1
|
Domingos V, Nezvalova-Henriksen K, Dadkhah A, Moreno-Martinez ME, Ben Hassine K, Pires V, Kröger N, Bauters T, Hassan M, Duncan N, Kalwak K, Ansari M, Langebrake C, Admiraal R. A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant 2024; 59:1641-1653. [PMID: 39271948 DOI: 10.1038/s41409-024-02413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Busulfan (Bu) is an important component of many conditioning regimens for allogeneic hematopoietic cell transplantation. The therapeutic window of Bu is well characterized, with strong associations between Bu exposure and the clinical outcome in adults (strongest evidence in myelo-ablative setting) and children (all settings). We provide an overview of the literature on Bu as well as a step-by-step guide to the implementation of Bu therapeutic drug monitoring (TDM). The guide covers the clinical, pharmacological, laboratory and administrative aspects of the procedure. Through this document, we aim to support centers in implementing TDM for Bu to further enhance the success rates of HCT and improve patient outcomes. The Pharmacist Committee of the European Society for Blood and Marrow Transplantation (EBMT) encourages all centers to perform TDM for Bu in the aforementioned indications.
Collapse
Affiliation(s)
- Vera Domingos
- Department of Pharmacy, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | | | - Adrin Dadkhah
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria-Estela Moreno-Martinez
- Pharmacy Department, Hospital de la Santa Creu I Sant Pau, IIB Sant Pau, Barcelona, Spain
- School of Health Sciences Blanquerna, University Ramon Lull, Barcelona, Spain
| | - Khalil Ben Hassine
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Vera Pires
- Department of Pharmacy, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisbon, Portugal
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tiene Bauters
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Moustapha Hassan
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center and Center of Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Nick Duncan
- Pharmacy department, Queen Elizabeth Hospital, Birmingham, UK
| | - Krzysztof Kalwak
- Department of Pediatric Hematology, Oncology and BMT, Wroclaw Medical University, Wroclaw, Poland
| | - Marc Ansari
- Cansearch Research Platform for Pediatric Oncology and Hematology, Faculty of Medicine, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- Division of Pediatric Oncology and Hematology, Department of Women, Child and Adolescent, University Geneva Hospitals, Geneva, Switzerland
| | - Claudia Langebrake
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hospital Pharmacy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rick Admiraal
- Department of Stem Cell Transplantation, Princess Maxima Centre for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Ignaczak A, Hoelm M, Porwański S, Jóźwiak P, Krześlak A. Experimental and computational studies on possibility of using glucose diazacrown cryptand as a carrier for anticancer drugs busulfan and lomustine. Sci Rep 2024; 14:28443. [PMID: 39557976 PMCID: PMC11574061 DOI: 10.1038/s41598-024-80029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
Drug carriers play a very important role in pharmacy, especially in cancer therapy. Most drugs used in the treatment of cancer are characterized by poor solubility in water and lack of selectivity in their toxic effects on normal and cancer cells. Administration of the drug in the form of a complex with an appropriately selected carrier can significantly improve its therapeutic effect and reduce side effects. In this study, the possibility of using the cryptand L1, containing two diazacrown ethers and two saccharide groups, as a potential drug carrier is investigated. In order to determine whether it can form complexes with drugs, the cryptand L1 and its complexes with two anticancer drugs, busulfan (BSF) and lomustine (CCNU), were synthesized. Their selected structural and energetic properties were investigated using both experimental and computational methods. Additionally, water solubility and cytotoxicity tests were performed for all compounds. The measured 1H NMR spectra confirm that L1 forms complexes L1:BSF and L1:CCNU, the solubility of which in water appears to be much higher than that of the pure drugs. The results of DFT calculations made in water described with the implicit solvent model confirm high stability of L1:BSF and L1:CCNU and indicate that L1 forms with the drugs mainly non-inclusion complexes. However, additional tests with 20 H2O molecules explicitly included in the model suggest that both inclusion and non-inclusion forms can occur in a real solution. Cytotoxicity studies show that the macrocycle L1 is non-toxic towards both normal and cancer cells, and its complexes with drugs show greater selectivity towards cancer cells. Interestingly, while the cytotoxicity of the L1:BSF complex is stronger than that of pure BSF, the relationship is opposite in the case of L1:CCNU and CCNU. Therefore, L1 can be considered as a potential drug carrier, especially for those drugs that have weak activity on cancer cells.
Collapse
Affiliation(s)
- Anna Ignaczak
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska St., 90-236, Lodz, Poland.
| | - Marta Hoelm
- Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 163/165 Pomorska St., 90-236, Lodz, Poland
| | - Stanisław Porwański
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403, Lodz, Poland
| | - Paweł Jóźwiak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Anna Krześlak
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska St., 90-236, Lodz, Poland
| |
Collapse
|
3
|
Andrés CMC, Pérez de la Lastra JM, Munguira EB, Andrés Juan C, Pérez-Lebeña E. Dual-Action Therapeutics: DNA Alkylation and Antimicrobial Peptides for Cancer Therapy. Cancers (Basel) 2024; 16:3123. [PMID: 39335095 PMCID: PMC11429518 DOI: 10.3390/cancers16183123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains one of the most difficult diseases to treat, requiring continuous research into innovative therapeutic strategies. Conventional treatments such as chemotherapy and radiotherapy are effective to a certain extent but often have significant side effects and carry the risk of resistance. In recent years, the concept of dual-acting therapeutics has attracted considerable attention, particularly the combination of DNA alkylating agents and antimicrobial peptides. DNA alkylation, a well-known mechanism in cancer therapy, involves the attachment of alkyl groups to DNA, leading to DNA damage and subsequent cell death. Antimicrobial peptides, on the other hand, have been shown to be effective anticancer agents due to their ability to selectively disrupt cancer cell membranes and modulate immune responses. This review aims to explore the synergistic potential of these two therapeutic modalities. It examines their mechanisms of action, current research findings, and the promise they offer to improve the efficacy and specificity of cancer treatments. By combining the cytotoxic power of DNA alkylation with the unique properties of antimicrobial peptides, dual-action therapeutics may offer a new and more effective approach to fighting cancer.
Collapse
Affiliation(s)
- Celia María Curieses Andrés
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | - Elena Bustamante Munguira
- Hospital Clínico Universitario de Valladolid, Avenida de Ramón y Cajal, 3, 47003 Valladolid, Spain; (C.M.C.A.); (E.B.M.)
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | | |
Collapse
|
4
|
Morimoto H, Ogonuki N, Matoba S, Kanatsu-Shinohara M, Ogura A, Shinohara T. Restoration of fertility in nonablated recipient mice after spermatogonial stem cell transplantation. Stem Cell Reports 2024; 19:443-455. [PMID: 38458191 PMCID: PMC11096438 DOI: 10.1016/j.stemcr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024] Open
Abstract
Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Shogo Matoba
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Allard J, Bucher S, Ferron PJ, Launay Y, Fromenty B. Busulfan induces steatosis in HepaRG cells but not in primary human hepatocytes: Possible explanations and implication for the prediction of drug-induced liver injury. Fundam Clin Pharmacol 2024; 38:152-167. [PMID: 37665028 DOI: 10.1111/fcp.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND The antineoplastic drug busulfan can induce different hepatic lesions including cholestasis and sinusoidal obstruction syndrome. However, hepatic steatosis has never been reported in patients. OBJECTIVES This study aimed to determine whether busulfan could induce steatosis in primary human hepatocytes (PHH) and differentiated HepaRG cells. METHODS Neutral lipids were determined in PHH and HepaRG cells. Mechanistic investigations were performed in HepaRG cells by measuring metabolic fluxes linked to lipid homeostasis, reduced glutathione (GSH) levels, and expression of genes involved in lipid metabolism and endoplasmic reticulum (ER) stress. Analysis of two previous transcriptomic datasets was carried out. RESULTS Busulfan induced lipid accumulation in HepaRG cells but not in six different batches of PHH. In HepaRG cells, busulfan impaired VLDL secretion, increased fatty acid uptake, and induced ER stress. Transcriptomic data analysis and decreased GSH levels suggested that busulfan-induced steatosis might be linked to the high expression of glutathione S-transferase (GST) isoenzyme A1, which is responsible for the formation of the hepatotoxic sulfonium cation conjugate. In keeping with this, the GST inhibitor ethacrynic acid and the chemical chaperone tauroursodeoxycholic acid alleviated busulfan-induced lipid accumulation in HepaRG cells supporting the role of the sulfonium cation conjugate and ER stress in steatosis. CONCLUSION While the HepaRG cell line is an invaluable tool for pharmacotoxicological studies, it might not be always an appropriate model to predict and mechanistically investigate drug-induced liver injury. Hence, we recommend carrying out toxicological investigations in both HepaRG cells and PHH to avoid drawing wrong conclusions on the potential hepatotoxicity of drugs and other xenobiotics.
Collapse
Affiliation(s)
- Julien Allard
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Pierre-Jean Ferron
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Youenn Launay
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1317, Rennes, France
| |
Collapse
|
6
|
Schreib KM, Bräm DS, Zeilhofer UB, Müller D, Güngör T, Krämer SD, Hauri-Hohl MM. Population Pharmacokinetic Modeling for Twice-Daily Intravenous Busulfan in a Large Cohort of Pediatric Patients Undergoing Hematopoietic Stem Cell Transplantation-A 10-Year Single-Center Experience. Pharmaceutics 2023; 16:13. [PMID: 38276491 PMCID: PMC11154452 DOI: 10.3390/pharmaceutics16010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Reaching target exposure of busulfan-based conditioning prior to hematopoietic stem cell transplantation is vital for favorable therapy outcomes. Yet, a wide inter-patient and inter-occasion variability in busulfan exposure has been reported, especially in children. We aimed to identify factors associated with the variability of busulfan pharmacokinetics in 124 consecutive patients transplanted at the University Children's Hospital Zurich between October 2010 and February 2020. Clinical data and busulfan plasma levels after twice-daily intravenous administration were analyzed retrospectively by population pharmacokinetic modeling. The volume of distribution correlated with total body water. The elimination rate constant followed an age-dependent maturation function, as previously suggested, and correlated with the levels of serum albumin. Acute lymphoblastic leukemia reduced busulfan clearance by 20%. Clearance significantly decreased by 17% on average from the start to the third day of busulfan administration, in agreement with other studies. An average reduction of 31% was found in patients with hemophagocytic lymphohistiocytosis and X-linked lymphoproliferative disease. In conclusion, we demonstrate that in addition to known factors, underlying disease and serum albumin significantly impact busulfan pharmacokinetics in pediatric patients; yet, substantial unexplained variability in some patients remained. Thus, we consider repeated pharmacokinetic assessment essential to achieve the desired target exposure in twice-daily busulfan administration.
Collapse
Affiliation(s)
- Katharina M. Schreib
- Department of Stem Cell Transplantation, University Children’s Hospital Zurich—Eleonore Foundation & Children’s Research Center (CRC), University of Zurich, 8032 Zurich, Switzerland; (K.M.S.); (U.B.Z.); (T.G.)
| | - Dominic S. Bräm
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Ulrike Barbara Zeilhofer
- Department of Stem Cell Transplantation, University Children’s Hospital Zurich—Eleonore Foundation & Children’s Research Center (CRC), University of Zurich, 8032 Zurich, Switzerland; (K.M.S.); (U.B.Z.); (T.G.)
| | - Daniel Müller
- Institute for Clinical Chemistry, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Tayfun Güngör
- Department of Stem Cell Transplantation, University Children’s Hospital Zurich—Eleonore Foundation & Children’s Research Center (CRC), University of Zurich, 8032 Zurich, Switzerland; (K.M.S.); (U.B.Z.); (T.G.)
| | - Stefanie D. Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Mathias M. Hauri-Hohl
- Department of Stem Cell Transplantation, University Children’s Hospital Zurich—Eleonore Foundation & Children’s Research Center (CRC), University of Zurich, 8032 Zurich, Switzerland; (K.M.S.); (U.B.Z.); (T.G.)
| |
Collapse
|
7
|
Morimoto H, Kanatsu-Shinohara M, Shinohara T. WIN18,446 enhances spermatogonial stem cell homing and fertility after germ cell transplantation by increasing blood-testis barrier permeability. J Reprod Dev 2023; 69:347-355. [PMID: 37899250 PMCID: PMC10721852 DOI: 10.1262/jrd.2023-074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023] Open
Abstract
Spermatogonial stem cells (SSCs) possess a unique ability to recolonize the seminiferous tubules. Upon microinjection into the adluminal compartment of the seminiferous tubules, SSCs transmigrate through the blood-testis barrier (BTB) to the basal compartment of the tubule and reinitiate spermatogenesis. It was recently discovered that inhibiting retinoic acid signaling with WIN18,446 enhances SSC colonization by transiently suppressing spermatogonia differentiation, thereby promoting fertility restoration. In this study, we report that WIN18,446 increases SSC colonization by disrupting the BTB. WIN18,446 altered the expression patterns of tight junction proteins (TJPs) and disrupted the BTB in busulfan-treated mice. WIN18,446 upregulated the expression of FGF2, one of the self-renewal factors for SSCs. While WIN18,446 enhanced SSC colonization in busulfan-treated wild-type mice, it did not increase colonization levels in busulfan-treated Cldn11-deficient mice, which lack the BTB, indicating that the enhancement of SSC colonization in wild-type testes depended on the loss of the BTB. Serial transplantation analysis revealed impaired self-renewal caused by WIN18,446, indicating that WIN18,446-mediated inhibition of retinoic acid signaling impaired SSC self-renewal. Strikingly, WIN18,446 administration resulted in the death of 45% of busulfan-treated recipient mice. These findings suggest that TJP modulation is the primary mechanism behind enhanced SSC homing by WIN18,446 and raise concerns regarding the use of WIN18,446 for human SSC transplantation.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- AMED-CREST, AMED, Tokyo 100-0004, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Salman BM, Al Riyami IM, AalHamad AH, Al-Khabori M. Limited Sampling Strategy Using End of Infusion and Six-Hour Concentrations Overestimates Intravenous Busulfan Clearance Compared With Standard Six-Point Sampling in Hematopoietic Stem Cell Transplant Patients. Ther Drug Monit 2023; 45:766-771. [PMID: 37488745 DOI: 10.1097/ftd.0000000000001126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Therapeutic drug monitoring for busulfan (Bu) is important to improve outcomes of hematopoietic stem cell transplantation. However, standard therapeutic drug monitoring requires multiple samples and is inconvenient, labor-intensive, and costly. Accordingly, a limited sampling strategy (LSS) was evaluated, using 2-point sampling at end of infusion and at 6 hours, and the area-under-the-curve and Bu clearances (CLs) were compared with the results obtained from the standard sampling strategy (SSS) using 5-6 samples. METHOD The analysis was based on retrospective clinical data from 202 patients receiving intravenous Bu before hematopoietic stem cell transplantation for malignant or nonmalignant conditions. Bu plasma concentrations were measured via liquid chromatography tandem-mass spectrometry, and pharmacokinetic parameters were calculated using the PKCNA package in R program. RESULT A total of 502 doses were analyzed by applying SSS and LSS. Using the modified Bland-Altman plot, the mean percentage difference in CL between the SSS and LSS estimates of Bu 6-hourly regimen was -41% (Limits: -53% and -30%). In the once daily regimen, the mean difference in CL between the 2 strategies on the modified Bland-Altman plot was -22% (Limits: -66% and +22%). CONCLUSIONS The Bu CL values estimated based on the BU concentration at end of infusion and at 6 hours postinfusion were significantly higher than the values obtained via the SSS.
Collapse
Affiliation(s)
- Bushra Mustafa Salman
- Pharmacy Department, Sultan Qaboos Comprehensive Cancer Care & Research Centre, Muscat, Oman
| | | | | | - Murtadha Al-Khabori
- Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
9
|
Langevin B, Gobburu JVS, Gopalakrishnan M. Is There a Need for a Dedicated Pharmacokinetic Trial for a Drug in Obese Populations? A Drug Prioritization Decision Tree Framework. J Clin Pharmacol 2023; 63 Suppl 2:S48-S64. [PMID: 37942905 DOI: 10.1002/jcph.2304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/22/2023] [Indexed: 11/10/2023]
Abstract
Obesity is a growing global health concern associated with high comorbidity rates, leading to an increasing number of patients who are obese requiring medication. However, clinical trials often exclude or under-represent individuals who are obese, creating the need for a methodology to adjust labeling to ensure safe and effective dosing for all patients. To address this, we developed a 2-part decision tree framework to prioritize drugs for dedicated pharmacokinetic studies in obese subjects. Leveraging current drug knowledge and modeling techniques, the decision tree system predicts expected exposure changes and recommends labeling strategies, allowing stakeholders to prioritize resources toward the drugs most in need. In a case study evaluating 30 drugs from literature across different therapeutic areas, our first decision tree predicted the expected direction of exposure change accurately in 73% of cases. We conclude that this decision tree system offers a valuable tool to advance research in obesity pharmacology and personalize drug development for patients who are obese, ensuring safe and effective medication.
Collapse
Affiliation(s)
- Brooke Langevin
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Jogarao V S Gobburu
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Mathangi Gopalakrishnan
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
10
|
Camcıoğlu Ş, Özyurt B, Oturan N, Portehault D, Trellu C, Oturan MA. Heterogeneous electro-Fenton treatment of chemotherapeutic drug busulfan using magnetic nanocomposites as catalyst. CHEMOSPHERE 2023; 341:140129. [PMID: 37690550 DOI: 10.1016/j.chemosphere.2023.140129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
The rapid and efficient mineralization of the chemotherapeutic drug busulfan (BSF) as the target pollutant has been investigated for the first time by three different heterogeneous EF systems that were constructed to ensure the continuous electro-generation of H2O2 and •OH consisting of: i) a multifunctional carbon felt (CF) based cathode composed of reduced graphene oxide (rGO), iron oxide nanoparticles and carbon black (CB) (rGO-Fe3O4/CB@CF), ii) rGO modified cathode (rGO/CB@CF) and rGO supported Fe3O4 (rGO-Fe3O4) catalyst and iii) rGO modified cathode (rGO/CB@CF) and multi walled carbon nanotube supported Fe3O4 (MWCNT-Fe3O4) catalyst. The effects of main variables, including the catalyst amount, applied current and initial pH were investigated. Based on the results, H2O2 was produced by oxygen reduction reaction (ORR) on the liquid-solid interface of both fabricated cathodes. •OH was generated by the reaction of H2O2 with the active site of ≡FeII on the surface of the multifunctional cathode and heterogeneous EF catalysts. Utilizing carbon materials with high conductivity, the redox cycling between ≡FeII and ≡FeIII was effectively facilitated and therefore promoted the performance of the process. The results demonstrated almost complete mineralization of BSF through the heterogeneous systems over a wide applicable pH range. According to the reusability and stability tests, multifunctional cathode exhibited outstanding performance after five consecutive cycles which is promising for the efficient mineralization of refractory organic pollutants. Moreover, intermediates products of BSF oxidation were identified and a plausible oxidation pathway was proposed. Therefore, this study demonstrates efficient and stable cathodes and catalysts for the efficient treatment of an anticancer active substance.
Collapse
Affiliation(s)
- Şule Camcıoğlu
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| | - Baran Özyurt
- Ankara University, Faculty of Engineering, Department of Chemical Engineering, 06100, Tandogan, Ankara, Turkey; Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - Nihal Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de La Matière Condensée de Paris (CMCP), 4 Place Jussieu, Paris, France
| | - Clément Trellu
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France
| | - Mehmet A Oturan
- Université Gustave Eiffel, Laboratoire Géomatériaux et Environnement EA 4508, 77454, Marne-la-Vallée, Cedex 2, France.
| |
Collapse
|
11
|
Takahashi T, Teramoto M, Matsumoto K, Jaber MM, Tamaki H, Ikegame K, Yoshihara S, Kaida K. Population Pharmacokinetics of Total Rabbit Anti-thymocyte Globulin in Non-obese Adult Patients Undergoing Hematopoietic Cell Transplantation for Hematologic Malignancy. Clin Pharmacokinet 2023; 62:1081-1091. [PMID: 37284975 DOI: 10.1007/s40262-023-01252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVES Rabbit anti-thymocyte globulin (rATG), a therapeutic polyclonal antibody against human T cells, is commonly used in conditioning therapy prior to allogeneic hematopoietic cell transplantation (HCT). Previous studies successfully developed an individualized rATG dosing regimen based on "active" rATG population PK (popPK) analysis, while "total" rATG can be a more logistically favorable alternative for early HCT outcomes. We conducted a novel popPK analysis of total rATG. METHODS Total rATG concentration was measured in adult human-leukocyte antigen (HLA) mismatched HCT patients who received a low-dose rATG regimen (total 2.5-3 mg/kg) within 3 days prior to HCT. PopPK modeling and simulation was performed using nonlinear mixed effect modeling approach. RESULTS A total of 504 rATG concentrations were available from 105 non-obese patients with hematologic malignancy (median age 47 years) treated in Japan. The majority had acute leukemia or malignant lymphoma (94%). Total rATG PK was described by a two-compartment linear model. Influential covariate relations include ideal body weight [positively on both clearance (CL) and central volume of distribution], baseline serum albumin (negatively on CL), CD4+ T cell dose (positively on CL), and baseline serum IgG (positively on CL). Simulated covariate effects predicted that early total rATG exposures were affected by ideal body weight. CONCLUSIONS This novel popPK model described the PK of total rATG in the adult HCT patients who received a low-dose rATG conditioning regimen. This model can be used for model-informed precision dosing in the settings with minimal baseline rATG targets (T cells), and early clinical outcomes are of interest.
Collapse
Affiliation(s)
- Takuto Takahashi
- Pediatric Stem Cell Transplantation, Boston Children's Hospital/Dana Farber Cancer Institute, Boston, MA, USA.
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA.
| | - Masahiro Teramoto
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| | - Kana Matsumoto
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyotanabe, Kyoto, Japan
| | - Mutaz M Jaber
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, USA
| | - Hiroya Tamaki
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| | - Kazuhiro Ikegame
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| | - Satoshi Yoshihara
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| | - Katsuji Kaida
- Department of Hematology, Hyogo Medical University Hospital, Nishinomiya, Hyogo, Japan
| |
Collapse
|
12
|
Bognàr TT, Kingma JSJ, Smeijsters EHE, van der Elst KCMK, de Kanter CTMK, Lindemans CAC, Egberts ACGT, Bartelink IHI, Lalmohamed AA. Busulfan target exposure attainment in children undergoing allogeneic hematopoietic cell transplantation: a single day versus a multiday therapeutic drug monitoring regimen. Bone Marrow Transplant 2023; 58:762-768. [PMID: 37002411 DOI: 10.1038/s41409-023-01971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
Busulfan exposure has previously been linked to clinical outcomes, hence the need for therapeutic drug monitoring (TDM). Study objective was to evaluate the effect of day 1 TDM-guided dosing (regimen d1) versus days 1 + 2 TDM-guided dosing (regimen d1 + 2) on attaining adequate busulfan exposure. In this observational study, we included all children receiving busulfan-based allogeneic hematopoietic cell transplantation. Primary outcome was the percentage of patients achieving busulfan target attainment in both TDM regimens. Secondary outcomes were the variance in busulfan exposure and day-4 clearance (Clday4) estimates between both TDM regimens and dosing day 1 and 2. In regimen d1, 84.3% (n = 91/108) attained a therapeutic busulfan exposure, while in regimen d1 + 2 a proportion of 90.9% was found (n = 30/33, not-significant). Variance of Clday4 estimate based on busulfan day 2 concentrations was significantly smaller than the variance of Clday4 estimates based on day 1 concentrations (p < 0.001). Therefore, day 1-guided TDM (pharmacometric model-based) of busulfan may be sufficient for attaining optimal target exposure, provided that subsequent TDM is carried out if required. However, performing TDM on subsequent days may be beneficial, as measurements on day 2 seemed to reduce the variance in the estimated clearance as compared to day 1 sampling.
Collapse
Affiliation(s)
- T Tim Bognàr
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands.
| | - J S Jurjen Kingma
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - E H Erin Smeijsters
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - K C M Kim van der Elst
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | | | - C A Caroline Lindemans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatrics, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - A C G Toine Egberts
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - I H Imke Bartelink
- Pharmacy & Clinical Pharmacology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - A Arief Lalmohamed
- Department of Clinical Pharmacy, University Medical Center Utrecht/Wilhelmina Children's Hospital, Utrecht, the Netherlands
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
13
|
Morris SA, Nguyen DG, Patel JN. Pharmacogenomics in allogeneic hematopoietic stem cell transplantation: Implications on supportive therapies and conditioning regimens. Best Pract Res Clin Haematol 2023; 36:101470. [PMID: 37353294 DOI: 10.1016/j.beha.2023.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 06/25/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation mortality has declined over the years, though prevention and management of treatment-related toxicities and post-transplant complications remains challenging. Applications of pharmacogenomic testing can potentially mitigate adverse drug outcomes due to interindividual variability in drug metabolism and response. This review summarizes clinical pharmacogenomic applications relevant to hematopoietic stem cell transplantation, including antifungals, immunosuppressants, and supportive care management, as well as emerging pharmacogenomic evidence with conditioning regimens.
Collapse
Affiliation(s)
- Sarah A Morris
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | - D Grace Nguyen
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| | - Jai N Patel
- Department of Cancer Pharmacology & Pharmacogenomics Levine Cancer Institute, Atrium Health, 1021 Morehead Medical Drive, Charlotte, NC, 28204, USA.
| |
Collapse
|
14
|
Teschke R. Molecular Idiosyncratic Toxicology of Drugs in the Human Liver Compared with Animals: Basic Considerations. Int J Mol Sci 2023; 24:ijms24076663. [PMID: 37047633 PMCID: PMC10095090 DOI: 10.3390/ijms24076663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Drug induced liver injury (DILI) occurs in patients exposed to drugs at recommended doses that leads to idiosyncratic DILI and provides an excellent human model with well described clinical features, liver injury pattern, and diagnostic criteria, based on patients assessed for causality using RUCAM (Roussel Uclaf Causality Assessment Method) as original method of 1993 or its update of 2016. Overall, 81,856 RUCAM based DILI cases have been published until mid of 2020, allowing now for an analysis of mechanistic issues of the disease. From selected DILI cases with verified diagnosis by using RUCAM, direct evidence was provided for the involvement of the innate and adapted immune system as well as genetic HLA (Human Leucocyte Antigen) genotypes. Direct evidence for a role of hepatic immune systems was substantiated by (1) the detection of anti-CYP (Cytochrome P450) isoforms in the plasma of affected patients, in line with the observation that 65% of the drugs most implicated in DILI are metabolized by a range of CYP isoforms, (2) the DIAIH (drug induced autoimmune hepatitis), a subgroup of idiosyncratic DILI, which is characterized by high RUCAM causality gradings and the detection of plasma antibodies such as positive serum anti-nuclear antibodies (ANA) and anti-smooth muscle antibodies (ASMA), rarely also anti-mitochondrial antibodies (AMA), (3) the effective treatment with glucocorticoids in part of an unselected RUCAM based DILI group, and (4) its rare association with the immune-triggered Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) caused by a small group of drugs. Direct evidence of a genetic basis of idiosyncratic DILI was shown by the association of several HLA genotypes for DILI caused by selected drugs. Finally, animal models of idiosyncratic DILI mimicking human immune and genetic features are not available and further search likely will be unsuccessful. In essence and based on cases of DILI with verified diagnosis using RUCAM for causality evaluation, there is now substantial direct evidence that immune mechanisms and genetics can account for idiosyncratic DILI by many but not all implicated drugs, which may help understand the mechanistic background of the disease and contribute to new approaches of therapy and prevention.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Germany
- Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, D-60590 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Rehman MEU, Chattaraj A, Mahboob A, Ijaz Z, Franco D, Farhan M, Dharma K, Mumtaz H, Saeed S, Basit J, Aslam MM, Iftikhar A, Faraz F, Anwer F. Total Body Irradiation Versus Chemotherapy Conditioning in Pediatric Acute Lymphoblastic Leukemia Patients Undergoing Hematopoietic Stem Cell Transplant: A Systematic Review and Meta-Analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:249-258. [PMID: 36725384 DOI: 10.1016/j.clml.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Allogeneic hematopoietic stem cell transplant (HSCT) is indicated in pediatric patients with acute lymphoblastic leukemia (ALL) who have relapsed or are at a very high risk of relapse during first complete remission. Two types of myeloablative conditioning are employed before allogeneic HSCT: total body irradiation (TBI)-based regimens and chemotherapy (CHT) alone. This study compares the efficacy and safety of TBI-based regimens and CHT-based conditioning in pediatric, adolescent, and young adult patients with ALL (0-24 years old). TBI-based and CHT-conditioning regimens were evaluated in 4262 and 1367 patients, respectively, from 15 studies. Compared to CHT alone, TBI-based regimens were associated with better overall survival (OS), relative risk (RR) 1.21, better event-free survival (RR 1.34), and a reduced risk of relapse (RR 0.69). Both approaches had comparable risk of acute graft-versus-host disease (GVHD), grades 3 to 4 acute GVHD, chronic GVHD, and nonrelapse mortality (NRM). In the subgroup analysis for patients in first complete remission, TBI-based regimens and CHT alone had comparable OS and NRM. Our results demonstrate the superiority of TBI-based regimens compared to CHT alone in pediatric patients with ALL.
Collapse
Affiliation(s)
| | - Asmi Chattaraj
- Department of Internal Medicine, University of Pittsburgh Medical Center, Mckeesport, PA
| | | | - Zarnab Ijaz
- Sharif Medical and Dental College, Lahore, Pakistan
| | | | | | - Kuldeep Dharma
- Division of Pathology, ICAR-Indian Veterinary Research Institute (IVRI), Bareilly, Uttar Pradesh, India
| | | | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | | | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ.
| | - Fatima Faraz
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Faiz Anwer
- Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
16
|
Guidolin V, Li Y, Jacobs FC, MacMillan ML, Villalta PW, Hecht SS, Balbo S. Characterization and quantitation of busulfan DNA adducts in the blood of patients receiving busulfan therapy. Mol Ther Oncolytics 2023; 28:197-210. [PMID: 36820303 PMCID: PMC9938526 DOI: 10.1016/j.omto.2023.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
DNA alkylating drugs have been used as cancer chemotherapy with variable outcomes. The establishment of predictive biomarkers to identify patients who will effectively respond to treatment would allow for the development of personalized therapies. As the degree of interaction of alkylating drug with DNA plays a key role in their mechanism of action, our hypothesis is that the measurement of the DNA adducts formed by alkylating drugs could be used to inform patient stratification. Beginning with busulfan, we took advantage of our DNA adductomic approach to characterize DNA adducts formed by reacting busulfan with calf-thymus DNA. Samples collected from six patients undergoing busulfan-based chemotherapy prior to allogeneic hematopoietic cell transplantation were analyzed for the presence of busulfan-derived DNA adducts. Among the 15 adducts detected in vitro, 12 were observed in the patient blood confirming the presence of a large profile of DNA adducts in vivo. Two of the detected adducts were structurally confirmed by comparison with synthetic standards and quantified in patients. These data confirm our ability to comprehensively characterize busulfan-derived DNA damage and set the stage for the development of methods to support personalized chemotherapy.
Collapse
Affiliation(s)
- Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yupeng Li
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Foster C. Jacobs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret L. MacMillan
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Blood and Marrow Transplantation & Cellular Therapy Program, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter W. Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA,School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA,Corresponding author: Silvia Balbo, Masonic Cancer Center, University of Minnesota, 2231 6 Street SE - 2-145 CCRB, Minneapolis, MN 55455, USA.
| |
Collapse
|
17
|
Al-Enezi BF, Al-Hasawi N, Matar KM. Impact of valproic acid on busulfan pharmacokinetics: In vitro assessment of potential drug-drug interaction. PLoS One 2023; 18:e0280574. [PMID: 36696427 PMCID: PMC9876357 DOI: 10.1371/journal.pone.0280574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Busulfan (Bu) is an alkylating agent commonly used at high doses in the preparative regimens of hematopoietic stem cell transplantation (HSCT). It has been shown that such high doses of Bu are associated with generalized seizures which are usually managed by prophylactic antiepileptic drugs (AEDs) such as valproic acid (VPA). Being a strong enzyme inhibitor, VPA may inhibit Bu metabolism and thus increase its potential toxicity. Despite its clinical relevance, the potential interaction between Bu and VPA has not yet been evaluated. The aim of the present study was to assess and evaluate the potential drug-drug interaction (DDI) between Bu and VPA. This study was carried out by incubating Bu in laboratory-prepared rat liver-subcellular fractions including S9, microsomes, and cytosol, alone or in combination with VPA. The liver fractions were prepared by differential centrifugation of the liver homogenate. Analysis of Bu was employed using a fully validated LC-MS/MS method. The validation parameters were within the proposed limits of the international standards guidelines. Bu metabolic stability was assessed by incubating Bu at a concentration of 8 μg/ml in liver fractions at 37°C. There were significant reductions in Bu levels in S9 and cytosolic fractions, whereas these levels were not significantly (P ˃ 0.05) changed in microsomes. However, in presence of VPA, Bu levels in S9 fraction remained unchanged. These results indicated, for the first time, the potential metabolic interaction of Bu and VPA being in S9 only. This could be explained by inhibiting Bu cytosolic metabolism by the interaction with VPA either by sharing the same metabolic enzyme or the required co-factor. In conclusion, the present findings suggest, for the first time, a potential DDI between Bu and VPA in vitro using rat liver fractions. Further investigations are warranted in human-derived liver fractions to confirm such an interaction.
Collapse
Affiliation(s)
- Bashayer F. Al-Enezi
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Nada Al-Hasawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Kamal M. Matar
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
- * E-mail: ,
| |
Collapse
|
18
|
Canlas J, Myers AL. Interactions of Betel Quid Constituents with Drug Disposition Pathways: An Overview. Curr Drug Metab 2023; 24:92-105. [PMID: 36852799 PMCID: PMC11271041 DOI: 10.2174/1389200224666230228142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Global estimates indicate that over 600 million individuals worldwide consume the areca (betel) nut in some form. Nonetheless, its consumption is associated with a myriad of oral and systemic ailments, such as precancerous oral lesions, oropharyngeal cancers, liver toxicity and hepatic carcinoma, cardiovascular distress, and addiction. Users commonly chew slivers of areca nut in a complex consumable preparation called betel quid (BQ). Consequently, the user is exposed to a wide array of chemicals with diverse pharmacokinetic behavior in the body. However, a comprehensive understanding of the metabolic pathways significant to BQ chemicals is lacking. Henceforth, we performed a literature search to identify prominent BQ constituents and examine each chemical's interplay with drug disposition proteins. In total, we uncovered over 20 major chemicals (e.g., arecoline, nicotine, menthol, quercetin, tannic acid) present in the BQ mixture that were substrates, inhibitors, and/or inducers of various phase I (e.g., CYP, FMO, hydrolases) and phase II (e.g., GST, UGT, SULT) drug metabolizing enzymes, along with several transporters (e.g., P-gp, BCRP, MRP). Altogether, over 80 potential interactivities were found. Utilizing this new information, we generated theoretical predictions of drug interactions precipitated by BQ consumption. Data suggests that BQ consumers are at risk for drug interactions (and possible adverse effects) when co-ingesting other substances (multiple therapeutic classes) with overlapping elimination mechanisms. Until now, prediction about interactions is not widely known among BQ consumers and their clinicians. Further research is necessary based on our speculations to elucidate the biological ramifications of specific BQ-induced interactions and to take measures that improve the health of BQ consumers.
Collapse
Affiliation(s)
- Jasmine Canlas
- Department of Pharmaceutical & Biomedical Sciences, The University of Georgia, Athens, GA 30602, United States
| | - Alan L. Myers
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| |
Collapse
|
19
|
Ballesteros C, Wong K, Abrahim MA, Li C, Authier S. Model Characterization: Total Body Irradiation or Busulfan for Conditioning in Human Cell Therapy Toxicology and Tumorigenicity Studies using NOD/SCID/IL2Rγnull (NSG) Mice. Int J Toxicol 2022; 42:219-231. [PMID: 36565254 DOI: 10.1177/10915818221148130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The NOD/SCID/IL2Rγnull (NSG) mouse is a relevant model for toxicology and tumorigenicity studies evaluating human cell therapies. Data was compiled from toxicology study control NSG mice exposed to gamma irradiation (0 or 200 cGy) or busulfan. Retrospective data evaluation included mortality, clinical observations, body weights, hematology, and external and internal macroscopic observations. There was no mortality in any of the 129 toxicology control (irradiated and non-irradiated) mice up to the 20-week observation period. Mortalities occurred between Days 1 and 25 among animals given busulfan ≥25 mg/kg/day at 1 or 2 doses via intraperitoneal (i.p.) injection. There were 4/10, 6/10 and 4/10 deaths at 25, 30 and 35 mg/kg/day busulfan, respectively. Busulfan-treated mice presented with dose-dependent clinical signs including signs of anemia in some individuals. Hematology, including white blood cell (WBC) and neutrophil (NEUT) counts, from irradiated mice at Weeks 12 and 20 revealed comparable values to non-irradiated animals. In contrast, irradiated mice treated with a positive control (HL-60) were euthanized prior to Week 12. There were no irradiation-related differences in macroscopic observations with lymphoid atrophy identified comparably in irradiated and non-irradiated groups. These results suggest that irradiation was suitable for conditioning to enable cell engraftment in NSG mice in the context of regulatory toxicology and tumorigenicity studies. Busulfan administered at 20 mg/kg/day for 2 days, i.p. was also well-tolerated, and it could be considered for toxicology studies of genetically modified human cells.
Collapse
Affiliation(s)
| | - Karen Wong
- Charles River Laboratories, Laval, QC, Canada
| | | | | | | |
Collapse
|
20
|
Smita P, Narayan PA, J K, Gaurav P. Therapeutic drug monitoring for cytotoxic anticancer drugs: Principles and evidence-based practices. Front Oncol 2022; 12:1015200. [PMID: 36568145 PMCID: PMC9773989 DOI: 10.3389/fonc.2022.1015200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/24/2022] [Indexed: 12/13/2022] Open
Abstract
Cytotoxic drugs are highly efficacious and also have low therapeutic index. A great degree of caution needs to be exercised in their usage. To optimize the efficacy these drugs need to be given at maximum tolerated dose which leads to significant amount of toxicity to the patient. The fine balance between efficacy and safety is the key to the success of cytotoxic chemotherapeutics. However, it is possibly more rewarding to obtain that balance for this class drugs as the frequency of drug related toxicities are higher compared to the other therapeutic class and are potentially life threatening and may cause prolonged morbidity. Significant efforts have been invested in last three to four decades in therapeutic drug monitoring (TDM) research to understand the relationship between the drug concentration and the response achieved for therapeutic efficacy as well as drug toxicity for cytotoxic drugs. TDM evolved over this period and the evidence gathered favored its routine use for certain drugs. Since, TDM is an expensive endeavor both from economic and logistic point of view, to justify its use it is necessary to demonstrate that the implementation leads to perceivable improvement in the patient outcomes. It is indeed challenging to prove the utility of TDM in randomized controlled trials and at times may be nearly impossible to generate such data in view of the obvious findings and concern of compromising patient safety. Therefore, good quality data from well-designed observational study do add immense value to the scientific knowledge base, when they are examined in totality, despite the heterogeneity amongst them. This article compiles the summary of the evidence and the best practices for TDM for the three cytotoxic drug, busulfan, 5-FU and methotrexate. Traditional use of TDM or drug concentration data for dose modification has been witnessing a sea change and model informed precision dosing is the future of cytotoxic drug therapeutic management.
Collapse
Affiliation(s)
- Pattanaik Smita
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Patil Amol Narayan
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kumaravel J
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Prakash Gaurav
- Department of Clinical Hematology and Medical Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
21
|
Myers AL. Metabolism of the areca alkaloids - toxic and psychoactive constituents of the areca (betel) nut. Drug Metab Rev 2022; 54:343-360. [PMID: 35543097 DOI: 10.1080/03602532.2022.2075010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Areca nut (AN) is consumed by millions of people for its therapeutic and psychoactive effects, making it one of the most widely self-administered psychoactive substances in the world. Even so, AN use/abuse is associated with myriad oral and systemic side effects, affecting most organ systems in the body. Alkaloids abundant in the nut (e.g. arecoline, arecaidine, guvacoline, and guvacine), collectively called the areca alkaloids, are presumably responsible for the major pharmacological effects experienced by users, with arecoline being the most abundant alkaloid with notable toxicological properties. However, the mechanisms of arecoline and other areca alkaloid elimination in humans remain poorly documented. Therefore, the purpose of this review is to provide an in-depth review of areca alkaloid pharmacokinetics (PK) in biological systems, and discuss mechanisms of metabolism by presenting information found in the literature. Also, the toxicological relevance of the known and purported metabolic steps will be reviewed. In brief, several areca alkaloids contain a labile methyl ester group and are susceptible to hydrolysis, although the human esterase responsible remains presumptive. Other notable mechanisms include N-oxidation, glutathionylation, nitrosamine conversion, and carbon-carbon double-bond reduction. These metabolic conversions result in toxic and sometimes less-toxic derivatives. Arecoline and arecaidine undergo extensive metabolism while far less is known about guvacine and guvacoline. Metabolism information may help predict drug interactions with human pharmaceuticals with overlapping elimination pathways. Altogether, this review provides a first-of-its-kind comprehensive analysis of AN alkaloid metabolism, adds perspective on new mechanisms of metabolism, and highlights the need for future metabolism work in the field.
Collapse
Affiliation(s)
- Alan L Myers
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
22
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
23
|
Abarikwu SO, Mgbudom-Okah CJ, Njoku RCC, Okonkwo CJ, Onuoha CC, Wokoma AFS. Gallic acid ameliorates busulfan-induced testicular toxicity and damage in mature rats. Drug Chem Toxicol 2022; 45:1881-1890. [PMID: 33730944 DOI: 10.1080/01480545.2021.1892949] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Here, we studied the protective effect of gallic acid (GAL) as a potent anti-oxidant and anti-inflammatory agent against damage caused by busulfan (BUS) in the testes of adult rats. The adult Wistar rats were assigned as control, BUS: was intraperitoneally (i.p.) treated with busulfan (15 mg/kg, day 7 and 14), GAL + BUS: was co-treated with busulfan (i.p., 15 mg/kg, day 7 and 14) and orally treated (per os) with gallic acid (60 days, 20 mg/kg) and GAL: was treated with gallic acid (per os, 60 days, 20 mg/kg). The results showed that GAL co-treatment increased the numbers of spermatogonia (Type A and B), spermatocytes (primary and secondary) and round spermatids, along with the tubular diameter, epithelial height and gonado-somatic index. In addition, BUS-induced increase in 3β-hydroxysteroid dehydrogenase and γ-glutamyl transpeptidase activities were inhibited on GAL co-treatment. Similarly, BUS-induced decrease in gluthathione concentration, catalase and superoxide dismutase activities along with increase in myeloperoxidase activity and malondialdehyde concentration were significantly normalized to control values on GAL co-treatment. Busulfan-induced elimination of tubular germ cells was completely prevented by GAL. Overall, GAL may inhibit BUS-mediated spermatogenesis arrest via decreasing inflammatory-mediated oxidative stress in a rat experimental model.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | | | - Chinedu J Okonkwo
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | - Adaba F S Wokoma
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| |
Collapse
|
24
|
Artul T, Henig I, Nassar L, Yehudai-Ofir D, Scherb I, Lurie Y, Efrati E, Zuckerman T, Kurnik D. Decreased Systemic Busulfan Exposure After Oral Dosing With Concomitant Levetiracetam Compared With Phenytoin. Ther Drug Monit 2022; 44:414-418. [PMID: 34739424 DOI: 10.1097/ftd.0000000000000938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/11/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Busulfan (Bu) conditioning used in hematopoietic stem cell transplantation may induce seizures, and prophylactic antiepileptic treatment is recommended. Following updated guidelines, in August 2019, the adult hematopoietic stem cell transplantation department of the Rambam Health Care Campus (Haifa, Israel) switched the antiepileptic prophylaxis protocol from phenytoin to oral levetiracetam during oral Bu conditioning. The aim of this study was to compare the pharmacokinetic parameters of Bu after oral dosing between patients receiving phenytoin and those receiving levetiracetam prophylaxis. METHODS This study was a retrospective cohort study in adults undergoing myoablative conditioning with oral Bu between August 2018 and August 2020. Bu pharmacokinetic parameters (AUC0-6, C0, Cmax, and Tmax) were compared in patients treated with phenytoin comedication (during the year before the change in policy) and levetiracetam comedication (during the year after the change). Potential confounders were accounted for including age, azole comedication, and body weight. RESULTS There were no significant differences in demographic and clinical parameters or weight-corrected Bu dose between the phenytoin group (n = 28) and the levetiracetam group (n = 25). There was no difference in the rate of voriconazole comedication, but fluconazole was more common in the phenytoin group (P = 0.026). The median AUC0-6 was significantly lower in the levetiracetam group (949 μM*min; IQR = 806 to 1101 μM*min) than in the phenytoin group (1208 μM*min; IQR = 1087 to 1389 μM*min; P < 0.001). This is a clinically significant difference of 258 μM*min (21%). Azole use was not associated with Bu exposure. CONCLUSIONS The findings suggest that, after treatment with oral Bu, oral levetiracetam comedication is associated with reduced systemic exposure compared with phenytoin comedication, possibly because of decreased bioavailability.
Collapse
Affiliation(s)
- Tareq Artul
- Section of Clinical Pharmacology and Toxicology, Hematology Department, Rambam Health Care Campus, Haifa, Israel
| | - Israel Henig
- Adult Bone Marrow Transplantation Unit, Hematology Department, Rambam Health Care Campus, Haifa, Israel; and
| | - Laila Nassar
- Section of Clinical Pharmacology and Toxicology, Hematology Department, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel
| | - Dana Yehudai-Ofir
- Adult Bone Marrow Transplantation Unit, Hematology Department, Rambam Health Care Campus, Haifa, Israel; and
| | - Inna Scherb
- Section of Clinical Pharmacology and Toxicology, Hematology Department, Rambam Health Care Campus, Haifa, Israel
| | - Yael Lurie
- Section of Clinical Pharmacology and Toxicology, Hematology Department, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel
| | - Edna Efrati
- Section of Clinical Pharmacology and Toxicology, Hematology Department, Rambam Health Care Campus, Haifa, Israel
| | - Tsila Zuckerman
- Adult Bone Marrow Transplantation Unit, Hematology Department, Rambam Health Care Campus, Haifa, Israel; and
- Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel
| | - Daniel Kurnik
- Section of Clinical Pharmacology and Toxicology, Hematology Department, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel
| |
Collapse
|
25
|
Seydoux C, Battegay R, Halter J, Heim D, Rentsch KM, Passweg JR, Medinger M. Impact of busulfan pharmacokinetics on outcome in adult patients receiving an allogeneic hematopoietic cell transplantation. Bone Marrow Transplant 2022; 57:903-910. [PMID: 35361896 PMCID: PMC9200635 DOI: 10.1038/s41409-022-01641-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
Abstract
Busulfan (Bu) is widely used in conditioning regimens before allogeneic hematopoietic cell transplantation, with variable metabolism due to interindividual differences of pharmacokinetics (PK). The purpose of this study was to correlate pharmacokinetics and clinical outcomes. Lower-AUC, in range-AUC and higher-AUC were defined as ±25% of the targeted Bu-AUC. In 2019, we changed Bu dosing from 4×/day (Bu-4) to 1×/day (Bu-1) for ease of application. AUC-target range was reached in 46% of patients; 40% were in low-AUC and 14% in high-AUC. Among all toxicities, viral and fungal infections were significantly more frequent in high-AUC compared with low-AUC (20% vs. 8%; p = 0.01 and 37% vs. 17%; p = 0.03). Bu-1 showed lower PK values (66% vs. 36% of Bu-4 in low-AUC; p < 0.01) and higher incidence of mucositis (p = 0.02). Long-term outcomes at 2 years showed a higher non-relapse mortality (NRM) (p < 0.01) and higher relative risk of death in the high-AUC group compared to the other groups. Cumulative incidence of relapse and acute/chronic GvHD were not significantly different. The optimal cut-off in Bu-AUC associated with low NRM was 969 µmol/l*min (ROC AUC 0.67, sensitivity 0.86 and specificity 0.47) for Bu-4. In conclusion, low-AUC BU-PK seems of benefit regarding NRM and survival.
Collapse
Affiliation(s)
- Claire Seydoux
- Division of Hematology, University Hospital of Basel, Basel, Switzerland.
| | - Raphael Battegay
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Joerg Halter
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Dominik Heim
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Katharina M Rentsch
- Department of Laboratory Medicine, University Hospital of Basel, Basel, Switzerland
| | - Jakob R Passweg
- Division of Hematology, University Hospital of Basel, Basel, Switzerland
| | - Michael Medinger
- Division of Hematology, University Hospital of Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Myers AL. VOD/SOS and Alkylating Agents in the Hematopoietic Stem Cell Transplant Setting: New Insights and Further Questions. Transplant Cell Ther 2022; 28:179-180. [PMID: 35365336 DOI: 10.1016/j.jtct.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Alan L Myers
- The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
27
|
Depolymerization of P4HB and PBS Waste and Synthesis of the Anticancer Drug Busulfan from Plastic Waste. Catalysts 2022. [DOI: 10.3390/catal12040381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sustainable synthesis of pharmaceuticals is one of the main challenges for the pharmaceutical industry. Production of these compounds from plastic waste can provide an innovative and ecological approach to their sustainable synthesis. In this context, plastic waste can be regarded as a potential cheap resource for the production of compounds of interest to the pharmaceutical industry. In this work, the first methodologies for the reductive depolymerization of poly(4-hydroxybutyrate) (P4HB) and polybutylene succinate (PBS) plastic waste are reported using the catalyst systems MoO2Cl2(H2O)2/silane, MoO2Cl2(H2O)2/borane and KOH/PhSiH3 with moderate to excellent yields. We also developed the first synthetic strategy for the synthesis of a drug, the anticancer busulfan, from P4HB and PBS plastic waste with moderate overall yields.
Collapse
|
28
|
Effect of GSTA1 Variants on Busulfan-Based Conditioning Regimen Prior to Allogenic Hematopoietic Stem-Cell Transplantation in Pediatric Asians. Pharmaceutics 2022; 14:pharmaceutics14020401. [PMID: 35214132 PMCID: PMC8880478 DOI: 10.3390/pharmaceutics14020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Busulfan is widely used as a chemotherapy treatment before hematopoietic stem-cell transplantation (HSCT). However, the response of busulfan is highly variable and unpredictable, whereby the pharmacogenetic interference of glutathione S-transferase (GST) has strong evidence in Caucasians and some adult Asians but not in pediatric Asian patients. This study was aimed at investigating the associations of GST genetic polymorphisms with variations in the pharmacokinetic (PK) properties of busulfan in pediatric Asian patients. This retrospective cohort study recruited 92 pediatric patients. The polymorphism of GSTA1 was genotyped by Sanger sequencing, and GSTM1 and GSTP1 were genotyped by real-time PCR. Drug concentration and PK estimation were identified using an LC-MS/MS method and a noncompartmental model. Statistical analysis was performed by R software. Out of 92 patients, 48 (53%) were males, the mean age was 8.4 ± 5.12 years old, and the average weight was 26.52 ± 14.75 kg. The allele frequencies of GSTA1*B and of GSTM1 and GSTP1* deletions were 16.9%, 68.5%, and 21.2%, respectively. Patients with GSTA1*B had a statistically significant impact on the PK of busulfan, whereas those with GSTM1 and GSTP1 did not (p > 0.05). The carriers of GSTA1*B showed a significant difference compared to noncarriers in terms of t1/2 (for first dose: 161.9 vs. 134.3 min, p = 0.0016; for second dose: 156.1 vs. 129.8, p = 0.012), CL (88.74 vs. 124.23 mL/min, p = 0.0089), Cmax (4232.6 vs. 3675.5 ng/mL, p = 0.0021), and AUC (5310.6 vs. 4177.1 µM/min, p = 0.00033). The augmentation of AUC was around 27.1% in patients carrying the GSTA1*B variant. The GSTA1 polymorphism was significantly associated with variations of the pharmacokinetic properties of busulfan treatment in pediatric Asian patients.
Collapse
|
29
|
Schaller S, Martins FS, Balazki P, Böhm S, Baumgart J, Hilger RA, Beelen DW, Hemmelmann C, Ring A. Evaluation of the drug-drug interaction potential of treosulfan using a physiologically-based pharmacokinetic modelling approach. Br J Clin Pharmacol 2022; 88:1722-1734. [PMID: 34519068 PMCID: PMC9291915 DOI: 10.1111/bcp.15081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS The aim of this work is the development of a mechanistic physiologically-based pharmacokinetic (PBPK) model using in vitro to in vivo extrapolation to conduct a drug-drug interaction (DDI) assessment of treosulfan against two cytochrome p450 (CYP) isoenzymes and P-glycoprotein (P-gp) substrates. METHODS A PBPK model for treosulfan was developed de novo based on literature and unpublished clinical data. The PBPK DDI analysis was conducted using the U.S. Food and Drug Administration (FDA) DDI index drugs (probe substrates) midazolam, omeprazole and digoxin for CYP3A4, CYP2C19 and P-gp, respectively. Qualified and documented PBPK models of the probe substrates have been adopted from an open-source online model database. RESULTS The PBPK model for treosulfan, based on both in vitro and in vivo data, was able to predict the plasma concentration-time profiles and exposure levels of treosulfan applied for a standard conditioning treatment. Medium and low potentials for DDI on CYP3A4 (maximum area under the concentration-time curve ratio (AUCRmax = 2.23) and CYP2C19 (AUCRmax = 1.6) were predicted, respectively, using probe substrates midazolam and omeprazole. Treosulfan was not predicted to cause a DDI on P-gp. CONCLUSION Medicinal products with a narrow therapeutic index (eg, digoxin) that are substrates for CYP3A4, CYP2C19 or P-gp should not be given during treatment with treosulfan. However, considering the comprehensive treosulfan-based conditioning treatment schedule and the respective pharmacokinetic properties of the concomitantly used drugs (eg, half-life), the potential for interaction on all evaluated mechanisms would be low (AUCR < 1.25), if concomitantly administered drugs are dosed either 2 hours before or 8 hours after the 2-hour intravenous infusion of treosulfan.
Collapse
Affiliation(s)
| | | | | | - Sonja Böhm
- medac Gesellschaft für klinische Spezialpräparate mbHWedelGermany
| | - Joachim Baumgart
- medac Gesellschaft für klinische Spezialpräparate mbHWedelGermany
| | - Ralf A. Hilger
- West German Cancer CentreUniversity Hospital EssenEssenGermany
| | | | | | - Arne Ring
- medac Gesellschaft für klinische Spezialpräparate mbHWedelGermany
- Department for Mathematical Statistics and Actuarial ScienceUniversity of the Free StateNelson Mandela DriveBloemfonteinSouth Africa
| |
Collapse
|
30
|
Robin S, Hassine KB, Muthukumaran J, Jurkovic Mlakar S, Krajinovic M, Nava T, Uppugunduri CRS, Ansari M. A potential implication of UDP-glucuronosyltransferase 2B10 in the detoxification of drugs used in pediatric hematopoietic stem cell transplantation setting: an in silico investigation. BMC Mol Cell Biol 2022; 23:5. [PMID: 35062878 PMCID: PMC8781437 DOI: 10.1186/s12860-021-00402-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Background Sinusoidal occlusion syndrome (SOS) is a potentially severe complication following hematopoietic stem cell transplantation (HSCT) in pediatric patients. Treatment related risk factors such as intensity of conditioning, hepatotoxic co-medication and patient related factors such as genetic variants predispose individuals to develop SOS. The variant allele for SNP rs17146905 in UDP-glucuronosyl transferase 2B10 (UGT2B10) gene was correlated with the occurrence of SOS in an exome-wide association study. UGT2B10 is a phase II drug metabolizing enzyme involved in the N-glucuronidation of tertiary amine containing drugs. Methods To shed light on the functionality of UGT2B10 enzyme in the metabolism of drugs used in pediatric HSCT setting, we performed in silico screening against custom based library of putative ligands. First, a list of potential substrates for in silico analysis was prepared using a systematic consensus-based strategy. The list comprised of drugs and their metabolites used in pediatric HSCT setting. The three-dimensional structure of UGT2B10 was not available from the Research Collaboratory Structural Bioinformatics - Protein Data Bank (RCSB - PDB) repository and thus we predicted the first human UGT2B10 3D model by using multiple template homology modeling with MODELLER Version 9.2 and molecular docking calculations with AutoDock Vina Version 1.2 were implemented to quantify the estimated binding affinity between selected putative substrates or ligands and UGT2B10. Finally, we performed molecular dynamics simulations using GROMACS Version 5.1.4 to confirm the potential UGT2B10 ligands prioritized after molecular docking (exhibiting negative free binding energy). Results Four potential ligands for UGT2B10 namely acetaminophen, lorazepam, mycophenolic acid and voriconazole n-oxide intermediate were identified. Other metabolites of voriconazole satisfied the criteria of being possible ligands of UGT2B10. Except for bilirubin and 4-Hydroxy Voriconazole, all the ligands (particularly voriconazole and hydroxy voriconazole) are oriented in substrate binding site close to the co-factor UDP (mean ± SD; 0.72 ± 0.33 nm). Further in vitro screening of the putative ligands prioritized by in silico pipeline is warranted to understand the nature of the ligands either as inhibitors or substrates of UGT2B10. Conclusions These results may indicate the clinical and pharmacological relevance UGT2B10 in pediatric HSCT setting. With this systematic computational methodology, we provide a rational-, time-, and cost-effective way to identify and prioritize the interesting putative substrates or inhibitors of UGT2B10 for further testing in in vitro experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00402-5.
Collapse
|
31
|
Bognàr T(T, Bartelink I(IH, Egberts T(A, Rademaker C(C, Versluys B(AB, Slatter M(MA, Kletzel M(M, Nath C(CE, Cuvelier G(G, Savic R(RM, Dvorak C(C, Long-Boyle J(JR, Cowan M(MJ, Bittencourt H(H, Bredius R(RGM, Güngör T(T, Shaw P(PJ, Ansari M(M, Hassan M(M, Krajinovic M(M, Hempel G(G, Marktel S(S, Chiesa R(R, Théoret Y(Y, Lund T(T, Orchard P(P, Wynn R(RF, Boelens JJ(J, Lalmohamed A(A. Association between the magnitude of intravenous busulfan exposure and development of hepatic veno-occlusive disease in children and young adults undergoing myeloablative allogeneic hematopoietic cell transplantation. Transplant Cell Ther 2022; 28:196-202. [DOI: 10.1016/j.jtct.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
|
32
|
Takahashi T, Illamola SM, Jennissen CA, Long SE, Lund TC, Orchard PJ, Gupta AO, Long-Boyle JR. Busulfan dose recommendation in inherited metabolic disorders: Population pharmacokinetic analysis. Transplant Cell Ther 2021; 28:104.e1-104.e7. [PMID: 34883294 DOI: 10.1016/j.jtct.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
Busulfan is a commonly used alkylating agent in the conditioning regimens of hematopoietic cell transplantation (HCT). Population pharmacokinetic (popPK) models enable the description of busulfan PK and optimization of exposure, which leads to improvement of event-free survival after HCT. Prior busulfan popPK analysis has been limited by small numbers in patients with inherited metabolic disorders (IMD). The primary objective was to characterize population PK of busulfan in a large cohort of children and young adults undergoing HCT for IMD. PopPK analysis of busulfan drug concentrations was performed using data from 78 patients with IMD who received intravenous busulfan (every 24 hours, 4 doses) as part of pretransplantation combination chemotherapy. The final model for busulfan drug clearance was then used to estimate individual doses aimed to achieve a target cumulative area under the curve (cAUC) of 80 to 100 mg · h/L. We then compared the probability of cAUC within the range of 80 to 100 mg · h/L by the developed dosing regimen versus conventional regimen. A 1-compartment, linear elimination model best described the PK of busulfan. Significant covariates demonstrated to affect busulfan clearance included total body weight and the time (in days) from busulfan infusion start. The probability of target cumulative AUC attainment by the developed dosing versus the conventional dosing were 47% versus 43% for body weight <12 kg, and 48% versus 36% for body weight ≥12 kg. We described population PK of intravenous busulfan in a large IMD cohort. The proposed dosing regimen based on the developed model can improve the target cAUC attainment of busulfan for IMD.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.
| | - Sílvia M Illamola
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | | | - Susan E Long
- Department of Pharmacy, Fairview MHealth, Minneapolis, Minnesota
| | - Troy C Lund
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Ashish O Gupta
- Division of Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota
| | - Janel R Long-Boyle
- Departments of Clinical Pharmacy, University of California San Francisco, Mission Bay, California; Division of Pediatric Allergy/Immunology/Bone Marrow Transplantation, University of California San Francisco, Mission Bay, California
| |
Collapse
|
33
|
Dunn A, Moffett BS, Ivaturi V, Gobburu JVS. Characterization of Drug-Drug Interactions on the Pharmacokinetic Disposition of Busulfan in Pediatric Patients during Hematopoietic Stem Cell Transplantation Conditioning. Br J Clin Pharmacol 2021; 88:2223-2235. [PMID: 34799882 DOI: 10.1111/bcp.15151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/25/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022] Open
Abstract
AIM The study objective was to develop a population pharmacokinetic model for busulfan to comprehensively examine drug-drug interactions (DDIs) in pediatric patients undergoing hematopoietic stem cell transplantation. Currently, there is limited evidence to substantiate potential DDIs with busulfan. METHODS This retrospective study population was comprised of 250 patients receiving, on average, 0.8 mg/kg intravenous busulfan as pretreatment. All model analyses were conducted using non-linear mixed effects modeling in Pumas v2.0. The metabolic pathways of primary interest were glutathione conjugation and cytochrome P450 activity. Concomitant medications were categorized as CYP inhibitors, inducers, or GST depleters and included in the model as conditional covariates. A bootstrap simulation and visual predictive check were conducted to qualify the final model. RESULTS The final one-compartment model incorporates covariates of weight and age in relation to their effects on both total body clearance and volume of distribution. The estimated typical values of clearance and volume were 1.138 L/hr (CI: 1.095 - 1.179 L/hr) and 3.527 L (CI: 3.418 - 3.621 L), respectively. No significant changes in clearance were observed when medications that alter proposed hepatic and metabolic pathways of busulfan were coadministered. CONCLUSION To the best of our knowledge, this is the largest single center study of busulfan in children and the first to quantify the maturation effect of both clearance and volume. This study could not demonstrate a difference in busulfan clearance when comparing patients who received medications that alter the GST, CYP3A4, or CYP2C9 pathway to those who did not.
Collapse
Affiliation(s)
- Allison Dunn
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Brady S Moffett
- Department of Pharmacy, Texas Children's Hospital, Houston, Texas.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Vijay Ivaturi
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jogarao V S Gobburu
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
34
|
Essmann S, Dadkhah A, Janson D, Wolschke C, Ayuk F, Kröger NM, Langebrake C. Iron Chelation With Deferasirox Increases Busulfan AUC During Conditioning Chemotherapy Prior to Allogeneic Stem Cell Transplantation. Transplant Cell Ther 2021; 28:115.e1-115.e5. [PMID: 34775147 DOI: 10.1016/j.jtct.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 01/19/2023]
Abstract
The negative effects of iron overload caused by repetitive blood transfusions and iron release during cytotoxic chemotherapy might be ameliorated by early treatment with an iron chelator. However, in the setting of allogeneic hematopoietic stem cell transplantation (HSCT), chelation therapy is often postponed until the late post-transplantation period because of potential drug interactions. We wanted to systematically investigate the influence of iron chelation with deferasirox on the pharmacokinetics of intravenous busulfan in adult patients in the context of routine therapeutic drug monitoring (TDM) before HSCT. We conducted a single-center, prospective, observational study in 25 adult patients with planned allogeneic HSCT after myeloablative, busulfan-based, TDM-guided conditioning chemotherapy. Busulfan was administered intravenously over 3 hours with an initial dose of 3.2 mg/kg once daily (based on adjusted ideal body weight [AIBW] in overweight patients). Four consecutive dosages were planned to achieve a cumulative area under the curve (AUC) of 80 mg · h/L. Patients received deferasirox for transfusional iron overload as per approval from the start of conditioning until day 3 after transplantation. Model-based calculation of the busulfan AUC was carried out by means of Bayesian prediction based on a population pharmacokinetic model after the first or second dose of busulfan, and dose adjustments were performed accordingly. Calculated median cumulative AUC before dose adjustment was 93.7 mg · h/L (65.1-151.4 mg · h/L), which was considerably above the target AUC of 80 mg · h/L ± 10%. Median dose adjustment was -17.1% (-50.0% to 18.2%), and patients ultimately received busulfan with a median cumulative dose of 10.60 mg/kg (6.38-15.62 mg/kg). A busulfan dose reduction was necessary in 19 patients (76%) whereas a dose increase was only necessary in 1 patient. After dose adjustment the median AUC was 79.7 mg/L · h (62.5 - 84.2 mg/L · h). Median busulfan clearance was 0.134 L/h/kg (0.084-0.203 L/h/kg), which is significantly lower than the average clearance of 0.2 L/h/kg reported in the literature, whereas volume of distribution was not altered. We were able to demonstrate, that TDM is the key point to facilitate a safe co-administration of both medications, because the intake of deferasirox leads to a considerable increase in the busulfan AUC of about 35% to 40%. The reason for the increase in busulfan AUC is a reduction in busulfan clearance by about one third; therefore a lower initial dose of busulfan followed by TDM could be considered in this case.
Collapse
Affiliation(s)
- Sonja Essmann
- University Medical Centre Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - Adrin Dadkhah
- University Medical Centre Hamburg-Eppendorf, Hospital Pharmacy, Hamburg, Germany
| | - Dietlinde Janson
- University Medical Centre Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - Christine Wolschke
- University Medical Centre Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - Francis Ayuk
- University Medical Centre Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - Nicolaus M Kröger
- University Medical Centre Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany
| | - Claudia Langebrake
- University Medical Centre Hamburg-Eppendorf, Department of Stem Cell Transplantation, Hamburg, Germany; University Medical Centre Hamburg-Eppendorf, Hospital Pharmacy, Hamburg, Germany.
| |
Collapse
|
35
|
Hagenburg J, Savale L, Lechartier B, Ghigna MR, Chaumais MC, Jaïs X, Sitbon O, Humbert M, Montani D. Pulmonary hypertension associated with busulfan. Pulm Circ 2021; 11:20458940211030170. [PMID: 34616544 PMCID: PMC8488760 DOI: 10.1177/20458940211030170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Busulfan is widely used to treat malignant diseases, particularly for therapeutic intensification prior to an autologous stem cell graft. Numerous side effects consecutive to busulfan are described, but few descriptions of pulmonary hypertension exist, while bronchiolitis obliterans remains a rare complication. We report the clinical observations of four patients from the French Pulmonary Hypertension Registry who experienced subacute pulmonary hypertension after receiving busulfan as preparation regimen before an autologous stem cell graft for malignancies (Hodgkin's disease, Ewing's sarcoma and primary large B cell lymphoma of the brain). Patients experienced severe pulmonary arterial hypertension 2 to 4.5 months after busulfan administration. Pulmonary hypertension improved after treatment with approved drugs for pulmonary arterial hypertension and/or corticosteroids. During the follow-up period, two patients developed chronic respiratory insufficiency due to interstitial lung disease, leading to double lung transplantation. The pathological assessment of explanted lungs revealed interstitial lung fibrosis with advanced bronchiolar lesions and severe pulmonary vascular damage. Three of the four patients were still alive after 36 to 80 months and the fourth died unexpectedly and suddenly after 5 months. In conclusion, PAH is a rare but severe complication associated with busulfan chemotherapy in adults. Histological examinations provide evidence for diffuse pulmonary vascular damage combined with interstitial lung injury in most cases.
Collapse
Affiliation(s)
- Jean Hagenburg
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
| | - Laurent Savale
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Benoit Lechartier
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Maria-Rosa Ghigna
- INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Service d'anatomopathologie, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - Marie-Camille Chaumais
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Assistance Publique Hôpitaux de Paris, Service de Pharmacie, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Xavier Jaïs
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Olivier Sitbon
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - David Montani
- Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999 Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| |
Collapse
|
36
|
GSTM1 and GSTT1 double null genotypes determining cell fate and proliferation as potential risk factors of relapse in children with hematological malignancies after hematopoietic stem cell transplantation. J Cancer Res Clin Oncol 2021; 148:71-86. [PMID: 34499222 PMCID: PMC8752561 DOI: 10.1007/s00432-021-03769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/14/2021] [Indexed: 10/29/2022]
Abstract
PURPOSE This study aimed to retrospectively evaluate the genetic association of null variants of glutathione S-transferases GSTM1 and GSTT1 with relapse incidence in children with hematological malignancies (HMs) undergoing busulfan (BU)- containing allogeneic hematopoietic stem cell transplantation (HSCT) and to assess the impact of these variants on BU-induced cytotoxicity on the immortalized lymphoblastoid cell lines (LCLs) and tumor THP1 GST gene-edited cell models. METHODS GSTM1- and GSTT1-null alleles were genotyped using germline DNA from whole blood prior to a conditioning BU-based regimen. Association of GSTM1- and GSTT1-null variants with relapse incidence was analyzed using multivariable competing risk analysis. BU-induced cell death studies were conducted in GSTs- null and non-null LCLs and CRISPR-Cas9 gene-edited THP1 leukemia cell lines. RESULTS Carrying GSTM1/GSTT1 double null genotype was found to be an independent risk factor for post-HSCT relapse in 86 children (adjusted HR: 6.52 [95% Cl, 2.76-15.42; p = 1.9 × 10-5]). BU-induced cell death preferentially in THP1GSTM1(non-null) and LCLsGSTM1(non-null) as shown by decreased viability, increased necrosis and levels of the oxidized form of glutathione compared to null cells, while GSTT1 non-null cells showed increased baseline proliferation. CONCLUSION The clinical association suggests that GSTM1/GSTT1 double null genotype could serve as genetic stratification biomarker for the high risk of post-HSCT relapse. Functional studies have indicated that GSTM1 status modulates BU-induced cell death. On the other hand, GSTT1 is proposed to be involved in baseline cell proliferation.
Collapse
|
37
|
Ben Hassine K, Nava T, Théoret Y, Nath CE, Daali Y, Kassir N, Lewis V, Bredius RGM, Shaw PJ, Bittencourt H, Krajinovic M, Uppugunduri CRS, Ansari M. Precision dosing of intravenous busulfan in pediatric hematopoietic stem cell transplantation: Results from a multicenter population pharmacokinetic study. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:1043-1056. [PMID: 34453497 PMCID: PMC8452291 DOI: 10.1002/psp4.12683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022]
Abstract
Busulfan (Bu) is a common component of conditioning regimens before hematopoietic stem cell transplantation (HSCT) and is known for high interpatient pharmacokinetic (PK) variability. This study aimed to develop and externally validate a multicentric, population PK (PopPK) model for intravenous Bu in pediatric patients before HSCT to first study the influence of glutathione‐s‐transferase A1 (GSTA1) polymorphisms on Bu's PK in a large multicentric pediatric population while accounting for fludarabine (Flu) coadministration and, second, to establish an individualized, model‐based, first‐dose recommendation for intravenous Bu that can be widely used in pediatric patients. The model was built using data from 302 patients from five transplantation centers who received a Bu‐based conditioning regimen. External model validation used data from 100 patients. The relationship between body weight and Bu clearance (CL) was best described by an age‐dependent allometric scaling of a body weight model. A stepwise covariate analysis identified Day 1 of Bu conditioning, GSTA1 metabolic groups based on GSTA1 polymorphisms, and Flu coadministration as significant covariates influencing Bu CL. The final model adequately predicted Bu first‐dose CL in the external cohort, with 81% of predicted area under the curves within the therapeutic window. The final model showed minimal bias (mean prediction error, −0.5%; 95% confidence interval [CI], −3.1% to 2.0%) and acceptable precision (mean absolute prediction error percentage, 18.7%; 95% CI, 17.0%–20.5%) in Bu CL prediction for dosing. This multicentric PopPK study confirmed the influence of GSTA1 polymorphisms and Flu coadministration on Bu CL. The developed model accurately predicted Bu CL and first doses in an external cohort of pediatric patients.
Collapse
Affiliation(s)
- Khalil Ben Hassine
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Tiago Nava
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Yves Théoret
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Clinical Pharmacology Unit, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Christa E Nath
- Department of Biochemistry, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,The Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Youssef Daali
- Clinical Pharmacology and Toxicology Division, Geneva University Hospitals and University of Geneva, Geneva, Switzerland.,Faculty of Medicine & Sciences, University of Geneva, Geneva, Switzerland
| | - Nastya Kassir
- Genentech/Roche, Clinical Pharmacology, South San Francisco, California, USA
| | - Victor Lewis
- Department of Pediatrics, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Robbert G M Bredius
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J Shaw
- The Cancer Centre for Children, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Henrique Bittencourt
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Clinical Pharmacology Unit, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Charles-Bruneau Cancer Center, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada.,Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada.,Clinical Pharmacology Unit, Sainte-Justine University Health Center (SJUHC), Montreal, Quebec, Canada.,Department of Pediatrics, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Chakradhara Rao Satyanarayana Uppugunduri
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Marc Ansari
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland.,Division of Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Remy A, Théorêt Y, Ansari M, Bittencourt H, Ducruet T, Nava T, Pastore Y, Rezgui MA, Krajinovic M, Kleiber N. Is Busulfan Clearance Different in Patients With Sickle Cell Disease? Let's Clear Up That Case With Some Controls. J Pediatr Hematol Oncol 2021; 43:e867-e872. [PMID: 33661168 DOI: 10.1097/mph.0000000000002106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022]
Abstract
In busulfan-based conditioning regimen for hematopoietic stem cell transplantation in children, accurate a priori determination of the first dose is important because of its narrow therapeutic window. Sickle cell disease (SCD) influences pharmacokinetics of the commonly used drugs by affecting organs responsible for drug metabolism and elimination. This pharmacokinetics study assesses the influence of SCD on the metabolic pathway of busulfan that is mainly metabolized in the liver. In this retrospective cross-sectional case-control study, 16 patients with SCD were matched to 50 patients without SCD on known busulfan clearance's covariates (glutathione-S-transferase alpha1 polymorphisms, age, weight). Clearance of the first dose of busulfan was not significantly different independently of genetic or anthropometric factors in patients with or without SCD.
Collapse
Affiliation(s)
- Amandine Remy
- Department of Pediatric Hematology, Univ. Lille, CHU Lille, Lille, France
- Unité de pharmacologie clinique
| | - Yves Théorêt
- Unité de pharmacologie clinique
- Departments of Pharmacology and Physiology
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Université de Montréal
| | - Marc Ansari
- CANSEARCH Research Laboratory, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospital, Geneva, Switzerland
| | - Henrique Bittencourt
- Pediatrics
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Université de Montréal
| | - Thierry Ducruet
- Applied Clinical Research Unit, CHU Sainte-Justine, Montreal, QC, Canada
| | - Tiago Nava
- CANSEARCH Research Laboratory, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva
- Department of Women-Children-Adolescents, Division of General Pediatrics, Pediatric Onco-Hematology Unit, Geneva University Hospital, Geneva, Switzerland
| | - Yves Pastore
- Pediatrics
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Université de Montréal
| | - Mohamed A Rezgui
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Université de Montréal
| | - Maja Krajinovic
- Departments of Pharmacology and Physiology
- Pediatrics
- Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, Université de Montréal
| | - Niina Kleiber
- Departments of Pharmacology and Physiology
- Pediatrics
- Research Center, CHU Sainte-Justine
| |
Collapse
|
39
|
Cokyaman T, Elli M, Aydin ÖF, Albayrak C, Albayrak D, Özyürek E. Neuroprotective Efficacy of Prophylactic Antiepileptic Therapies in Busulfan Conditioning Regimen. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0040-1708833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractBusulfan (BU) is commonly used in the anticancer treatment and bone marrow/hematopoietic stem cell transplantation (BM/HSCT) conditioning regimen. This study aimed to evaluate the neuroprotective efficacy of antiepileptic therapies in the BU conditioning regimen. Patients who underwent BM/HSCT between January 1, 2009, and January 1, 2014, were evaluated retrospectively. Diagnosis, demographic characteristics, neurological side effects, electroencephalography (EEG) abnormalities, and antiepileptic drugs were determined. Levetiracetam was given to 49% and phenytoin to 23% of patients as antiepileptic prophylaxis. After BU treatment, seizures developed in three patients, posterior reversible leukoencephalopathy in two patients, and peripheral neuropathy in two patients. Forty-five patients who underwent EEG before and after BU treatment were identified. The effects of antiepileptic prophylaxis over the electroencephalographic abnormalities after the BU conditioning regimen were found to be not different (p = 0.491). Neurological side effects and electroencephalographic abnormalities following BU conditioning regimen under antiepileptic prophylaxis are comparable.
Collapse
Affiliation(s)
- Turgay Cokyaman
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Murat Elli
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ömer F. Aydin
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Canan Albayrak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Davut Albayrak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Emel Özyürek
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
40
|
Morimoto H, Ogonuki N, Kanatsu-Shinohara M, Matoba S, Ogura A, Shinohara T. Spermatogonial stem cell transplantation into nonablated mouse recipient testes. Stem Cell Reports 2021; 16:1832-1844. [PMID: 34143973 PMCID: PMC8282430 DOI: 10.1016/j.stemcr.2021.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
Spermatogonial transplantation has been used as a standard assay for spermatogonial stem cells (SSCs). After transplantation into the seminiferous tubules, SSCs transmigrate through the blood-testis barrier (BTB) between Sertoli cells and settle in a niche. Unlike in the repair of other self-renewing systems, SSC transplantation is generally performed after complete destruction of endogenous spermatogenesis. Here, we examined the impacts of recipient conditioning on SSC homing. Germ cell ablation downregulated the expression of glial cell line-derived neurotrophic factor, which has been shown to attract SSCs to niches, implying that nonablated niches would attract SSCs more efficiently. As expected, SSCs colonized nonablated testes when transplanted into recipients with the same genetic background. Moreover, although spermatogenesis was arrested at the spermatocyte stage in Cldn11-deficient mice without a BTB, transplantation not only enhanced donor colonization but also restored normal spermatogenesis. The results show promise for the development of a new transplantation strategy to overcome male infertility.
Collapse
Affiliation(s)
- Hiroko Morimoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Narumi Ogonuki
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan; AMED-CREST, AMED, 1-7-1 Otemachi, Chiyodaku, Tokyo 100-0004, Japan
| | - Shogo Matoba
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Atsuo Ogura
- RIKEN, BioResource Research Center, Tsukuba 305-0074, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
41
|
Chen RL, Fang LH, Yang XY, El Amrani M, Uijtendaal EV, Chen YF, Ku WC. Therapeutic Drug Monitoring of Busulfan in Patients Undergoing Hematopoietic Cell Transplantation: A Pilot Single-Center Study in Taiwan. Pharmaceuticals (Basel) 2021; 14:613. [PMID: 34206798 PMCID: PMC8308703 DOI: 10.3390/ph14070613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Busulfan has been used as a conditioning regimen in allogeneic hematopoietic cell stem transplantation (HSCT). Owing to a large inter-individual variation in pharmacokinetics, therapeutic drug monitoring (TDM)-guided busulfan dosing is necessary to reduce graft failure and relapse rate. As there exists no TDM of busulfan administration for HCT in Taiwan, we conducted a pilot study to assess the TDM-dosing of busulfan in the Taiwanese population; (2) Methods: Seven patients with HCT from The Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan, received conditioning regimens consisting of intravenous busulfan and other chemotherapies. After the initial busulfan dose, blood samples were collected for busulfan TDM at 5 min, 1 h, 2 h, and 3 h. Busulfan was extracted and detected by performing stable-isotope dilution LC-MS/MS. Plasma busulfan concentration was quantified and used for dose adjustment. Potential adverse effects of busulfan, such as mucositis and hepatic veno-occlusive disease (VOD), were also evaluated; (3) Results: The LC-MS/MS method was validated with an analyte recovery of 88-99%, within-run and between-run precision of <15%, and linearity ranging from 10 to 10,000 ng/mL. Using TDM-guided busulfan dosing, dose adjustment was necessary and performed in six out of seven patients (86%) with successful engraftments in all patients (100%). Mild mucositis was observed, and VOD was diagnosed in only one patient; (4) Conclusions: This single-center study in Taiwan demonstrated the importance of busulfan TDM in increasing the success rate of HCT transplantation. It is also necessary to further investigate the optimal busulfan target value in the Taiwanese population in the future.
Collapse
Affiliation(s)
- Rong-Long Chen
- Department of Pediatric Hematology and Oncology, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112019, Taiwan;
| | - Li-Hua Fang
- Department of Pharmacy, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112019, Taiwan; (L.-H.F.); (X.-Y.Y.)
| | - Xin-Yi Yang
- Department of Pharmacy, Koo Foundation Sun Yat-Sen Cancer Center, Taipei City 112019, Taiwan; (L.-H.F.); (X.-Y.Y.)
| | - Mohsin El Amrani
- Department of Clinical Pharmacy, Division Laboratory, Medicine and Pharmacy, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (M.E.A.); (E.V.U.)
| | - Esther Veronique Uijtendaal
- Department of Clinical Pharmacy, Division Laboratory, Medicine and Pharmacy, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (M.E.A.); (E.V.U.)
| | - Yen-Fu Chen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| | - Wei-Chi Ku
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan;
| |
Collapse
|
42
|
Dhuria NV, Haro B, Kapadia A, Lobo KA, Matusow B, Schleiff MA, Tantoy C, Sodhi JK. Recent developments in predicting CYP-independent metabolism. Drug Metab Rev 2021; 53:188-206. [PMID: 33941024 DOI: 10.1080/03602532.2021.1923728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As lead optimization efforts have successfully reduced metabolic liabilities due to cytochrome P450 (CYP)-mediated metabolism, there has been an increase in the frequency of involvement of non-CYP enzymes in the metabolism of investigational compounds. Although there have been numerous notable advancements in the characterization of non-CYP enzymes with respect to their localization, reaction mechanisms, species differences and identification of typical substrates, accurate prediction of non-CYP-mediated clearance, with a particular emphasis with the difficulties in accounting for any extrahepatic contributions, remains a challenge. The current manuscript comprehensively summarizes the recent advancements in the prediction of drug metabolism and the in vitro to in vitro extrapolation of clearance for substrates of non-CYP drug metabolizing enzymes.
Collapse
Affiliation(s)
- Nikhilesh V Dhuria
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bianka Haro
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Amit Kapadia
- California Poison Control Center, University of California San Francisco, San Diego, CA, USA
| | | | - Bernice Matusow
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Mary A Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Christina Tantoy
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA
| | - Jasleen K Sodhi
- Department of Drug Metabolism and Pharmacokinetics, Plexxikon Inc, Berkeley, CA, USA.,Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
43
|
Takahashi T, Scheibner A, Cao Q, Pearson R, Sanghavi K, Weisdorf DJ, Brunstein CG, Rogosheske J, Bachanova V, Warlick ED, Wiseman A, Jacobson PA. Higher Fludarabine and Cyclophosphamide Exposures Lead to Worse Outcomes in Reduced-Intensity Conditioning Hematopoietic Cell Transplantation for Adult Hematologic Malignancy. Transplant Cell Ther 2021; 27:773.e1-773.e8. [PMID: 34044184 DOI: 10.1016/j.jtct.2021.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 11/15/2022]
Abstract
Reduced-intensity conditioning regimens using fludarabine (Flu) and cyclophosphamide (Cy) have been widely used in hematopoietic cell transplantation (HCT) recipients. The optimal exposure of these agents remains to be determined. We aimed to delineate the exposure-outcome associations of Flu and Cy separately and then both combined on HCT outcomes. This is a single-center, observational, pharmacokinetic (PK)-pharmacodynamic (PD) study of Flu and Cy in HCT recipients age ≥18 years who received Cy (50 mg/kg in a single dose), Flu (150 to 200 mg/m2 given as 5 daily doses), and total body irradiation (TBI; 200 cGy). We measured trough concentrations of 9-β-D-arabinosyl-2-fluoradenine (F-ara-A), an active metabolite of Flu, on days -5 and -4 (F-ara-ADay-5 and F-ara-ADay-4, respectively), and measured phosphoramide mustard (PM), the final active metabolite of Cy, and estimated the area under the curve (AUC). The 89 enrolled patients had a nonrelapse mortality (NRM) of 9% (95% confidence interval [CI], 3% to 15%) at day +100 and 15% (95% CI, 7% to 22%) at day +180, and an overall survival (OS) of 73% (95% CI, 63% to 81%) at day +180. In multivariate analysis, higher PM area under the curve (AUC) for 0 to 8 hours (PM AUC0-8 hr) was an independent predictor of worse NRM (P < .01 at both day +100 and day +180) and worse day +180 OS (P < .01), but no associations were identified for F-ara-A trough levels. We observed lower day +100 NRM in those with both high F-ara-ADay-4 trough levels (≥40 ng/mL; >25th percentile) and low PM AUC0-8 hr (<34,235 hr ng/mL; <75th percentile), compared with high exposures to both agents (hazard ratio, 0.06; 95% CI, 0.01 to 0.48). No patients with low F-ara-ADay-4 (<40 ng/mL; <25th percentile) had NRM by day +100, regardless of PM AUC. The interpatient PK variability was large in F-ara-ADay-4 trough and PM AUC0-8 hr (29-fold and 5.0-fold, respectively). Flu exposure alone was not strongly associated with NRM or OS in this reduced Flu dose regimen; however, high exposure to both Flu and Cy was associated with a >16-fold higher NRM. These results warrant further investigation to optimize reduced-intensity regimens based on better PK-PD understanding and possible adaptation to predictable factors influencing drug clearance.
Collapse
Affiliation(s)
- Takuto Takahashi
- Division of Pediatric Hematology/Oncology/Blood and Marrow Transplant, University of Minnesota, Minneapolis, Minnesota; Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Aileen Scheibner
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rachael Pearson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Kinjal Sanghavi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
| | - Daniel J Weisdorf
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Claudio G Brunstein
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - John Rogosheske
- Department of Pharmacy, M Health Fairview, Minneapolis, Minnesota
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Erica D Warlick
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Anthony Wiseman
- University of Minnesota Medical School, Minneapolis, Minnesota
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
44
|
Targeted busulfan-based reduced-intensity conditioning and HLA-matched HSCT cure hemophagocytic lymphohistiocytosis. Blood Adv 2021; 4:1998-2010. [PMID: 32384542 DOI: 10.1182/bloodadvances.2020001748] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Reduced-intensity/reduced-toxicity conditioning and allogeneic T-cell replete hematopoietic stem cell transplantation are curative in patients with hemophagocytic lymphohistiocytosis (HLH). Unstable donor chimerism (DC) and relapses are clinical challenges . We examined the effect of a reduced-intensity conditioning regimen based on targeted busulfan to enhance myeloid DC in HLH. The European Society for Bone and Marrow Transplantation-approved reduced-intensity conditioning protocol comprised targeted submyeloablative IV busulfan, IV fludarabine, and serotherapy comprising IV alemtuzumab (0.5-0.8 mg/kg) for unrelated-donor and IV rabbit anti-T-cell globulin for related-donor transplants. We assessed toxicity, engraftment, graft-versus-host disease (GHVD), DC in blood cell subtypes, and overall survival/event-free survival. Twenty-five patients from 7 centers were treated (median age, 0.68 year). The median total dose and cumulative area under the curve of busulfan was 13.1 mg/kg (6.4-26.4) and 63.1 mg/L × h (48-77), respectively. Bone marrow, peripheral blood stem cell, or cord blood transplants from HLA-matched related (n = 7) or unrelated (n = 18) donors were administered. Donor cells engrafted in all patients (median: neutrophils d+20/platelets d+28). At last follow-up (median, 36 months; range, 8-111 months), the median DC of CD15+ neutrophils, CD3+ T cells, and CD16+56+ natural killer cells was 99.5% (10-100), 97% (30-100), and 97.5% (30-100), respectively. Eight patients (32%) developed sinusoidal obstruction syndrome, resolving after defibrotide treatment. The 3-year overall survival and event-free survival rates were both 100%. None of the patients developed acute grade III to IV GHVD. Limited chronic GVHD was encountered in 4%. This regimen achieves excellent results with stable DC in patients with HLH.
Collapse
|
45
|
Jansing T, Sanpakit K, Tharnpanich T, Jiranantakan T, Niphandwongkorn V, Chindavijak B, Suansanae T. Therapeutic drug monitoring of intravenous busulfan in Thai children undergoing hematopoietic stem cell transplantation: A pilot study. Pediatr Hematol Oncol 2021; 38:346-357. [PMID: 33656974 DOI: 10.1080/08880018.2020.1871136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Busulfan (Bu) is commonly used in myeloablative conditioning regimens for children undergoing hematopoietic stem cell transplantation. The standard target area under the concentration-time curve (AUC) of Bu is approximately 900-1500 µM min. In previous studies using five fixed doses (0.8-1.2 mg/kg) for Bu without dose adjustment, 75% patients achieved the target AUC. The aim of this pilot study was to determine the percentage of target AUC for intravenous (IV) Bu in Thai children. IV Bu was administered every 6 h over 16 doses. Blood samples were collected for pharmacokinetic (PK) analysis after the first, ninth, and thirteenth doses of Bu. Seven patients (2-14 years; median 6 years) were diagnosed with thalassemia (n = 4), acute myeloid leukemia (n = 2), and pure red cell aplasia. Three, two, and two patients received Bu at 1.1, 1.2, and 0.8 mg/kg, respectively. The AUC of Bu varied from 292-1714 µM min (median = 804). Nine (42.86%), eleven (52.38%), and one (4.76%) AUC values were within, below, and above the target, respectively. The median (range) Bu clearance was 5.93 (1.91-14.65) mL/min/kg. In this study, 42.86% AUC value achieved the target, which was lower than that in previous studies. Therapeutic drug monitoring (TDM) of Bu should be considered in Thai children receiving five fixed doses of IV Bu, and dose adjustment should be performed as necessary. Further PK studies for Bu with a larger sample size are warranted for confirming the necessity of TDM in every step dose of Bu.(Trial registration numbers; TCTR20190528003).
Collapse
Affiliation(s)
| | - Kleebsabai Sanpakit
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Trai Tharnpanich
- Department of Pharmacy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanjira Jiranantakan
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vachira Niphandwongkorn
- Department of Nurse, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Busba Chindavijak
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Thanarat Suansanae
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
46
|
Teschke R, Uetrecht J. Mechanism of idiosyncratic drug induced liver injury (DILI): unresolved basic issues. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:730. [PMID: 33987428 PMCID: PMC8106057 DOI: 10.21037/atm-2020-ubih-05] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinical features of idiosyncratic drug induced liver injury (DILI) are well described in cases that have been assessed for causality using the Roussel Uclaf Causality Assessment Method (RUCAM), but our understanding of the mechanistic steps leading to injury is fragmentary. The difficulties describing mechanistic events can be traced back to the lack of an animal model of experimental idiosyncratic DILI that can mimic the genetic requirements of human idiosyncratic DILI. However, immune tolerance plays a dominant role in the immune response of the liver, and impairment of immune tolerance with immune checkpoint inhibitors increases DILI in both humans and animals. This may provide one method to study the individual steps involved. In general. the human DILI liver is a secret keeper providing little insight into what occurs in the diseased organ. Sufficient evidence exists that most idiosyncratic cases are mediated by the adaptive immune system, which depends on stimulation of the innate immune system, but the triggering factors are unknown. It is attractive to hypothesize that the gut microbiome plays a role; however, it is very difficult to study. Similarly, exosomes are likely to play an important role in communication between hepatic cells and the immune system, but there is a lack of data on blood exosomes in affected patients. Reactive metabolites are likely to play an important role. This is supported by the current analysis, which revealed an association between metabolism by cytochrome P450 and drugs most commonly involved in causing idiosyncratic DILI with causality verified by RUCAM. Circumstantial evidence suggests that reactive oxygen species (ROS) generated by cytochrome P450 could be responsible for the initial steps of injury, but details are unknown. In conclusion, most of the mechanistic steps leading to idiosyncratic DILI remain unclear.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty of the Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Jack Uetrecht
- Department of Pharmaceutical Sciences, University of Toronto, ON, Canada
| |
Collapse
|
47
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|
48
|
Huang J, Hao C, Li Z, Wang L, Jiang J, Tang W, Wang L, Zhang W, Hu J, Yang W. NRF2 -617 C/A Polymorphism Impacts Proinflammatory Cytokine Levels, Survival, and Transplant-Related Mortality After Hematopoietic Stem Cell Transplantation in Adult Patients Receiving Busulfan-Based Conditioning Regimens. Front Pharmacol 2021; 11:563321. [PMID: 33384597 PMCID: PMC7770105 DOI: 10.3389/fphar.2020.563321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/15/2020] [Indexed: 12/02/2022] Open
Abstract
Busulfan (BU) is widely used in conditioning regimens prior to hematopoietic stem cell transplantation (HSCT). The exposure-escalated BU directed by therapeutic drug monitoring (TDM) is extremely necessary for the patients with high-risk hematologic malignancies in order to diminish relapse, but it increases the risk of drug-induced toxicity. BU exposure, involved in the glutathione- (GSH-) glutathione S-transferases (GSTs) pathway and proinflammatory response, is associated with clinical outcomes after HSCT. However, the expression of genes in the GSH-GSTs pathway is regulated by NF-E2-related factor 2 (Nrf2) that can also alleviate inflammation. In this study, we evaluated the influence of NRF2 polymorphisms on BU exposure, proinflammatory cytokine levels, and clinical outcomes in HSCT patients. A total of 87 Chinese adult patients receiving twice-daily intravenous BU were enrolled. Compared with the patients carrying wild genotypes, those with NRF2 -617 CA/AA genotypes showed higher plasma interleukin (IL)-6, IL-8 and tumor necrosis factor (TNF)-α levels, poorer overall survival (OS; RR = 3.91), and increased transplant-related mortality (TRM; HR = 4.17). High BU exposure [area under the concentration-time curve (AUC) > 9.27 mg/L × h)] was related to BU toxicities. Furthermore, NRF2 -617 CA/AA genotypes could significantly impact TRM (HR = 4.04; p = 0.0142) and OS (HR = 3.69; p = 0.0272) in the patients with high BU AUC. In vitro, we found that high exposure of endothelial cell (EC) to BU, in the absence of Nrf2, elicited the hyperstimulation of NF-κB-p65, accompanied with the elevated secretion of proinflammatory cytokines, and led to EC death. These results showed that NRF2 -617 CA/AA genotypes, correlated with high proinflammatory cytokine levels, could predict inferior outcomes in HSCT patients with high BU AUC. Thus, NRF2 -617 CA/AA genotyping combined with TDM would further optimize personalized BU dosing for sufficient efficacy and safety endpoint.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziwei Li
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieling Jiang
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lining Wang
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Hu
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Hoang S, Dao N, Myers AL. Electrophilic reactivity of the Busulfan metabolite, EdAG, towards cellular thiols and inhibition of human thioredoxin-1. Biochem Biophys Res Commun 2020; 533:325-331. [PMID: 32958252 DOI: 10.1016/j.bbrc.2020.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
Busulfan is an alkylating agent used in chemotherapy conditioning regimens prior to hematopoietic stem cell transplantation (HSCT). However, its administration is associated with a great risk of adverse toxicities, which have been historically attributed to busulfan's mechanism of non-specific DNA alkylation. A phase II generated metabolite of busulfan, EdAG (γ-glutamyldehydroalanylglycine), is a dehydroalanine analog of glutathione (GSH) with an electrophilic moiety, suggesting it may bind to proteins and disrupt biological function. However, EdAG's reactions with common cellular thiols such as glutathione (GSH) and l-cysteine are understudied, along with possible inhibition of glutathionylation-dependent enzymes (with active site cysteine residues). We established a physiologically-relevant in vitro model to readily measure thiol loss over time. Using this model, we compared the apparent rates of thiol depletion in the presence of EdAG or arecoline, a toxic constituent of the areca (betel) nut and known GSH depletor. Simulated kinetic modeling revealed that the mean (±SE) alpha (α) second order rate constants describing GSH and l-cysteine depletion in the presence of EdAG were 0.00522 (0.00845) μM-1∙min-1 and 0.0207 (0.00721) μM-1∙min-1, respectively; in the presence of arecoline, the apparent rates of depletion were 0.0619 (0.009) μM-1∙min-1 and 0.2834 (0.0637) μM-1∙min-1 for GSH and l-cysteine, respectively. Under these experimental conditions, we conclude that EdAG was a weaker electrophile than arecoline. Arecoline and EdAG both depleted apparent l-cysteine concentrations to a much greater extent than GSH, approximately 4.58-fold and 3.97-fold change greater, respectively. EdAG modestly inhibited (∼20%) the human thioredoxin-1 (hTrx-1) catalyzed reduction of insulin with a mean IC50 of 93 μM [95% CI: 78.6-110 μM). In summary, EdAG's ability to spontaneously react with endogenous thiols and inhibit hTrx-1 are potentially biochemically relevant in humans. These findings continue to support the growing concept that EdAG, an underrecognized phase II metabolite of busulfan, plays a role in untoward cellular toxicities during busulfan pharmacotherapy.
Collapse
Affiliation(s)
| | - Nhu Dao
- The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Alan L Myers
- The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA.
| |
Collapse
|
50
|
Hao C, Ma X, Wang L, Zhang W, Hu J, Huang J, Yang W. Predicting the presence and mechanism of busulfan drug-drug interactions in hematopoietic stem cell transplantation using pharmacokinetic interaction network-based molecular structure similarity and network pharmacology. Eur J Clin Pharmacol 2020; 77:595-605. [PMID: 33179758 DOI: 10.1007/s00228-020-03034-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/30/2020] [Indexed: 01/02/2023]
Abstract
PURPOSE This study aimed to predict the presence and mechanism of busulfan drug-drug interactions (DDIs) in hematopoietic stem cell transplantation (HSCT) using pharmacokinetic interaction (PKI) network-based molecular structure similarity and network pharmacology. METHODS Logistic function models were established to predict busulfan DDIs based on the assumption that an approved drug tends to interact with the drug used in HSCT (DH) if structurally similar to the drugs in the PKI network of the DH. The PKI network of the DH represented the association between drugs and the proteins related to the PK of the DH. The most appropriate model was applied to predict busulfan DDIs in HSCT. Candidate targets for busulfan DDIs and their interacting were identified by network pharmacology. RESULTS Six of the top ten predicted busulfan DDIs were clinically relevant and involved voriconazole, fludarabine, itraconazole, cyclophosphamide, metronidazole, and melphalan. Candidate targets for these DDIs were CYP450s (3A4, 2B6, 2C9, and 2C19), GSTs (GSTA1, GSTP1, GSTT1, and GSTM1), and ABC transporters (ABCB1, ABCC1, ABCC2, and ABCC3), in the targets of drug-induced liver injury (DILI). The networks of interacting proteins and candidate targets indicated the regulatory potential of pregnane X receptor (PXR), as a nuclear receptor. Enrichment analysis showed the metabolism of drugs and xenobiotics, glutathione metabolism, and bile secretion associated with busulfan DDIs and DILI. CONCLUSIONS This study has successfully predicted busulfan DDIs in HSCT through PKI-based molecular structure similarity. The mechanism of busulfan DDI and DILI was attributed mostly to CYP450s, GSTs, and ABC transporters, and PXR was identified as a potential target.
Collapse
Affiliation(s)
- Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqin Ma
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lining Wang
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixia Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Hu
- Department of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|