1
|
Han M, Zeng D, Tan W, Chen X, Bai S, Wu Q, Chen Y, Wei Z, Mei Y, Zeng Y. Brain region-specific roles of brain-derived neurotrophic factor in social stress-induced depressive-like behavior. Neural Regen Res 2025; 20:159-173. [PMID: 38767484 PMCID: PMC11246125 DOI: 10.4103/nrr.nrr-d-23-01419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 05/22/2024] Open
Abstract
Brain-derived neurotrophic factor is a key factor in stress adaptation and avoidance of a social stress behavioral response. Recent studies have shown that brain-derived neurotrophic factor expression in stressed mice is brain region-specific, particularly involving the corticolimbic system, including the ventral tegmental area, nucleus accumbens, prefrontal cortex, amygdala, and hippocampus. Determining how brain-derived neurotrophic factor participates in stress processing in different brain regions will deepen our understanding of social stress psychopathology. In this review, we discuss the expression and regulation of brain-derived neurotrophic factor in stress-sensitive brain regions closely related to the pathophysiology of depression. We focused on associated molecular pathways and neural circuits, with special attention to the brain-derived neurotrophic factor-tropomyosin receptor kinase B signaling pathway and the ventral tegmental area-nucleus accumbens dopamine circuit. We determined that stress-induced alterations in brain-derived neurotrophic factor levels are likely related to the nature, severity, and duration of stress, especially in the above-mentioned brain regions of the corticolimbic system. Therefore, BDNF might be a biological indicator regulating stress-related processes in various brain regions.
Collapse
Affiliation(s)
- Man Han
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Deyang Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Xingxing Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuyuan Bai
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiong Wu
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yushan Chen
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhen Wei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yufei Mei
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei Province, China
- School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Pardossi S, Fagiolini A, Cuomo A. Variations in BDNF and Their Role in the Neurotrophic Antidepressant Mechanisms of Ketamine and Esketamine: A Review. Int J Mol Sci 2024; 25:13098. [PMID: 39684808 DOI: 10.3390/ijms252313098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is critical for neuroplasticity, synaptic transmission, and neuronal survival. Studies have implicated it in the pathophysiology of depression, as its expression is significantly reduced in brain areas such as the prefrontal cortex and hippocampus in patients with depression. Our narrative review focuses on the relationship between BDNF, ketamine, and esketamine, specifically by summarizing human studies investigating BDNF variations in patients treated with these two drugs. BDNF plays a pivotal role in neuroplasticity and neurotrophic mechanisms that can be enhanced by traditional antidepressants, which have been shown to increase BDNF levels both peripherally and in targeted brain regions. Ketamine and its S-enantiomer, esketamine, exert both rapid and sustained antidepressant effects through activation of glutamate-related pathways, with neurotrophic effects involving BDNF, as demonstrated in experimental studies. However, clinical findings have shown mixed results, with most indicating an increase in plasma BDNF in patients treated with intravenous ketamine, although some studies contradict these findings. In addition to this, there are few studies of BDNF and esketamine. Currently, the limited number of studies suggests the need for further research, including larger sample sizes and investigations of BDNF and intranasal esketamine, which has been approved by several regulatory agencies for the treatment of treatment-resistant depression.
Collapse
Affiliation(s)
- Simone Pardossi
- Department of Molecular Medicine, University of Siena School of Medicine, 53100 Siena, Italy
| | - Andrea Fagiolini
- Department of Molecular Medicine, University of Siena School of Medicine, 53100 Siena, Italy
| | - Alessandro Cuomo
- Department of Molecular Medicine, University of Siena School of Medicine, 53100 Siena, Italy
| |
Collapse
|
3
|
Göver T, Slezak M. Targeting glucocorticoid receptor signaling pathway for treatment of stress-related brain disorders. Pharmacol Rep 2024; 76:1333-1345. [PMID: 39361217 PMCID: PMC11582215 DOI: 10.1007/s43440-024-00654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 11/22/2024]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis plays a central role in governing stress-related disorders such as major depressive disorder (MDD), anxiety, and post-traumatic stress disorder. Chronic stress or early life trauma, known risk factors of disease, alter HPA axis activity and pattern of glucocorticoid (GC) secretion. These changes have consequences for physiological processes controlled by glucocorticoid receptor (GR) signaling, such as immune response and metabolism. In the brain, the aberrant GR signaling translates to altered behavior, making the GR pathway a viable target for therapies of stress-related disorders. One of the crucial elements of the pathway is FKBP5, a regulator of GR sensitivity and feedback control within the HPA axis, in which genetic variants were shown to moderate the risk of developing psychiatric conditions. The difficulty in targeting the GR-FKBP5 pathway stems from tailoring the intervention to specific brain regions and cell types, in the context of personalized genetic variations in GR and GR-associated genes, like FKBP5. The development of selective inhibitors, antagonists, and approaches based on targeted protein degradation offer insights into mechanistic aspects of disease and pave the way for improved therapy. These strategies can be employed either independently or in conjunction with conventional medications. Concomitant advancements in personalized drug screening (e.g. in vitro models exploiting induced pluripotent stem cells, iPSCs) bring the potential for optimization of therapy aiming to rescue central deficits originating from the HPA imbalance. In this mini-review, we discuss potential therapeutic strategies targeting GR signaling in stress-related disorders, with a focus on personalized approaches and advancements in drug development.
Collapse
Affiliation(s)
- Tansu Göver
- Lukasiewicz Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066, Wroclaw, Poland
- Department of Biophysics and Neuroscience, Wroclaw Medical University, ul. Chałubińskiego 3A, 50-368, Wroclaw, Poland
| | - Michal Slezak
- Lukasiewicz Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066, Wroclaw, Poland.
| |
Collapse
|
4
|
Al‐kuraishy HM, Sulaiman GM, Mohammed HA, Albukhaty S, Albuhadily AK, Al‐Gareeb AI, Klionsky DJ, Abomughaid MM. The Compelling Role of Brain-Derived Neurotrophic Factor Signaling in Multiple Sclerosis: Role of BDNF Activators. CNS Neurosci Ther 2024; 30:e70167. [PMID: 39654365 PMCID: PMC11628746 DOI: 10.1111/cns.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/14/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin, acting as a neurotrophic signal and neuromodulator in the central nervous system (CNS). BDNF is synthesized from its precursor proBDNF within the CNS and peripheral tissues. Through activation of NTRK2/TRKB (neurotrophic receptor tyrosine kinase 2), BDNF promotes neuronal survival, synaptic plasticity, and neuronal growth, whereas it inhibits microglial activation and the release of pro-inflammatory cytokines. BDNF is dysregulated in different neurodegenerative diseases and depressions. However, there is a major controversy concerning BDNF levels in the different stages of multiple sclerosis (MS). Therefore, this review discusses the potential role of BDNF signaling in stages of MS, and how BDNF modulators affect the pathogenesis and outcomes of this disease.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | - Ghassan M. Sulaiman
- Division of Biotechnology, Department of Applied SciencesUniversity of TechnologyBaghdadIraq
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of PharmacyQassim UniversityQassimSaudi Arabia
| | | | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | | | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesUniversity of BishaBishaSaudi Arabia
| |
Collapse
|
5
|
Calder AE, Hase A, Hasler G. Effects of psychoplastogens on blood levels of brain-derived neurotrophic factor (BDNF) in humans: a systematic review and meta-analysis. Mol Psychiatry 2024:10.1038/s41380-024-02830-z. [PMID: 39613915 DOI: 10.1038/s41380-024-02830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Peripheral levels of brain-derived neurotrophic factor (BDNF) are often used as a biomarker for the rapid plasticity-promoting effects of ketamine, psychedelics, and other psychoplastogens in humans. However, studies analyzing peripheral BDNF after psychoplastogen exposure show mixed results. In this meta-analysis, we aimed to test whether the rapid upregulation of neuroplasticity seen in preclinical studies is detectable using peripheral BDNF in humans. METHODS This analysis was pre-registered (PROSPERO ID: CRD42022333096) and funded by the University of Fribourg. We systematically searched PubMed, Web of Science, and PsycINFO to meta-analyze the effects of all available psychoplastogens on peripheral BDNF levels in humans, including ketamine, esketamine, LSD, psilocybin, ayahuasca, DMT, MDMA, scopolamine, and rapastinel. Risk of bias was assessed using Cochrane Risk of Bias Tools. Using meta-regressions and mixed effects models, we additionally analyzed the impact of several potential moderators. RESULTS We included 29 studies and found no evidence that psychoplastogens elevate peripheral BDNF levels in humans (SMD = 0.024, p = 0.64). This result was not affected by drug, dose, blood fraction, participant age, or psychiatric diagnoses. In general, studies with better-controlled designs and fewer missing values reported smaller effect sizes. Later measurement timepoints showed minimally larger effects on BDNF. CONCLUSION These data suggest that peripheral BDNF levels do not change after psychoplastogen administration in humans. It is possible that peripheral BDNF is not an informative marker of rapid changes in neuroplasticity, or that preclinical findings on psychoplastogens and neuroplasticity may not translate to human subjects. Limitations of this analysis include the reliability and validity of BDNF measurement and low variation in some potential moderators. More precise methods of measuring rapid changes in neuroplasticity, including neuroimaging and stimulation-based methods, are recommended for future studies attempting to translate preclinical findings to humans.
Collapse
Affiliation(s)
- Abigail E Calder
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Adrian Hase
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Gregor Hasler
- Molecular Psychiatry Lab, Department of Medicine, University of Fribourg, Fribourg, Switzerland.
- Fribourg Mental Health Network, Chemin du Cardinal-Journet 3, 1752, Villars-sur-Glâne, Switzerland.
- Lake Lucerne Institute, Vitznau, Switzerland.
| |
Collapse
|
6
|
McIntosh R, Lobo J, Szeto A, Hidalgo M, Kolber M. Medial prefrontal cortex connectivity with the nucleus accumbens is related to HIV serostatus, perceptions of psychological stress, and monocyte expression of TNF-a. Brain Behav Immun Health 2024; 41:100844. [PMID: 39328275 PMCID: PMC11424805 DOI: 10.1016/j.bbih.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Post-menopausal persons living with HIV (PWH) report elevated levels of psychological stress and monocyte activation compared to persons living without HIV (PWOH). Resting state functional connectivity (rsFC) of mesolimbic brain regions underpinning stress and emotion regulation are susceptible to inflammatory insult. Although psychological stress is elevated, rsFC reduced, and CD16+ monocytes overexpressed in the brains of PWH, it is unclear whether the relationships amongst these variables differ compared to PWOH. An ethnically diverse sample of postmenopausal women, 24 PWH and 30 PWOH provided self-report mood surveys and provided peripheral blood specimens to quantify LPS-stimulated CD16+/- expression of TNF-α via flow cytometric analysis. An anatomical and resting state functional MRI scan were used to derive time-series metrics of connectivity between the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAcc) as well as the amygdala. A positive association was observed between levels of perceived stress and CD16+/- TNF-α in both LPS-stimulated and unstimulated cells. PLWH showed lower connectivity between mPFC and NAcc. In turn, lower rsFC between these regions predicted greater psychological stress and proportion of CD16-, but not CD16+, cells expression of TNF-α. Neuroimmune effects of monocyte inflammation on the functional connectivity of mesolimbic regions critical for discrimination of uncertainty-safety and reward signals were observed in an ethnically diverse sample of postmenopausal women living with and without HIV. PWH showed lower mPFC-NAcc functional connectivity, which in turn was associated with greater perceived stress.
Collapse
Affiliation(s)
- Roger McIntosh
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | - Judith Lobo
- University of California San Diego, HIV Neurobehavioral Research Program, United States
| | - Angela Szeto
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | | | - Michael Kolber
- University of Miami, Miller School of Medicine, United States
| |
Collapse
|
7
|
Kupferberg A, Hasler G. From antidepressants and psychotherapy to oxytocin, vagus nerve stimulation, ketamine and psychedelics: how established and novel treatments can improve social functioning in major depression. Front Psychiatry 2024; 15:1372650. [PMID: 39469469 PMCID: PMC11513289 DOI: 10.3389/fpsyt.2024.1372650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
Social cognitive deficits and social behavior impairments are common in major depressive disorder (MDD) and affect the quality of life and recovery of patients. This review summarizes the impact of standard and novel treatments on social functioning in MDD and highlights the potential of combining different approaches to enhance their effectiveness. Standard treatments, such as antidepressants, psychotherapies, and brain stimulation, have shown mixed results in improving social functioning, with some limitations and side effects. Newer treatments, such as intranasal oxytocin, mindfulness-based cognitive therapy, and psychedelic-assisted psychotherapy, have demonstrated positive effects on social cognition and behavior by modulating self-referential processing, empathy, and emotion regulation and through enhancement of neuroplasticity. Animal models have provided insights into the neurobiological mechanisms underlying these treatments, such as the role of neuroplasticity. Future research should explore the synergistic effects of combining different treatments and investigate the long-term outcomes and individual differences in response to these promising interventions.
Collapse
Affiliation(s)
- Aleksandra Kupferberg
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
| | - Gregor Hasler
- Molecular Psychiatry Lab, Faculty of Science and Medicine, University of Freiburg, Villars-sur-Glâne, Switzerland
- University Psychiatry Research Unit, Freiburg Mental Health Network, Villars-sur-Glâne, Switzerland
- Department of Neuropsychology, Lake Lucerne Institute, Vitznau, Switzerland
| |
Collapse
|
8
|
Ehrhardt M, Schreiber S, Duderstadt Y, Braun‐Dullaeus R, Borucki K, Brigadski T, Müller NG, Leßmann V, Müller P. Circadian rhythm of brain-derived neurotrophic factor in serum and plasma. Exp Physiol 2024; 109:1755-1767. [PMID: 39105714 PMCID: PMC11442779 DOI: 10.1113/ep091671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
The neurotrophic growth factor brain-derived neurotrophic factor (BDNF) plays a crucial role in various neurodegenerative and psychiatric diseases, such as Alzheimer's disease, schizophrenia and depression. BDNF has been proposed as a potential biomarker for diagnosis, prognosis and monitoring therapy. Understanding the factors influencing BDNF levels and whether they follow a circadian rhythm is essential for interpreting fluctuations in BDNF measurements. We aimed to investigate the circadian rhythm of BDNF by collecting multiple peripheral venous blood samples from young, healthy male participants at 12 different time points over 24 h. In addition, vital parameters, cortisol and insulin like growth factor 1 (IGF1) were measured to explore potential regulatory mechanisms, interfering variables and their correlations with BDNF concentration. The findings revealed that plasma BDNF did not exhibit any significant fluctuations over 24 h, suggesting the absence of a circadian rhythm. However, serum BDNF levels decreased during sleep. Furthermore, serum BDNF showed a positive correlation with heart rate but a negative correlation with IGF1. No significant correlation was observed between cortisol and BDNF or IGF1. Although plasma BDNF suggests steady-state conditions, the decline of serum BDNF during the nocturnal period could be attributed to physical inactivity and associated with reduced haemodynamic blood flow (heart rate reduction during sleep). The type of sample collection (peripheral venous cannula vs. blood sampling using a butterfly system) does not significantly affect the measured BDNF levels. The sample collection during the day did not significantly affect BDNF analysis, emphasizing the importance of considering activity levels rather than timing when designing standardized protocols for BDNF assessments.
Collapse
Affiliation(s)
- Maren Ehrhardt
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- Division of NeurologyUniversity Hospital MagdeburgMagdeburgGermany
- Department of Neurology, Medical FacultyHeinrich Heine UniversityDüsseldorfGermany
| | - Yves Duderstadt
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Institute of Sport ScienceOtto‐von‐Guericke UniversityMagdeburgGermany
| | | | - Katrin Borucki
- Institute of Clinical Chemistry and PathobiochemistryOtto‐von‐Guericke UniversityMagdeburgGermany
| | - Tanja Brigadski
- Institute of PhysiologyOtto‐von‐Guericke UniversityMagdeburgGermany
- Department of Informatics and Microsystems TechnologyUniversity of Applied Sciences KaiserslauternZweibrückenGermany
| | - Notger G. Müller
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Degenerative and Chronic Diseases, Faculty of Health Sciences BrandenburgUniversity of PotsdamPotsdamGermany
| | - Volkmar Leßmann
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- Institute of PhysiologyOtto‐von‐Guericke UniversityMagdeburgGermany
- German Center for Mental Health (DZPG)MagdeburgGermany
- Center for Behavioural Brain Sciences (CBBS)MagdeburgGermany
| | - Patrick Müller
- Division of Cardiology and AngiologyUniversity Hospital MagdeburgMagdeburgGermany
- German Center for Neurodegenerative Diseases (DZNE)MagdeburgGermany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C‐I‐R‐C)MagdeburgGermany
- German Center for Mental Health (DZPG)MagdeburgGermany
| |
Collapse
|
9
|
Das K, Sen J, Borode AS. Ketamine and α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) Receptor Potentiation in the Somatosensory Cortex: A Comprehensive Review. Cureus 2024; 16:e69261. [PMID: 39398836 PMCID: PMC11470829 DOI: 10.7759/cureus.69261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Ketamine, a dissociative anesthetic primarily recognized for its antagonism of N-methyl-D-aspartate (NMDA) receptors, has gained significant attention for its rapid antidepressant effects and potential in treating mood disorders. However, recent research indicates that ketamine's influence extends beyond NMDA receptor inhibition, affecting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and sensory processing. This review delves into ketamine's role in enhancing AMPA receptor function and its implications for sensory processing within the somatosensory cortex. AMPA receptors, essential for fast excitatory neurotransmission and synaptic plasticity, play a key role in sensory perception and integration. By examining preclinical and clinical studies, this review sheds light on how ketamine's modulation of AMPA receptors may improve sensory processing and contribute to its therapeutic effects. Additionally, the review explores the potential for ketamine-based therapies to treat sensory processing disorders and refine current treatment strategies. A deeper understanding of ketamine's complex effects on AMPA receptors and sensory processing could provide valuable insights for developing targeted interventions and advancing clinical applications.
Collapse
Affiliation(s)
- Kaustuv Das
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Jayshree Sen
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Aishwarya S Borode
- Anaesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
10
|
Domke AK, Hempel M, Hartling C, Stippl A, Carstens L, Gruzman R, Herrera Melendez AL, Bajbouj M, Gärtner M, Grimm S. Functional connectivity changes between amygdala and prefrontal cortex after ECT are associated with improvement in distinct depressive symptoms. Eur Arch Psychiatry Clin Neurosci 2023; 273:1489-1499. [PMID: 36715751 PMCID: PMC10465635 DOI: 10.1007/s00406-023-01552-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023]
Abstract
Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression. However, the underlying mechanisms of action are not yet fully understood. The investigation of depression-specific networks using resting-state fMRI and the relation to differential symptom improvement might be an innovative approach providing new insights into the underlying processes. In this naturalistic study, we investigated the relationship between changes in resting-state functional connectivity (rsFC) and symptom improvement after ECT in 21 patients with treatment-resistant depression. We investigated rsFC before and after ECT and focused our analyses on FC changes directly related to symptom reduction and on FC at baseline to identify neural targets that might predict individual clinical responses to ECT. Additional analyses were performed to identify the direct relationship between rsFC change and symptom dimensions such as sadness, negative thoughts, detachment, and neurovegetative symptoms. An increase in rsFC between the left amygdala and left dorsolateral prefrontal cortex (DLPFC) after ECT was related to overall symptom reduction (Bonferroni-corrected p = 0.033) as well as to a reduction in specific symptoms such as sadness (r = 0.524, uncorrected p = 0.014), negative thoughts (r = 0.700, Bonferroni-corrected p = 0.002) and detachment (r = 0.663, p = 0.004), but not in neurovegetative symptoms. Furthermore, high baseline rsFC between the left amygdala and the right frontal pole (FP) predicted treatment outcome (uncorrected p = 0.039). We conclude that changes in FC in regions of the limbic-prefrontal network are associated with symptom improvement, particularly in affective and cognitive dimensions. Frontal-limbic connectivity has the potential to predict symptom improvement after ECT. Further research combining functional imaging biomarkers and a symptom-based approach might be promising.
Collapse
Affiliation(s)
- Ann-Kathrin Domke
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Moritz Hempel
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Corinna Hartling
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anna Stippl
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Luisa Carstens
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Rebecca Gruzman
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Ana Lucia Herrera Melendez
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Matti Gärtner
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
| | - Simone Grimm
- Department of Psychiatry, Centre for Affective Neuroscience (CAN), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032, Zurich, Switzerland
| |
Collapse
|
11
|
Huang W, Fateh AA, Zhao Y, Zeng H, Yang B, Fang D, Zhang L, Meng X, Hassan M, Wen F. Effects of the SNAP-25 Mnll variant on hippocampal functional connectivity in children with attention deficit/hyperactivity disorder. Front Hum Neurosci 2023; 17:1219189. [PMID: 37635807 PMCID: PMC10447972 DOI: 10.3389/fnhum.2023.1219189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/29/2023] Open
Abstract
Objectives Attention-deficit/hyperactivity disorder (ADHD) is one of the most widespread and highly heritable neurodevelopmental disorders affecting children worldwide. Although synaptosomal-associated protein 25 (SNAP-25) is a possible gene hypothesized to be associated with working memory deficits in ADHD, little is known about its specific impact on the hippocampus. The goal of the current study was to determine how variations in ADHD's SNAP-25 Mnll polymorphism (rs3746544) affect hippocampal functional connectivity (FC). Methods A total of 88 boys between the ages of 7 and 10 years were recruited for the study, including 60 patients with ADHD and 28 healthy controls (HCs). Data from resting-state functional magnetic resonance imaging (rs-fMRI) and clinical information were acquired and assessed. Two single nucleotide polymorphisms (SNP) in the SNAP-25 gene were genotyped, according to which the study's findings separated ADHD patients into two groups: TT homozygotes (TT = 35) and G-allele carriers (TG = 25). Results Based on the rs-fMRI data, the FC of the right hippocampus and left frontal gyrus was evaluated using group-based comparisons. The corresponding sensitivities and specificities were assessed. Following comparisons between the patient groups, different hippocampal FCs were identified. When compared to TT patients, children with TG had a lower FC between the right precuneus and the right hippocampus, and a higher FC between the right hippocampus and the left middle frontal gyrus. Conclusion The fundamental neurological pathways connecting the SNAP-25 Mnll polymorphism with ADHD via the FC of the hippocampus were newly revealed in this study. As a result, the hippocampal FC may further serve as an imaging biomarker for ADHD.
Collapse
Affiliation(s)
- Wenxian Huang
- Department of Pediatric China Medical University, Shenyang, China
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Ahmed Ameen Fateh
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Yilin Zhao
- Department of Pediatric China Medical University, Shenyang, China
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Hongwu Zeng
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Binrang Yang
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Diangang Fang
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Linlin Zhang
- Healthy Care Center, Shenzhen Children’s Hospital, Shenzhen, China
| | - Xianlei Meng
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Muhammad Hassan
- Department of Radiology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Feiqiu Wen
- Department of Pediatrics, Shenzhen Children’s Hospital, Shenzhen, China
| |
Collapse
|
12
|
Licata AE, Zhao Y, Herrmann O, Hillis AE, Desmond J, Onyike C, Tsapkini K. Sex differences in effects of tDCS and language treatments on brain functional connectivity in primary progressive aphasia. Neuroimage Clin 2023; 37:103329. [PMID: 36701874 PMCID: PMC9883295 DOI: 10.1016/j.nicl.2023.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Primary Progressive Aphasia (PPA) is a neurodegenerative disorder primarily affecting language functions. Neuromodulatory techniques (e.g., transcranial direct current stimulation, active-tDCS) and behavioral (speech-language) therapy have shown promising results in treating speech and language deficits in PPA patients. One mechanism of active-tDCS efficacy is through modulation of network functional connectivity (FC). It remains unknown how biological sex influences FC and active-tDCS or language treatment(s). In the current study, we compared sex differences, induced by active-tDCS and language therapy alone, in the default mode and language networks, acquired during resting-state fMRI in 36 PPA patients. Using a novel statistical method, the covariate-assisted-principal-regression (CAPs) technique, we found sex and age differences in FC changes following active-tDCS. In the default mode network (DMN): (1) men (in both conditions) showed greater FC in DMN than women. (2) men who received active-tDCS showed greater FC in the DMN than men who received language-treatment only. In the language network: (1) women who received active-tDCS showed significantly greater FC across the language network than women who received sham-tDCS. As age increases, regardless of sex and treatment condition, FC in language regions decreases. The current findings suggest active-tDCS treatment in PPA alters network-specific FC in a sex-dependent manner.
Collapse
Affiliation(s)
- Abigail E Licata
- Department of Neurology, University of California, San Francisco, CA 94158, USA; Faculty of Psychology and Educational Sciences, University of Geneva, Geneva 1205, Switzerland
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olivia Herrmann
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore MD 21287, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John Desmond
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Kyrana Tsapkini
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; Department of Cognitive Science, Johns Hopkins University, Baltimore MD 21287, USA.
| |
Collapse
|
13
|
Dutton M, Can AT, Lagopoulos J, Hermens DF. Stress, mental disorder and ketamine as a novel, rapid acting treatment. Eur Neuropsychopharmacol 2022; 65:15-29. [PMID: 36206584 DOI: 10.1016/j.euroneuro.2022.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 12/13/2022]
Abstract
The experience of stress is often utilised in models of emerging mental illness and neurobiological systems are implicated as the intermediary link between the experience of psychological stress and the development of a mental disorder. Chronic stress and prolonged glucocorticoid exposure have potent effects on neuronal architecture particularly in regions that modulate the hypothalamic-pituitary-adrenal (HPA) axis and are commonly associated with psychiatric disorders. This review provides an overview of stress modulating neurobiological and neurochemical systems which underpin stress-related structural and functional brain changes. These changes are thought to contribute not only to the development of disorders, but also to the treatment resistance and chronicity seen in some of our most challenging mental disorders. Reports to date suggest that stress-related psychopathology is the aetiological mechanism of these disorders and thus we review the rapid acting antidepressant ketamine as an effective emerging treatment. Ketamine, an N-methyl D-aspartate (NMDA) receptor antagonist, is shown to induce a robust treatment effect in mental disorders via enhanced synaptic strength and connectivity in key brain regions. Whilst ketamine's glutamatergic effect has been previously examined, we further consider ketamine's capacity to modulate the HPA axis and associated pathways.
Collapse
Affiliation(s)
- Megan Dutton
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia.
| | - Adem T Can
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| | - Daniel F Hermens
- Thompson Institute, University of the Sunshine Coast, 12 Innovation Parkway, Birtinya, Queensland 4575, Australia
| |
Collapse
|
14
|
Esmethadone (REL-1017) and Other Uncompetitive NMDAR Channel Blockers May Improve Mood Disorders via Modulation of Synaptic Kinase-Mediated Signaling. Int J Mol Sci 2022; 23:ijms232012196. [PMID: 36293063 PMCID: PMC9602945 DOI: 10.3390/ijms232012196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
This article presents a mechanism of action hypothesis to explain the rapid antidepressant effects of esmethadone (REL-1017) and other uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists and presents a corresponding mechanism of disease hypothesis for major depressive disorder (MDD). Esmethadone and other uncompetitive NMDAR antagonists may restore physiological neural plasticity in animal models of depressive-like behavior and in patients with MDD via preferential tonic block of pathologically hyperactive GluN2D subtypes. Tonic Ca2+ currents via GluN2D subtypes regulate the homeostatic availability of synaptic proteins. MDD and depressive behaviors may be determined by reduced homeostatic availability of synaptic proteins, due to upregulated tonic Ca2+ currents through GluN2D subtypes. The preferential activity of low-potency NMDAR antagonists for GluN2D subtypes may explain their rapid antidepressant effects in the absence of dissociative side effects.
Collapse
|
15
|
Fritz BA, Tellor Pennington BR, Palanca BJ, Schweiger JA, Willie JT, Farber NB. Protocol for the Ketamine for Postoperative Avoidance of Depressive Symptoms (K-PASS) feasibility study: A randomized clinical trial. F1000Res 2022; 11:510. [PMID: 37483552 PMCID: PMC10362376 DOI: 10.12688/f1000research.121529.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2022] [Indexed: 07/25/2023] Open
Abstract
Background: Postoperative depressive symptoms are associated with pain, readmissions, death, and other undesirable outcomes. Ketamine produces rapid but transient antidepressant effects in the perioperative setting. Longer infusions confer lasting antidepressant activity in patients with treatment-resistant depression, but it is unknown whether a similar approach may produce a lasting antidepressant effect after surgery. This protocol describes a pilot study that will assess the feasibility of conducting a larger scale randomized clinical trial addressing this knowledge gap. Methods: This single-center, double-blind, placebo-controlled pilot trial involves the enrollment of 32 patients aged 18 years or older with a history of depression scheduled for surgery with planned intensive care unit admission. On the first day following surgery and extubation, participants will be randomized to an intravenous eight-hour infusion of either ketamine (0.5 mg kg -1 over 10 minutes followed by a continuous rate of 0.3 mg kg -1 h -1) or an equal volume of normal saline. Depressive symptoms will be quantified using the Montgomery-Asberg Depression Rating Scale preoperatively and serially up to 14 days after the infusion. To detect ketamine-induced changes on overnight sleep architecture, a wireless headband will be used to record electroencephalograms preoperatively, during the study infusion, and after infusion. The primary feasibility endpoints will include the fraction of patients approached who enroll, the fraction of randomized patients who complete the study infusion, and the fraction of randomized patients who complete outcome data collection. Conclusions: This pilot study will evaluate the feasibility of a future large comparative effectiveness trial of ketamine to reduce depressive symptoms in postsurgical patients. Registration: K-PASS is registered on ClinicalTrials.gov: NCT05233566; registered February 10, 2022.
Collapse
Affiliation(s)
- Bradley A. Fritz
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | | | - Ben J.A. Palanca
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Julie A. Schweiger
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Jon T. Willie
- Department of Neurosurgery, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Nuri B. Farber
- Department of Psychiatry, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| |
Collapse
|
16
|
Zheng W, Gu LM, Sun CH, Zhou YL, Wang CY, Lan XF, Zhang B, Ning YP. Comparative effectiveness of repeated ketamine infusions in treating anhedonia in bipolar and unipolar depression. J Affect Disord 2022; 300:109-113. [PMID: 34965393 DOI: 10.1016/j.jad.2021.12.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Anhedonia is a common, persistent, and disabling phenomenon in patients with major depressive disorder (MDD) and bipolar depression (BD). This study was conducted to investigate the comparative effectiveness of repeated ketamine infusions in treating anhedonia in Chinese individuals suffering from MDD and BD. METHODS Ninety-seven individuals suffering from MDD (n = 77) or BD (n = 20) were treated with six intravenous infusions of ketamine (0.5 mg/kg) administered over 40 min. Anhedonia was measured through the Montgomery-Åsberg Depression Rating Scale (MADRS). The antianhedonic response and remission were defined as ≥ 50% and ≥ 75% reduction in MADRS anhedonia subscale score one day after the sixth infusion, respectively. RESULTS Anti-anhedonic response and remission rates after the sixth ketamine infusion were 48.5% (95% confidence interval = 38.3%-58.6%) and 30.9% (95% confidence interval = 21.6%-40.3%), respectively. When compared to baseline, a significant reduction in the MADRS anhedonia subscale score was observed at 4 h after the first infusion and was maintained with repeated infusions at any time point (all Ps < 0.05). The anti-anhedonic effect of ketamine did not differ between the MDD and BD groups. CONCLUSION This preliminary study found that repeated ketamine infusions appeared to be effective at rapidly ameliorating anhedonia, with similar efficacy in MDD and BD.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Li-Mei Gu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Chen-Hui Sun
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Yan-Ling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Cheng-Yu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiao-Feng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Bin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; The first School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Eggert S, Kins S, Endres K, Brigadski T. Brothers in arms: proBDNF/BDNF and sAPPα/Aβ-signaling and their common interplay with ADAM10, TrkB, p75NTR, sortilin, and sorLA in the progression of Alzheimer's disease. Biol Chem 2022; 403:43-71. [PMID: 34619027 DOI: 10.1515/hsz-2021-0330] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important modulator for a variety of functions in the central nervous system (CNS). A wealth of evidence, such as reduced mRNA and protein level in the brain, cerebrospinal fluid (CSF), and blood samples of Alzheimer's disease (AD) patients implicates a crucial role of BDNF in the progression of this disease. Especially, processing and subcellular localization of BDNF and its receptors TrkB and p75 are critical determinants for survival and death in neuronal cells. Similarly, the amyloid precursor protein (APP), a key player in Alzheimer's disease, and its cleavage fragments sAPPα and Aβ are known for their respective roles in neuroprotection and neuronal death. Common features of APP- and BDNF-signaling indicate a causal relationship in their mode of action. However, the interconnections of APP- and BDNF-signaling are not well understood. Therefore, we here discuss dimerization properties, localization, processing by α- and γ-secretase, relevance of the common interaction partners TrkB, p75, sorLA, and sortilin as well as shared signaling pathways of BDNF and sAPPα.
Collapse
Affiliation(s)
- Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Erwin-Schrödinger-Str. 13, D-67663 Kaiserslautern, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany
| | - Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482 Zweibrücken, Germany
| |
Collapse
|
18
|
Bolin PK, Gosnell SN, Brandel-Ankrapp K, Srinivasan N, Castellanos A, Salas R. Decreased Brain Ventricular Volume in Psychiatric Inpatients with Serotonin Reuptake Inhibitor Treatment. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2022; 6:24705470221111092. [PMID: 35859799 PMCID: PMC9290100 DOI: 10.1177/24705470221111092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022]
Abstract
Background Brain ventricles have been reported to be enlarged in several neuropsychiatric disorders and in aging. Whether human cerebral ventricular volume can decrease over time with psychiatric treatment is not well-studied. The aim of this study was to examine whether inpatients taking serotonin reuptake inhibitors (SRI) exhibited reductions in cerebral ventricular volume. Methods Psychiatric inpatients, diagnosed mainly with depression, substance use, anxiety, and personality disorders, underwent two imaging sessions (Time 1 and Time 2, approximately 4 weeks apart). FreeSurfer was used to quantify volumetric features of the brain, and ANOVA was used to analyze ventricular volume differences between Time 1 and Time 2. Inpatients' brain ventricle volumes were normalized by dividing by estimated total intracranial volume (eTIV). Clinical features such as depression and anxiety levels were collected at Time 1, Time 1.5 (approximately 2 weeks apart), and Time 2. Results Inpatients consistently taking SRIs (SRI + , n = 44) showed statistically significant reductions of brain ventricular volumes particularly for their left and right lateral ventricular volumes. Reductions in their third ventricular volume were close to significance (p = .068). The inpatients that did not take SRIs (SRI-, n = 25) showed no statistically significant changes in brain ventricular volumes. The SRI + group also exhibited similar brain structural features to the healthy control group based on the 90% confidence interval comparsions on brain ventricular volume parameters, whereas the SRI- group still exhibited relatively enlarged brain ventricular volumes after treatment. Conclusions SRI treatment was associated with decreased brain ventricle volume over treatment.
Collapse
Affiliation(s)
- PK Bolin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Drug Discovery (CDD), Baylor College of Medicine, Houston, TX, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - SN Gosnell
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - K Brandel-Ankrapp
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - A Castellanos
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| | - R Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
19
|
Demchenko I, Tassone VK, Kennedy SH, Dunlop K, Bhat V. Intrinsic Connectivity Networks of Glutamate-Mediated Antidepressant Response: A Neuroimaging Review. Front Psychiatry 2022; 13:864902. [PMID: 35722550 PMCID: PMC9199367 DOI: 10.3389/fpsyt.2022.864902] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional monoamine-based pharmacotherapy, considered the first-line treatment for major depressive disorder (MDD), has several challenges, including high rates of non-response. To address these challenges, preclinical and clinical studies have sought to characterize antidepressant response through monoamine-independent mechanisms. One striking example is glutamate, the brain's foremost excitatory neurotransmitter: since the 1990s, studies have consistently reported altered levels of glutamate in MDD, as well as antidepressant effects following molecular targeting of glutamatergic receptors. Therapeutically, this has led to advances in the discovery, testing, and clinical application of a wide array of glutamatergic agents, particularly ketamine. Notably, ketamine has been demonstrated to rapidly improve mood symptoms, unlike monoamine-based interventions, and the neurobiological basis behind this rapid antidepressant response is under active investigation. Advances in brain imaging techniques, including functional magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, enable the identification of the brain network-based characteristics distinguishing rapid glutamatergic modulation from the effect of slow-acting conventional monoamine-based pharmacology. Here, we review brain imaging studies that examine brain connectivity features associated with rapid antidepressant response in MDD patients treated with glutamatergic pharmacotherapies in contrast with patients treated with slow-acting monoamine-based treatments. Trends in recent brain imaging literature suggest that the activity of brain regions is organized into coherent functionally distinct networks, termed intrinsic connectivity networks (ICNs). We provide an overview of major ICNs implicated in depression and explore how treatment response following glutamatergic modulation alters functional connectivity of limbic, cognitive, and executive nodes within ICNs, with well-characterized anti-anhedonic effects and the enhancement of "top-down" executive control. Alterations within and between the core ICNs could potentially exert downstream effects on the nodes within other brain networks of relevance to MDD that are structurally and functionally interconnected through glutamatergic synapses. Understanding similarities and differences in brain ICNs features underlying treatment response will positively impact the trajectory and outcomes for adults suffering from MDD and will facilitate the development of biomarkers to enable glutamate-based precision therapeutics.
Collapse
Affiliation(s)
- Ilya Demchenko
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Vanessa K Tassone
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katharine Dunlop
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Venkat Bhat
- Interventional Psychiatry Program, Mental Health and Addictions Service, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Center for Depression and Suicide Studies, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Kang MJY, Hawken E, Vazquez GH. The Mechanisms Behind Rapid Antidepressant Effects of Ketamine: A Systematic Review With a Focus on Molecular Neuroplasticity. Front Psychiatry 2022; 13:860882. [PMID: 35546951 PMCID: PMC9082546 DOI: 10.3389/fpsyt.2022.860882] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
The mechanism of action underlying ketamine's rapid antidepressant effects in patients with depression, both suffering from major depressive disorder (MDD) and bipolar disorder (BD), including treatment resistant depression (TRD), remains unclear. Of the many speculated routes that ketamine may act through, restoring deficits in neuroplasticity may be the most parsimonious mechanism in both human patients and preclinical models of depression. Here, we conducted a literature search using PubMed for any reports of ketamine inducing neuroplasticity relevant to depression, to identify cellular and molecular events, relevant to neuroplasticity, immediately observed with rapid mood improvements in humans or antidepressant-like effects in animals. After screening reports using our inclusion/exclusion criteria, 139 publications with data from cell cultures, animal models, and patients with BD or MDD were included (registered on PROSPERO, ID: CRD42019123346). We found accumulating evidence to support that ketamine induces an increase in molecules involved in modulating neuroplasticity, and that these changes are paired with rapid antidepressant effects. Molecules or complexes of high interest include glutamate, AMPA receptors (AMPAR), mTOR, BDNF/TrkB, VGF, eEF2K, p70S6K, GSK-3, IGF2, Erk, and microRNAs. In summary, these studies suggest a robust relationship between improvements in mood, and ketamine-induced increases in molecular neuroplasticity, particularly regarding intracellular signaling molecules.
Collapse
Affiliation(s)
- Melody J Y Kang
- Center of Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada
| | - Emily Hawken
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| | - Gustavo Hector Vazquez
- Center of Neuroscience Studies (CNS), Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University School of Medicine, Kingston, ON, Canada.,Providence Care Hospital, Kingston, ON, Canada
| |
Collapse
|
21
|
Beyond the Raskin Protocol: Ketamine, Lidocaine, and Other Therapies for Refractory Chronic Migraine. Curr Pain Headache Rep 2021; 25:77. [PMID: 34894295 PMCID: PMC8665315 DOI: 10.1007/s11916-021-00992-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 10/31/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the available evidence and therapeutic considerations for intravenous drug therapy for refractory chronic migraine. RECENT FINDINGS In carefully monitored settings, the inpatient administration of intravenous lidocaine and ketamine can be successful in treating refractory chronic migraine. Many patients with refractory chronic migraine have experienced treatment failure with the Raskin protocol. The use of aggressive inpatient infusion therapy consisting of intravenous lidocaine or ketamine, along with other adjunctive medications, has become increasingly common for these patients when all other treatments have failed. There is a clear need for prospective studies in this population comprised of patients who have largely been excluded from other studies.
Collapse
|
22
|
Ponton E, Turecki G, Nagy C. Sex Differences in the Behavioral, Molecular, and Structural Effects of Ketamine Treatment in Depression. Int J Neuropsychopharmacol 2021; 25:75-84. [PMID: 34894233 PMCID: PMC8756094 DOI: 10.1093/ijnp/pyab082] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 12/14/2022] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric illness that manifests in sex-influenced ways. Men and women may experience depression differently and also respond to various antidepressant treatments in sex-influenced ways. Ketamine, which is now being used as a rapid-acting antidepressant, is likely the same. To date, the majority of studies investigating treatment outcomes in MDD do not disaggregate the findings in males and females, and this is also true for ketamine. This review aims to highlight that gap by exploring pre-clinical data-at a behavioral, molecular, and structural level-and recent clinical trials. Sex hormones, particularly estrogen and progesterone, influence the response at all levels examined, and sex is therefore a critical factor to examine when looking at ketamine response. Taken together, the data show females are more sensitive to ketamine than males, and it might be possible to monitor the phase of the menstrual cycle to mitigate some risks associated with the use of ketamine for females with MDD. Based on the studies reviewed in this article, we suggest that ketamine should be administered adhering to sex-specific considerations.
Collapse
Affiliation(s)
- Ethan Ponton
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Canada
- Correspondence: Corina Nagy, PhD, 6875 LaSalle Blvd, Verdun, Québec, Canada H4H 1R3 ()
| |
Collapse
|
23
|
Corkery JM, Hung WC, Claridge H, Goodair C, Copeland CS, Schifano F. Recreational ketamine-related deaths notified to the National Programme on Substance Abuse Deaths, England, 1997-2019. J Psychopharmacol 2021; 35:1324-1348. [PMID: 34092131 PMCID: PMC8600594 DOI: 10.1177/02698811211021588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ketamine is a phencyclidine derivative with dissociative anaesthetic properties. Increasing numbers of individuals in England take ketamine recreationally. Information on deaths arising from such use in England is presented. METHODS Cases were extracted on 31 January 2020 from the National Programme on Substance Abuse Deaths database, based on text searches of the cause of death, coroner's verdict and positive toxicology results for the terms 'ketamine' or 'norketamine'. FINDINGS During 1997-2005, there were <5 deaths p.a. in which ketamine was implicated. Numbers increased until 2009 (21), plateauing until 2016; thereafter, deaths have risen to about 30 p.a. Decedents' characteristics (N = 283): male 84.1%, mean age 31.2 (SD 10.0) years, employed 56.5%, drug use history 79.6% and living with others 60.3%. Ketamine was detected with other substances in most cases. Main (74.6%) underlying cause of death was accidental poisoning. Ketamine may have impaired judgement in other cases. CONCLUSIONS Although controlled, recreational ketamine use and related fatalities continue to increase. Consumers need to be more aware of the potentially fatal risks they face.
Collapse
Affiliation(s)
- John Martin Corkery
- Psychopharmacology, Drug Misuse and
Novel Psychoactive Substances Research Unit, Department of Clinical, Pharmaceutical
and Biological Sciences, University of Hertfordshire, Hatfield, Hertfordshire,
UK
- John Martin Corkery, Psychopharmacology,
Drug Misuse and Novel Psychoactive Substances Research Unit, Department of
Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire,
Room 2F419, Health Research Building, College Lane Campus, Hatfield, Herts AL10
9AB, UK.
| | - Wan-Chu Hung
- Institute of Pharmaceutical Sciences,
King’s College London, London, UK
| | - Hugh Claridge
- National Programme on Substance Abuse
Deaths, St George’s, University of London, London, UK
- Population Health Research Institute,
St George’s, University of London, London, UK
| | - Christine Goodair
- National Programme on Substance Abuse
Deaths, St George’s, University of London, London, UK
- Population Health Research Institute,
St George’s, University of London, London, UK
| | - Caroline S Copeland
- Institute of Pharmaceutical Sciences,
King’s College London, London, UK
- National Programme on Substance Abuse
Deaths, St George’s, University of London, London, UK
- Population Health Research Institute,
St George’s, University of London, London, UK
| | - Fabrizio Schifano
- Psychopharmacology, Drug Misuse and
Novel Psychoactive Substances Research Unit, Department of Clinical, Pharmaceutical
and Biological Sciences, University of Hertfordshire, Hatfield, Hertfordshire,
UK
| |
Collapse
|
24
|
Aleksandrova LR, Phillips AG. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol Sci 2021; 42:929-942. [PMID: 34565579 DOI: 10.1016/j.tips.2021.08.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/20/2022]
Abstract
The emerging therapeutic efficacy of ketamine and classical psychedelics for depression has inspired tremendous interest in the underlying neurobiological mechanisms. We review preclinical and clinical evidence supporting neuroplasticity as a convergent downstream mechanism of action for these novel fast-acting antidepressants. Through their primary glutamate or serotonin receptor targets, ketamine and psychedelics [psilocybin, lysergic acid diethylamide (LSD), and N,N-dimethyltryptamine (DMT)] induce synaptic, structural, and functional changes, particularly in pyramidal neurons in the prefrontal cortex. These include increased glutamate release, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) activation, brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR)-mediated signaling, expression of synaptic proteins, and synaptogenesis. Such influences may facilitate adaptive rewiring of pathological neurocircuitry, thus providing a neuroplasticity-focused framework to explain the robust and sustained therapeutic effects of these compounds.
Collapse
Affiliation(s)
- Lily R Aleksandrova
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
25
|
Himmelseher S, Kochs EF. Ready for a "breakthrough" with ketamine? A look at recent pharmacological insights! Curr Opin Anaesthesiol 2021; 34:393-401. [PMID: 34052823 DOI: 10.1097/aco.0000000000001017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW To update pharmacological insights on ketamine integrating information from different disciplines for developing steps to "breakthrough" approaches in clinical challenges. RECENT FINDINGS Pharmacokinetic/pharmacodynamic (PK/PD) models have incorporated recirculation, ketamine metabolites, drug-drug interaction, and covariates such as age. Ketamine-induced relief from treatment-resistant depression has been explained by "disinhibition" of gamma-aminobutyric acid-ergic interneurons and synaptogenic mechanisms requiring neurotrophic signals. Neuroimaging/electroencephalographic investigations have shown an increase in gamma spectral power in healthy volunteers and patients with depression, but also opposite changes in functional network connectivity after subanesthetic ketamine. Volunteer data may not be transferable to clinical conditions. Altered states of consciousness induced by subanesthetic ketamine have been described by disruption of resisting-state functional networks and frontoparietal connectivity with preservation of multisensory and sensor-motor networks. This has been interpreted as a "disconnected consciousness". SUMMARY More precise PK/PD models may improve the ketamine use regimen. The findings from research on depression are an important discovery because ketamine's impact on neuronal plasticity and synaptogenesis in human brain disease has directly been documented. Psychic adverse effects with subanesthetic ketamine are related to a "disconnected consciousness". Overall, progress has been made, but the "breakthrough" still has to come.
Collapse
Affiliation(s)
- Sabine Himmelseher
- Klinik für Anästhesiologie und Intensivmedizin, Technische Universität München, Klinikum rechts der Isar, Munich, Germany
| | | |
Collapse
|
26
|
Soldan A, Pettigrew C, Zhu Y, Wang MC, Bilgel M, Hou X, Lu H, Miller MI, Albert M. Association of Lifestyle Activities with Functional Brain Connectivity and Relationship to Cognitive Decline among Older Adults. Cereb Cortex 2021; 31:5637-5651. [PMID: 34184058 DOI: 10.1093/cercor/bhab187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
This study examines the relationship of engagement in different lifestyle activities to connectivity in large-scale functional brain networks, and whether network connectivity modifies cognitive decline, independent of brain amyloid levels. Participants (N = 153, mean age = 69 years, including N = 126 with amyloid imaging) were cognitively normal when they completed resting-state functional magnetic resonance imaging, a lifestyle activity questionnaire, and cognitive testing. They were followed with annual cognitive tests up to 5 years (mean = 3.3 years). Linear regressions showed positive relationships between cognitive activity engagement and connectivity within the dorsal attention network, and between physical activity levels and connectivity within the default-mode, limbic, and frontoparietal control networks, and global within-network connectivity. Additionally, higher cognitive and physical activity levels were independently associated with higher network modularity, a measure of functional network specialization. These associations were largely independent of APOE4 genotype, amyloid burden, global brain atrophy, vascular risk, and level of cognitive reserve. Moreover, higher connectivity in the dorsal attention, default-mode, and limbic networks, and greater global connectivity and modularity were associated with reduced cognitive decline, independent of APOE4 genotype and amyloid burden. These findings suggest that changes in functional brain connectivity may be one mechanism by which lifestyle activity engagement reduces cognitive decline.
Collapse
Affiliation(s)
- Anja Soldan
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Corinne Pettigrew
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yuxin Zhu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Mei-Cheng Wang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, Baltimore, MD 21224, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marilyn Albert
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
27
|
Irwin MN, VandenBerg A. Retracing our steps to understand ketamine in depression: A focused review of hypothesized mechanisms of action. Ment Health Clin 2021; 11:200-210. [PMID: 34026396 PMCID: PMC8120982 DOI: 10.9740/mhc.2021.05.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction MDD represents a significant burden worldwide, and while a number of approved treatments exist, there are high rates of treatment resistance and refractoriness. Ketamine, an N-methyl-d-aspartate receptor (NMDAR) antagonist, is a novel, rapid-acting antidepressant, however the mechanisms underlying the efficacy of ketamine are not well understood and many other mechanisms outside of NMDAR antagonism have been postulated based on preclinical data. This focused review aims to present a summary of the proposed mechanisms of action by which ketamine functions in depressive disorders supported by preclinical data and clinical studies in humans. Methods A literature search was completed using the PubMed and Google Scholar databases. Results were limited to clinical trials and case studies in humans that were published in English. The findings were used to compile this article. Results The antidepressant effects associated with ketamine are mediated via a complex interplay of mechanisms; key steps include NMDAR blockade on γ-aminobutyric acid interneurons, glutamate surge, and subsequent activation and upregulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. Discussion Coadministration of ketamine for MDD with other psychotropic agents, for example benzodiazepines, may attenuate antidepressant effects. Limited evidence exists for these effects and should be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Madison N Irwin
- Clinical Pharmacist Specialist in Psychology and Neurology, Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan
| | - Amy VandenBerg
- Clinical Pharmacist Specialist in Psychology and Neurology, Department of Pharmacy, Michigan Medicine, Ann Arbor, Michigan
| |
Collapse
|
28
|
Robinson B, Gu Q, Kanungo J. Antidepressant Actions of Ketamine: Potential Role of L-Type Calcium Channels. Chem Res Toxicol 2021; 34:1198-1207. [PMID: 33566591 DOI: 10.1021/acs.chemrestox.0c00411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, the United States Food and Drug Administration approved esketamine, the S-enantiomer of ketamine, as a fast-acting therapeutic drug for treatment-resistant depression. Although ketamine is known as an N-methyl-d-aspartate (NMDA) receptor antagonist, the underlying mechanisms of how it elicits an antidepressant effect, specifically at subanesthetic doses, are not clear and remain an advancing field of research interest. On the other hand, high-dose (more than the anesthetic dose) ketamine-induced neurotoxicity in animal models has been reported. There has been progress in understanding the potential pathways involved in ketamine-induced antidepressant effects, some of which include NMDA-receptor antagonism, modulation of voltage-gated calcium channels, and brain-derived neurotrophic factor (BDNF) signaling. Often these pathways have been shown to be linked. Voltage-gated L-type calcium channels have been shown to mediate the rapid-acting antidepressant effects of ketamine, especially involving induction of BDNF synthesis downstream, while BDNF deficiency decreases the expression of L-type calcium channels. This review focuses on the reported studies linking ketamine's rapid-acting antidepressant actions to L-type calcium channels with an objective to present a perspective on the importance of the modulation of intracellular calcium in mediating the effects of subanesthetic (antidepressant) versus high-dose ketamine (anesthetic and potential neurotoxicant), the latter having the ability to reduce intracellular calcium by blocking the calcium-permeable NMDA receptors, which is implicated in potential neurotoxicity.
Collapse
Affiliation(s)
- Bonnie Robinson
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Qiang Gu
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| | - Jyotshna Kanungo
- Division of Neurotoxicology, United States Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079, United States
| |
Collapse
|
29
|
Zheng W, Gu LM, Zhou YL, Wang CY, Lan XF, Zhang B, Shi HS, Wang DF, Ning YP. Association of VEGF With Antianhedonic Effects of Repeated-Dose Intravenous Ketamine in Treatment-Refractory Depression. Front Psychiatry 2021; 12:780975. [PMID: 34925104 PMCID: PMC8677831 DOI: 10.3389/fpsyt.2021.780975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Objectives: To first explore the role of plasma vascular endothelial growth factor (VEGF) concentrations in ketamine's antianhedonic effects, focusing on Chinese patients with treatment-refractory depression (TRD). Methods: Seventy-eight patients with treatment-refractory major depressive disorder (MDD) or bipolar disorder (BD) were treated with six ketamine infusions (0.5 mg/kg). Levels of anhedonia were measured using the Montgomery-Åsberg Depression Rating Scale (MADRS) anhedonia item at baseline, day 13 and 26. Plasma VEGF concentrations were examined at the same time points as the MADRS. Results: Despite a significant reduction in anhedonia symptoms in individuals with treatment-refractory MDD (n = 59) or BD (n = 19) after they received repeated-dose ketamine infusions (p < 0.05), no significant changes in plasma VEGF concentrations were found at day 13 when compared to baseline (p > 0.05). The alteration of plasma VEGF concentrations did not differ between antianhedonic responders and non-responders at days 13 and 26 (all ps > 0.05). Additionally, no significant correlations were observed between the antianhedonic response to ketamine and plasma VEGF concentrations (all ps > 0.05). Conclusion: This preliminary study suggests that the antianhedonic effects of ketamine are not mediated by VEGF.
Collapse
Affiliation(s)
- Wei Zheng
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Li-Mei Gu
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yan-Ling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Cheng-Yu Wang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiao-Feng Lan
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Bin Zhang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Hai-Shan Shi
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Dan-Feng Wang
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Ping Ning
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Lawrie SM. Translational neuroimaging of ADHD and related neurodevelopmental disorders. World J Biol Psychiatry 2020; 21:659-661. [PMID: 33135584 DOI: 10.1080/15622975.2020.1823694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, Varghese N, Eckert A, Feilding A, Ramaekers JG, Kuypers KPC. Low Doses of LSD Acutely Increase BDNF Blood Plasma Levels in Healthy Volunteers. ACS Pharmacol Transl Sci 2020; 4:461-466. [PMID: 33860175 PMCID: PMC8033605 DOI: 10.1021/acsptsci.0c00099] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/18/2022]
Abstract
![]()
Despite preclinical evidence for
psychedelic-induced neuroplasticity,
confirmation in humans is grossly lacking. Given the increased interest
in using low doses of psychedelics for psychiatric indications and
the importance of neuroplasticity in the therapeutic response, this
placebo-controlled within-subject study investigated the effect of
single low doses of LSD (5, 10, and 20 μg) on circulating BDNF
levels in healthy volunteers. Blood samples were collected every 2
h over 6 h, and BDNF levels were determined afterward in blood plasma
using ELISA. The findings demonstrated an increase in BDNF blood plasma
levels at 4 h (5 μg) and 6 h (5 and 20 μg) compared to
that for the placebo. The finding that LSD acutely increases BDNF
levels warrants studies in patient populations.
Collapse
Affiliation(s)
- Nadia R P W Hutten
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Natasha L Mason
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Patrick C Dolder
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Eef L Theunissen
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Friederike Holze
- Department of Biomedicine and Department of Clinical Research, Division of Clinical Pharmacology and Toxicology, University Hospital Basel, University of Basel, Basel 4003, Switzerland
| | - Matthias E Liechti
- Department of Biomedicine and Department of Clinical Research, Division of Clinical Pharmacology and Toxicology, University Hospital Basel, University of Basel, Basel 4003, Switzerland
| | - Nimmy Varghese
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel 4003, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform Molecular and Cognitive Neuroscience, University of Basel, Basel 4003, Switzerland
| | - Amanda Feilding
- The Beckley Foundation, Beckley Park, Oxford OX3 9SY, United Kingdom
| | - Johannes G Ramaekers
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Kim P C Kuypers
- Department of Neuropsychology & Psychopharmacology, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
32
|
Neurobiological biomarkers of response to ketamine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 89:195-235. [PMID: 32616207 DOI: 10.1016/bs.apha.2020.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a field, psychiatry is undergoing an exciting paradigm shift toward early identification and intervention that will likely minimize both the burden associated with severe mental illnesses as well as their duration. In this context, the rapid-acting antidepressant ketamine has revolutionized our understanding of antidepressant response and greatly expanded the pharmacologic armamentarium for treatment-resistant depression. Efforts to characterize biomarkers of ketamine response support a growing emphasis on early identification, which would allow clinicians to identify biologically enriched subgroups with treatment-resistant depression who are more likely to benefit from ketamine therapy. This chapter presents a broad overview of a range of translational biomarkers, including those drawn from imaging and electrophysiological studies, sleep and circadian rhythms, and HPA axis/endocrine function as well as metabolic, immune, (epi)genetic, and neurotrophic biomarkers related to ketamine response. Ketamine's unique, rapid-acting properties may serve as a model to explore a whole new class of novel rapid-acting treatments with the potential to revolutionize drug development and discovery. However, it should be noted that although several of the biomarkers reviewed here provide promising insights into ketamine's mechanism of action, most studies have focused on acute rather than longer-term antidepressant effects and, at present, none of the biomarkers are ready for clinical use.
Collapse
|
33
|
Averill LA, Fouda S, Murrough JW, Abdallah CG. Chronic stress pathology and ketamine-induced alterations in functional connectivity in major depressive disorder: An abridged review of the clinical evidence. ADVANCES IN PHARMACOLOGY 2020; 89:163-194. [PMID: 32616206 DOI: 10.1016/bs.apha.2020.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A paradigm shift in the conceptualization of the neurobiology of depression and the serendipitous discovery of ketamine's rapid-acting antidepressant (RAAD) effects has ushered in a new era of innovative research and novel drug development. Since the initial discovery of ketamine's RAAD effects, multiple studies have supported its short-term efficacy for fast-tracked improvements in treatment-resistant depression. Evidence from MRI studies have repeatedly demonstrated functional connectivity alterations in stress- and trauma-related disorders suggesting this may be a viable biomarker of chronic stress pathology (CSP). Human mechanistic studies further support this by coupling functional connectivity to ketamine's RAAD effects including connectivity to glutamate neurotransmission, ketamine to normalized connectivity, and these advantageous normalizations to symptom improvement/ketamine response. This review provides an abridged discussion of the suspected neurobiological underpinnings of ketamine's RAAD effects, highlighting ketamine-induced alterations in prefrontal, striatal, and anterior cingulate cortex functional connectivity in major depressive disorder. We present a model of CSP underscoring the role of synaptic loss and dysconnectivity and discuss how ketamine may be used both as (1) a treatment to restore and normalize these stress-induced neural alterations and (2) a tool to study potential biomarkers of CSP and treatment response. We conclude by noting challenges and future directions including heterogeneity, sex differences, the role of early life stress, and the need for proliferation of new methods, paradigms, and tools that will optimize signal and allow analyses at different levels of complexity, according to the needs of the question at hand, perhaps by thinking hierarchically about both clinical and biological phenotypes.
Collapse
Affiliation(s)
- Lynnette A Averill
- Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, United States; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States.
| | - Samar Fouda
- Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, United States; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - James W Murrough
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine of Mount Sinai, New York, NY, United States; Department of Neuroscience, Icahn School of Medicine of Mount Sinai, New York, NY, United States
| | - Chadi G Abdallah
- Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, United States; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
34
|
Peng FZ, Fan J, Ge TT, Liu QQ, Li BJ. Rapid anti-depressant-like effects of ketamine and other candidates: Molecular and cellular mechanisms. Cell Prolif 2020; 53:e12804. [PMID: 32266752 PMCID: PMC7260066 DOI: 10.1111/cpr.12804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder takes at least 3 weeks for clinical anti‐depressants, such as serotonin selective reuptake inhibitors, to take effect, and only one‐third of patients remit. Ketamine, a kind of anaesthetic, can alleviate symptoms of major depressive disorder patients in a short time and is reported to be effective to treatment‐resistant depression patients. The rapid and strong anti‐depressant‐like effects of ketamine cause wide concern. In addition to ketamine, caloric restriction and sleep deprivation also elicit similar rapid anti‐depressant‐like effects. However, mechanisms about the rapid anti‐depressant‐like effects remain unclear. Elucidating the mechanisms of rapid anti‐depressant effects is the key to finding new therapeutic targets and developing therapeutic patterns. Therefore, in this review we summarize potential molecular and cellular mechanisms of rapid anti‐depressant‐like effects based on the pre‐clinical and clinical evidence, trying to provide new insight into future therapy.
Collapse
Affiliation(s)
- Fan Zhen Peng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Jie Fan
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Tong Tong Ge
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Qian Qian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|