1
|
Liu T, Wang X, Wang YM, Sui FR, Zhang XY, Liu HD, Ma DY, Liu XX, Guo SD. A comparative study of the hypolipidemic effects and mechanisms of action of Laminaria japonica- and Ascophyllum nodosum-derived fucoidans in apolipoprotein E-deficient mice. Food Funct 2024; 15:5955-5971. [PMID: 38738998 DOI: 10.1039/d3fo05521c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The structural characteristics of fucoidans exhibit species and regional diversity. Previous studies have demonstrated that Laminaria japonica- and Ascophyllum nodosum-derived fucoidans have type I and type II fucosyl chains, respectively. These chemical differences may contribute to distinct hypolipidemic effects and mechanisms of action. Chemical analysis demonstrated that the percentage contents of sulfate, glucuronic acid, and galactose were higher in L. japonica-derived fucoidans than those of A. nodosum-derived fucoidans. In hyperlipidemic apolipoprotein E-deficient mice, both A. nodosum- and L. japonica-derived fucoidans significantly decreased the plasma and hepatic levels of total cholesterol and triglyceride, leading to the reduction of atherosclerotic plaques. Western blotting experiments demonstrated that these fucoidans significantly enhanced the expression and levels of scavenger receptor B type 1, cholesterol 7 alpha-hydroxylase A1, and peroxisome proliferator-activated receptor (PPAR)-α, contributing to circulating lipoprotein clearance and fatty acid degradation, respectively. Differentially, L. japonica-derived fucoidan significantly increased the LXR/ATP-binding cassette G8 signaling pathway in the small intestine, as revealed by real-time quantitative PCR, which may lead to further cholesterol and other lipid excretion. Collectively, these data are useful for understanding the hypolipidemic mechanisms of action of seaweed-derived fucoidans, and their potential application for the prevention and/or treatment of atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Tian Liu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Xue Wang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Yan-Ming Wang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Feng-Rong Sui
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Xue-Ying Zhang
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Hai-Di Liu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Dong-Yue Ma
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Xiao-Xiao Liu
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| | - Shou-Dong Guo
- Institute of Lipid Metabolism and Atherosclerosis, School of Pharmacy, Shandong Second Medical University, 7166# Baotongxi Street, Weifang 261053, Shandong Province, China.
| |
Collapse
|
2
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
3
|
Titus C, Hoque MT, Bendayan R. PPAR agonists for the treatment of neuroinflammatory diseases. Trends Pharmacol Sci 2024; 45:9-23. [PMID: 38065777 DOI: 10.1016/j.tips.2023.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
Peroxisome proliferator-activated receptors [PPARs; PPARα, PPARβ/δ (also known as PPARδ), and PPARγ] widely recognized for their important role in glucose/lipid homeostasis, have recently received significant attention due to their additional anti-inflammatory and neuroprotective effects. Several newly developed PPAR agonists have shown high selectivity for specific PPAR isoforms in vitro and in vivo, offering the potential to achieve desired therapeutic outcomes while reducing the risk of adverse effects. In this review, we discuss the latest preclinical and clinical studies of the activation of PPARs by synthetic, natural, and isoform-specific (full, partial, and dual) agonists for the treatment of neuroinflammatory diseases, including HIV-associated neurocognitive disorders (HAND), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and cerebral ischemia.
Collapse
Affiliation(s)
- Celene Titus
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
4
|
Mandal S, Faizan S, Raghavendra NM, Kumar BRP. Molecular dynamics articulated multilevel virtual screening protocol to discover novel dual PPAR α/γ agonists for anti-diabetic and metabolic applications. Mol Divers 2023; 27:2605-2631. [PMID: 36437421 DOI: 10.1007/s11030-022-10571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 11/29/2022]
Abstract
PPARα and PPARγ are isoforms of the nuclear receptor superfamily which regulate glucose and lipid metabolism. Activation of PPARα and PPARγ receptors by exogenous ligands could transactivate the expression of PPARα and PPARγ-dependent genes, and thereby, metabolic pathways get triggered, which are helpful to ameliorate treatment for the type 2 diabetes mellitus, and related metabolic complications. Herein, by understanding the structural requirements for ligands to activate PPARα and PPARγ proteins, we developed a multilevel in silico-based virtual screening protocol to identify novel chemical scaffolds and further design and synthesize two distinct series of glitazone derivatives with advantages over the classical PPARα and PPARγ agonists. Moreover, the synthesized compounds were biologically evaluated for PPARα and PPARγ transactivation potency from nuclear extracts of 3T3-L1 cell. Furthermore, glucose uptake assay on L6 cells confirmed the potency of the synthesized compounds toward glucose regulation. Percentage lipid-lowering potency was also assessed through triglyceride estimate from 3T3-L1 cell extracts. Results suggested the ligand binding mode was in orthosteric fashion as similar to classical agonists. Thus molecular docking and molecular dynamics (MD) simulation experiments were executed to validate our hypothesis on mode of ligands binding and protein complex stability. Altogether, the present study developed a newer protocol for virtual screening and enables to design of novel glitazones for activation of PPARα and PPARγ-mediated pathways. Accordingly, present approach will offer benefit as a therapeutic strategy against type 2 diabetes mellitus and associated metabolic complications.
Collapse
Affiliation(s)
- Subhankar Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | | | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, S. S. Nagar, Mysuru, Karnataka, 570015, India.
- JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India.
| |
Collapse
|
5
|
Katakura Y, Shimoda M, Ohnishi M, Kusano T, Dan K, Isobe H, Wamata R, Iwamoto Y, Fushimi Y, Sanada J, Obata A, Kimura T, Tatsumi F, Nakanishi S, Mune T, Kaku K, Kaneto H. Efficacy and safety of pemafibrate in patients with hypertriglyceridemia in clinical settings: A retrospective study. Nutr Metab Cardiovasc Dis 2023; 33:1444-1452. [PMID: 37246074 DOI: 10.1016/j.numecd.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND AIMS Recently, pemafibrate, a selective PPARα modulator, has been developed as a treatment for hypertriglyceridemia and has attracted much attention. The aims of this study were to evaluate the efficacy and safety of pemafibrate in hypertriglyceridemia patients under clinical settings. METHODS AND RESULTS We evaluated changes in lipid profiles and various parameters before and after 24-week pemafibrate administration in patients with hypertriglyceridemia who had not previously taken fibrate medications. There were 79 cases included in the analysis. 24 weeks after the treatment with pemafibrate, TG was significantly reduced from 312 ± 226 to 167 ± 94 mg/dL. In addition, lipoprotein fractionation tests using PAGE method showed a significant decrease in the ratio of VLDL and remnant fractionations, which are TG-rich lipoproteins. After pemafibrate administration, body weight, HbA1c, eGFR, and CK levels were not changed, but liver injury indices such as ALT, AST, and γ-GTP were significantly improved. CONCLUSION In this study, pemafibrate improved the metabolism of atherosclerosis-induced lipoproteins in hypertriglyceridemia patients. In addition, it showed no off-target effects such as hepatic and renal damage or rhabdomyolysis.
Collapse
Affiliation(s)
- Yukino Katakura
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Masashi Shimoda
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan.
| | - Mana Ohnishi
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Takashi Kusano
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kazunori Dan
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Hayato Isobe
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Ryo Wamata
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yuichiro Iwamoto
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Yoshiro Fushimi
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Junpei Sanada
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Atsushi Obata
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomohiko Kimura
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Fuminori Tatsumi
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Shuhei Nakanishi
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Tomoatsu Mune
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Kohei Kaku
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| | - Hideaki Kaneto
- Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan
| |
Collapse
|
6
|
Kheradmand F, Zhang Y, Corry DB. Contribution of adaptive immunity to human COPD and experimental models of emphysema. Physiol Rev 2023; 103:1059-1093. [PMID: 36201635 PMCID: PMC9886356 DOI: 10.1152/physrev.00036.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and the undisputed role of innate immune cells in this condition have dominated the field in the basic research arena for many years. Recently, however, compelling data suggesting that adaptive immune cells may also contribute to the progressive nature of lung destruction associated with COPD in smokers have gained considerable attention. The histopathological changes in the lungs of smokers can be limited to the large or small airways, but alveolar loss leading to emphysema, which occurs in some individuals, remains its most significant and irreversible outcome. Critically, however, the question of why emphysema progresses in a subset of former smokers remained a mystery for many years. The recognition of activated and organized tertiary T- and B-lymphoid aggregates in emphysematous lungs provided the first clue that adaptive immune cells may play a crucial role in COPD pathophysiology. Based on these findings from human translational studies, experimental animal models of emphysema were used to determine the mechanisms through which smoke exposure initiates and orchestrates adaptive autoreactive inflammation in the lungs. These models have revealed that T helper (Th)1 and Th17 subsets promote a positive feedback loop that activates innate immune cells, confirming their role in emphysema pathogenesis. Results from genetic studies and immune-based discoveries have further provided strong evidence for autoimmunity induction in smokers with emphysema. These new findings offer a novel opportunity to explore the mechanisms underlying the inflammatory landscape in the COPD lung and offer insights for development of precision-based treatment to halt lung destruction.
Collapse
Affiliation(s)
- Farrah Kheradmand
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| | - Yun Zhang
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - David B Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Department of Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
7
|
Abdallah M, Brown L, Provenza J, Tariq R, Gowda S, Singal AK. Safety and efficacy of dyslipidemia treatment in NAFLD patients: a meta-analysis of randomized controlled trials. Ann Hepatol 2022; 27:100738. [PMID: 35781090 DOI: 10.1016/j.aohep.2022.100738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Practicing physicians often hesitate to use statins and/or other lipid-lowering therapies in NAFLD due to concern for hepatotoxicity. The aim of this study is to examine the safety of lipid lowering therapies in NAFLD patients. MATERIALS AND METHODS Data from randomized control trials (RCT) among NAFLD patients were pooled to examine the effect of lipid-lowering therapies on liver chemistry, lipid profile, and liver histology. Results are reported as the mean difference of the change (pretreatment-posttreatment) between the treatment and control group. RESULTS A total of 21 placebo-controlled RCT on 1900 patients (304 receiving statins, 520 other lipid-lowering therapies, and 61 combinations) were treated for 26 weeks [Interquartile range (IQR): 17.5-52 weeks]. Pooled data showed an improved lipid profile without any worsening of ALT, AST, total bilirubin, or alkaline phosphatase at the end of the treatment period. NAFLD activity score improved with other lipid-lowering agents but not with statins. There was no change in individual components of NAFLD activity score or fibrosis stage. CONCLUSION This meta-analysis of randomized controlled trials examining statins and/or other lipid-lowering therapies in NAFLD patients showed no evidence of worsening liver chemistry. Studies with longer use of lipid-lowering therapies are suggested to examine the benefit of liver histology among patients with NAFLD.
Collapse
Affiliation(s)
- Mohamed Abdallah
- Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Landon Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John Provenza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Raseen Tariq
- Department of Medicine, University of Rochester, NY, United States
| | - Smitha Gowda
- Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Ashwani K Singal
- Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States; Division of Transplant Hepatology, Avera Transplant Institute, Sioux Falls, SD, United States.
| |
Collapse
|
8
|
Ye X, Zhang T, Han H. PPARα: A potential therapeutic target of cholestasis. Front Pharmacol 2022; 13:916866. [PMID: 35924060 PMCID: PMC9342652 DOI: 10.3389/fphar.2022.916866] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The accumulation of bile acids in the liver leads to the development of cholestasis and hepatocyte injury. Nuclear receptors control the synthesis and transport of bile acids in the liver. Among them, the farnesoid X receptor (FXR) is the most common receptor studied in treating cholestasis. The activation of this receptor can reduce the amount of bile acid synthesis and decrease the bile acid content in the liver, alleviating cholestasis. Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) have a FXR excitatory effect, but the unresponsiveness of some patients and the side effect of pruritus seriously affect the results of UDCA or OCA treatment. The activator of peroxisome proliferator-activated receptor alpha (PPARα) has emerged as a new target for controlling the synthesis and transport of bile acids during cholestasis. Moreover, the anti-inflammatory effect of PPARα can effectively reduce cholestatic liver injury, thereby improving patients’ physiological status. Here, we will focus on the function of PPARα and its involvement in the regulation of bile acid transport and metabolism. In addition, the anti-inflammatory effects of PPARα will be discussed in some detail. Finally, we will discuss the application of PPARα agonists for cholestatic liver disorders.
Collapse
Affiliation(s)
- Xiaoyin Ye
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| | - Han Han
- Experiment Center for Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Tong Zhang, ; Han Han,
| |
Collapse
|
9
|
Bottoni P, Pontoglio A, Scarà S, Pieroni L, Urbani A, Scatena R. Mitochondrial Respiratory Complexes as Targets of Drugs: The PPAR Agonist Example. Cells 2022; 11:cells11071169. [PMID: 35406733 PMCID: PMC8997591 DOI: 10.3390/cells11071169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial bioenergetics are progressively acquiring significant pathophysiological roles. Specifically, mitochondria in general and Electron Respiratory Chain in particular are gaining importance as unintentional targets of different drugs. The so-called PPAR ligands are a class of drugs which not only link and activate Peroxisome Proliferator-Activated Receptors but also show a myriad of extrareceptorial activities as well. In particular, they were shown to inhibit NADH coenzyme Q reductase. However, the molecular picture of this intriguing bioenergetic derangement has not yet been well defined. Using high resolution respirometry, both in permeabilized and intact HepG2 cells, and a proteomic approach, the mitochondrial bioenergetic damage induced by various PPAR ligands was evaluated. Results show a derangement of mitochondrial oxidative metabolism more complex than one related to a simple perturbation of complex I. In fact, a partial inhibition of mitochondrial NADH oxidation seems to be associated not only with hampered ATP synthesis but also with a significant reduction in respiratory control ratio, spare respiratory capacity, coupling efficiency and, last but not least, serious oxidative stress and structural damage to mitochondria.
Collapse
Affiliation(s)
- Patrizia Bottoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
- Correspondence:
| | - Alessandro Pontoglio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
| | - Salvatore Scarà
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
| | | | - Andrea Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
- Dipartimento di Medicina di Laboratorio, Fondazione Policlinico Gemelli, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Roberto Scatena
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy; (A.P.); (S.S.); (A.U.); (R.S.)
- Dipartimento di Medicina di Laboratorio, Madre Giuseppina Vannini Hospital, Via di Acqua Bullicante 4, 00177 Rome, Italy
| |
Collapse
|
10
|
Jeong HW, Lee JH, Choi JK, Rha CS, Lee JD, Park J, Park M. Antihypertriglyceridemia activities of naturally fermented green tea, Heukcha, extract through modulation of lipid metabolism in rats fed a high-fructose diet. Food Sci Biotechnol 2021; 30:1581-1591. [PMID: 34868706 DOI: 10.1007/s10068-021-00992-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/01/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Hypertriglyceridemia, a symptom of elevated triglyceride level in the blood, is a potent risk factor for cardiovascular and metabolic disorders. Among the numerous treatments to regulate circulating triglyceride levels, fibrates are widely used to treat hypertriglyceridemia, although they also have side effects such as hepatotoxicity and gallstone formation. In the present study, we aimed to investigate the blood triglyceride-lowering effects of a naturally fermented green tea extract (NFGT) and the underlying mechanisms on hypertriglyceridemia in vitro and in vivo models. NFGT suppressed the expression of lipogenic genes, while augmented expression of fatty acid oxidation-related genes in cultured cells, leading to the significant decrease of intracellular triglyceride content. NFGT treated group in fructose-induced hypertriglyceridemic rat model significantly decreased plasma and hepatic triglyceride, which was accompanied by an increase in excretion of fecal fat. Taken together, we propose that NFGT could be potentially a novel functional ingredient to prevent or treat hypertriglyceridemia.
Collapse
Affiliation(s)
- Hyun Woo Jeong
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Ji-Hae Lee
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Jin Kyu Choi
- QA Team, Aestura Corporation, Ansung, Republic of Korea
| | - Chan-Su Rha
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Jung Dae Lee
- Osulloc R&D Center, Osulloc Farm Corporation, Jeju, Republic of Korea
| | - Jaehong Park
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| | - Miyoung Park
- Healthcare Research Division, AMOREPACIFIC R&D Center, Yongin, Republic of Korea
| |
Collapse
|
11
|
Xie Y, Liu J, Shi Y, Wang B, Wang X, Wang W, Sun M, Xu X, Cheng L, He S. Structural simplification and bioisostere principle lead to Bis-benzodioxole-fibrate derivatives as potential hypolipidemic and hepatoprotective agents. Bioorg Chem 2021; 117:105454. [PMID: 34740054 DOI: 10.1016/j.bioorg.2021.105454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
The bis-benzodioxole-fibrate hybrids were designed by structural simplification and bioisostere principle. Lipids lowering activity was preliminarily screened by Triton WR 1339 induced hyperlipidemia mice model, in which T3 showed the best hypolipidemia, decreasing plasma triglyceride (TG) and total cholesterol (TC), which were better than sesamin and fenofibrate (FF). T3 was also found to significantly reduce TG, TC and low density lipoprotein cholesterin (LDL-C) both in plasma and liver tissue of high fat diet (HFD) induced hyperlipidemic mice. In addition, T3 showed hepatoprotective activity, which the noteworthy amelioration in liver aminotransferases (AST and ALT) was evaluated and the histopathological observation exhibited that T3 inhibited lipids accumulation in the hepatic and alleviated liver damage. The expression of PPAR-α receptor involved lipids metabolism in liver tissue significantly increased after T3 supplementation. Other potent activity, such as antioxidation and anti-inflammation, was also observed. The molecular docking study revealed that T3 has good affinity activity toward to the active site of PPAR-α receptor. Based on these findings, T3 may serve as an effective hypolipidemic agent with hepatoprotection.
Collapse
Affiliation(s)
- Yundong Xie
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Jiping Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Yongheng Shi
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Bin Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, People's Republic of China
| | - Xiaoping Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Wei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Meng Sun
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Xinya Xu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave, Xi'an-xianyang New Ecomic Zone, Shaanxi Province 712046, People's Republic of China
| | - Lifei Cheng
- Shaanxi Traffic Hospital, 276 Daxue South Road, Beilin District, Xi'an, Shannxi Province 710068, People's Republic of China.
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University 99 Shangda Road, Shanghai 200444, People's Republic of China.
| |
Collapse
|
12
|
Seidemann L, Krüger A, Kegel-Hübner V, Seehofer D, Damm G. Influence of Genistein on Hepatic Lipid Metabolism in an In Vitro Model of Hepatic Steatosis. Molecules 2021; 26:molecules26041156. [PMID: 33671486 PMCID: PMC7926972 DOI: 10.3390/molecules26041156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is among the leading causes of end-stage liver disease. The impaired hepatic lipid metabolism in NAFLD is exhibited by dysregulated PPARα and SREBP-1c signaling pathways, which are central transcription factors associated with lipid degradation and de novo lipogenesis. Despite the growing prevalence of this disease, current pharmacological treatment options are unsatisfactory. Genistein, a soy isoflavone, has beneficial effects on lipid metabolism and may be a candidate for NAFLD treatment. In an in vitro model of hepatic steatosis, primary human hepatocytes (PHHs) were incubated with free fatty acids (FFAs) and different doses of genistein. Lipid accumulation and the cytotoxic effects of FFAs and genistein treatment were evaluated by colorimetric and enzymatic assays. Changes in lipid homeostasis were examined by RT-qPCR and Western blot analyses. PPARα protein expression was induced in steatotic PHHs, accompanied by an increase in CPT1L and ACSL1 mRNA. Genistein treatment increased PPARα protein expression only in control PHHs, while CPTL1 and ACSL1 were unchanged and PPARα mRNA was reduced. In steatotic PHHs, genistein reversed the increase in activated SREBP-1c protein. The model realistically reflected the molecular changes in hepatic steatosis. Genistein suppressed the activation of SREBP-1c in steatotic hepatocytes, but the genistein-mediated effects on PPARα were abolished by high hepatic lipid levels.
Collapse
Affiliation(s)
- Lena Seidemann
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (L.S.); (V.K.-H.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
| | - Anne Krüger
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Victoria Kegel-Hübner
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (L.S.); (V.K.-H.); (D.S.)
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (L.S.); (V.K.-H.); (D.S.)
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, 04103 Leipzig, Germany; (L.S.); (V.K.-H.); (D.S.)
- Saxonian Incubator for Clinical Translation (SIKT), Leipzig University, 04103 Leipzig, Germany
- Department of General, Visceral and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany;
- Correspondence: ; Tel.: +49-341-9739656
| |
Collapse
|
13
|
Tan Y, Wang M, Yang K, Chi T, Liao Z, Wei P. PPAR-α Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:599995. [PMID: 33833983 PMCID: PMC8021859 DOI: 10.3389/fonc.2021.599995] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. PPAR modulators may hold great potential for the management of cancer patients. Indeed, PPARs are critical sensors and regulators of lipid, and they are able to promote eNOS activation, regulate immunity and inflammation response, and affect proliferation and differentiation of cancer cells. Cancer, a name given to a group of diseases, is characterized by multiple distinctive biological behaviors, including angiogenesis, abnormal cell proliferation, aerobic glycolysis, inflammation, etc. In the last decade, emerging evidence has shown that PPAR-α, a nuclear hormone receptor, can modulate carcinogenesis via exerting effects on one or several characteristic pathological behaviors of cancer. Therefore, the multi-functional PPAR modulators have substantial promise in various types of cancer therapies. This review aims to consolidate the functions of PPAR-α, as well as discuss the current and potential applications of PPAR-α agonists and antagonists in tackling cancer.
Collapse
Affiliation(s)
- Yan Tan
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tiange Chi
- The First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
- Zehuan Liao
| | - Peng Wei
- School of Traditional Chinese Medicine and School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Peng Wei
| |
Collapse
|
14
|
Iitake C, Masuda D, Koseki M, Yamashita S. Marked effects of novel selective peroxisome proliferator-activated receptor α modulator, pemafibrate in severe hypertriglyceridemia: preliminary report. Cardiovasc Diabetol 2020; 19:201. [PMID: 33246467 PMCID: PMC7694943 DOI: 10.1186/s12933-020-01172-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Currently available treatments have only been partly successful in patients with severe hypertriglyceridemia, including those with high serum triglycerides above 1,000 mg/dL (11.3 mmol/L), who often suffer from acute pancreatitis. Pemafibrate is a novel selective peroxisome proliferator-activated receptor α modulator (SPPARMα) which has been developed as an affordable oral tablet in Japan. We herein report the first three patients with severe hypertriglyceridemia who were successfully treated with pemafibrate. METHODS Three patients with fasting serum triglyceride (TG) levels above 1,000 mg/dL (11.3 mmol/L) were treated with pemafibrate (0.2-0.4 mg/day, 0.1-0.2 mg BID). RESULTS Serum TGs decreased from 2,000-3,000 mg/dL (22.6-33.9 mmol/L) to < 250 mg/dL (2.8 mmol/L) without adverse effects in all three patients. Serum TGs in Patient 1 and 2 decreased from 1,326 mg/dL (15.0 mmol/L) to 164 mg/dL (1.9 mmol/L) and from 2,040 mg/dL (23.1 mmol/L) to 234 mg/dL (2.6 mmol/L), respectively. Patient 3 with type 2 diabetes and 12.1% (109 mmol/mol) hemoglobin A1c had a TG level of 2,300 mg/dL (26.0 mmol/L). Even after glycemic control improved, TG remained high. After pemafibrate administration, TG decreased to 200 mg/dL (2.3 mmol/L). All patients showed no serious adverse events. CONCLUSIONS Pemafibrate demonstrated potential efficacy and safety for severe hypertriglyceridemia which may contribute to the prevention of acute pancreatitis, in a manner that can be easily prescribed and used as an oral tablet.
Collapse
Affiliation(s)
- Chie Iitake
- Iitake Clinic for Internal Medicine, 2131-1976 Migawacho, Mito City, Ibaraki, 310-0913, Japan.
| | - Daisaku Masuda
- Department of Cardiology, Rinku General Medical Center, 2-23 Ourai-kita, Rinku, Izumisano, Osaka, 598-0048, Japan.,Rinku Innovation Center for Wellness Care and Activities (RICWA), Rinku General Medical Center, 2-23 Ourai-kita, Rinku, Izumisano, Osaka, 598-0048, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, 2-23 Ourai-kita, Rinku, Izumisano, Osaka, 598-0048, Japan
| |
Collapse
|
15
|
Tang S, Wu F, Lin X, Gui W, Zheng F, Li H. The Effects of New Selective PPAR α Agonist CP775146 on Systematic Lipid Metabolism in Obese Mice and Its Potential Mechanism. J Diabetes Res 2020; 2020:4179852. [PMID: 32455134 PMCID: PMC7222497 DOI: 10.1155/2020/4179852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 04/03/2020] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Peroxisome proliferator-activated receptor α (PPARα) plays a crucial role in the control of lipid homeostasis. Here, we investigated the effects of CP775146, a new selective PPARα agonist, on lipid metabolism in diet-induced obese mice and its possible mechanism. METHODS C57BL/6 mice were fed a high-fat diet (HFD) for 12 weeks to induce obesity and then received CP775146 via intraperitoneal injection for 3 days. The content/morphology of the liver, serum lipid, and liver function was measured. The expression of genes related to lipolysis and synthesis in liver was detected by quantitative real-time PCR (qRT-PCR). RESULTS The safe dose of CP775146 was <0.3 mg/kg. CP775146 reduced the serum levels of liver enzymes, such as alanine aminotransferase (ALT) and glutamic-oxaloacetic transaminase (AST) and lipid metabolism-related biomarkers, including triglycerides (TGs) and low-density lipoprotein cholesterol (LDL-c), non-high-density lipoprotein cholesterol (non-HDL-c), and hepatic TG content, at a dosage of 0.1 mg/kg. HFD-induced pathological liver changes improved after CP775146 treatment. The expression of genes involved in liver fatty acid oxidation (acyl-coenzyme A dehydrogenase, long chain (Acadl), acyl-CoA oxidase 1 (Acox-1), carnitine palmitoyltransferase-1 (CPT-1), and enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase (Ehhadh)) was upregulated in CP775146-treated mice. Furthermore, CP775146 induced the expression of thermogenesis genes (cell death-inducing DFFA-like effector a (Cidea), uncoupling protein 1 (Ucp1)) and lipolysis genes (hormone-sensitive lipase (Hsl), adipose tissue triglyceride lipase (Atgl)) in epididymal white adipose tissue (eWAT), activating browning and thermogenesis. CONCLUSION CP775146 efficiently alleviates obesity-induced liver damage, prevents lipid accumulation by activating the liver fatty acid β-oxidation pathway, and regulates the expression of genes that control brown fat-like pathway in eWAT.
Collapse
Affiliation(s)
- Shengjie Tang
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China 310016
| | - Fang Wu
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China 310016
| | - Xihua Lin
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China 310016
| | - Weiwei Gui
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China 310016
| | - Fenping Zheng
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China 310016
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China 310016
| |
Collapse
|
16
|
Takada I, Makishima M. Peroxisome proliferator-activated receptor agonists and antagonists: a patent review (2014-present). Expert Opin Ther Pat 2019; 30:1-13. [PMID: 31825687 DOI: 10.1080/13543776.2020.1703952] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Peroxisome proliferator-activated receptors (PPARs), PPARα, PPARδ, and PPARγ, play an important role in the regulation of various physiological processes, specifically lipid and energy metabolism and immunity. PPARα agonists (fibrates) and PPARγ agonists (thiazolidinediones) are used for the treatment of hypertriglyceridemia and type 2 diabetes, respectively. PPARδ activation enhances mitochondrial and energy metabolism but PPARδ-acting drugs are not yet available. Many synthetic ligands for PPARs have been developed to expand their therapeutic applications.Areas covered: The authors searched recent patent activity regarding PPAR ligands. Novel PPARα agonists, PPARδ agonists, PPARγ agonists, PPARα/γ dual agonists, and PPARγ antagonists have been claimed for the treatment of metabolic disease and inflammatory disease. Methods for the combination of PPAR ligands with other drugs and expanded application of PPAR agonists for bone and neurological disease have been also claimed.Expert opinion: Novel PPAR ligands and the combination of PPAR ligands with other drugs have been claimed for the treatment of mitochondrial disease, inflammatory/autoimmune disease, neurological disease, and cancer in addition to metabolic diseases including dyslipidemia and type 2 diabetes. Selective therapeutic actions of PPAR ligands should be exploited to avoid adverse effects. More basic studies are needed to elucidate the molecular mechanisms of selective actions.
Collapse
Affiliation(s)
- Ichiro Takada
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
17
|
Zhang C, Jiao L, Bai H, Zhao Z, Hu X, Wang M, Wu T, Peng W, Liu T, Song J, Zhou J, Li M, Lyv M, Zhang J, Chen H, Chen J, Ying B. Association of POR and PPARα polymorphisms with risk of anti-tuberculosis drug-induced liver injury in Western Chinese Han population. INFECTION GENETICS AND EVOLUTION 2019; 79:104147. [PMID: 31857256 DOI: 10.1016/j.meegid.2019.104147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/24/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Anti-tuberculosis drug-induced liver injury (ATDILI) is a common and sometimes severe adverse drug reaction (ADR). This study was conducted to investigate the relationship between polymorphisms of two genes, cytochrome P450 oxidoreductase (POR) and peroxisome proliferator-activated receptor α (PPARα), and the risk of ATDILI in Western Chinese Han population. METHODS A total of 118 tuberculosis (TB) patients with ATDILI and 628 TB patients without ATDILI during anti-TB treatment were recruited from West China Hospital of Sichuan University. DNA was extracted from peripheral blood, and genotypes of the selected 12 single nucleotide polymorphisms (SNPs) (3 SNPs in the POR gene and 9 SNPs in the PPARα gene) were determined. Three genetic models (additive, dominant, and recessive), as well as a haplotype, were used to test the genetic risk of ATDILI. Extended subgroup analysis was conducted according to age, sex and different causality assessments. RESULTS The mutant allele, genotype and genetic model of rs3898649 in the POR gene were found to be associated with increased risk of ATDILI, especially in the younger (<50 years old), female and pulmonary tuberculosis subgroup. The other two SNPs rs28737229 and rs4728533 in the POR gene showed only a potential association with susceptibility to ATDILI after Bonferroni correction (P < .05 but PBonferroni > .05). The other 9 SNPs loci (rs135549, rs9626730, rs4253712, rs4823613, rs4253730, rs6007662, rs4253728, rs2024929 and rs135561) in the PPARα gene showed no significant differences between ATDILI and non-ATDILI in either allele frequencies or genotype (all P >.05). CONCLUSIONS The results demonstrated the strong correlation between POR gene SNP rs3898649 and ATDILI susceptibility, suggesting the importance of POR rs3898649 in the pathogenesis and development of ATDILI. Therefore, our results indicated that POR rs3898649 might be a valuable biomarker potentially involved in ATDILI.
Collapse
Affiliation(s)
- Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Hao Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Tao Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Wu Peng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Tangyuheng Liu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Mengyuan Lyv
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Jingwei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| |
Collapse
|
18
|
Wu L, Wang W, Dai M, Li H, Chen C, Wang D. PPARα ligand, AVE8134, and cyclooxygenase inhibitor therapy synergistically suppress lung cancer growth and metastasis. BMC Cancer 2019; 19:1166. [PMID: 31791289 PMCID: PMC6889744 DOI: 10.1186/s12885-019-6379-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background Lung cancer (LC) is one of the leading causes of death worldwide, which highlights the urgent need for better therapies. Peroxisome proliferator-activated nuclear receptor alpha (PPARα), known as a key nuclear transcription factor involved in glucose and lipid metabolism, has been also implicated in endothelial proliferation and angiogenesis. However, the effects and potential mechanisms of the novel PPARα ligand, AVE8134, on LC growth and progression remain unclear. Methods A subcutaneous tumour was established in mice by injecting TC-1 lung tumour cells (~ 1 × 106 cells) into their shaved left flank. These mice were treated with three different PPARα ligands: AVE8134 (0.025% in drinking water), Wyeth-14,643 (0.025%), or Bezafibrate (0.3%). Tumour sizes and metastasis between treated and untreated mice were then compared by morphology and histology, and the metabolites of arachidonic acid (AA) were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Inhibition of either Cyp2c44 expression by genetic disruption or cyclooxygenase (COX) activity by indomethacin was used to test the mechanisms by which AVE8134 affects tumour growth. Results The pharmacodynamics effects of AVE8134, Wyeth-14,643, and Bezafibrate on lipids control were similar. However, their effects on tumour suppression were different. Eicosanoid profile analysis showed that all PPARα ligands reduced the production of AA-derived epoxyeicosatrienoic acids (EETs) and increased the hydroxyl product, 11-hydroxyeicosatetraenoic acids (11-HETE). Moreover, increased 11-HETE promoted endothelial proliferation, angiogenesis, and subsequent tumour deterioration in a dose-dependent manner possibly via activating the AKT/extracellular signal-regulated kinase (ERK) pathway. The increased 11-HETE partly neutralized the benefits provided by the Cyp2c44-EETs system inhibited by PPARα ligands in tumour-bearing mice. AVE8134 treatment worsened the tumour phenotype in Cyp2c44 knockout mice, indicating that AVE8134 has contradictory effects on tumour growth. The COX inhibitor indomethacin strengthened the inhibitory actions of AVE8134 on tumour growth and metastasis by inhibiting the 11-HETE production in vivo and in vitro. Conclusion In this study, we found that the degrees of inhibition on LC growth and metastasis by PPARα ligands depended on their bidirectional regulation on EETs and 11-HETE. Considering their safety and efficacy, the novel PPARα ligand, AVE8134, is a potentially ideal anti-angiogenesis drug for cancer treatment when jointly applied with the COX inhibitor indomethacin.
Collapse
Affiliation(s)
- Lujin Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Meiyan Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China. .,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Atherogenic dyslipidaemia, characterized by high plasma triglycerides (a surrogate for triglyceride-rich remnant lipoproteins) and low high-density lipoprotein cholesterol (HDL-C), is prevalent in patients with type 2 diabetes mellitus (T2DM) and contributes to a high modifiable residual cardiovascular risk. Fibrates are effective in managing hypertriglyceridaemia but lack consistent cardiovascular benefit in clinical trials and exhibit pharmacokinetic interaction with statins (gemfibrozil) and renal and hepatic safety issues (fenofibrate). The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm offers potential for improving potency, selectivity and the benefit-risk profile. RECENT FINDINGS The present review discusses evidence for the novel SPPARMα agonist, pemafibrate. Clinical trials showed robust lowering of triglyceride-rich lipoproteins, elevation in HDL-C and nonlipid beneficial effects including anti-inflammatory activity. There was a favourable safety profile, with no increase in serum creatinine, evident with fenofibrate, and improved renal and hepatic safety. The cardiovascular outcomes study PROMINENT is critical to confirming the SPPARMα concept by validating reduction in residual cardiovascular risk in patients with T2DM and long-term safety. SUMMARY SPPARMα offers a new paradigm for reducing residual cardiovascular risk in T2DM. PROMINENT will be critical to differentiating the first SPPARMα, pemafibrate, as a novel therapeutic class distinct from current fibrates.
Collapse
Affiliation(s)
| | - Raul D Santos
- Hospital Israelita Albert Einstein
- Lipid Clinic, Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| |
Collapse
|
20
|
Ma S, Liu S, Wang Q, Chen L, Yang P, Sun H. Fenofibrate-induced hepatotoxicity: A case with a special feature that is different from those in the LiverTox database. J Clin Pharm Ther 2019; 45:204-207. [PMID: 31518450 PMCID: PMC6973072 DOI: 10.1111/jcpt.13042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/13/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022]
Abstract
What is known and objective We report a special case of fenofibrate‐induced acute severe DILI with sudden onset and rapid recovery, which is different from those in the LiverTox database. Case summary description The acute severe DILI occurred within only 4 days after fenofibrate initial treatment for hypertriglyceridemia. Liver enzyme levels eventually declined to normal within two weeks after the discontinuation of fenofibrate. What is new and Conclusion Early detection of elevated hepatic enzymes after fenofibrate initial treatment helps physicians to avoid delayed diagnosis and subsequent treatment.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, Shandong, China
| | - Qi Wang
- Department of Pharmacy, The Fifth People's Hospital of Jinan, Jinan, Shandong, China
| | - Lijuan Chen
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, Shandong, China
| | - Ping Yang
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, Shandong, China
| | - Huihuan Sun
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan, Shandong, China
| |
Collapse
|
21
|
Herminghaus A, Laser E, Schulz J, Truse R, Vollmer C, Bauer I, Picker O. Pravastatin and Gemfibrozil Modulate Differently Hepatic and Colonic Mitochondrial Respiration in Tissue Homogenates from Healthy Rats. Cells 2019; 8:cells8090983. [PMID: 31461874 PMCID: PMC6769625 DOI: 10.3390/cells8090983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/24/2019] [Indexed: 02/07/2023] Open
Abstract
Statins and fibrates are widely used for the management of hypertriglyceridemia but they also have limitations, mostly due to pharmacokinetic interactions or side effects. It is conceivable that some adverse events like liver dysfunction or gastrointestinal discomfort are caused by mitochondrial dysfunction. Data about the effects of statins and fibrates on mitochondrial function in different organs are inconsistent and partially contradictory. The aim of this study was to investigate the effect of pravastatin (statin) and gemfibrozil (fibrate) on hepatic and colonic mitochondrial respiration in tissue homogenates. Mitochondrial oxygen consumption was determined in colon and liver homogenates from 48 healthy rats after incubation with pravastatin or gemfibrozil (100, 300, 1000 μM). State 2 (substrate dependent respiration) and state 3 (adenosine diphosphate: ADP-dependent respiration) were assessed. RCI (respiratory control index)—an indicator for coupling between electron transport chain system (ETS) and oxidative phosphorylation (OXPHOS) and ADP/O ratio—a parameter for the efficacy of OXPHOS, was calculated. Data were presented as a percentage of control (Kruskal–Wallis + Dunn’s correction). In the liver both drugs reduced state 3 and RCI, gemfibrozil-reduced ADP/O (complex I). In the colon both drugs reduced state 3 but enhanced ADP/O. Pravastatin at high concentration (1000 µM) decreased RCI (complex II). Pravastatin and gemfibrozil decrease hepatic but increase colonic mitochondrial respiration in tissue homogenates from healthy rats.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
| | - Eric Laser
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Richard Truse
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, University Hospital Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| |
Collapse
|
22
|
Arnesen H, Haj-Yasein NN, Tungen JE, Soedling H, Matthews J, Paulsen SM, Nebb HI, Sylte I, Hansen TV, Sæther T. Molecular modelling, synthesis, and biological evaluations of a 3,5-disubstituted isoxazole fatty acid analogue as a PPARα-selective agonist. Bioorg Med Chem 2019; 27:4059-4068. [PMID: 31351846 DOI: 10.1016/j.bmc.2019.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
The peroxisome proliferator activated receptors (PPARs) are important drug targets in treatment of metabolic and inflammatory disorders. Fibrates, acting as PPARα agonists, have been widely used lipid-lowering agents for decades. However, the currently available PPARα targeting agents show low subtype-specificity and consequently a search for more potent agonists have emerged. In this study, previously isolated oxohexadecenoic acids from the marine algae Chaetoceros karianus were used to design a PPARα-specific analogue. Herein we report the design, synthesis, molecular modelling studies and biological evaluations of the novel 3,5-disubstituted isoxazole analogue 6-(5-heptyl-1,2-oxazol-3-yl)hexanoic acid (1), named ADAM. ADAM shows a clear receptor preference and significant dose-dependent activation of PPARα (EC50 = 47 µM) through its ligand-binding domain (LBD). Moreover, ADAM induces expression of important PPARα target genes, such as CPT1A, in the Huh7 cell line and primary mouse hepatocytes. In addition, ADAM exhibits a moderate ability to regulate PPARγ target genes and drive adipogenesis. Molecular modelling studies indicated that ADAM docks its carboxyl group into opposite ends of the PPARα and -γ LBD. ADAM interacts with the receptor-activating polar network of amino acids (Tyr501, His447 and Ser317) in PPARα, but not in PPARγ LBD. This may explain the lack of PPARγ agonism, and argues for a PPARα-dependent adipogenic function. Such compounds are of interest towards developing new lipid-lowering remedies.
Collapse
Affiliation(s)
- Henriette Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Nadia Nabil Haj-Yasein
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Jørn E Tungen
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Helen Soedling
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Steinar M Paulsen
- MabCent-SFI, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hilde I Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Trond Vidar Hansen
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Thomas Sæther
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway.
| |
Collapse
|
23
|
Fruchart JC, Santos RD, Aguilar-Salinas C, Aikawa M, Al Rasadi K, Amarenco P, Barter PJ, Ceska R, Corsini A, Després JP, Duriez P, Eckel RH, Ezhov MV, Farnier M, Ginsberg HN, Hermans MP, Ishibashi S, Karpe F, Kodama T, Koenig W, Krempf M, Lim S, Lorenzatti AJ, McPherson R, Nuñez-Cortes JM, Nordestgaard BG, Ogawa H, Packard CJ, Plutzky J, Ponte-Negretti CI, Pradhan A, Ray KK, Reiner Ž, Ridker PM, Ruscica M, Sadikot S, Shimano H, Sritara P, Stock JK, Su TC, Susekov AV, Tartar A, Taskinen MR, Tenenbaum A, Tokgözoğlu LS, Tomlinson B, Tybjærg-Hansen A, Valensi P, Vrablík M, Wahli W, Watts GF, Yamashita S, Yokote K, Zambon A, Libby P. The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm: conceptual framework and therapeutic potential : A consensus statement from the International Atherosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R3i) Foundation. Cardiovasc Diabetol 2019; 18:71. [PMID: 31164165 PMCID: PMC6549355 DOI: 10.1186/s12933-019-0864-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/12/2022] Open
Abstract
In the era of precision medicine, treatments that target specific modifiable characteristics of high-risk patients have the potential to lower further the residual risk of atherosclerotic cardiovascular events. Correction of atherogenic dyslipidemia, however, remains a major unmet clinical need. Elevated plasma triglycerides, with or without low levels of high-density lipoprotein cholesterol (HDL-C), offer a key modifiable component of this common dyslipidemia, especially in insulin resistant conditions such as type 2 diabetes mellitus. The development of selective peroxisome proliferator-activated receptor alpha modulators (SPPARMα) offers an approach to address this treatment gap. This Joint Consensus Panel appraised evidence for the first SPPARMα agonist and concluded that this agent represents a novel therapeutic class, distinct from fibrates, based on pharmacological activity, and, importantly, a safe hepatic and renal profile. The ongoing PROMINENT cardiovascular outcomes trial is testing in 10,000 patients with type 2 diabetes mellitus, elevated triglycerides, and low levels of HDL-C whether treatment with this SPPARMα agonist safely reduces residual cardiovascular risk.
Collapse
Affiliation(s)
| | - Raul D. Santos
- Hospital Israelita Albert Einstein, and Lipid Clinic, Heart Institute (InCor) University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil
| | - Carlos Aguilar-Salinas
- Unidad de Investigacion de Enfermedades Metabolicas, Department of Endocrinolgy and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences and Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine and Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Khalid Al Rasadi
- Department of Clinical Biochemistry, Sultan Qaboos University Hospital, Muscat, Oman
| | - Pierre Amarenco
- Department of Neurology and Stroke Center, Paris-Diderot-Sorbonne University, Paris, France
| | - Philip J. Barter
- Lipid Research Group, School of Medical Sciences, University of New South Wales, Sydney, NSW Australia
| | - Richard Ceska
- IIIrd Dept Int. Med, Center for Preventive Cardiology, 3rd Internal Medicine Clinic, University General Hospital and Charles University, Prague, Czech Republic
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Jean-Pierre Després
- Centre de recherche sur les soins et les services de première ligne-Université Laval du CIUSSS de la Capitale-Nationale, Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC Canada
| | - Patrick Duriez
- INSERM, CHU Lille, U1171-Degenerative & Vascular Cognitive Disorders, University of Lille, Faculty of Pharmacy, University of Lille, UDSL, Lille, France
| | - Robert H. Eckel
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO USA
| | - Marat V. Ezhov
- Laboratory of Lipid Disorders, National Cardiology Research Center, Moscow, Russian Federation
| | - Michel Farnier
- Lipid Clinic, Point Médical and Department of Cardiology, CHU Dijon-Bourgogne, Dijon, France
| | - Henry N. Ginsberg
- Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Michel P. Hermans
- Division of Endocrinology and Nutrition, Cliniques Universitaires St-Luc and Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Fredrik Karpe
- OCDEM, University of Oxford and the NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Churchill Hospital, Oxford, UK
| | - Tatsuhiko Kodama
- Laboratory for System Biology and Medicine Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universitat München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Michel Krempf
- Mass Spectrometry Core facility of West Human Nutrition Research Center (CRNHO), Hotel Dieu Hospital, Nantes, France
- Inra, UMR 1280, Physiologie des Adaptations Nutritionnelles, Nantes, France
- Department of Endocrinology, Metabolic diseases and Nutrition, G and R Laennec Hospital, Nantes, France
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital and Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Alberto J. Lorenzatti
- DAMIC Medical Institute/Rusculleda Foundation for Research, Córdoba, Argentina
- Cardiology Department, Córdoba Hospital, Córdoba, Argentina
| | - Ruth McPherson
- Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, Canada
| | - Jesus Millan Nuñez-Cortes
- Internal Medicine, Lipids Unit, Gregorio Marañón University Hospital, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Madrid, Spain
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hisao Ogawa
- National Cerebral and Cardiovascular Center, Suita, Osaka Japan
| | - Chris J. Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jorge Plutzky
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Carlos I. Ponte-Negretti
- Unidad de Prevención Cardiometabólica Cardiocob. Servicio de Cardiología Hospital el Pino Santiago de Chile, Sociedad Inter Americana de Cardiología SIAC Chairman Cardiovascular Prevention Comite, Santiago de Chile, Chile
| | - Aruna Pradhan
- Division of Cardiovascular Medicine, VA Boston Medical Center, Boston, MA USA
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Kausik K. Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, Zagreb University, Kispaticeva 12, Zagreb, Croatia
| | - Paul M. Ridker
- Division of Cardiovascular Medicine and Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Shaukat Sadikot
- Department of Endocrinology/Diabetology, Jaslok Hospital and Research Centre, Mumbai, India
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575 Japan
| | - Piyamitr Sritara
- Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jane K. Stock
- R3i Foundation, Picassoplatz 8, 4010 Basel, Switzerland
| | - Ta-Chen Su
- Departments of Internal Medicine and Environmental and Occupational Medicine, National Taiwan University; Institute of Occupational Medicine and Industrial Hygiene, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Andrey V. Susekov
- Faculty of Clinical Pharmacology and Therapeutics, Academy for Postgraduate Continuous Medical Education, Moscow, Russian Federation
| | | | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki and Clinical Research Institute, HUCH Ltd., Helsinki, Finland
| | - Alexander Tenenbaum
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
- Cardiac Rehabilitation Institute, Sheba Medical Center, 5265601 Tel Hashomer, Israel
| | - Lale S. Tokgözoğlu
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Brian Tomlinson
- Department of Medicine & Theraputics, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet; Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Paul Valensi
- Department of Endocrinology, Diabetology and Nutrition, Jean-Verdier Hospital (AP-HP), Paris 13 University, Sorbonne Paris Cité, CRNH-IdF, CINFO, 93140 Bondy, France
| | - Michal Vrablík
- 3rd Department of Medicine, 1st Faculty of Medicine of Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore, 308232 Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
- Institut National de La Recherche Agronomique (INRA), UMR1331 ToxAlim, Toulouse, France
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, Australia
| | - Shizuya Yamashita
- Rinku General Medical Center, Izumisano, Osaka Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Osaka Japan
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka Japan
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Alberto Zambon
- Department of Medicine-DIMED, University of Padua, Padua, Italy
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
24
|
Development of Fibrates as Important Scaffolds in Medicinal Chemistry. ChemMedChem 2019; 14:1051-1066. [DOI: 10.1002/cmdc.201900128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/13/2022]
|