1
|
Huang Y, Li H, Liang R, Chen J, Tang Q. The influence of sex-specific factors on biological transformations and health outcomes in aging processes. Biogerontology 2024; 25:775-791. [PMID: 39001953 PMCID: PMC11374838 DOI: 10.1007/s10522-024-10121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The aging process demonstrates notable differences between males and females, which are key factors in disease susceptibility and lifespan. The differences in sex chromosomes are fundamental to the presence of sex bias in organisms. Moreover, sex-specific epigenetic modifications and changes in sex hormone levels impact the development of immunity differently during embryonic development and beyond. Mitochondria, telomeres, homeodynamic space, and intestinal flora are intricately connected to sex differences in aging. These elements can have diverse effects on men and women, resulting in unique biological transformations and health outcomes as they grow older. This review explores how sex interacts with these elements and shapes the aging process.
Collapse
Affiliation(s)
- Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
2
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
3
|
Choudhury SR, Byrum SD, Blossom SJ. Trichloroethylene metabolite modulates DNA methylation-dependent gene expression in Th1-polarized CD4+ T cells from autoimmune-prone mice. Toxicol Sci 2024; 199:289-300. [PMID: 38518092 PMCID: PMC11131021 DOI: 10.1093/toxsci/kfae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Trichloroethylene (TCE) is an industrial solvent and widespread environmental contaminant associated with CD4+ T-cell activation and autoimmune disease. Prior studies showed that exposure to TCE in the drinking water of autoimmune-prone mice expanded effector/memory CD4+ T cells with an interferon-γ (IFN-γ)-secreting Th1-like phenotype. However, very little is known how TCE exposure skews CD4+ T cells towards this pro-inflammatory Th1 subset. As observed previously, TCE exposure was associated with hypermethylation of regions of the genome related to transcriptional repression in purified effector/memory CD4 T cells. We hypothesized that TCE modulates transcriptional and/or epigenetic programming of CD4+ T cells as they differentiate from a naive to effector phenotype. In the current study, purified naive CD4 T cells from both male and female autoimmune-prone MRL/MpJ mice were activated ex vivo and polarized towards a Th1 subset for 4 days in the presence or absence of the oxidative metabolite of TCE, trichloroacetaldehyde hydrate (TCAH) in vitro. An RNA-seq assessment and reduced representation bisulfite sequencing for DNA methylation were conducted on Th1 cells or activated, non-polarized cells. The results demonstrated TCAH's ability to regulate key genes involved in the immune response and autoimmunity, including Ifng, by altering the level of DNA methylation at the gene promoter. Intriguing sex differences were observed and for the most part, the effects were more robust in females compared to males. In conclusion, TCE via TCAH epigenetically regulates gene expression in CD4+ T cells. These results may have implications for mechanistic understanding or future therapeutics for autoimmunity.
Collapse
Affiliation(s)
- Samrat Roy Choudhury
- Division of Hematology/Oncology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
- Arkansas Children’s Research Institute, Department of Pediatrics, Little Rock, Arkansas 72202, USA
| | - Stephanie D Byrum
- Arkansas Children’s Research Institute, Department of Pediatrics, Little Rock, Arkansas 72202, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Sarah J Blossom
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
4
|
James EA, Holers VM, Iyer R, Prideaux EB, Rao NL, Rims C, Muir VS, Posso SE, Bloom MS, Zia A, Elliott SE, Adamska JZ, Ai R, Brewer RC, Seifert JA, Moss L, Barzideh S, Demoruelle MK, Striebich CC, Okamoto Y, Sainbayar E, Crook AA, Peterson RA, Vanderlinden LA, Wang W, Boyle DL, Robinson WH, Buckner JH, Firestein GS, Deane KD. Multifaceted immune dysregulation characterizes individuals at-risk for rheumatoid arthritis. Nat Commun 2023; 14:7637. [PMID: 37993439 PMCID: PMC10665556 DOI: 10.1038/s41467-023-43091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
Molecular markers of autoimmunity, such as antibodies to citrullinated protein antigens (ACPA), are detectable prior to inflammatory arthritis (IA) in rheumatoid arthritis (RA) and may define a state that is 'at-risk' for future RA. Here we present a cross-sectional comparative analysis among three groups that include ACPA positive individuals without IA (At-Risk), ACPA negative individuals and individuals with early, ACPA positive clinical RA (Early RA). Differential methylation analysis among the groups identifies non-specific dysregulation in peripheral B, memory and naïve T cells in At-Risk participants, with more specific immunological pathway abnormalities in Early RA. Tetramer studies show increased abundance of T cells recognizing citrullinated (cit) epitopes in At-Risk participants, including expansion of T cells reactive to citrullinated cartilage intermediate layer protein I (cit-CILP); these T cells have Th1, Th17, and T stem cell memory-like phenotypes. Antibody-antigen array analyses show that antibodies targeting cit-clusterin, cit-fibrinogen and cit-histone H4 are elevated in At-Risk and Early RA participants, with the highest levels of antibodies detected in those with Early RA. These findings indicate that an ACPA positive at-risk state is associated with multifaceted immune dysregulation that may represent a potential opportunity for targeted intervention.
Collapse
Affiliation(s)
- Eddie A James
- Benaroya Research Institute, Seattle, WA, 98101, USA
| | - V Michael Holers
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Radhika Iyer
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94550, USA
| | - E Barton Prideaux
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Navin L Rao
- Janssen Research and Development, Spring House, PA, 19477, USA
| | - Cliff Rims
- Benaroya Research Institute, Seattle, WA, 98101, USA
| | | | | | - Michelle S Bloom
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94550, USA
| | - Amin Zia
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94550, USA
| | - Serra E Elliott
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94550, USA
| | - Julia Z Adamska
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94550, USA
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - R Camille Brewer
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94550, USA
| | - Jennifer A Seifert
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - LauraKay Moss
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Saman Barzideh
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - M Kristen Demoruelle
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher C Striebich
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Yuko Okamoto
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Enkhtsogt Sainbayar
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alexandra A Crook
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ryan A Peterson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Lauren A Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - David L Boyle
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94304, USA
- VA Palo Alto Health Care System, Palo Alto, CA, 94550, USA
| | | | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
5
|
Xiao Y, Schroeter A, Martin F, Matsunaga T, Nakamori K, Roesel MJ, Habal M, Chong AS, Zhou H, Tullius SG. Sex as a biological variable: Mechanistic insights and clinical relevance in solid organ transplantation. Am J Transplant 2023; 23:1661-1672. [PMID: 37543092 PMCID: PMC10838351 DOI: 10.1016/j.ajt.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Biological sex affects immunity broadly, with recognized effects on the incidence and severity of autoimmune diseases, infections, and malignancies. Consequences of sex on alloimmunity and outcomes in solid organ transplantation are less well defined. Clinical studies have shown that donor and recipient sex independently impact transplant outcomes, which are further modified by aging. Potential mechanisms have thus far not been detailed and may include hormonal, genetic, and epigenetic components. Here, we summarize relevant findings in immunity in addition to studies in clinical and experimental organ transplantation detailing the effects of biological sex on alloimmunity. Understanding both clinical impact and mechanisms is expected to provide critical insights on the complexity of alloimmune responses, with the potential to fine-tune treatment and allocation while providing a rationale to include both sexes in transplant research.
Collapse
Affiliation(s)
- Yao Xiao
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Schroeter
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Friederike Martin
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Surgery, CVK/CCM, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tomohisa Matsunaga
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Keita Nakamori
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Maximilian J Roesel
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| | - Marlena Habal
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, Columbia University, New York, New York, USA
| | - Anita S Chong
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Hao Zhou
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
6
|
Luo Q, Dwaraka VB, Chen Q, Tong H, Zhu T, Seale K, Raffaele JM, Zheng SC, Mendez TL, Chen Y, Carreras N, Begum S, Mendez K, Voisin S, Eynon N, Lasky-Su JA, Smith R, Teschendorff AE. A meta-analysis of immune-cell fractions at high resolution reveals novel associations with common phenotypes and health outcomes. Genome Med 2023; 15:59. [PMID: 37525279 PMCID: PMC10388560 DOI: 10.1186/s13073-023-01211-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Changes in cell-type composition of tissues are associated with a wide range of diseases and environmental risk factors and may be causally implicated in disease development and progression. However, these shifts in cell-type fractions are often of a low magnitude, or involve similar cell subtypes, making their reliable identification challenging. DNA methylation profiling in a tissue like blood is a promising approach to discover shifts in cell-type abundance, yet studies have only been performed at a relatively low cellular resolution and in isolation, limiting their power to detect shifts in tissue composition. METHODS Here we derive a DNA methylation reference matrix for 12 immune-cell types in human blood and extensively validate it with flow-cytometric count data and in whole-genome bisulfite sequencing data of sorted cells. Using this reference matrix, we perform a directional Stouffer and fixed effects meta-analysis comprising 23,053 blood samples from 22 different cohorts, to comprehensively map associations between the 12 immune-cell fractions and common phenotypes. In a separate cohort of 4386 blood samples, we assess associations between immune-cell fractions and health outcomes. RESULTS Our meta-analysis reveals many associations of cell-type fractions with age, sex, smoking and obesity, many of which we validate with single-cell RNA sequencing. We discover that naïve and regulatory T-cell subsets are higher in women compared to men, while the reverse is true for monocyte, natural killer, basophil, and eosinophil fractions. Decreased natural killer counts associated with smoking, obesity, and stress levels, while an increased count correlates with exercise and sleep. Analysis of health outcomes revealed that increased naïve CD4 + T-cell and N-cell fractions associated with a reduced risk of all-cause mortality independently of all major epidemiological risk factors and baseline co-morbidity. A machine learning predictor built only with immune-cell fractions achieved a C-index value for all-cause mortality of 0.69 (95%CI 0.67-0.72), which increased to 0.83 (0.80-0.86) upon inclusion of epidemiological risk factors and baseline co-morbidity. CONCLUSIONS This work contributes an extensively validated high-resolution DNAm reference matrix for blood, which is made freely available, and uses it to generate a comprehensive map of associations between immune-cell fractions and common phenotypes, including health outcomes.
Collapse
Affiliation(s)
- Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Varun B Dwaraka
- TruDiagnostics, 881 Corporate Dr., Lexington, KY, 40503, USA
| | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Huige Tong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Tianyu Zhu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Kirsten Seale
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, 3011, Australia
| | - Joseph M Raffaele
- PhysioAge LLC, 30 Central Park South / Suite 8A, New York, NY, 10019, USA
| | - Shijie C Zheng
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Tavis L Mendez
- TruDiagnostics, 881 Corporate Dr., Lexington, KY, 40503, USA
| | - Yulu Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | - Sofina Begum
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Mendez
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Footscray, VIC, 3011, Australia
| | - Nir Eynon
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Ryan Smith
- TruDiagnostics, 881 Corporate Dr., Lexington, KY, 40503, USA.
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
| |
Collapse
|
7
|
Powell J, Talenti A, Fisch A, Hemmink JD, Paxton E, Toye P, Santos I, Ferreira BR, Connelley TK, Morrison LJ, Prendergast JGD. Profiling the immune epigenome across global cattle breeds. Genome Biol 2023; 24:127. [PMID: 37218021 DOI: 10.1186/s13059-023-02964-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Understanding the variation between well and poorly adapted cattle breeds to local environments and pathogens is essential for breeding cattle with improved climate and disease-resistant phenotypes. Although considerable progress has been made towards identifying genetic differences between breeds, variation at the epigenetic and chromatin levels remains poorly characterized. Here, we generate, sequence and analyse over 150 libraries at base-pair resolution to explore the dynamics of DNA methylation and chromatin accessibility of the bovine immune system across three distinct cattle lineages. RESULTS We find extensive epigenetic divergence between the taurine and indicine cattle breeds across immune cell types, which is linked to the levels of local DNA sequence divergence between the two cattle sub-species. The unique cell type profiles enable the deconvolution of complex cellular mixtures using digital cytometry approaches. Finally, we show distinct sub-categories of CpG islands based on their chromatin and methylation profiles that discriminate between classes of distal and gene proximal islands linked to discrete transcriptional states. CONCLUSIONS Our study provides a comprehensive resource of DNA methylation, chromatin accessibility and RNA expression profiles of three diverse cattle populations. The findings have important implications, from understanding how genetic editing across breeds, and consequently regulatory backgrounds, may have distinct impacts to designing effective cattle epigenome-wide association studies in non-European breeds.
Collapse
Affiliation(s)
- Jessica Powell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - Andrea Talenti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Johanneke D Hemmink
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Philip Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, PO Box 30709, Nairobi, 00100, Kenya
| | - Isabel Santos
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Beatriz R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Tim K Connelley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Liam J Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
8
|
Mazzuti L, Turriziani O, Mezzaroma I. The Many Faces of Immune Activation in HIV-1 Infection: A Multifactorial Interconnection. Biomedicines 2023; 11:biomedicines11010159. [PMID: 36672667 PMCID: PMC9856151 DOI: 10.3390/biomedicines11010159] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Chronic immune activation has a significant role in HIV-1 disease pathogenesis and CD4+ T-cell depletion. The causes of chronic inflammation and immune activation are incompletely understood, but they are likely multifactorial in nature, involving both direct and indirect stimuli. Possible explanations include microbial translocation, coinfection, and continued presence of competent replicating virus. In fact, long-term viral suppression treatments are unable to normalize elevated markers of systemic immune activation. Furthermore, high levels of pro-inflammatory cytokines increase susceptibility to premature aging of the immune system. The phenomenon of "inflammaging" has begun to be evident in the last decades, as a consequence of increased life expectancy due to the introduction of cART. Quality of life and survival have improved substantially; however, PLWH are predisposed to chronic inflammatory conditions leading to age-associated diseases, such as inflammatory bowel disease, neurocognitive disorders, cardiovascular diseases, metabolic syndrome, bone abnormalities, and non-HIV-associated cancers. Several approaches have been studied in numerous uncontrolled and/or randomized clinical trials with the aim of reducing immune activation/inflammatory status in PLWH, none of which have achieved consistent results.
Collapse
Affiliation(s)
- Laura Mazzuti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| |
Collapse
|
9
|
Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol 2022; 13:986840. [PMID: 36189206 PMCID: PMC9522975 DOI: 10.3389/fimmu.2022.986840] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The immune system protects us from pathogens, such as viruses. Antiviral immune mechanisms aim to limit viral replication, and must maintain immunological homeostasis to avoid excessive inflammation and damage to the host. Sex differences in the manifestation and progression of immune-mediated disease point to sex-specific factors modulating antiviral immunity. The exact mechanisms regulating these immunological differences between females and males are still insufficiently understood. Females are known to display stronger Type I IFN responses and are less susceptible to viral infections compared to males, indicating that Type I IFN responses might contribute to the sexual dimorphisms observed in antiviral responses. Here, we review the impact of sex hormones and X chromosome-encoded genes on differences in Type I IFN responses between females and males; and discuss the consequences of sex differences in Type I IFN responses for the regulation of antiviral immune responses.
Collapse
Affiliation(s)
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Govender P, Ghai M, Okpeku M. Sex-specific DNA methylation: impact on human health and development. Mol Genet Genomics 2022; 297:1451-1466. [PMID: 35969270 DOI: 10.1007/s00438-022-01935-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
Human evolution has shaped gender differences between males and females. Over the years, scientific studies have proposed that epigenetic modifications significantly influence sex-specific differences. The evolution of sex chromosomes with epigenetics as the driving force may have led to one sex being more adaptable than the other when exposed to various factors over time. Identifying and understanding sex-specific differences, particularly in DNA methylation, will help determine how each gender responds to factors, such as disease susceptibility, environmental exposure, brain development and neurodegeneration. From a medicine and health standpoint, sex-specific methylation studies have shed light on human disease severity, progression, and response to therapeutic intervention. Interesting findings in gender incongruent individuals highlight the role of genetic makeup in influencing DNA methylation differences. Sex-specific DNA methylation studies will empower the biotechnology and pharmaceutical industry with more knowledge to identify biomarkers, design and develop sex bias drugs leading to better treatment in men and women based on their response to different diseases.
Collapse
Affiliation(s)
- Priyanka Govender
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Meenu Ghai
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa.
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
11
|
Jiang W, Tan XY, Li JM, Yu P, Dong M. DNA Methylation: A Target in Neuropathic Pain. Front Med (Lausanne) 2022; 9:879902. [PMID: 35872752 PMCID: PMC9301322 DOI: 10.3389/fmed.2022.879902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP), caused by an injury or a disease affecting the somatosensory nervous system of the central and peripheral nervous systems, has become a global health concern. Recent studies have demonstrated that epigenetic mechanisms are among those that underlie NP; thus, elucidating the molecular mechanism of DNA methylation is crucial to discovering new therapeutic methods for NP. In this review, we first briefly discuss DNA methylation, demethylation, and the associated key enzymes, such as methylases and demethylases. We then discuss the relationship between NP and DNA methylation, focusing on DNA methyltransferases including methyl-CpG-binding domain (MBD) family proteins and ten-eleven translocation (TET) enzymes. Based on experimental results of neuralgia in animal models, the mechanism of DNA methylation-related neuralgia is summarized, and useful targets for early drug intervention in NP are discussed.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ming Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Yu
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Ming Dong
| |
Collapse
|
12
|
Shepherd R, Bretherton I, Pang K, Mansell T, Czajko A, Kim B, Vlahos A, Zajac JD, Saffery R, Cheung A, Novakovic B. Gender-affirming hormone therapy induces specific DNA methylation changes in blood. Clin Epigenetics 2022; 14:24. [PMID: 35177097 PMCID: PMC8851870 DOI: 10.1186/s13148-022-01236-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background DNA methylation is an epigenetic mark that is influenced by underlying genetic profile, environment, and ageing. In addition to X-linked DNA methylation, sex-specific methylation patterns are widespread across autosomal chromosomes and can be present from birth or arise over time. In individuals where gender identity and sex assigned at birth are markedly incongruent, as in the case of transgender people, feminization or masculinization may be sought through gender-affirming hormone therapy (GAHT). GAHT is a cornerstone of transgender care, yet no studies to date have investigated its effect on genome-wide methylation. We profiled genome-wide DNA methylation in blood of transgender women (n = 13) and transgender men (n = 13) before and during GAHT (6 months and 12 months into feminizing or masculinizing hormone therapy). Results We identified several thousand differentially methylated CpG sites (DMPs) (Δβ ≥ 0.02, unadjusted p value < 0.05) and several differentially methylated regions (DMRs) in both people undergoing feminizing and masculinizing GAHT, the vast majority of which were progressive changes over time. X chromosome and sex-specific autosomal DNA methylation patterns established in early development are largely refractory to change in association with GAHT, with only 3% affected (Δβ ≥ 0.02, unadjusted p value < 0.05). The small number of sex-specific DMPs that were affected by GAHT were those that become sex-specific during the lifetime, known as sex-and-age DMPs, including DMRs in PRR4 and VMP1 genes. The GAHT-induced changes at these sex-associated probes consistently demonstrated a shift towards the methylation signature of the GAHT-naïve opposite sex, and we observed enrichment of previously reported adolescence-associated methylation changes. Conclusion We provide evidence for GAHT inducing a unique blood methylation signature in transgender people. This study advances our understanding of the complex interplay between sex hormones, sex chromosomes, and DNA methylation in the context of immunity. We highlight the need to broaden the field of ‘sex-specific’ immunity beyond cisgender males and cisgender females, as transgender people on GAHT exhibit a unique molecular profile. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01236-4.
Collapse
Affiliation(s)
- Rebecca Shepherd
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Ingrid Bretherton
- Department of Medicine (Austin Health), The University of Melbourne, Parkville, VIC, Australia.,Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Ken Pang
- Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Adolescent Medicine, Royal Children's Hospital, Parkville, VIC, Australia
| | - Toby Mansell
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Anna Czajko
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Bowon Kim
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Amanda Vlahos
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jeffrey D Zajac
- Department of Medicine (Austin Health), The University of Melbourne, Parkville, VIC, Australia.,Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Richard Saffery
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Ada Cheung
- Department of Medicine (Austin Health), The University of Melbourne, Parkville, VIC, Australia.,Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Boris Novakovic
- Molecular Immunity, Infection and Immunity Theme, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia. .,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Lien YC, Pinney SE, Lu XM, Simmons RA. Identification of Novel Regulatory Regions Induced by Intrauterine Growth Restriction in Rat Islets. Endocrinology 2022; 163:6459683. [PMID: 34894232 PMCID: PMC8743043 DOI: 10.1210/endocr/bqab251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 01/05/2023]
Abstract
Intrauterine growth restriction (IUGR) leads to the development of type 2 diabetes in adulthood, and the permanent alterations in gene expression implicate an epigenetic mechanism. Using a rat model of IUGR, we performed TrueSeq-HELP Tagging to assess the association of DNA methylation changes and gene dysregulation in islets. We identified 511 differentially methylated regions (DMRs) and 4377 significantly altered single CpG sites. Integrating the methylome and our published transcriptome data sets resulted in the identification of pathways critical for islet function. The identified DMRs were enriched with transcription factor binding motifs, such as Elk1, Etv1, Foxa1, Foxa2, Pax7, Stat3, Hnf1, and AR. In silico analysis of 3-dimensional chromosomal interactions using human pancreas and islet Hi-C data sets identified interactions between 14 highly conserved DMRs and 35 genes with significant expression changes at an early age, many of which persisted in adult islets. In adult islets, there were far more interactions between DMRs and genes with significant expression changes identified with Hi-C, and most of them were critical to islet metabolism and insulin secretion. The methylome was integrated with our published genome-wide histone modification data sets from IUGR islets, resulting in further characterization of important regulatory regions of the genome altered by IUGR containing both significant changes in DNA methylation and specific histone marks. We identified novel regulatory regions in islets after exposure to IUGR, suggesting that epigenetic changes at key transcription factor binding motifs and other gene regulatory regions may contribute to gene dysregulation and an abnormal islet phenotype in IUGR rats.
Collapse
Affiliation(s)
- Yu-Chin Lien
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Sara E Pinney
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xueqing Maggie Lu
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebecca A Simmons
- Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
- Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Correspondence: Rebecca A. Simmons, MD, Center for Research on Reproduction and Women’s Health, Perelman School of Medicine, the University of Pennsylvania, BRB II/III, 13th Fl, Rm 1308, 421 Curie Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Konwar C, Asiimwe R, Inkster AM, Merrill SM, Negri GL, Aristizabal MJ, Rider CF, MacIsaac JL, Carlsten C, Kobor MS. Risk-focused differences in molecular processes implicated in SARS-CoV-2 infection: corollaries in DNA methylation and gene expression. Epigenetics Chromatin 2021; 14:54. [PMID: 34895312 PMCID: PMC8665859 DOI: 10.1186/s13072-021-00428-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/26/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Understanding the molecular basis of susceptibility factors to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global health imperative. It is well-established that males are more likely to acquire SARS-CoV-2 infection and exhibit more severe outcomes. Similarly, exposure to air pollutants and pre-existing respiratory chronic conditions, such as asthma and chronic obstructive respiratory disease (COPD) confer an increased risk to coronavirus disease 2019 (COVID-19). METHODS We investigated molecular patterns associated with risk factors in 398 candidate genes relevant to COVID-19 biology. To accomplish this, we downloaded DNA methylation and gene expression data sets from publicly available repositories (GEO and GTEx Portal) and utilized data from an empirical controlled human exposure study conducted by our team. RESULTS First, we observed sex-biased DNA methylation patterns in autosomal immune genes, such as NLRP2, TLE1, GPX1, and ARRB2 (FDR < 0.05, magnitude of DNA methylation difference Δβ > 0.05). Second, our analysis on the X-linked genes identified sex associated DNA methylation profiles in genes, such as ACE2, CA5B, and HS6ST2 (FDR < 0.05, Δβ > 0.05). These associations were observed across multiple respiratory tissues (lung, nasal epithelia, airway epithelia, and bronchoalveolar lavage) and in whole blood. Some of these genes, such as NLRP2 and CA5B, also exhibited sex-biased gene expression patterns. In addition, we found differential DNA methylation patterns by COVID-19 status for genes, such as NLRP2 and ACE2 in an exploratory analysis of an empirical data set reporting on human COVID-9 infections. Third, we identified modest DNA methylation changes in CpGs associated with PRIM2 and TATDN1 (FDR < 0.1, Δβ > 0.05) in response to particle-depleted diesel exhaust in bronchoalveolar lavage. Finally, we captured a DNA methylation signature associated with COPD diagnosis in a gene involved in nicotine dependence (COMT) (FDR < 0.1, Δβ > 0.05). CONCLUSION Our findings on sex differences might be of clinical relevance given that they revealed molecular associations of sex-biased differences in COVID-19. Specifically, our results hinted at a potentially exaggerated immune response in males linked to autosomal genes, such as NLRP2. In contrast, our findings at X-linked loci such as ACE2 suggested a potentially distinct DNA methylation pattern in females that may interact with its mRNA expression and inactivation status. We also found tissue-specific DNA methylation differences in response to particulate exposure potentially capturing a nitrogen dioxide (NO2) effect-a contributor to COVID-19 susceptibility. While we identified a molecular signature associated with COPD, all COPD-affected individuals were smokers, which may either reflect an association with the disease, smoking, or may highlight a compounded effect of these two risk factors in COVID-19. Overall, our findings point towards a molecular basis of variation in susceptibility factors that may partly explain disparities in the risk for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Chaini Konwar
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Rebecca Asiimwe
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Amy M Inkster
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Sarah M Merrill
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Gian L Negri
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Maria J Aristizabal
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
- The Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
- Department of Biology, Queen' University, Kingston, ON, K7L 3N6, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada
| | - Christopher F Rider
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Julie L MacIsaac
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada
| | - Christopher Carlsten
- The Department of Respiratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute (BCCHR), 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC, V6H 0B3, Canada.
- Program in Child and Brain Development, CIFAR, MaRS Centre, 661 University Ave, Toronto, ON, M5G 1M1, Canada.
- The Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
15
|
Chinn CA, Ren H, Morival JLP, Nie Q, Wood MA, Downing TL. Examining age-dependent DNA methylation patterns and gene expression in the male and female mouse hippocampus. Neurobiol Aging 2021; 108:223-235. [PMID: 34598831 PMCID: PMC9186538 DOI: 10.1016/j.neurobiolaging.2021.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
DNA methylation is a well-characterized epigenetic modification involved in numerous molecular and cellular functions. Methylation patterns have also been associated with aging mechanisms. However, how DNA methylation patterns change within key brain regions involved in memory formation in an age- and sex-specific manner remains unclear. Here, we performed reduced representation bisulfite sequencing (RRBS) from mouse dorsal hippocampus - which is necessary for the formation and consolidation of specific types of memories - in young and aging mice of both sexes. Overall, our findings demonstrate that methylation levels within the dorsal hippocampus are divergent between sexes during aging in genomic features correlating to mRNA functionality, transcription factor binding sites, and gene regulatory elements. These results define age-related changes in the methylome across genomic features and build a foundation for investigating potential target genes regulated by DNA methylation in an age- and sex-specific manner.
Collapse
Affiliation(s)
- Carlene A Chinn
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California; Center for the Neurobiology of Learning and Memory, University of California Irvine. Irvine, California
| | - Honglei Ren
- NSF-Simons Center for Multiscale Cell Fate, University of California Irvine, Irvine, California; Center for Complex Biological Systems, University of California Irvine, Irvine, California
| | - Julien L P Morival
- NSF-Simons Center for Multiscale Cell Fate, University of California Irvine, Irvine, California; Department of Biomedical Engineering, University of California Irvine, Irvine, California; UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, California
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate, University of California Irvine, Irvine, California; Center for Complex Biological Systems, University of California Irvine, Irvine, California; Department of Mathematics, University of California Irvine, Irvine, California; Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, School of Biological Sciences, University of California Irvine, Irvine, California; Center for the Neurobiology of Learning and Memory, University of California Irvine. Irvine, California
| | - Timothy L Downing
- NSF-Simons Center for Multiscale Cell Fate, University of California Irvine, Irvine, California; Center for Complex Biological Systems, University of California Irvine, Irvine, California; Department of Biomedical Engineering, University of California Irvine, Irvine, California; UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California Irvine, Irvine, California.
| |
Collapse
|
16
|
Contribution of Dysregulated DNA Methylation to Autoimmunity. Int J Mol Sci 2021; 22:ijms222111892. [PMID: 34769338 PMCID: PMC8584328 DOI: 10.3390/ijms222111892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs are known regulators of gene expression and genomic stability in cell growth, development, and differentiation. Because epigenetic mechanisms can regulate several immune system elements, epigenetic alterations have been found in several autoimmune diseases. The purpose of this review is to discuss the epigenetic modifications, mainly DNA methylation, involved in autoimmune diseases in which T cells play a significant role. For example, Rheumatoid Arthritis and Systemic Lupus Erythematosus display differential gene methylation, mostly hypomethylated 5′-C-phosphate-G-3′ (CpG) sites that may associate with disease activity. However, a clear association between DNA methylation, gene expression, and disease pathogenesis must be demonstrated. A better understanding of the impact of epigenetic modifications on the onset of autoimmunity will contribute to the design of novel therapeutic approaches for these diseases.
Collapse
|
17
|
Keane JT, Afrasiabi A, Schibeci SD, Fewings N, Parnell GP, Swaminathan S, Booth DR. Gender and the Sex Hormone Estradiol Affect Multiple Sclerosis Risk Gene Expression in Epstein-Barr Virus-Infected B Cells. Front Immunol 2021; 12:732694. [PMID: 34566997 PMCID: PMC8455923 DOI: 10.3389/fimmu.2021.732694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022] Open
Abstract
Multiple Sclerosis (MS) is a complex immune-mediated disease of the central nervous system. Treatment is based on immunomodulation, including specifically targeting B cells. B cells are the main host for the Epstein-Barr Virus (EBV), which has been described as necessary for MS development. Over 200 genetic loci have been identified as increasing susceptibility to MS. Many MS risk genes have altered expression in EBV infected B cells, dependent on the risk genotype, and are themselves regulated by the EBV transcription factor EBNA2. Females are 2-3 times more likely to develop MS than males. We investigated if MS risk loci might mediate the gender imbalance in MS. From a large public dataset, we identified gender-specific associations with EBV traits, and MS risk SNP/gene pairs with gender differences in their associations with gene expression. Some of these genes also showed gender differences in correlation of gene expression level with Estrogen Receptor 2. To test if estrogens may drive these gender specific differences, we cultured EBV infected B cells (lymphoblastoid cell lines, LCLs), in medium depleted of serum to remove the effects of sex hormones as well as the estrogenic effect of phenol red, and then supplemented with estrogen (100 nM estradiol). Estradiol treatment altered MS risk gene expression, LCL proliferation rate, EBV DNA copy number and EBNA2 expression in a sex-dependent manner. Together, these data indicate that there are estrogen-mediated gender-specific differences in MS risk gene expression and EBV functions. This may in turn contribute to gender differences in host response to EBV and to MS susceptibility.
Collapse
Affiliation(s)
- Jeremy T. Keane
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Ali Afrasiabi
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW SYDNEY, Sydney, NSW, Australia
| | - Stephen D. Schibeci
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Nicole Fewings
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Grant P. Parnell
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sanjay Swaminathan
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
- Department of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - David R. Booth
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Migliore L, Nicolì V, Stoccoro A. Gender Specific Differences in Disease Susceptibility: The Role of Epigenetics. Biomedicines 2021; 9:652. [PMID: 34200989 PMCID: PMC8228628 DOI: 10.3390/biomedicines9060652] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 01/08/2023] Open
Abstract
Many complex traits or diseases, such as infectious and autoimmune diseases, cancer, xenobiotics exposure, neurodevelopmental and neurodegenerative diseases, as well as the outcome of vaccination, show a differential susceptibility between males and females. In general, the female immune system responds more efficiently to pathogens. However, this can lead to over-reactive immune responses, which may explain the higher presence of autoimmune diseases in women, but also potentially the more adverse effects of vaccination in females compared with in males. Many clinical and epidemiological studies reported, for the SARS-CoV-2 infection, a gender-biased differential response; however, the majority of reports dealt with a comparable morbidity, with males, however, showing higher COVID-19 adverse outcomes. Although gender differences in immune responses have been studied predominantly within the context of sex hormone effects, some other mechanisms have been invoked: cellular mosaicism, skewed X chromosome inactivation, genes escaping X chromosome inactivation, and miRNAs encoded on the X chromosome. The hormonal hypothesis as well as other mechanisms will be examined and discussed in the light of the most recent epigenetic findings in the field, as the concept that epigenetics is the unifying mechanism in explaining gender-specific differences is increasingly emerging.
Collapse
Affiliation(s)
- Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
- Department of Laboratory Medicine, Azienda Ospedaliero Universitaria Pisana, 56124 Pisa, Italy
| | - Vanessa Nicolì
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
| | - Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, 56126 Pisa, Italy; (V.N.); (A.S.)
| |
Collapse
|
19
|
Li Y, Wu Y, Hu Y. Metabolites in the Tumor Microenvironment Reprogram Functions of Immune Effector Cells Through Epigenetic Modifications. Front Immunol 2021; 12:641883. [PMID: 33927716 PMCID: PMC8078775 DOI: 10.3389/fimmu.2021.641883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/15/2021] [Indexed: 12/29/2022] Open
Abstract
Cellular metabolism of both cancer and immune cells in the acidic, hypoxic, and nutrient-depleted tumor microenvironment (TME) has attracted increasing attention in recent years. Accumulating evidence has shown that cancer cells in TME could outcompete immune cells for nutrients and at the same time, producing inhibitory products that suppress immune effector cell functions. Recent progress revealed that metabolites in the TME could dysregulate gene expression patterns in the differentiation, proliferation, and activation of immune effector cells by interfering with the epigenetic programs and signal transduction networks. Nevertheless, encouraging studies indicated that metabolic plasticity and heterogeneity between cancer and immune effector cells could provide us the opportunity to discover and target the metabolic vulnerabilities of cancer cells while potentiating the anti-tumor functions of immune effector cells. In this review, we will discuss the metabolic impacts on the immune effector cells in TME and explore the therapeutic opportunities for metabolically enhanced immunotherapy.
Collapse
Affiliation(s)
- Yijia Li
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yangzhe Wu
- Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.,Biomedical Translational Research Institute, Jinan University, Guangzhou, China
| | - Yi Hu
- Microbiology and Immunology Department, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
20
|
Abstract
Health and lifespan disparities between sexes are dependent on the immune responses. Men and women have different life styles which determine the environment, nutritional requirements and their interactions with the sex hormones. Sexual dimorphism in innate and adaptive immunity determines responses to infections and other environmental factors regulating health and diseases. Sex hormones regulate immune responses through the expression of receptors which differ for female and male hormones. Estrogen receptors are expressed in brain, lymphoid tissue cells and many immune cells while androgen receptors are limited in expression. Genetic, epigenetic factors and X chromosome linked immune function genes are important in enhanced adaptive immunity in females, leading to production of higher levels of antibodies compared to males. Different nutritional requirements and hormonal control of the mucosal microbiome and its function regulate mucosal immunity. Hormonal changes during various aspects of life and during aging control immune senescence. Evolutionarily, females have an advantage during young age when they are protected from infections by heightened immune reactivity though during aging that can lead to pathologies. Considering the sexual dimorphism in immunity, guidelines need to be established for sex-based treatments for optimal response.
Collapse
Affiliation(s)
- Veena Taneja
- Department of Immunology and Rheumatology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
21
|
Shepherd R, Cheung AS, Pang K, Saffery R, Novakovic B. Sexual Dimorphism in Innate Immunity: The Role of Sex Hormones and Epigenetics. Front Immunol 2021; 11:604000. [PMID: 33584674 PMCID: PMC7873844 DOI: 10.3389/fimmu.2020.604000] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Sexual dimorphism refers to differences between biological sexes that extend beyond sexual characteristics. In humans, sexual dimorphism in the immune response has been well demonstrated, with females exhibiting lower infection rates than males for a variety of bacterial, viral, and parasitic pathogens. There is also a substantially increased incidence of autoimmune disease in females compared to males. Together, these trends indicate that females have a heightened immune reactogenicity to both self and non-self-molecular patterns. However, the molecular mechanisms driving the sexually dimorphic immune response are not fully understood. The female sex hormones estrogen and progesterone, as well as the male androgens, such as testosterone, elicit direct effects on the function and inflammatory capacity of immune cells. Several studies have identified a sex-specific transcriptome and methylome, independent of the well-described phenomenon of X-chromosome inactivation, suggesting that sexual dimorphism also occurs at the epigenetic level. Moreover, distinct alterations to the transcriptome and epigenetic landscape occur in synchrony with periods of hormonal change, such as puberty, pregnancy, menopause, and exogenous hormone therapy. These changes are also mirrored by changes in immune cell function. This review will outline the evidence for sex hormones and pregnancy-associated hormones as drivers of epigenetic change, and how this may contribute to the sexual dimorphism. Determining the effects of sex hormones on innate immune function is important for understanding sexually dimorphic autoimmune diseases, sex-specific responses to pathogens and vaccines, and how innate immunity is altered during periods of hormonal change (endogenous or exogenous).
Collapse
Affiliation(s)
- Rebecca Shepherd
- Epigenetics Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Ada S. Cheung
- Department of Medicine (Austin Health), The University of Melbourne, Parkville, VIC, Australia
- Department of Endocrinology, Austin Health, Heidelberg, VIC, Australia
| | - Ken Pang
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
- Brain and Mitochondrial Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Adolescent Medicine, Royal Children’s Hospital, Parkville, VIC, Australia
| | - Richard Saffery
- Epigenetics Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Boris Novakovic
- Epigenetics Group, Infection and Immunity Theme, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Vega-Tapia F, Artigas R, Hernández C, Uauy R, Casanello P, Krause BJ, Castro-Rodriguez JA. Maternal obesity is associated with a sex-specific epigenetic programming in human neonatal monocytes. Epigenomics 2020; 12:1999-2018. [PMID: 33275450 DOI: 10.2217/epi-2020-0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: To determine changes in global DNA methylation in monocytes from neonates of women with obesity, as markers of an immune programming resulting from maternal obesity. Materials & methods: Cord blood monocytes were obtained from neonates born to women with obesity and normal weight, genome-wide differentially methylated CpGs were determined using an Infinium MethylationEPIC-BeadChip (850K). Results: No clustering of samples according to maternal BMI was observed, but sex-specific analysis revealed 71,728 differentially methylated CpGs in female neonates from women with obesity (p < 0.01). DAVID analysis showed increased methylation levels within genes involved in the innate immune response and inflammation. Conclusion: Maternal obesity induces, in a sex-specific manner, an epigenetic programming of monocytes that could contribute to disease later in life. Clinical trial registry: This study is registered in ClinicalTrials.gov NCT02903134.
Collapse
Affiliation(s)
- Fabián Vega-Tapia
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rocío Artigas
- Core Biodata, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Cherie Hernández
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Uauy
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paola Casanello
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, University of O'Higgins, Rancagua, Chile
| | - Jose A Castro-Rodriguez
- Division of Pediatrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Schmidt M, Maié T, Dahl E, Costa IG, Wagner W. Deconvolution of cellular subsets in human tissue based on targeted DNA methylation analysis at individual CpG sites. BMC Biol 2020; 18:178. [PMID: 33234153 PMCID: PMC7687708 DOI: 10.1186/s12915-020-00910-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background The complex composition of different cell types within a tissue can be estimated by deconvolution of bulk gene expression profiles or with various single-cell sequencing approaches. Alternatively, DNA methylation (DNAm) profiles have been used to establish an atlas for multiple human tissues and cell types. DNAm is particularly suitable for deconvolution of cell types because each CG dinucleotide (CpG site) has only two states per DNA strand—methylated or non-methylated—and these epigenetic modifications are very consistent during cellular differentiation. So far, deconvolution of DNAm profiles implies complex signatures of many CpGs that are often measured by genome-wide analysis with Illumina BeadChip microarrays. In this study, we investigated if the characterization of cell types in tissue is also feasible with individual cell type-specific CpG sites, which can be addressed by targeted analysis, such as pyrosequencing. Results We compiled and curated 579 Illumina 450k BeadChip DNAm profiles of 14 different non-malignant human cell types. A training and validation strategy was applied to identify and test for cell type-specific CpGs. We initially focused on estimating the relative amount of fibroblasts using two CpGs that were either hypermethylated or hypomethylated in fibroblasts. The combination of these two DNAm levels into a “FibroScore” correlated with the state of fibrosis and was associated with overall survival in various types of cancer. Furthermore, we identified hypomethylated CpGs for leukocytes, endothelial cells, epithelial cells, hepatocytes, glia, neurons, fibroblasts, and induced pluripotent stem cells. The accuracy of this eight CpG signature was tested in additional BeadChip datasets of defined cell mixtures and the results were comparable to previously published signatures based on several thousand CpGs. Finally, we established and validated pyrosequencing assays for the relevant CpGs that can be utilized for classification and deconvolution of cell types. Conclusion This proof of concept study demonstrates that DNAm analysis at individual CpGs reflects the cellular composition of cellular mixtures and different tissues. Targeted analysis of these genomic regions facilitates robust methods for application in basic research and clinical settings.
Collapse
Affiliation(s)
- Marco Schmidt
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany.,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, 52074, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Edgar Dahl
- RWTH centralized Biomaterial Bank (RWTH cBMB), Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University Medical School, 52074, Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074, Aachen, Germany. .,Institute for Biomedical Engineering - Cell Biology, University Hospital of RWTH Aachen, 52074, Aachen, Germany.
| |
Collapse
|
24
|
Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmun Rev 2020; 19:102685. [PMID: 33115633 DOI: 10.1016/j.autrev.2020.102685] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
Autoimmune rheumatic diseases (ARDs) are chronic conditions with a striking female predominance, frequently affecting women of childbearing age. Sex hormones and gender dimorphism of immune response are major determinants in the multifactorial pathogenesis of ARDs, with significant implications throughout reproductive life. Particularly, pregnancy represents a challenging condition in the context of autoimmunity, baring profound hormonal and immunologic changes, which are responsible for the bi-directional interaction between ARDs outcome and pregnancy course. In the latest years epigenetics has proven to be an important player in ARDs pathogenesis, finely modulating major immune functions and variably tuning the significant gender effects in autoimmunity. Additionally, epigenetics is a recognised influencer of the physiological dynamic modifications occurring during pregnancy. Still, there is currently little evidence on the pregnancy-related epigenetic modulation of immune response in ARDs patients. This review aims to overview the current knowledge of the role of epigenetics in the context of autoimmunity, as well as during physiologic and pathologic pregnancy, discussing under-regarded aspects in the interplay between ARDs and pregnancy pathology. The outline of a new ongoing European project will be presented.
Collapse
|
25
|
Bachmann MC, Bellalta S, Basoalto R, Gómez-Valenzuela F, Jalil Y, Lépez M, Matamoros A, von Bernhardi R. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front Immunol 2020; 11:570083. [PMID: 33162985 PMCID: PMC7591463 DOI: 10.3389/fimmu.2020.570083] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is driven by multiple mechanisms that lead to changes in energy production, oxidative stress, homeostatic dysregulation and eventually to loss of functionality and increased disease susceptibility. Most aged individuals develop chronic low-grade inflammation, which is an important risk factor for morbidity, physical and cognitive impairment, frailty, and death. At any age, chronic inflammatory diseases are major causes of morbimortality, affecting up to 5-8% of the population of industrialized countries. Several environmental factors can play an important role for modifying the inflammatory state. Genetics accounts for only a small fraction of chronic-inflammatory diseases, whereas environmental factors appear to participate, either with a causative or a promotional role in 50% to 75% of patients. Several of those changes depend on epigenetic changes that will further modify the individual response to additional stimuli. The interaction between inflammation and the environment offers important insights on aging and health. These conditions, often depending on the individual's sex, appear to lead to decreased longevity and physical and cognitive decline. In addition to biological factors, the environment is also involved in the generation of psychological and social context leading to stress. Poor psychological environments and other sources of stress also result in increased inflammation. However, the mechanisms underlying the role of environmental and psychosocial factors and nutrition on the regulation of inflammation, and how the response elicited for those factors interact among them, are poorly understood. Whereas certain deleterious environmental factors result in the generation of oxidative stress driven by an increased production of reactive oxygen and nitrogen species, endoplasmic reticulum stress, and inflammation, other factors, including nutrition (polyunsaturated fatty acids) and behavioral factors (exercise) confer protection against inflammation, oxidative and endoplasmic reticulum stress, and thus ameliorate their deleterious effect. Here, we discuss processes and mechanisms of inflammation associated with environmental factors and behavior, their links to sex and gender, and their overall impact on aging.
Collapse
Affiliation(s)
| | - Sofía Bellalta
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Yorschua Jalil
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anibal Matamoros
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Biological Sciences (ICB), Federal University of Pará, Belem, Brazil
| | - Rommy von Bernhardi
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Fröhlich A, Sirokay J, Fietz S, Vogt TJ, Dietrich J, Zarbl R, Florin M, Kuster P, Saavedra G, Valladolid SR, Hoffmann F, Flatz L, Ring SS, Golletz C, Pietsch T, Strieth S, Brossart P, Gielen GH, Kristiansen G, Bootz F, Landsberg J, Dietrich D. Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma. EBioMedicine 2020; 59:102962. [PMID: 32861198 PMCID: PMC7475111 DOI: 10.1016/j.ebiom.2020.102962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Background The co-receptor lymphocyte-activation gene-3 (LAG3, LAG-3, CD223) is a potential target for immune checkpoint inhibition immunotherapies. However, little is known about the biological and clinical significance of LAG3 DNA methylation in melanoma and its microenvironment. Methods We evaluated LAG3 promoter and gene body methylation in a cohort of N = 470 melanoma patients obtained from The Cancer Genome Atlas (TCGA cohort), an independent cohort of N = 120 patients from the University Hospital Bonn, and in subsets of peripheral blood leukocytes, melanocytes, and melanoma cell lines. We validated the association of LAG3 methylation with mRNA expression in vitro in the melanoma cell line A375 treated with the hypomethylating agent 5-azacytidine and stimulated with interferon-γ. Finally, we investigated correlations between LAG3 methylation and progression-free survival in patients treated with immune checkpoint blockade (ICB cohort, N = 118). Findings Depending on the analysed locus (promoter, gene body) we found region-dependent significant LAG3 methylation differences between monocytes, B cells, CD8+ and CD4+ T cells, regulatory T cells, melanocytes, and melanoma cell lines. In tumor tissues, methylation correlated significantly with LAG3 mRNA expression, immune cell infiltrates (histopathologic lymphocyte score and RNA-Seq signatures of distinct immune infiltrates), and an interferon-γ signature. Finally, LAG3 methylation was associated with overall survival in the TCGA cohort and progression-free survival in the ICB cohort. We detected basal LAG3 mRNA expression in the melanoma cell A375 and an interferon-γ inducible expression after demethylation with 5-azacytidine. Interpretation Our study points towards an epigenetic regulation of LAG3 via promoter methylation and suggests a prognostic and predictive significance of LAG3 methylation in melanoma. Our results give insight in the tumor cell-intrinsic transcriptional regulation of LAG3 in melanoma. In perspective, our results might pave the way for investigating LAG3 methylation as a predictive biomarker for response to anti-LAG3 immune checkpoint blockage. Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Anne Fröhlich
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Judith Sirokay
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Simon Fietz
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Timo J Vogt
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Jörn Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Romina Zarbl
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Mike Florin
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Pia Kuster
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Gonzalo Saavedra
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Susana Ramírez Valladolid
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | | | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St Gallen, St Gallen, Switzerland.; Department of Oncology and Haematology, Kantonsspital St Gallen, St Gallen, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Department of Dermatology and Allergology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St Gallen, St Gallen, Switzerland.; Microbiology and Immunology PhD Program, University of Zurich, Zurich, Switzerland
| | - Carsten Golletz
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Sebastian Strieth
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | | | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| |
Collapse
|
27
|
Credendino SC, Neumayer C, Cantone I. Genetics and Epigenetics of Sex Bias: Insights from Human Cancer and Autoimmunity. Trends Genet 2020; 36:650-663. [PMID: 32736810 DOI: 10.1016/j.tig.2020.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022]
Abstract
High-throughput sequencing and genome-wide association studies have revealed a sex bias in human diseases. The underlying molecular mechanisms remain, however, unknown. Here, we cover recent advances in cancer and autoimmunity focusing on intrinsic genetic and epigenetic differences underlying sex biases in human disease. These studies reveal a central role of genome regulatory mechanisms including genome repair, chromosome folding, and epigenetic regulation in dictating the sex bias. These highlight the importance of considering sex as a variable in both basic science and clinical investigations. Understanding the molecular mechanisms underlying sex bias in human diseases will be instrumental in making a first step forwards into the era of personalized medicine.
Collapse
Affiliation(s)
- Sara Carmela Credendino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Christoph Neumayer
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| | - Irene Cantone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; Institute of Experimental Endocrinology and Oncology 'G. Salvatore', National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
28
|
Zhuang QKW, Galvez JH, Xiao Q, AlOgayil N, Hyacinthe J, Taketo T, Bourque G, Naumova AK. Sex Chromosomes and Sex Phenotype Contribute to Biased DNA Methylation in Mouse Liver. Cells 2020; 9:E1436. [PMID: 32527045 PMCID: PMC7349295 DOI: 10.3390/cells9061436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Sex biases in the genome-wide distribution of DNA methylation and gene expression levels are some of the manifestations of sexual dimorphism in mammals. To advance our understanding of the mechanisms that contribute to sex biases in DNA methylation and gene expression, we conducted whole genome bisulfite sequencing (WGBS) as well as RNA-seq on liver samples from mice with different combinations of sex phenotype and sex-chromosome complement. We compared groups of animals with different sex phenotypes, but the same genetic sexes, and vice versa, same sex phenotypes, but different sex-chromosome complements. We also compared sex-biased DNA methylation in mouse and human livers. Our data show that sex phenotype, X-chromosome dosage, and the presence of Y chromosome shape the differences in DNA methylation between males and females. We also demonstrate that sex bias in autosomal methylation is associated with sex bias in gene expression, whereas X-chromosome dosage-dependent methylation differences are not, as expected for a dosage-compensation mechanism. Furthermore, we find partial conservation between the repertoires of mouse and human genes that are associated with sex-biased methylation, an indication that gene function is likely to be an important factor in this phenomenon.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Qian Xiao
- Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA;
| | - Najla AlOgayil
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
| | - Jeffrey Hyacinthe
- Department of Quantitative Life Sciences, McGill University, Montréal, QC H3A 0G4, Canada;
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- Canadian Centre for Computational Genomics, Montréal, QC H3A 0G1, Canada;
| | - Anna K. Naumova
- Department of Human Genetics, McGill University, Montréal, QC H3A 1C7, Canada; (Q.K.-W.Z.); (N.A.)
- The Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Department of Obstetrics and Gynecology, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
29
|
Song F, Li L, Zhang B, Zhao Y, Zheng H, Yang M, Li X, Tian J, Huang C, Liu L, Wang Q, Zhang W, Chen K. Tumor specific methylome in Chinese high-grade serous ovarian cancer characterized by gene expression profile and tumor genotype. Gynecol Oncol 2020; 158:178-187. [PMID: 32362568 DOI: 10.1016/j.ygyno.2020.04.688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/11/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Extensive genetic and limited epigenetics have been characterized by the Cancer Genome Atlas (TCGA) among Western High-grade serous ovarian cancer (HGSOC). The present study aimed to characterize Chinese HGSOC at genome scale. METHODS We used reduced representation bisulfite sequencing to investigate whole-genome and tumor-specific DNA methylation in 21 HGSOC tumors paired with their normal tissues, followed by a replication study involving additional 41 HGSOC patients. Altered methylation patterns in HGSOC were further characterized by gene expression profiles and whole-exome sequencing data. RESULTS Comparing HGSOC tumors with normal tissues we observed global hypomethylation but with more specific hypermethylation in gene promoter. Totally, we revealed 159,881 differentially methylated regions (DMRs) and 4060 differentially expressed genes (DEGs). By integrating DNA methylation and mRNA expression data, we identified 153 negative (mainly in the upstream region) and 115 positive (mainly in the CDS regions) DMRs-DEGs correlated pairs, respectively. The negatively correlated DMRs-DEGs underlined Wnt and cell adhesion molecule binding as critical canonical pathways disrupted by DNA methylation. Eleven DMRs (in CAPS, FZD7, CDKN2A, PON3, KLF4, etc.), accompanied with a global DNA methylation marker, were validated in the replication samples. Whole-exome sequencing presented a relatively less dominated TP53 mutation in Chinese HGSOC compared to TCGA dataset. Unsupervised analysis of the three-level omics data identified differential methylation and expression subgroups based on tumor genetics, one of which presented increased DNA methylation and significantly associated with TP53 mutation. CONCLUSIONS Our individual and integrated analyses contribute details about the tissue-specific genetic and DNA methylation landscape of Chinese HGSOC.
Collapse
Affiliation(s)
- Fangfang Song
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Lian Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | | | - Yanrui Zhao
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Meng Yang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Xiangchun Li
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Jing Tian
- Department of Gynecological Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Caiyun Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Luyang Liu
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Qinghua Wang
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wei Zhang
- Wake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, USA; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, USA
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Tianjin, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
30
|
Comprehensive analysis of tumor necrosis factor receptor TNFRSF9 (4-1BB) DNA methylation with regard to molecular and clinicopathological features, immune infiltrates, and response prediction to immunotherapy in melanoma. EBioMedicine 2020; 52:102647. [PMID: 32028068 PMCID: PMC6997575 DOI: 10.1016/j.ebiom.2020.102647] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunotherapy, including checkpoint inhibition, has remarkably improved prognosis in advanced melanoma. Despite this success, acquired resistance is still a major challenge. The T cell costimulatory receptor TNFRSF9 (also known as 4-1BB and CD137) is a promising new target for immunotherapy and two agonistic antibodies are currently tested in clinical trials. However, little is known about epigenetic regulation of the encoding gene. In this study we investigate a possible correlation of TNFRSF9 DNA methylation with gene expression, clinicopathological parameters, molecular and immune correlates, and response to anti-PD-1 immunotherapy to assess the validity of TNFRSF9 methylation to serve as a biomarker. METHODS We performed a correlation analyses of methylation at twelve CpG sites within TNFRSF9 with regard to transcriptional activity, immune cell infiltration, mutation status, and survival in a cohort of N = 470 melanoma patients obtained from The Cancer Genome Atlas. Furthermore, we used quantitative methylation-specific PCR to confirm correlations in a cohort of N = 115 melanoma patients' samples (UHB validation cohort). Finally, we tested the ability of TNFRSF9 methylation and expression to predict progression-free survival (PFS) and response to anti-PD-1 immunotherapy in a cohort comprised of N = 121 patients (mRNA transcription), (mRNA ICB cohort) and a case-control study including N = 48 patients (DNA methylation, UHB ICB cohort). FINDINGS We found a significant inverse correlation between TNFRSF9 DNA methylation and mRNA expression levels at six of twelve analyzed CpG sites (P ≤ 0.005), predominately located in the promoter flank region. Consistent with its role as costimulatory receptor in immune cells, TNFRSF9 mRNA expression and hypomethylation positively correlated with immune cell infiltrates and an interferon-γ signature. Furthermore, elevated TNFRSF9 mRNA expression and TNFRSF9 hypomethylation correlated with superior overall survival. In patients receiving anti-PD-1 immunotherapy (mRNA ICB cohort), we found that TNFRSF9 hypermethylation and reduced mRNA expression correlated with poor PFS and response. INTERPRETATION Our study suggests that TNFRSF9 mRNA expression is regulated via DNA methylation. The observed correlations between TNFRSF9 DNA methylation or mRNA expression with known features of response to immune checkpoint blockage suggest TNFRSF9 methylation could serve as a biomarker in the context of immunotherapies. Concordantly, we identified a correlation between TNFRSF9 DNA methylation and mRNA expression with disease progression in patients under immunotherapy. Our study provides rationale for further investigating TNFRSF9 DNA methylation as a predictive biomarker for response to immunotherapy. FUNDING AF was partly funded by the Mildred Scheel Foundation. SF received funding from the University Hospital Bonn BONFOR program (O-105.0069). DN was funded in part by DFG Cluster of Excellence ImmunoSensation (EXC 1023). The funders had no role in study design, data collection and analysis, interpretation, decision to publish, or preparation of the manuscript; or any aspect pertinent to the study.
Collapse
|
31
|
Merrheim J, Villegas J, Van Wassenhove J, Khansa R, Berrih-Aknin S, le Panse R, Dragin N. Estrogen, estrogen-like molecules and autoimmune diseases. Autoimmun Rev 2020; 19:102468. [PMID: 31927086 DOI: 10.1016/j.autrev.2020.102468] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.
Collapse
Affiliation(s)
- Judith Merrheim
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - José Villegas
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Jérôme Van Wassenhove
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rémi Khansa
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Rozen le Panse
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; AIM, Institute of Myology, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France
| | - Nadine Dragin
- Sorbonne Université, Paris, France; Inserm UMRS 974, Paris, France; Inovarion, Paris, France; Centre de Recherche en Myologie, Sorbonne Université, Inserm UMRS 974, Hôpital La Pitié- Salpêtrière, 105 Bd de l'hôpital, 75013 Paris, France.
| |
Collapse
|
32
|
Dasinger JH, Alsheikh AJ, Abais-Battad JM, Pan X, Fehrenbach DJ, Lund H, Roberts ML, Cowley AW, Kidambi S, Kotchen TA, Liu P, Liang M, Mattson DL. Epigenetic Modifications in T Cells: The Role of DNA Methylation in Salt-Sensitive Hypertension. Hypertension 2019; 75:372-382. [PMID: 31838911 DOI: 10.1161/hypertensionaha.119.13716] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The SS (Dahl salt sensitive) rat is an established model of hypertension and renal damage that is accompanied with immune system activation in response to a high-salt diet. Investigations into the effects of sodium-independent and dependent components of the diet were shown to affect the disease phenotype with SS/MCW (JrHsdMcwi) rats maintained on a purified diet (AIN-76A) presenting with a more severe phenotype relative to grain-fed SS/CRL (JrHsdMcwiCrl) rats. Since contributions of the immune system, environment, and diet are documented to alter this phenotype, this present study examined the epigenetic profile of T cells isolated from the periphery and the kidney from these colonies. T cells isolated from kidneys of the 2 colonies revealed that transcriptomic and functional differences may contribute to the susceptibility of hypertension and renal damage. In response to high-salt challenge, the methylome of T cells isolated from the kidney of SS/MCW exhibit a significant increase in differentially methylated regions with a preference for hypermethylation compared with the SS/CRL kidney T cells. Circulating T cells exhibited similar methylation profiles between colonies. Utilizing transcriptomic data from T cells isolated from the same animals upon which the DNA methylation analysis was performed, a predominant negative correlation was observed between gene expression and DNA methylation in all groups. Lastly, inhibition of DNA methyltransferases blunted salt-induced hypertension and renal damage in the SS/MCW rats providing a functional role for methylation. This study demonstrated the influence of epigenetic modifications to immune cell function, highlighting the need for further investigations.
Collapse
Affiliation(s)
- John Henry Dasinger
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Ammar J Alsheikh
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Justine M Abais-Battad
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Xiaoqing Pan
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Daniel J Fehrenbach
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Hayley Lund
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Michelle L Roberts
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Allen W Cowley
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Srividya Kidambi
- Medicine (S.K., T.A.K.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Theodore A Kotchen
- Medicine (S.K., T.A.K.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Pengyuan Liu
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - Mingyu Liang
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| | - David L Mattson
- From the Departments of Physiology (J.H.D., A.J.A., J.M.A.-B., X.P., D.J.F., H.L., M.L.R., A.W.C., P.L., M.L., D.L.M.), Medical College of Wisconsin Milwaukee, Wisconsin, USA
| |
Collapse
|
33
|
Sailer V, Sailer U, Bawden EG, Zarbl R, Wiek C, Vogt TJ, Dietrich J, Loick S, Grünwald I, Toma M, Golletz C, Gerstner A, Kristiansen G, Bootz F, Scheckenbach K, Landsberg J, Dietrich D. DNA methylation of indoleamine 2,3-dioxygenase 1 (IDO1) in head and neck squamous cell carcinomas correlates with IDO1 expression, HPV status, patients' survival, immune cell infiltrates, mutational load, and interferon γ signature. EBioMedicine 2019; 48:341-352. [PMID: 31628024 PMCID: PMC6838413 DOI: 10.1016/j.ebiom.2019.09.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 01/07/2023] Open
Abstract
Background The immune checkpoint, indoleamine 2,3-dioxygenase 1, is under investigation as target of novel immunotherapies for cancers, including head and neck squamous cell carcinomas (HNSCC). The aim of our study was to analyze DNA methylation of the encoding gene (IDO1) in HNSCC. Methods Methylation of three CpG sites within the promoter, promoter flank, and gene body was investigated and correlated with mRNA expression, immune cell infiltration, mutational burden, human papillomavirus (HPV)-status, and overall survival in a cohort of N = 528 HNSCC patients obtained from The Cancer Genome Atlas. In addition, IDO1 immunohistochemistry and DNA methylation analysis was performed in an independent cohort of N = 138 HNSCC samples. Findings Significant inverse correlations of IDO1 methylation and IDO1 mRNA expression were found in the promoter and promoter flank region (Spearman's ρ = −0.163 and ρ = −0.377, respectively) while a positive correlation was present in the gene body (ρ = 0.502; all P < 0.001). IDO1 DNA methylation significantly correlated with IDO1 protein expressing immune cells as well as tumor cells. IDO1 promoter flank hypermethylation was significantly associated with poor overall survival (P < 0.001). In addition, we discovered significant correlations between IDO1 methylation and expression with RNA signatures of immune cell infiltrates and with HPV-status, mutational load (methylation only), and interferon γ signature. Interpretation Our results suggest IDO1 expression levels are epigenetically regulated by DNA methylation. This study provides rationale to test IDO1 methylation as potential biomarker for prediction of response to IDO1 immune checkpoint inhibitors in HNSCC.
Collapse
Affiliation(s)
- Verena Sailer
- Pathology of the University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Ulrike Sailer
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany
| | - Emma Grace Bawden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Romina Zarbl
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Timo J Vogt
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany
| | - Joern Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany
| | - Sophia Loick
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany
| | - Ingela Grünwald
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany
| | - Marieta Toma
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Carsten Golletz
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Andreas Gerstner
- Department of Otolaryngology, Head and Neck Surgery, Municipal Hospital Braunschweig, Braunschweig, Germany
| | | | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany
| | - Kathrin Scheckenbach
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Street 25, 53105 Bonn, Germany.
| |
Collapse
|
34
|
Voigt EA, Ovsyannikova IG, Kennedy RB, Grill DE, Goergen KM, Schaid DJ, Poland GA. Sex Differences in Older Adults' Immune Responses to Seasonal Influenza Vaccination. Front Immunol 2019; 10:180. [PMID: 30873150 PMCID: PMC6400991 DOI: 10.3389/fimmu.2019.00180] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Sex differences in immune responses to influenza vaccine may impact efficacy across populations. Methods: In a cohort of 138 older adults (50-74 years old), we measured influenza A/H1N1 antibody titers, B-cell ELISPOT response, PBMC transcriptomics, and PBMC cell compositions at 0, 3, and 28 days post-immunization with the 2010/11 seasonal inactivated influenza vaccine. Results: We identified higher B-cell ELISPOT responses in females than males. Potential mechanisms for sex effects were identified in four gene clusters related to T, NK, and B cells. Mediation analysis indicated that sex-dependent expression in T and NK cell genes can be partially attributed to higher CD4+ T cell and lower NK cell fractions in females. We identified strong sex effects in 135 B cell genes whose expression correlates with ELISPOT measures, and found that cell subset differences did not explain the effect of sex on these genes' expression. Post-vaccination expression of these genes, however, mediated 41% of the sex effect on ELISPOT responses. Conclusions: These results improve our understanding of sexual dimorphism in immunity and influenza vaccine response.
Collapse
Affiliation(s)
- Emily A. Voigt
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | | | - Richard B. Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Diane E. Grill
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Krista M. Goergen
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Daniel J. Schaid
- Division of Biostatistics, Mayo Clinic, Rochester, MN, United States
| | - Gregory A. Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
35
|
Yang X, Feng L, Zhang Y, Shi Y, Liang S, Zhao T, Sun B, Duan J, Sun Z. Integrative analysis of methylome and transcriptome variation of identified cardiac disease-specific genes in human cardiomyocytes after PM 2.5 exposure. CHEMOSPHERE 2018; 212:915-926. [PMID: 30286548 DOI: 10.1016/j.chemosphere.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/29/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
PM2.5 exposure is strongly linked to cardiac disease. Subtle epigenetic or transcriptional alterations induced by PM2.5 might contribute to pathogenesis and disease susceptibility of cardiac disease. It is still a major challenge to identify biological targets in human genetics. Human cardiomyocytes AC16 was chosen as cell model. Epigenetic effect of PM2.5 in AC16 was analyzed using Illumina HumanMethylation 450 K BeadChip. Meanwhile the transcriptomic profiling was performed by Affymetrix® microarray. PM2.5 induced genome wide variation of DNA methylation pattern, including differentially methylated CpGs in promoter region. Then gene ontology analysis demonstrated differentially methylated genes were significantly clustered in pathways in regulation of apoptotic process, cell death and metabolic pathways, or associated with ion binding and shuttling. Correlation of the methylome and transcriptome revealed a clear bias toward transcriptional suppression by hypermethylation or activation by hypomethylation. Identified 386 genes which exhibited both differential methylation and expression were functionally associated with pathways including cardiovascular system development, regulation of blood vessel size, vasculature development, p53 pathway, AC-modulating/inhibiting GPCRs pathway and cellular response to metal ion/inorganic substance. Disease ontology demonstrated their prominent role in cardiac diseases and identified 14 cardiac-specific genes (ANK2, AQP1 et al.). PPI network analysis revealed 6 novel genes (POLR2I, LEP, BRIX1, ADCY6, INSL3, RARS). Those genes were then verified by qRT-PCR. Thus, in AC16, PM2.5 alters the methylome and transcriptome of genes might be relevant for PM2.5-/heart-associated diseases. Result gives additional insight in PM2.5 relative cardiac diseases/associated genes and the potential mechanisms that contribute to PM2.5 related cardiac disease.
Collapse
Affiliation(s)
- Xiaozhe Yang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lin Feng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yannan Zhang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tong Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
36
|
Abstract
Biological sex is a determinant of both susceptibility to and pathogenesis of multiple infections, including HIV. These differences have effects on the spectrum of HIV disease from acquisition to eradication, with diverse mechanisms including distinct chromosomal complements, variation in microbiota composition, hormonal effects on transcriptional profiles, and expression of different immunoregulatory elements. With a comparative biology approach, these sex differences can be used to highlight protective and detrimental immune activation pathways, to identify strategies for effective prevention, treatment, and curative interventions.
Collapse
Affiliation(s)
- Eileen P Scully
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine
| |
Collapse
|
37
|
Bauer M. Cell-type-specific disturbance of DNA methylation pattern: a chance to get more benefit from and to minimize cohorts for epigenome-wide association studies. Int J Epidemiol 2018; 47:917-927. [DOI: 10.1093/ije/dyy029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Affiliation(s)
- Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, UFZ, Permoserst, 15, 04318 Leipzig, Germany
| |
Collapse
|
38
|
Vogt TJ, Gevensleben H, Dietrich J, Kristiansen G, Bootz F, Landsberg J, Goltz D, Dietrich D. Detailed analysis of adenosine A2a receptor ( ADORA2A) and CD73 (5'-nucleotidase, ecto, NT5E) methylation and gene expression in head and neck squamous cell carcinoma patients. Oncoimmunology 2018; 7:e1452579. [PMID: 30221045 PMCID: PMC6136855 DOI: 10.1080/2162402x.2018.1452579] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
Background: The adenosine A2a receptor (A2aR) and the adenosine synthesizing enzyme CD73 have recently evolved as a novel immunotherapeutic target. However, little is known about epigenetic modification of the encoding genes ADORA2A and NT5E. Methods: In the present study, we evaluated methylation at 23 loci of ADORA2A and 17 loci of NT5E with regard to transcriptional activity, human papilloma virus (HPV) status, immune cell infiltration, and outcome in a cohort of 279 head and neck squamous carcinoma (HNSCC) patients obtained from The Cancer Genome Atlas (TCGA). Methylation and mRNA expression were generated by the Infinium HumanMethylation450 BeadChip and Illumina HiSeq 2000 RNA Sequencing Version 2 analysis (Illumina, Inc., San Diego, CA, USA). HPV status was assessed by RNA-Seq data analysis of the viral genes E6 and E7. Results: Thirteen out of 23 ADORA2A loci and 15/17 NT5E loci were significantly correlated with mRNA levels (p < 0.05). Inverse correlations were predominately found in promoter regions, while positive correlations were more profound at intragenic loci. ADORA2A hypermethylation was significantly associated with poor overall survival (OS, p ≤ 0.030), whereas NT5E hypomethylation was associated with decreased OS in HPV-positive tumors (p ≤ 0.024) and increased OS in HPV-negative HNSCC (p ≤ 0.029). Further, we found significant correlations between methylation and immune cell infiltrates. Conclusion: Our data might point towards a significant role of the A2aR/CD73 axis during cancer progression in HNSCC.
Collapse
Affiliation(s)
- Timo J. Vogt
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Jörn Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | | | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW This review will outline the multilevel effects of biological sex on HIV acquisition, pathogenesis, treatment response, and prospects for cure. Potential mechanisms will be discussed along with future research directions. RECENT FINDINGS HIV acquisition risk is modified by sex hormones and the vaginal microbiome, with the latter acting through both inflammation and local metabolism of pre-exposure prophylaxis drugs. Female sex associates with enhanced risk for non-AIDS morbidities including cardiovascular and cerebrovascular disease, suggesting different inflammatory profiles in men and women. Data from research on HIV cure points to sex differences in viral reservoir dynamics and a direct role for sex hormones in latency maintenance. Biological sex remains an important variable in determining the risk of HIV infection and subsequent viral pathogenesis, and emerging data suggest sex differences relevant to curative interventions. Recruitment of women in HIV clinical research is a pathway to both optimize care for women and to identify novel therapeutics for use in both men and women.
Collapse
Affiliation(s)
- Eileen P Scully
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Pre-Clinical Teaching Building, Suite 211, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
40
|
Zika Virus Infection Preferentially Counterbalances Human Peripheral Monocyte and/or NK Cell Activity. mSphere 2018; 3:mSphere00120-18. [PMID: 29600283 PMCID: PMC5874443 DOI: 10.1128/mspheredirect.00120-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) has reemerged in the population and caused unprecedented global outbreaks. Here, the transcriptomic consequences of ZIKV infection were studied systematically first in human peripheral blood CD14+ monocytes and monocyte-derived macrophages with high-density RNA sequencing. Analyses of the ZIKV genome revealed that the virus underwent genetic diversification, and differential mRNA abundance was found in host cells during infection. Notably, there was a significant change in the cellular response, with cross talk between monocytes and natural killer (NK) cells as one of the highly identified pathways. Immunophenotyping of peripheral blood from ZIKV-infected patients further confirmed the activation of NK cells during acute infection. ZIKV infection in peripheral blood cells isolated from healthy donors led to the induction of gamma interferon (IFN-γ) and CD107a-two key markers of NK cell function. Depletion of CD14+ monocytes from peripheral blood resulted in a reduction of these markers and reduced priming of NK cells during infection. This was complemented by the immunoproteomic changes observed. Mechanistically, ZIKV infection preferentially counterbalances monocyte and/or NK cell activity, with implications for targeted cytokine immunotherapies. IMPORTANCE ZIKV reemerged in recent years, causing outbreaks in many parts of the world. Alarmingly, ZIKV infection has been associated with neurological complications such as Guillain-Barré syndrome (GBS) in adults and congenital fetal growth-associated anomalies in newborns. Host peripheral immune cells are one of the first to interact with the virus upon successful transmission from an infected female Aedes mosquito. However, little is known about the role of these immune cells during infection. In this work, the immune responses of monocytes, known target cells of ZIKV infection, were investigated by high-density transcriptomics. The analysis saw a robust immune response being elicited. Importantly, it also divulged that monocytes prime NK cell activities during virus infection. Removal of monocytes during the infection changed the immune milieu, which in turn reduced NK cell stimulation. This study provides valuable insights into the pathobiology of the virus and allows for the possibility of designing novel targeted therapeutics.
Collapse
|
41
|
Ho B, Greenlaw K, Al Tuwaijri A, Moussette S, Martínez F, Giorgio E, Brusco A, Ferrero GB, Linhares ND, Valadares ER, Svartman M, Kalscheuer VM, Rodríguez Criado G, Laprise C, Greenwood CMT, Naumova AK. X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells. Biol Sex Differ 2018; 9:10. [PMID: 29463315 PMCID: PMC5819645 DOI: 10.1186/s13293-018-0169-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sexual dimorphism in DNA methylation levels is a recurrent epigenetic feature in different human cell types and has been implicated in predisposition to disease, such as psychiatric and autoimmune disorders. To elucidate the genetic origins of sex-specific DNA methylation, we examined DNA methylation levels in fibroblast cell lines and blood cells from individuals with different combinations of sex chromosome complements and sex phenotypes focusing on a single autosomal region--the differentially methylated region (DMR) in the promoter of the zona pellucida binding protein 2 (ZPBP2) as a reporter. RESULTS Our data show that the presence of the sex determining region Y (SRY) was associated with lower methylation levels, whereas higher X chromosome dosage in the absence of SRY led to an increase in DNA methylation levels at the ZPBP2 DMR. We mapped the X-linked modifier of DNA methylation to the long arm of chromosome X (Xq13-q21) and tested the impact of mutations in the ATRX and RLIM genes, located in this region, on methylation levels. Neither ATRX nor RLIM mutations influenced ZPBP2 methylation in female carriers. CONCLUSIONS We conclude that sex-specific methylation differences at the autosomal locus result from interaction between a Y-linked factor SRY and at least one X-linked factor that acts in a dose-dependent manner.
Collapse
Affiliation(s)
- Bianca Ho
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Abeer Al Tuwaijri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre (MUHC), 1001 Decarie Blvd., Bloc E, Room EM03226, Montreal, Quebec, H4A 3J1, Canada
| | - Francisco Martínez
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, 46026, Valencia, Spain
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126, Turin, Italy
| | | | - Natália D Linhares
- Setor de Citogenética, Laboratório Central do Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Eugênia R Valadares
- Departamento de Propedêutica Complementar, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Ambulatório de Erros Inatos do Metabolismo, Hospital das Clínicas da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marta Svartman
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vera M Kalscheuer
- Research Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Centre intégré universitaire de santé et services sociaux du Saguenay, Lac-Saint-Jean, Saguenay, Quebec, Canada
- Centre de santé et de services sociaux de Chicoutimi, Saguenay, Québec, Canada
| | - Celia M T Greenwood
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Research Institute, Montréal, Quebec, Canada
- Departments of Oncology and Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
- The Research Institute of the McGill University Health Centre (MUHC), 1001 Decarie Blvd., Bloc E, Room EM03226, Montreal, Quebec, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
42
|
White N, Benton M, Kennedy D, Fox A, Griffiths L, Lea R, Mengersen K. Accounting for cell lineage and sex effects in the identification of cell-specific DNA methylation using a Bayesian model selection algorithm. PLoS One 2017; 12:e0182455. [PMID: 28957352 PMCID: PMC5619727 DOI: 10.1371/journal.pone.0182455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/18/2017] [Indexed: 01/22/2023] Open
Abstract
Cell- and sex-specific differences in DNA methylation are major sources of epigenetic variation in whole blood. Heterogeneity attributable to cell type has motivated the identification of cell-specific methylation at the CpG level, however statistical methods for this purpose have been limited to pairwise comparisons between cell types or between the cell type of interest and whole blood. We developed a Bayesian model selection algorithm for the identification of cell-specific methylation profiles that incorporates knowledge of shared cell lineage and allows for the identification of differential methylation profiles in one or more cell types simultaneously. Under the proposed methodology, sex-specific differences in methylation by cell type are also assessed. Using publicly available, cell-sorted methylation data, we show that 51.3% of female CpG markers and 61.4% of male CpG markers identified were associated with differential methylation in more than one cell type. The impact of cell lineage on differential methylation was also highlighted. An evaluation of sex-specific differences revealed differences in CD56+NK methylation, within both single and multi- cell dependent methylation patterns. Our findings demonstrate the need to account for cell lineage in studies of differential methylation and associated sex effects.
Collapse
Affiliation(s)
- Nicole White
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Miles Benton
- Genomics Research Center, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Daniel Kennedy
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew Fox
- Florey Department of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | - Lyn Griffiths
- Genomics Research Center, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Rodney Lea
- Genomics Research Center, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kerrie Mengersen
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
43
|
Bravo-Alegria J, McCullough LD, Liu F. Sex differences in stroke across the lifespan: The role of T lymphocytes. Neurochem Int 2017; 107:127-137. [PMID: 28131898 PMCID: PMC5461203 DOI: 10.1016/j.neuint.2017.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 12/22/2022]
Abstract
Stroke is a sexually dimorphic disease. Ischemic sensitivity changes throughout the lifespan and outcomes depend largely on variables like age, sex, hormonal status, inflammation, and other existing risk factors. Immune responses after stroke play a central role in how these factors interact. Although the post-stroke immune response has been extensively studied, the contribution of lymphocytes to stroke is still not well understood. T cells participate in both innate and adaptive immune responses at both acute and chronic stages of stroke. T cell responses also change at different ages and are modulated by hormones and sex chromosome complement. T cells have also been implicated in the development of hypertension, one of the most important risk factors for vascular disease. In this review, we highlight recent literature on the lymphocytic responses to stroke in the context of age and sex, with a focus on T cell response and the interaction with important stroke risk factors.
Collapse
Affiliation(s)
- Javiera Bravo-Alegria
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Louise D McCullough
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Fudong Liu
- Department of Neurology, Univeristy of Texas Health Science Center at Houston, Houston, TX, 77030, United States.
| |
Collapse
|
44
|
Mamrut S, Avidan N, Truffault F, Staun-Ram E, Sharshar T, Eymard B, Frenkian M, Pitha J, de Baets M, Servais L, Berrih-Aknin S, Miller A. Methylome and transcriptome profiling in Myasthenia Gravis monozygotic twins. J Autoimmun 2017; 82:62-73. [PMID: 28549776 DOI: 10.1016/j.jaut.2017.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To identify novel genetic and epigenetic factors associated with Myasthenia gravis (MG) using an identical twins experimental study design. METHODS The transcriptome and methylome of peripheral monocytes were compared between monozygotic (MZ) twins discordant and concordant for MG, as well as with MG singletons and healthy controls, all females. Sets of differentially expressed genes and differentially methylated CpGs were validated using RT-PCR for expression and target bisulfite sequencing for methylation on additional samples. RESULTS >100 differentially expressed genes and ∼1800 differentially methylated CpGs were detected in peripheral monocytes between MG patients and controls. Several transcripts associated with immune homeostasis and inflammation resolution were reduced in MG patients. Only a relatively few genes differed between the discordant healthy and MG co-twins, and both their expression and methylation profiles demonstrated very high similarity. INTERPRETATION This is the first study to characterize the DNA methylation profile in MG, and the expression profile of immune cells in MZ twins with MG. Results suggest that numerous small changes in gene expression or methylation might together contribute to disease. Impaired monocyte function in MG and decreased expression of genes associated with inflammation resolution could contribute to the chronicity of the disease. Findings may serve as potential new predictive biomarkers for disease and disease activity, as well as potential future targets for therapy development. The high similarity between the healthy and the MG discordant twins, suggests that a molecular signature might precede a clinical phenotype, and that genetic predisposition may have a stronger contribution to disease than previously assumed.
Collapse
Affiliation(s)
- Shimrat Mamrut
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Nili Avidan
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Frédérique Truffault
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, 75013, France
| | - Mélinée Frenkian
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Jiri Pitha
- Department of Neurology and Clinical Neuroscience Center, 1st Faculty of Medicine, Charles University and General Teaching Hospital, Prague, Czech Republic
| | - Marc de Baets
- Neuroimmunology Group, Division of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Laurent Servais
- Institute of Myology, Groupe hospitalier Pitié-Salpêtrière, AP-HP, Sorbonne Universités, UPMC Universités Paris 06, INSERM, Paris, 75013, France
| | - Sonia Berrih-Aknin
- INSERM - U974/CNRS UMR7215//UPMC UM76/AIM, Institute of Myology Pitie-Salpetriere, Paris, 73013, France
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096, Israel; Division of Neuroimmunology, Lady Davis Carmel Medical Center, Haifa, 34362, Israel.
| |
Collapse
|
45
|
Bell CG, Xia Y, Yuan W, Gao F, Ward K, Roos L, Mangino M, Hysi PG, Bell J, Wang J, Spector TD. Novel regional age-associated DNA methylation changes within human common disease-associated loci. Genome Biol 2016; 17:193. [PMID: 27663977 PMCID: PMC5034469 DOI: 10.1186/s13059-016-1051-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Background Advancing age progressively impacts on risk and severity of chronic disease. It also modifies the epigenome, with changes in DNA methylation, due to both random drift and variation within specific functional loci. Results In a discovery set of 2238 peripheral-blood genome-wide DNA methylomes aged 19–82 years, we identify 71 age-associated differentially methylated regions within the linkage disequilibrium blocks of the single nucleotide polymorphisms from the NIH genome-wide association study catalogue. This included 52 novel regions, 29 within loci not covered by 450 k or 27 k Illumina array, and with enrichment for DNase-I Hypersensitivity sites across the full range of tissues. These age-associated differentially methylated regions also show marked enrichment for enhancers and poised promoters across multiple cell types. In a replication set of 2084 DNA methylomes, 95.7 % of the age-associated differentially methylated regions showed the same direction of ageing effect, with 80.3 % and 53.5 % replicated to p < 0.05 and p < 1.85 × 10–8, respectively. Conclusion By analysing the functionally enriched disease and trait-associated regions of the human genome, we identify novel epigenetic ageing changes, which could be useful biomarkers or provide mechanistic insights into age-related common diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1051-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher G Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK. .,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK. .,Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK. .,Epigenomic Medicine, Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK.
| | | | - Wei Yuan
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.,Institute of Cancer Research, Sutton, UK
| | - Fei Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Kirsten Ward
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Leonie Roos
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Pirro G Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jordana Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
46
|
Abstract
In this review, we highlight promising new discoveries that may generate useful and clinically relevant insights into the mechanisms that link exercise with growth during critical periods of development. Growth in childhood and adolescence is unique among mammals and is a dynamic process regulated by an evolution of hormonal and inflammatory mediators, age-dependent progression of gene expression, and environmentally modulated epigenetic mechanisms. Many of these same processes likely affect molecular transducers of physical activity. How the molecular signaling associated with growth is synchronized with signaling associated with exercise is poorly understood. Recent advances in "omics"-namely genomics and epigenetics, metabolomics, and proteomics-now provide exciting approaches and tools that can be used for the first time to address this gap. A biologic definition of "healthy" exercise that links the metabolic transducers of physical activity with parallel processes that regulate growth will transform health policy and guidelines that promote optimal use of physical activity.
Collapse
|