet-fed LDLR-/- mice reduced atherosclerosis in males by 39% without affecting plasma lipid and lipoprotein profiles or blood glucose levels but had no effect on atherogenesis in female mice. Macrophage content in plaques of male mice was reduced by 31%. Histone deacetylase 2-deficient blood monocytes from male mice showed increased acetylation on histone 3, and increased Grx1 expression, and was associated with increased MKP-1 activity and reduced recruitment of monocyte-derived macrophages, whereas in females, myeloid HDAC2 deficiency had no effect on Grx1 expression, did not prevent nutrient stress-induced loss of MKP-1 activity in monocytes and was not atheroprotective. CONCLUSIONS Specific histone deacetylase 2 inhibitors may represent a potential novel therapeutic strategy for the prevention and treatment of atherosclerosis, but any benefits may be sexually dimorphic.
Collapse
Affiliation(s)
- Luxi Wang
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Yong Joo Ahn
- Department of Internal Medicine, Wake Forest School of Medicine, USA
| | - Reto Asmis
- Department of Internal Medicine, Wake Forest School of Medicine, USA.
| |
Collapse
|
24
|
Epigenetic DNA Methylation of EBI3 Modulates Human Interleukin-35 Formation via NFkB Signaling: A Promising Therapeutic Option in Ulcerative Colitis. Int J Mol Sci 2021; 22:ijms22105329. [PMID: 34069352 PMCID: PMC8158689 DOI: 10.3390/ijms22105329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC), a severe chronic disease with unclear etiology that is associated with increased risk for colorectal cancer, is accompanied by dysregulation of cytokines. Epstein–Barr virus-induced gene 3 (EBI3) encodes a subunit in the unique heterodimeric IL-12 cytokine family of either pro- or anti-inflammatory function. After having recently demonstrated that upregulation of EBI3 by histone acetylation alleviates disease symptoms in a dextran sulfate sodium (DSS)-treated mouse model of chronic colitis, we now aimed to examine a possible further epigenetic regulation of EBI3 by DNA methylation under inflammatory conditions. Treatment with the DNA methyltransferase inhibitor (DNMTi) decitabine (DAC) and TNFα led to synergistic upregulation of EBI3 in human colon epithelial cells (HCEC). Use of different signaling pathway inhibitors indicated NFκB signaling was necessary and proportional to the synergistic EBI3 induction. MALDI-TOF/MS and HPLC-ESI-MS/MS analysis of DAC/TNFα-treated HCEC identified IL-12p35 as the most probable binding partner to form a functional protein. EBI3/IL-12p35 heterodimers (IL-35) induce their own gene upregulation, something that was indeed observed in HCEC cultured with media from previously DAC/TNFα-treated HCEC. These results suggest that under inflammatory and demethylating conditions the upregulation of EBI3 results in the formation of anti-inflammatory IL-35, which might be considered as a therapeutic target in colitis.
Collapse
|
25
|
Schizas D, Mastoraki A, Naar L, Tsilimigras DI, Katsaros I, Fragkiadaki V, Karachaliou GS, Arkadopoulos N, Liakakos T, Moris D. Histone Deacetylases (HDACs) in Gastric Cancer: An Update of their Emerging Prognostic and Therapeutic Role. Curr Med Chem 2021; 27:6099-6111. [PMID: 31309879 DOI: 10.2174/0929867326666190712160842] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Chemotherapy resistance is a rising concern in Gastric Cancer (GC) and has led to the investigation of various cellular compounds. Α functional equilibrium of histone acetylation and deacetylation was discovered in all cells, regulated by Histone Acetyltransferases and Deacetylases (HDACs), controlling chromatin coiling status and changing gene expression appropriately. In accordance with recent research, this equilibrium can be dysregulated in cancer cells aiding in the process of carcinogenesis and tumor progression by altering histone and non-histone proteins affecting gene expression, cell cycle control, differentiation, and apoptosis in various malignancies. In addition, increased HDAC expression in GC cells has been associated with increased stage, tumor invasion, nodal metastases, increased distant metastatic potential, and decreased overall survival. HDAC inhibitors could be used as treatment regimens for GC patients and could develop important synergistic interactions with chemotherapy drugs. The aim of this article is to review the molecular identity and mechanism of action of HDAC inhibitors, as well as highlight their potential utility as anti-cancer agents in GC.
Collapse
Affiliation(s)
- Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Aikaterini Mastoraki
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Leon Naar
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, Ohio, United States
| | - Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | | | - Georgia-Sofia Karachaliou
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Nikolaos Arkadopoulos
- Fourth Department of Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Theodore Liakakos
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
26
|
Yang YM, Hong P, Xu WW, He QY, Li B. Advances in targeted therapy for esophageal cancer. Signal Transduct Target Ther 2020; 5:229. [PMID: 33028804 PMCID: PMC7542465 DOI: 10.1038/s41392-020-00323-3] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/09/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Esophageal cancer (EC) is one of the most lethal cancers in the world, and its morbidity and mortality rates rank among the top ten in China. Currently, surgical resection, radiotherapy and chemotherapy are the primary clinical treatments for esophageal cancer. However, outcomes are still unsatisfactory due to the limited efficacy and severe adverse effects of conventional treatments. As a new type of approach, targeted therapies have been confirmed to play an important role in the treatment of esophageal cancer; these include cetuximab and bevacizumab, which target epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF), respectively. In addition, other drugs targeting surface antigens and signaling pathways or acting on immune checkpoints have been continuously developed. For example, trastuzumab, a monoclonal antibody targeting human epidermal growth factor receptor 2 (HER-2), has been approved by the Food and Drug Administration (FDA) as a first-line treatment of HER-2-positive cancer. Moreover, the PD-L1 inhibitor pembrolizumab has been approved as a highly efficient drug for patients with PD-L1-positive or advanced esophageal squamous cell carcinoma (ESCC). These novel drugs can be used alone or in combination with other treatment strategies to further improve the treatment efficacy and prognosis of cancer patients. Nevertheless, adverse events, optimal dosages and effective combinations still need further investigation. In this review, we expound an outline of the latest advances in targeted therapies of esophageal cancer and the mechanisms of relevant drugs, discuss their efficacy and safety, and provide a clinical rationale for precision medicine in esophageal cancer.
Collapse
Affiliation(s)
- Yan-Ming Yang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Pan Hong
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.
| |
Collapse
|
27
|
Liao L, Yao Z, Fang W, He Q, Xu WW, Li B. Epigenetics in Esophageal Cancer: From Mechanisms to Therapeutics. SMALL METHODS 2020; 4:2000391. [DOI: 10.1002/smtd.202000391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Long Liao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Zi‐Ting Yao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wang‐Kai Fang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area Department of Biochemistry and Molecular Biology Shantou University Medical College Shantou 515041 China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| |
Collapse
|
28
|
Wang P, Zhao H, Ren F, Zhao Q, Shi R, Liu X, Liu J, Li Y, Li Y, Liu H, Chen J. [Research Progress of Epigenetics in Pathogenesis and Treatment of Malignant Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:91-100. [PMID: 32093453 PMCID: PMC7049791 DOI: 10.3779/j.issn.1009-3419.2020.02.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
表观遗传学修饰与肿瘤的发生发展密切相关,其主要通过DNA甲基化、组蛋白修饰、非编码RNA调控和染色质结构重构等方式对基因功能和表达水平进行调控,从而影响肿瘤的进展。目前针对表观遗传学的药物已经逐渐应用于恶性肿瘤的治疗,常见的药物类型包括DNA甲基转移酶抑制剂和组蛋白去乙酰化酶抑制剂,但此类药物仍存在诸多不足之处广泛的临床应用仍需要进一步的研究,令人鼓舞的是表观遗传药物与多种抗肿瘤药物联合应用已表现出巨大的应用潜力。本文就表观遗传学在恶性肿瘤的发生发展机制和相关药物的新进展进行了综述。
Collapse
Affiliation(s)
- Pan Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Honglin Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Fan Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Qingchun Zhao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Xingyu Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Jinghao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Yongwen Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Ying Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Hongyu Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin Lung Cancer Institute, Tianjin Key Laboratory of lung Cancer Metastasis and Tumor Microenvironment, Tianjin 300052, China
| |
Collapse
|
29
|
Li H, Li H, Waresijiang Y, Chen Y, Li Y, Yu L, Li Y, Liu L. Clinical significance of HDAC1, -2 and -3 expression levels in esophageal squamous cell carcinoma. Exp Ther Med 2020; 20:315-324. [PMID: 32536999 PMCID: PMC7282189 DOI: 10.3892/etm.2020.8697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 03/03/2020] [Indexed: 12/28/2022] Open
Abstract
The present study analyzed the expression of the histone deacetylase (HDAC) 1, 2 and 3 in primary esophageal squamous cell carcinoma (ESCC) samples and how their levels correlate with clinicopathological parameters. ESCC patients (n=88) in the present study had received no previous treatment before undergoing surgical excision. The mRNA expression of HDAC1, -2 and -3 were detected by semi-quantified PCR in ESCC samples and distal normal samples. The relationship of HDAC1, -2 and -3 expression with clinicopathological parameters was analyzed by χ2 test. The correlation among these HDACs was analyzed by Pearson's correlation test. Compared with distal normal tissues, ESCC samples had higher expression of HDAC1, but not HDAC2 or HDAC3 (P<0.05). The expression of HDACs was different between Kazak and Han ethnicities. The expression of HDAC2 was correlated with invasion depth (P<0.05), but not with sex, age, metastasis, or the degree of tumor differentiation (P>0.05). There was no association between HDAC1 or HDAC3 and clinicopathological parameters (P>0.05). For the Kazak and Han ethnicities, HDAC1 expression was present in male patients, patients with well/moderate differentiated ESCC and T3 and T4 ESCC (P<0.01). HDAC1 in patients aged <60 was associated with ethnicity (P<0.05). HDAC2 expression was different in positive LN metastasis, well/moderate differentiation and T3 and T4 ESCC (P<0.01). HDAC3 expression in male patients, patients with negative LN metastasis and well/moderate differentiation ESCC was associated with ethnicity (P<0.05). Additionally, the expression levels of HDAC1, -2 and -3 did not correlate with each other. Thus, HDAC1 expression may be used as a risk factor for ESCC and HDAC2 levels may be used to predict invasion depth. The expression of HDAC1, -2 and -3 has ethnic differences.
Collapse
Affiliation(s)
- Huiwu Li
- Medical Research Center, Yubei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| | - Hui Li
- Department of Central Laboratory, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Yibulayin Waresijiang
- Department of Thoracic Surgery, Affiliated Cancer Hospital, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Yan Chen
- Department of Basic Medical College, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ying Li
- Department of Basic Medical College, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Liang Yu
- Medical Research Center, Yubei People's Hospital, Shantou University, Shaoguan, Guangdong 512025, P.R. China
| | - Yike Li
- First Clinical Medical College, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ling Liu
- Department of Basic Medical College, Xinjiang Medical University, Xinshi, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
30
|
Gerlitz G. The Emerging Roles of Heterochromatin in Cell Migration. Front Cell Dev Biol 2020; 8:394. [PMID: 32528959 PMCID: PMC7266953 DOI: 10.3389/fcell.2020.00394] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Cell migration is a key process in health and disease. In the last decade an increasing attention is given to chromatin organization in migrating cells. In various types of cells induction of migration leads to a global increase in heterochromatin levels. Heterochromatin is required for optimal cell migration capabilities, since various interventions with heterochromatin formation impeded the migration rate of numerous cell types. Heterochromatin supports the migration process by affecting both the mechanical properties of the nucleus as well as the genetic processes taking place within it. Increased heterochromatin levels elevate nuclear rigidity in a manner that allows faster cell migration in 3D environments. Condensed chromatin and a more rigid nucleus may increase nuclear durability to shear stress and prevent DNA damage during the migration process. In addition, heterochromatin reorganization in migrating cells is important for induction of migration-specific transcriptional plan together with inhibition of many other unnecessary transcriptional changes. Thus, chromatin organization appears to have a key role in the cellular migration process.
Collapse
Affiliation(s)
- Gabi Gerlitz
- Department of Molecular Biology and Ariel Center for Applied Cancer Research, Faculty of Life Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
31
|
Epigenetic Alterations in Oesophageal Cancer: Expression and Role of the Involved Enzymes. Int J Mol Sci 2020; 21:ijms21103522. [PMID: 32429269 PMCID: PMC7278932 DOI: 10.3390/ijms21103522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.
Collapse
|
32
|
The Critical Role of Hypoxic Microenvironment and Epigenetic Deregulation in Esophageal Cancer Radioresistance. Genes (Basel) 2019; 10:genes10110927. [PMID: 31739546 PMCID: PMC6896142 DOI: 10.3390/genes10110927] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer worldwide and the sixth leading cause of death, according to Globocan 2018. Despite efforts made for therapeutic advances, EC remains highly lethal, portending a five-year overall survival of just 15-20%. Hence, the discovery of new molecular targets that might improve therapeutic efficacy is urgently needed. Due to high proliferative rates and also the limited oxygen and nutrient diffusion in tumors, the development of hypoxic regions and consequent activation of hypoxia-inducible factors (HIFs) are a common characteristic of solid tumors, including EC. Accordingly, HIF-1α, involved in cell cycle deregulation, apoptosis, angiogenesis induction and proliferation in cancer, constitutes a predictive marker of resistance to radiotherapy (RT). Deregulation of epigenetic mechanisms, including aberrant DNA methylation and histone modifications, have emerged as critical factors in cancer development and progression. Recently, interactions between epigenetic enzymes and HIF-1α transcription factors have been reported. Thus, further insight into hypoxia-induced epigenetic alterations in EC may allow the identification of novel therapeutic targets and predictive biomarkers, impacting on patient survival and quality of life.
Collapse
|
33
|
Huo J, Xu S, Lam KP. FAIM: An Antagonist of Fas-Killing and Beyond. Cells 2019; 8:cells8060541. [PMID: 31167518 PMCID: PMC6628066 DOI: 10.3390/cells8060541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/12/2022] Open
Abstract
Fas Apoptosis Inhibitory Molecule (FAIM) is an anti-apoptotic protein that is up-regulated in B cell receptor (BCR)-activated B cells and confers upon them resistance to Fas-mediated cell death. Faim has two alternatively spliced isoforms, with the short isoform ubiquitously expressed in various tissues and the long isoform mainly found in the nervous tissues. FAIM is evolutionarily conserved but does not share any significant primary sequence homology with any known protein. The function of FAIM has been extensively studied in the past 20 years, with its primary role being ascribed to be anti-apoptotic. In addition, several other functions of FAIM were also discovered in different physiological and pathological conditions, such as cell growth, metabolism, Alzheimer’s disease and tumorigenesis. However, the detailed molecular mechanisms underlying FAIM’s role in these conditions remain unknown. In this review, we summarize comprehensively the functions of FAIM in these different contexts and discuss its potential as a diagnostic, prognostic or therapeutic target.
Collapse
Affiliation(s)
- Jianxin Huo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
| | - Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore.
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
34
|
Ma S, Liu T, Xu L, Wang Y, Zhou J, Huang T, Li P, Liu H, Zhang Y, Zhou X, Cui Y, Zang X, Wang Y, Guan F. Histone deacetylases inhibitor MS-275 suppresses human esophageal squamous cell carcinoma cell growth and progression via the PI3K/Akt/mTOR pathway. J Cell Physiol 2019; 234:22400-22410. [PMID: 31120582 DOI: 10.1002/jcp.28805] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with low survival rate, so new therapies are urgently needed. Histone deacetylases (HDACs) play a critical role in tumorigenesis, and HDACs inhibition is a potential therapeutic target in ESSC. In our study, we evaluated the effect and molecular mechanism of MS-275 (an inhibitor of HDACs) on ESCC cells. We found that HDAC1 and HDAC2 were overexpressed in ESCC tissues and related with clinical pathological features of patients with ESCC. MS-275 markedly reduced HDAC1 and HDAC2 expression, whereas increased the level of AcH3 and AcH2B. MS-275 suppressed proliferation and clonogenicity of ESCC cells in a concentration-dependent manner. In addition, MS-275 induced apoptosis, arrested cell cycle, and inhibited migration, epithelial-mesenchymal transition, and sphere-forming ability of ESCC cells in vitro. Moreover, p-Akt1 and p-mTOR were downregulated by MS-275. Finally, MS-275 significantly inhibited tumor growth in vivo. Taken together, HDAC1 and HDAC2 are associated with the progression of ESCC, and MS-275 hinders the progression and stemness of ESCC cells by suppressing the PI3K/Akt/mTOR pathway. Our findings show that MS-275 inhibits ESCC cells growth in vitro and in vivo, which is a potential drug for the ESCC therapy.
Collapse
Affiliation(s)
- Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tengfei Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Department of Anesthesiology, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiankang Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Clinical Laboratory, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian, Henan, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinkui Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yuming Wang
- Henan University People's Hospital, Zhengzhou, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Chen Y, Feng H, Zhang H, Li X. High expression of DNA methyltransferase 1 in Kazakh esophageal epithelial cells may promote malignant transformation induced by N-methyl-N′-nitro-N-nitrosoguanidine. Hum Exp Toxicol 2019; 38:1060-1068. [DOI: 10.1177/0960327119851254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We examined the role of DNA methyltransferase 1 (DNMT1) in N-methyl- N′-nitro- N-nitrosoguanidine (MNNG)–induced malignant transformation of Kazakh esophageal epithelial (EE) cells to better understand the pathogenesis of esophageal cancer (EC). The 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide method and colony formation assays were performed to determine the MNNG dose for malignant transformation. Colony formation assays showed the effects of different frequencies of MNNG exposure and different cell passages on malignant transformation. A nude mouse tumor experiment indicated the malignancy of Kazakh EE cells expressing high DNMT1 levels and of transformed cells. The result shows that when the dose, frequency, and time of MNNG exposure increased, cell morphology became irregular, cell-contact suppression disappeared, and cell tolerance and growth rate increased. Colony formation occurred in the Kazakh-DNMT1 group after 14 transfections and 27 passages. Significant differences in DNMT1 mRNA and protein levels were observed in different types of cells and tumor tissues ( F = 140.644, p < 0.001; F = 105.545, p < 0.001). Our study demonstrated that DNMT1 could promote MNNG to induce malignant transformation of EE cells, and this study will help understand EC better in order to develop appropriate treatment strategies.
Collapse
Affiliation(s)
- Y Chen
- The Medical School of Jiaxing University, Jiaxing, China
- Department of Health Toxicology, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - H Feng
- The Medical School of Jiaxing University, Jiaxing, China
| | - H Zhang
- Department of Health Toxicology, College of Public Health, Xinjiang Medical University, Urumqi, China
| | - X Li
- Department of Health Toxicology, College of Public Health, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
36
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. The biological characteristics of transcription factors AP-2α and AP-2γ and their importance in various types of cancers. Biosci Rep 2019; 39:BSR20181928. [PMID: 30824562 PMCID: PMC6418405 DOI: 10.1042/bsr20181928] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/11/2019] [Accepted: 02/27/2019] [Indexed: 02/07/2023] Open
Abstract
The Activator Protein 2 (AP-2) transcription factor (TF) family is vital for the regulation of gene expression during early development as well as carcinogenesis process. The review focusses on the AP-2α and AP-2γ proteins and their dualistic regulation of gene expression in the process of carcinogenesis. Both AP-2α and AP-2γ influence a wide range of physiological or pathological processes by regulating different pathways and interacting with diverse molecules, i.e. other proteins, long non-coding RNAs (lncRNA) or miRNAs. This review summarizes the newest information about the biology of two, AP-2α and AP-2γ, TFs in the carcinogenesis process. We emphasize that these two proteins could have either oncogenic or suppressive characteristics depending on the type of cancer tissue or their interaction with specific molecules. They have also been found to contribute to resistance and sensitivity to chemotherapy in oncological patients. A better understanding of molecular network of AP-2 factors and other molecules may clarify the atypical molecular mechanisms occurring during carcinogenesis, and may assist in the recognition of new diagnostic biomarkers.
Collapse
Affiliation(s)
- Damian Kołat
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Żaneta Kałuzińska
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
37
|
Kochanek SJ, Close DA, Johnston PA. High Content Screening Characterization of Head and Neck Squamous Cell Carcinoma Multicellular Tumor Spheroid Cultures Generated in 384-Well Ultra-Low Attachment Plates to Screen for Better Cancer Drug Leads. Assay Drug Dev Technol 2018; 17:17-36. [PMID: 30592624 DOI: 10.1089/adt.2018.896] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multicellular tumor spheroid (MCTS) cultures represent more physiologically relevant in vitro cell tumor models that recapitulate the microenvironments and cell-cell or cell-extracellular matrix interactions which occur in solid tumors. We characterized the morphologies, viability, and growth behaviors of MCTSs produced by 11 different head and neck squamous cell carcinoma (HNSCC) cell lines seeded into and cultured in ultra-low attachment microtiter plates (ULA-plates) over extended periods of time. HNSCC MCTS cultures developed microenvironments, which resulted in differences in proliferation rates, metabolic activity, and mitochondrial functional activity between cells located in the outer layers of the MCTS and cells in the interior. HNSCC MCTS cultures exhibited drug penetration and distribution gradients and some developed necrotic cores. Perhaps the most profound effect of culturing HNSCC cell lines in MCTS cultures was their dramatically altered and varied growth phenotypes. Instead of the exponential growth that are characteristic of two-dimensional HNSCC growth inhibition assays, some MCTS cultures displayed linear growth rates, categorized as rapid, moderate, or slow, dormant MCTSs remained viable but did not grow, and some MCTSs exhibited death phenotypes that were either progressive and slow or rapid. The ability of MCTS cultures to develop microenvironments and to display a variety of different growth phenotypes provides in vitro models that are more closely aligned with solid tumors in vivo. We anticipate that the implementation MCTS models to screen for new cancer drugs for solid tumors like HNSCC will produce leads that will translate better in in vivo animal models and patients.
Collapse
Affiliation(s)
- Stanton J Kochanek
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Close
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul A Johnston
- 1 Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,2 University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
38
|
Yin Y, Du L, Li X, Zhang X, Gao Y. miR-133a-3p suppresses cell proliferation, migration, and invasion and promotes apoptosis in esophageal squamous cell carcinoma. J Cell Physiol 2018; 234:12757-12770. [PMID: 30537034 DOI: 10.1002/jcp.27896] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study aimed to investigate the expression levels of miR-133a-3p and collagen type I α 1 (COL1A1) in esophageal squamous cell carcinoma (ESCC) to find out the relationship between miR-133a-3p and COL1A1 and their influence on ESCC propagation, migration, invasion, and apoptosis. METHODS The messenger RNA expression levels of miR-133a-3p and COL1A1 in ESCC were detected by quantitative reverse-transcription polymerase chain reaction. The expression of COL1A1 protein was examined via western blot analysis and immunohistochemistry assay. Cell propagation and apoptosis were, respectively, confirmed by CCK-8 and flow cytometry assay, whereas cell mobility and invasiveness were analyzed by wound healing assay and transwell assay. The targeted relationship between miR-133a-3p and COL1A1 was validated by the dual luciferase reporter assay. The tumor xenograft model was constructed to further verify the impact of miR-133a-3p on esophageal squamous tumor growth and COL1A1 expression in vivo. RESULTS miR-133a-3p was found low-expressed whereas COL1A1 was highly expressed in esophageal squamous cancer tissue and cells. The expression of miR-133a-3p was negatively correlated with COL1A1 expression. The dual luciferase reporter gene assay confirmed that miR-133a-3p directly targeted COL1A1 and suppressed its expression. Cell Counting Kit-8 assay, transwell assay, and flow cytometry analysis demonstrated that COL1A1 promoted ESCC propagation and invasion and suppressed cell apoptosis, whereas miR-133a-3p reversed such adverse effects by regulating COL1A1. CONCLUSIONS miR-133a-3p inhibited the cell propagation, invasion, and migration and facilitated apoptosis in ESCC by targeting COL1A1.
Collapse
Affiliation(s)
- Yanwei Yin
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong, China
| | - Lei Du
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xuezhen Li
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaoyan Zhang
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong, China
| | - Yongli Gao
- Department of Oncology, Linyi People's Hospital, Linyi, Shandong, China
| |
Collapse
|
39
|
Schizas D, Mastoraki A, Naar L, Spartalis E, Tsilimigras DI, Karachaliou GS, Bagias G, Moris D. Concept of histone deacetylases in cancer: Reflections on esophageal carcinogenesis and treatment. World J Gastroenterol 2018; 24:4635-4642. [PMID: 30416311 PMCID: PMC6224471 DOI: 10.3748/wjg.v24.i41.4635] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/02/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) presents a high mortality rate, mainly due to its aggressive nature. Squamous cell carcinoma is the most common histological type worldwide, though, a continuous increase in esophageal adenocarcinomas has been noted in the past decades. Common risk factors associated with EC include smoking, alcohol consumption, gastroesophageal reflux disease, Barrett’s esophagus and obesity. In an effort to overcome chemotherapy resistance in oncology, it was discovered that histone acetylation/deacetylation equilibrium is altered in carcinogenesis, leading to changes in chromatin structure and altering expression of genes important in the cell cycle, differentiation and apoptosis. Based on this knowledge, histone acetylation was addressed as a potential novel chemotherapy drug target to repress cancer cell proliferation. There are four classes of histone deacetylases (HDACs) inhibitors with a variety of different mechanisms of actions that render them possible anti-cancer drugs. They arrest the cell cycle, inhibit differentiation and angiogenesis and induce apoptosis. They do not necessarily act on histone proteins, since they can also exert indirect anti-cancer effects, by modifying various cellular proteins. In addition, HDACs have also been associated with increased chemotherapy resistance. Based on the literature, HDACs have been associated with EC, with surveys revealing that increased expression of certain HDACs correlates with advanced TNM stages, tumor grade, metastatic potential and decreased 5-year overall and disease-free survival. The aim of this survey is to elucidate the molecular identity and mechanism of action of HDAC inhibitors as well as verify their potential utility as anti-cancer agents in esophageal cancer.
Collapse
Affiliation(s)
- Dimitrios Schizas
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Aikaterini Mastoraki
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Leon Naar
- 4th Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens 12462, Greece
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Diamantis I Tsilimigras
- 1st Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Georgia-Sofia Karachaliou
- Laboratory of Experimental Surgery and Surgical Research, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - George Bagias
- Department of General, Visceral and Transplant Surgery, University Hospital Essen, Essen 45141, Germany
| | - Dimitrios Moris
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| |
Collapse
|
40
|
Ex vivo drug sensitivity testing as a means for drug repurposing in esophageal adenocarcinoma. PLoS One 2018; 13:e0203173. [PMID: 30212533 PMCID: PMC6136712 DOI: 10.1371/journal.pone.0203173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal cancer remains one of the hardest cancers to treat with rising incidence rates, low overall survival and high levels of treatment resistance. The lack of clinically available biomarkers hinder diagnosis and treatment stratification. While large scale sequencing approaches have uncovered a number of molecular makers, little has translated in the routine treatment of esophageal cancer patients. Material and methods We evaluate the treatment response towards a panel of 215 FDA-approved and 163 epigenetic compounds of 4 established and 2 patient-derived esophageal cancer cell lines. Cell viability was evaluated after 72h of treatment using cell titer glow. The drug sensitivity testing results for gemcitabine and cisplatin were validated using clonogenic assays. Results The tested cell lines display different drug sensitivity profiles, although we found compounds that display efficacy in all of the tested established or patient-derived cell lines. Clonogenic assays confirmed the validity of the drug sensitivity testing results. Using the epigenetic library, we observed high sensitivity towards a number of epigenetic modifiers. Discussion Ex vivo drug sensitivity testing may present a viable option for the treatment stratification of esophageal cancer patients and holds the potential to greatly improve patient outcome while reducing treatment toxicity.
Collapse
|
41
|
Feingold PL, Surman DR, Brown K, Xu Y, McDuffie LA, Shukla V, Reardon ES, Crooks DR, Trepel JB, Lee S, Lee MJ, Gao S, Xi S, McLoughlin KC, Diggs LP, Beer DG, Nancarrow DJ, Neckers LM, Davis JL, Hoang CD, Hernandez JM, Schrump DS, Ripley RT. Induction of Thioredoxin-Interacting Protein by a Histone Deacetylase Inhibitor, Entinostat, Is Associated with DNA Damage and Apoptosis in Esophageal Adenocarcinoma. Mol Cancer Ther 2018; 17:2013-2023. [PMID: 29934340 DOI: 10.1158/1535-7163.mct-17-1240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 01/07/2023]
Abstract
In 2017, an estimated 17,000 individuals were diagnosed with esophageal adenocarcinoma (EAC), and less than 20% will survive 5 years. Positron emission tomography avidity is indicative of high glucose utilization and is nearly universal in EAC. TXNIP blocks glucose uptake and exhibits proapoptotic functions. Higher expression in EAC has been associated with improved disease-specific survival, lack of lymph node involvement, reduced perineural invasion, and increased tumor differentiation. We hypothesized that TXNIP may act as a tumor suppressor that sensitizes EAC cells to standard chemotherapeutics. EAC cell lines and a Barrett epithelial cell line were used. qRT-PCR, immunoblot, and immunofluorescence techniques evaluated gene expression. TXNIP was stably overexpressed or knocked down using lentiviral RNA transduction techniques. Murine xenograft methods examined growth following overexpression of TXNIP. Apoptosis and DNA damage were measured by annexin V and γH2AX assays. Activation of the intrinsic apoptosis was quantitated with green fluorescence protein-caspase 3 reporter assay. In cultured cells and an esophageal tissue array, TXNIP expression was higher in Barrett epithelia and normal tissue compared with EAC. Constitutive overexpression of TXNIP decreased proliferation, clonogenicity, and tumor xenograft growth. TXNIP overexpression increased, whereas knockdown abrogated, DNA damage and apoptosis following cisplatin treatment. An HDAC inhibitor, entinostat (currently in clinical trials), upregulated TXNIP and synergistically increased cisplatin-mediated DNA damage and apoptosis. TXNIP is a tumor suppressor that is downregulated in EACC. Its reexpression dramatically sensitizes these cells to cisplatin. Our findings support phase I/II evaluation of "priming" strategies to enhance the efficacy of conventional chemotherapeutics in EAC. Mol Cancer Ther; 17(9); 2013-23. ©2018 AACR.
Collapse
Affiliation(s)
- Paul L Feingold
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Deborah R Surman
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kate Brown
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yuan Xu
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lucas A McDuffie
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Vivek Shukla
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Emily S Reardon
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sunmin Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Shaojian Gao
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Sichuan Xi
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Kaitlin C McLoughlin
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Laurence P Diggs
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David G Beer
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jeremy L Davis
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Chuong D Hoang
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jonathan M Hernandez
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David S Schrump
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - R Taylor Ripley
- Thoracic and Oncologic Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
42
|
Schcolnik-Cabrera A, Domínguez-Gómez G, Dueñas-González A. Comparison of DNA demethylating and histone deacetylase inhibitors hydralazine-valproate versus vorinostat-decitabine incutaneous t-cell lymphoma in HUT78 cells. AMERICAN JOURNAL OF BLOOD RESEARCH 2018; 8:5-16. [PMID: 30038842 PMCID: PMC6055069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
PURPOSE Cutaneous T-cell lymphoma (CTCL) is an uncommon extranodal non-Hodgkin T-cell lymphoma that originates from mature T lymphocytes homed at the skin. Epigenetic alterations observed in CTCL are not limited to overexpression of Histone Deacetylases but also to DNA hypermethylation. The known synergy between Histone deacetylase inhibitors (HDACi) and DNA methyltransferases inhibitors (DNMTi) suggests that combining these agent classes could be effective for CTCL. METHODS In this study, the combinations of the HDACi and DNMTi hydralazine/valproate (HV) and vorinostat/decitabine (VD) were compared in regard to viability inhibition, clonogenicity, pharmacological interaction and cell cycle effects in the CTCL cell line Hut78. In addition, the effect of these combinations was evaluated in normal peripheral blood mononuclear cells. RESULTS The results show that each of the DNMTi and HDACi exerts growth inhibition, mostly by inducing apoptosis as shown in the cell cycle distribution. However, in the combination of HV the interaction is more synergic and also it inhibits the clonogenic capacity of cells over time. Additionally, the HV combination seems to affect in a minor degree the viability of peripheral blood mononuclear cells. CONCLUSIONS The results of this study and the preclinical and clinical evidence on the efficacy of combining HDACi with DNMTi strongly suggest that more studies are needed with this drug class combination in CTCL, particularly with the hydralazine-valproate scheme, which is safe, and these drugs are widely available and administered by oral route.
Collapse
Affiliation(s)
| | | | - Alfonso Dueñas-González
- Unidad De Investigacion Biomédica En Cancer, Instituto De Investigaciones Biomédicas UNAM/Instituto Nacional De CancerologíaMéxico
| |
Collapse
|
43
|
Abstract
In the last decade, epigenetic drugs (such as inhibitors of DNA methyltransferases and histone deacetylases) have been intensively used for cancer treatment. Their applications have shown high anticancer effectivity and tolerable side effects. However, they are unfortunately not effective in the treatment of some types and phenotypes of cancers. Nevertheless, several studies have demonstrated that problems of drug efficacy can be overcome through the combined application of therapeutic modulates. Therefore, combined applications of epigenetic agents with chemotherapy, radiation therapy, immunotherapy, oncolytic virotherapy and hyperthermia have been presented. This review summarizes and discusses the general principles of this approach, as introduced and supported by numerous examples. In addition, predictions of the future potential applications of this methodology are included.
Collapse
|
44
|
Dai F, Du P, Chang Y, Ji E, Xu Y, Wei C, Li J. Downregulation of MiR-199b-5p Inducing Differentiation of Bone-Marrow Mesenchymal Stem Cells (BMSCs) Toward Cardiomyocyte-Like Cells via HSF1/HSP70 Pathway. Med Sci Monit 2018; 24:2700-2710. [PMID: 29715263 PMCID: PMC5951024 DOI: 10.12659/msm.907441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Bone-marrow mesenchymal stem cells (BMSCs) are pluripotent stem cells with potent self-renewal and differentiation ability that are widely used in transplantation of cell therapy. But the mechanism on microRNA (miRNA) regulating stem cell differentiation is complicated and unclear. The aim of this study was to investigate whether miR-199b-5p is involved in differentiation of cardiomyocyte-like cells and identify potential signal pathways in BMSCs. MATERIAL AND METHODS Mouse BMSCs were treated with 5-azacytidine and transfected by miR-199b-5p mimic and inhibitor, respectively. qRT-PCR was used to detect the expression of miR-199b-5p in BMSCs, 5-azacytidine treated BMSCs, and neonatal murine cardiomyocytes. The expression of cardiac specific genes and the HSF1/HSP70 signal pathway were examined by qRT-PCR or western blotting. The proliferation and migration of BMSCs were evaluated by CCK-8 assay and wound-healing assay. RESULTS The expression of miR-199b-5p decreased gradually in the process of differentiation of BMSCs toward cardiomyocyte-like cells. The expression of cardiac specific genes and HSF1/HSP70 were increased in the miR-199b-5p inhibitor group; however, the miR-199b-5p mimic group presented an opposite result. Both the miR-199b-5p inhibitor group and the miR-199b-5p mimic group had no influence on BMSCs proliferation and migration. Using lentivirus vectors bearing HSF1 shRNA to silence HSF1 and HSP70, the anticipated elevated expression effect of cardiac specific genes induced by miR-199b-5p inhibitor was suppressed. CONCLUSIONS Downregulation of miR-199b-5p induced differentiation of BMSCs toward cardiomyocyte-like cells partly via the HSF1/HSP70 signaling pathway, and had no influence on BMSCs proliferation and migration.
Collapse
Affiliation(s)
- Fangjie Dai
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Peizhao Du
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Yaowei Chang
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Endong Ji
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Yunjia Xu
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Chunyan Wei
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jiming Li
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
45
|
Lundstrom K. Epigenetics, Nutrition, Disease and Drug Development. Curr Drug Discov Technol 2018; 16:386-391. [PMID: 29692252 DOI: 10.2174/1570163815666180419154954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 01/27/2023]
Abstract
Epigenetic mechanisms comprising of DNA methylation, histone modifications and gene silencing by RNA interference have been strongly linked to the development and progression of various diseases. These findings have triggered research on epigenetic functions and signal pathways as targets for novel drug discovery. Dietary intake has also presented significant influence on human health and disease development and nutritional modifications have proven important in prevention, but also the treatment of disease. Moreover, a strong link between nutrition and epigenetic changes has been established. Therefore, in attempts to develop novel safer and more efficacious drugs, both nutritional requirements and epigenetic mechanisms need to be addressed.
Collapse
|
46
|
Wu N, Zhu Y, Xu X, Zhu Y, Song Y, Pang L, Chen Z. The anti-tumor effects of dual PI3K/mTOR inhibitor BEZ235 and histone deacetylase inhibitor Trichostatin A on inducing autophagy in esophageal squamous cell carcinoma. J Cancer 2018; 9:987-997. [PMID: 29581778 PMCID: PMC5868166 DOI: 10.7150/jca.22861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
The effect and regulation of autophagy-related proteins Beclin-1 and LC3 in esophageal squamous cell carcinoma have not been fully studied. The aim of this study was to assess the expression of Beclin-1 and LC3 in ESCCs, and to investigate the association between the two markers and clinicopathological characteristics as well as prognosis. Meanwhile, we explored the anti-tumor effect of the PI3K/mTOR dual inhibitor BEZ235 and the histone deacetylase inhibitor TSA on inducing autophagy in ESCC cells. Our study included 118 ESCC tumors and paired non-tumor esophageal mucosa tissues. Beclin-1 and LC3 expression were performed by immunohistochemistry. Human ESCC cells Eca-109 and TE-1 were treated with BEZ235 and TSA either alone or in combination in Vitro. The expression of both Beclin-1 and LC3 proteins were decreased significantly in ESCCs, but there was no significant relation between the expression of Beclin-1 and LC3 (P = 0.427). The negative expression of either Beclin-1 or LC3 was associated with advanced TNM stages (P = 0.006 and P<0.001, respectively). Patients with a high expression of Beclin-1 and LC3 predict better prognosis. In Vitro co-treatment with BEZ235 and TSA showed a synergistic effect on inhibition of ESCC cell viability and induction of autophagy with the increasing expressions of Beclin-1, LC3-II and the ratio of LC3-II/LC3-I. Our results demonstrated that the autophagy-related proteins Beclin-1 and LC3 were decreased in ESCCs and the low expression of the two markers predicted a worse prognosis. The co-treatment of BEZ235 and TSA significantly induced autophagy and enhanced anti-tumor activities, provided a new effective therapeutic target in ESCCs.
Collapse
Affiliation(s)
- Ning Wu
- Department of Cardio-thoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, 200040, China
| | - Yingfeng Zhu
- Department of Pathology, HuaShan Hospital of Fudan University, Shanghai, 200040, China
| | - Xiao Xu
- Central laboratory, HuaShan Hospital of Fudan University, Shanghai, 200040, China
| | - Yongjun Zhu
- Department of Cardio-thoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, 200040, China
| | - Yang Song
- Department of Cardio-thoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, 200040, China
| | - Liewen Pang
- Department of Cardio-thoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, 200040, China
| | - Zhiming Chen
- Department of Cardio-thoracic Surgery, HuaShan Hospital of Fudan University, Shanghai, 200040, China
| |
Collapse
|
47
|
Huang XP, Li X, Situ MY, Huang LY, Wang JY, He TC, Yan QH, Xie XY, Zhang YJ, Gao YH, Li YH, Rong TH, Wang MR, Cai QQ, Fu JH. Entinostat reverses cisplatin resistance in esophageal squamous cell carcinoma via down-regulation of multidrug resistance gene 1. Cancer Lett 2018; 414:294-300. [DOI: 10.1016/j.canlet.2017.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 10/18/2022]
|
48
|
Gaur P, Hunt CR, Pandita TK. Emerging therapeutic targets in esophageal adenocarcinoma. Oncotarget 2018; 7:48644-48655. [PMID: 27102294 PMCID: PMC5217045 DOI: 10.18632/oncotarget.8777] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/10/2016] [Indexed: 12/18/2022] Open
Abstract
The incidence of gastro-esophageal disease and associated rate of esophageal adenocarcinoma (EAC) is rising at an exponential rate in the United States. However, research targeting EAC is lagging behind, and much research is needed in the field to identify ways to diagnose EAC early as well as to improve the rate of pathologic complete response (pCR) to systemic therapies. Esophagectomy with subsequent reconstruction is known to be a morbid procedure that significantly impacts a patient's quality of life. If indeed the pCR rate of patients can be improved and those patients destined to be pCR can be identified ahead of time, they may be able to avoid this life-altering procedure. While cancer-specific biological pathways have been thoroughly investigated in other solid malignancies, much remains unexplored in EAC. In this review, we will highlight some of the latest research in the field in regards with EAC, along with new therapeutic targets that are currently being explored. After reviewing conventional treatment and current changes in medical therapy for EAC, we will focus on unchartered grounds such as cancer stem cells, genetics and epigenetics, immunotherapy, and chemoradio-resistant pathways as we simultaneously propose some investigational possibilities that could be applicable to EAC.
Collapse
Affiliation(s)
- Puja Gaur
- Department of General Surgery, Division of Thoracic Surgery, The Houston Methodist Research Institute, Houston, TX, USA
| | - Clayton R Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, USA
| | - Tej K Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
49
|
Lin DC, Wang MR, Koeffler HP. Genomic and Epigenomic Aberrations in Esophageal Squamous Cell Carcinoma and Implications for Patients. Gastroenterology 2018; 154:374-389. [PMID: 28757263 PMCID: PMC5951382 DOI: 10.1053/j.gastro.2017.06.066] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. The exomes of more than 600 ESCCs have been sequenced in the past 4 years, and numerous key aberrations have been identified. Recently, researchers reported both inter- and intratumor heterogeneity. Although these are interesting observations, their clinical implications are unclear due to the limited number of samples profiled. Epigenomic alterations, such as changes in DNA methylation, histone acetylation, and RNA editing, also have been observed in ESCCs. However, it is not clear what proportion of ESCC cells carry these epigenomic aberrations or how they contribute to tumor development. We review the genomic and epigenomic characteristics of ESCCs, with a focus on emerging themes. We discuss their clinical implications and future research directions.
Collapse
Affiliation(s)
- De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - H Phillip Koeffler
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Cancer Science Institute of Singapore, National University of Singapore, Singapore; National University Cancer Institute, National University Hospital Singapore, Singapore
| |
Collapse
|
50
|
Abstract
Our understanding of the epigenetic changes occurring in gastrointestinal cancers has gained tremendous advancements in recent years, and some epigenetic biomarkers are already translated into the clinics for cancer diagnostics. In parallel, pharmacoepigenetics and pharmacoepigenomics of solid tumors are relevant novel, but emerging and promising fields. Areas covered: A comprehensive review of the literature to summarize and update the emerging field of pharmacoepigenetics and pharmacoepigenomics of gastrointestinal cancers. Expert commentary: Several epigenetic modifications have been proposed to account for interindividual variations in drug response in gastrointestinal cancers. Similarly, single-agent or combined strategies with high doses of drugs that target epigenetic modifications (epi-drugs) were scarcely tolerated by the patients, and current research has moved to their combination with standard therapies to achieve chemosensitization, radiosensitization, and immune modulation of cancerous cells. In parallel, recent genome-wide technologies are revealing the pathways that are epigenetically deregulated during cancer-acquired resistance, including those targeted by non-coding RNAs. Indeed, novel, less toxic, and more specific molecules are under investigation to specifically target those pathways. The field is rapidly expanding and gathering together information coming from these investigations has the potential to lead to clinical applications in the coming new years.
Collapse
Affiliation(s)
- Angela Lopomo
- a Department of Translational Research and New Technologies in Medicine and Surgery, Laboratory of Medical Genetics , University of Pisa, Medical School , Pisa , Italy
| | - Fabio Coppedè
- a Department of Translational Research and New Technologies in Medicine and Surgery, Laboratory of Medical Genetics , University of Pisa, Medical School , Pisa , Italy
| |
Collapse
|