1
|
Dhiman L, Anand S, Singh SK. Bioremediation potential of the consortium of indigenous microbial isolates in degrading multiwall carbon nanotube (MWCNT) present in contaminated water. Arch Microbiol 2025; 207:49. [PMID: 39890680 DOI: 10.1007/s00203-025-04250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/03/2025]
Abstract
MWCNT is being explored in various sectors like medical healthcare, electronics, aerospace, defence research, and many more leading to the continuous generation of waste discharged into water sources. Once introduced into the environment it may adversely affect flora and fauna. It is high time MWCNT should be recovered, treated, and degraded from wastewater. Bio-degradation is one of the popular sustainable techniques for the remediation of hazardous contaminants. This work evaluated indigenous microbes Bacillus nitratireducens SW_NMI_TSB1, Comamonas denitrificans SW_NMI_TSB2, and Lysinibacillus fusiformis SW_NMI_TSB3 isolated from the nanomaterial manufacturing industry from India for their competence in degrading MWCNT. The microbes in this study showed survivability in the nutrient medium devoid of carbon but containing MWCNT (100 and 400 mg/L). The bacterial strain exhibited proliferation for up to 50 days. Degradation of MWCNT can be observed through TEM images which displayed the distorted morphology, XRD, and RAMAN spectroscopy revealed that treated MWCNT exhibit a loss of structural integrity. SEM images and colony forming unit (CFU) counts show a good survival rate of the three isolates independently and in the consortium. LCMS detected intermediates generated during MWCNT degradation. The microbes isolated in this study can survive in the presence of MWCNT and exhibit degradation of MWCNT. The three isolates could biodegrade the MWCNT however their consortium showed the highest potential. The prospects of this study lie in utilizing the consortium of these strains for large-scale MWCNT degradation, improving water treatment systems, and advancing sustainable nanomaterial management practices.
Collapse
Affiliation(s)
- Lavi Dhiman
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research Development Organization (DRDO), Timarpur, Delhi, 110054, India.
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, 110042, India.
| | - Shalini Anand
- Centre for Fire, Explosive and Environment Safety (CFEES), Defence Research Development Organization (DRDO), Timarpur, Delhi, 110054, India
| | - Santosh Kumar Singh
- Department of Environmental Engineering, Delhi Technological University, Bawana Road, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
2
|
Cheng Y, Zhang Y, Wang C, Zhao W, Huang C, Zhang Z, Sheng L, Song F, Cao Y. Effects of multi-walled carbon nanotubes and halloysite nanotubes on plasma lipid profiles and autophagic lipolysis pathways in mouse aortas and hearts. ENVIRONMENTAL TOXICOLOGY 2024; 39:4431-4446. [PMID: 38856197 DOI: 10.1002/tox.24352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 05/10/2024] [Indexed: 06/11/2024]
Abstract
Multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HNTs) are widely used tubular-structured nanomaterials (NMs), but their cardiovascular effects are not clear. This study compared the effects of MWCNTs and HNTs on lipid profiles in mouse plasma and gene expression profiles in aortas and hearts. Mice were intravenously injected with 50 μg NMs, once a day, for 5 days. Then, the plasma was collected for lipidomics analysis, and aortas and hearts were collected for RNA-sequencing analysis. While MWCNTs or HNTs did not induce obvious pathological changes in aortas or hearts, the lipid profiles in mouse plasma were altered. Further analysis revealed that MWCNTs more effectively upregulated sphingolipids and sterol lipids, whereas HNTs more effectively upregulated glycerophospholipids and fatty acyls. Consistently, RNA-sequencing data indicated that MWCNTs and HNTs altered signaling pathways related with lipid synthesis and metabolism, as well as those related with endoplasmic reticulum, lysosomes and autophagy, more significantly in aortas than in hearts. We further verified the changes of proteins involved in autophagic lipolysis, that MWCNTs were more effectively to suppress the autophagic biomarker LC3, whereas HNTs were more effectively to affect lipid metabolism proteins. These results may provide novel understanding about the influences of MWCNTs and HNTs on lipid profiles and lipid signaling pathways in cardiovascular systems. Importantly, previous studies considered HNTs as biocompatible materials, but the results from this study suggested that both MWCNTs and HNTs were capable to affect lipid profiles and autophagic lipolysis pathways in cardiovascular systems, although their exact influences were different.
Collapse
Affiliation(s)
- Yujia Cheng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yimin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Canyang Wang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, China
| | - Zelin Zhang
- National Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
| | - Liping Sheng
- National Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
D'Souza LC, Paithankar JG, Stopper H, Pandey A, Sharma A. Environmental Chemical-Induced Reactive Oxygen Species Generation and Immunotoxicity: A Comprehensive Review. Antioxid Redox Signal 2024; 40:691-714. [PMID: 37917110 DOI: 10.1089/ars.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Reactive oxygen species (ROS), the reactive oxygen-carrying chemicals moieties, act as pleiotropic signal transducers to maintain various biological processes/functions, including immune response. Increased ROS production leads to oxidative stress, which is implicated in xenobiotic-induced adverse effects. Understanding the immunoregulatory mechanisms and immunotoxicity is of interest to developing therapeutics against xenobiotic insults. Recent Advances: While developmental studies have established the essential roles of ROS in the establishment and proper functioning of the immune system, toxicological studies have demonstrated high ROS generation as one of the potential mechanisms of immunotoxicity induced by environmental chemicals, including heavy metals, pesticides, aromatic hydrocarbons (benzene and derivatives), plastics, and nanoparticles. Mitochondrial electron transport and various signaling components, including NADH oxidase, toll-like receptors (TLRs), NF-κB, JNK, NRF2, p53, and STAT3, are involved in xenobiotic-induced ROS generation and immunotoxicity. Critical Issues: With many studies demonstrating the role of ROS and oxidative stress in xenobiotic-induced immunotoxicity, rigorous and orthogonal approaches are needed to achieve in-depth and precise understanding. The association of xenobiotic-induced immunotoxicity with disease susceptibility and progression needs more data acquisition. Furthermore, the general methodology needs to be possibly replaced with high-throughput precise techniques. Future Directions: The progression of xenobiotic-induced immunotoxicity into disease manifestation is not well documented. Immunotoxicological studies about the combination of xenobiotics, age-related sensitivity, and their involvement in human disease incidence and pathogenesis are warranted. Antioxid. Redox Signal. 40, 691-714.
Collapse
Affiliation(s)
- Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Ashutosh Pandey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Department of Environmental Health and Toxicology, Mangalore, India
| |
Collapse
|
4
|
Yang C, Merlin D. Challenges to Safe Nanomedicine Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1171. [PMID: 37049268 PMCID: PMC10096857 DOI: 10.3390/nano13071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has the potential to revolutionize the field of drug treatment by enabling the targeted delivery and controlled release of drugs at a cellular level [...].
Collapse
Affiliation(s)
- Chunhua Yang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Didier Merlin
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
5
|
Young TL, Scieszka D, Begay JG, Lucas SN, Herbert G, Zychowski K, Hunter R, Salazar R, Ottens AK, Erdely A, Gu H, Campen MJ. Aging influence on pulmonary and systemic inflammation and neural metabolomics arising from pulmonary multi-walled carbon nanotube exposure in apolipoprotein E-deficient and C57BL/6 female mice. Inhal Toxicol 2023; 35:86-100. [PMID: 35037817 PMCID: PMC10037439 DOI: 10.1080/08958378.2022.2026538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/03/2022] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Environmental exposures exacerbate age-related pathologies, such as cardiovascular and neurodegenerative diseases. Nanoparticulates, and specifically carbon nanomaterials, are a fast-growing contributor to the category of inhalable pollutants, whose risks to health are only now being unraveled. The current study assessed the exacerbating effect of age on multiwalled-carbon nanotube (MWCNT) exposure in young and old C57BL/6 and ApoE-/- mice. MATERIALS AND METHODS Female C57BL/6 and apolipoprotein E-deficient (ApoE-/-) mice, aged 8 weeks and 15 months, were exposed to 0 or 40 µg MWCNT via oropharyngeal aspiration. Pulmonary inflammation, inflammatory bioactivity of serum, and neurometabolic changes were assessed at 24 h post-exposure. RESULTS Pulmonary neutrophil infiltration was induced by MWCNT in bronchoalveolar lavage fluid in both C57BL/6 and ApoE-/-. Macrophage counts decreased with MWCNT exposure in ApoE-/- mice but were unaffected by exposure in C57BL/6 mice. Older mice appeared to have greater MWCNT-induced total protein in lavage fluid. BALF cytokines and chemokines were elevated with MWCNT exposure, but CCL2, CXCL1, and CXCL10 showed reduced responses to MWCNT in older mice. However, no significant serum inflammatory bioactivity was detected. Cerebellar metabolic changes in response to MWCNT were modest, but age and strain significantly influenced metabolite profiles assessed. ApoE-/- mice and older mice exhibited less robust metabolite changes in response to exposure, suggesting a reduced health reserve. CONCLUSIONS Age influences the pulmonary and neurological responses to short-term MWCNT exposure. However, with only the model of moderate aging (15 months) in this study, the responses appeared modest compared to inhaled toxicant impacts in more advanced aging models.
Collapse
Affiliation(s)
- Tamara L. Young
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - David Scieszka
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Jessica G. Begay
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Selita N. Lucas
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Guy Herbert
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | | | - Russell Hunter
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Raul Salazar
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| | - Andrew K. Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, PO Box 980709, Richmond, VA 23298
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, US 85004
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
6
|
Qing TL, Yan L, Wang SK, Dai XY, Ren LJ, Zhang JQZ, Shi WJ, Zhang XF, Wang MT, Chen JK, Zhu JB. Celastrol alleviates oxidative stress induced by multi-walled carbon nanotubes through the Keap1/Nrf2/HO-1 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114623. [PMID: 36774793 DOI: 10.1016/j.ecoenv.2023.114623] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/20/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) mainly induce oxidative stress through the overproduction of reactive oxygen species (ROS), which can lead to cytotoxicity. Celastrol, a plant-derived compound, can exert antioxidant effects by reducing ROS production. Our results indicated that exposure to MWCNTs decreased cell viability and increased ROS production. Nrf2 knockdown (kd) led to increased ROS production and enhanced MWCNT-induced cytotoxicity. Keap1-kd led to decreased ROS production and attenuated cytotoxicity. Treatment with celastrol significantly decreased ROS production and promoted Keap1 protein degradation through the lysosomal pathway, thereby enhancing the translocation of Nrf2 from the cytoplasm to the nucleus and increasing HO-1 expression. The in vivo results showed that celastrol could alleviate the inflammatory damage of lung tissues, increase the levels of the antioxidants, GSH and SOD, as well as promote the expression of the antioxidant protein, HO-1 in MWCNT-treated mice. Celastrol can alleviate MWCNT-induced oxidative stress through the Keap1/Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Tao-Lin Qing
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Lang Yan
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Shao-Kang Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Yu Dai
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Li-Jun Ren
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Ji-Qian-Zhu Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Wen-Jing Shi
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Fang Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China
| | - Mei-Tang Wang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Ji-Kuai Chen
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| | - Jiang-Bo Zhu
- Department of Health Toxicology, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
7
|
Song F, Tang X, Zhao W, Huang C, Dai X, Cao Y. Activation of Kruppel-like factor 6 by multi-walled carbon nanotubes in a diameter-dependent manner in THP-1 macrophages in vitro and bronchoalveolar lavage cells in vivo. ENVIRONMENTAL SCIENCE: NANO 2023; 10:855-865. [DOI: 10.1039/d2en00926a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
MWCNTs activated KLF6-signaling pathways in THP-1 macrophages and bronchoalveolar lavage cells.
Collapse
Affiliation(s)
- Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiaomin Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Xuyan Dai
- Economic College, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
8
|
A review on the epigenetics modifications to nanomaterials in humans and animals: novel epigenetic regulator. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In the nanotechnology era, nanotechnology applications have been intensifying their prospects to embrace all the vigorous sectors persuading human health and animal. The safety and concerns regarding the widespread use of engineered nanomaterials (NMA) and their potential effect on human health still require further clarification. Literature elucidated that NMA exhibited significant adverse effects on various molecular and cellular alterations. Epigenetics is a complex process resulting in the interactions between an organism’s environment and genome. The epigenetic modifications, including histone modification and DNA methylation, chromatin structure and DNA accessibility alteration, regulate gene expression patterns. Disturbances of epigenetic markers induced by NMA might promote the sensitivity of humans and animals to several diseases. Also, this paper focus on the epigenetic regulators of some dietary nutrients that have been confirmed to stimulate the epigenome and, more exactly, DNA histone modifications and non-histone proteins modulation by acetylation, and phosphorylation inhibition, which counteracts oxidative stress generations. The present review epitomizes the recent evidence of the potential effects of NMA on histone modifications, in addition to in vivo and in vitro cytosine DNA methylation and its toxicity. Furthermore, the part of epigenetic fluctuations as possible translational biomarkers for uncovering untoward properties of NMA is deliberated.
Collapse
|
9
|
Liu X, Yang C, Chen P, Zhang L, Cao Y. The uses of transcriptomics and lipidomics indicated that direct contact with graphene oxide altered lipid homeostasis through ER stress in 3D human brain organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157815. [PMID: 35931159 DOI: 10.1016/j.scitotenv.2022.157815] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The potential uses of graphene-based nanomaterials (NMs) in various fields lead to the concern about their neurotoxicity, considering that graphene-based NMs are capable to cross blood brain barrier (BBB) and enter central nervous system (CNS). Although previous studies reported the possibility of graphene-based NM exposure to alter lipid homeostasis in animals or cultured neurons, recent studies suggested the need to use 3D human brain organoids for mechanism-based toxicological studies as this model might better recapitulate the complex human brains. Herein, we used multi-omics techniques to investigate the mechanisms of graphene oxide (GO) on lipid homeostasis in a novel 3D brain organoid model. We found that 50 μg/mL GO induced cytotoxicity but not superoxide. RNA-sequencing data showed that 50 μg/mL GO significantly up-regulated and down-regulated 80 and 121 genes, respectively. Furthermore, we found that GO exposure altered biological molecule metabolism pathways including lipid metabolism. Consistently, lipidomics data supported dose-dependent alteration of lipid profiles by GO in 3D brain organoids. Interestingly, co-exposure to GO and endoplasmic reticulum (ER) stress inhibitor 4-phenylbutyric acid (4-PBA) decreased most of the lipid classes compared with the exposure of GO only. We further verified that exposure to GO promoted ER stress marker GRP78 proteins, which in turn activated IRE1α/XBP-1 axis, and these changes were partially or completely inhibited by 4-PBA. These results proved that direct contact with GO disrupted lipid homeostasis through the activation of ER stress. As 3D brain organoids resemble human brains, these data might be better extrapolated to humans.
Collapse
Affiliation(s)
- Xudong Liu
- Department of Food science and Engineering, Moutai Institute, Renhuai 564507, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China
| | - P Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada; Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China.
| |
Collapse
|
10
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
11
|
Chen X, Wang J, Wang R, Zhang D, Chu S, Yang X, Hayat K, Fan Z, Cao X, Ok YS, Zhou P. Insights into growth-promoting effect of nanomaterials: Using transcriptomics and metabolomics to reveal the molecular mechanisms of MWCNTs in enhancing hyperaccumulator under heavy metal(loid)s stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129640. [PMID: 35882170 DOI: 10.1016/j.jhazmat.2022.129640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Carbon nanotubes present potential applications in soil remediation, particularly in phytoremediation. Yet, how multi-walled carbon nanotubes (MWCNTs) induced hyperaccumulator growth at molecular level remains unclear. Here, physio-biochemical, transcriptomic, and metabolomic analyses were performed to determine the effect of MWCNTs on Solanum nigrum L. (S. nigrum) growth under cadmium and arsenic stresses. 500 mg/kg MWCNTs application significantly promoted S. nigrum growth, especially for root tissues. Specially, MWCNTs application yields 1.38-fold, 1.56-fold, and 1.37-fold enhancement in the shoot length, root length, and fresh biomass, respectively. Furthermore, MWCNTs significantly strengthened P and Fe absorption in roots, as well as the activities of antioxidative enzymes. Importantly, the transcriptomic analysis indicated that S. nigrum gene expression was sensitive to MWCNTs, and MWCNTs upregulated advantageous biological processes under heavy metal(loid)s stress. Besides, MWCNTs reprogramed metabolism that related to defense system, leading to accumulation of 4-hydroxyphenylpyruvic acid (amino acid), 4-hydroxycinnamic acid (xenobiotic), and (S)-abscisic acid (lipid). In addition, key common pathways of differentially expressed metabolites and genes, including "tyrosine metabolism" and "isoquinoline alkaloid biosynthesis" were selected via integrating transcriptome and metabolome analyses. Combined omics technologies, our findings provide molecular mechanisms of MWCNTs in promoting S. nigrum growth, and highlight potential application of MWCNTs in soil remediation.
Collapse
Affiliation(s)
- Xunfeng Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Juncai Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Renyuan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Zhengqiu Fan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China.
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Areas, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Yunnan Dali Research Institute, Shanghai Jiao Tong University, Dali, Yunnan 671000, China.
| |
Collapse
|
12
|
Li B, Zhang T, Tang M. Toxicity mechanism of nanomaterials: Focus on endoplasmic reticulum stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155417. [PMID: 35472346 DOI: 10.1016/j.scitotenv.2022.155417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Over the years, although the broad application of nanomaterials has not brought convenience to people's life, growing concern surrounds their safety. Recently, much emphasis has been placed on exploring the toxicity mechanism of nanoparticles. Currently established toxic mechanisms include oxidative stress, inflammatory response, autophagy, and DNA damage. In recent years, endoplasmic reticulum stress (ERS) has gained widespread attention as another toxic mechanism of nanomaterials. It is widely acknowledged that the endoplasmic reticulum (ER) is an important site for protein synthesis, and lipids and Ca+ storage, playing an esseential role in the normal operation of the body functions. When the body's internal environment is damaged, the structure and function of the endoplasmic reticulum are destroyed, leading to a series of biological reactions called endoplasmic reticulum stress (ERS.) This paper reviews the mechanism of ERS in nanomaterial-associated toxicity. The process of ERS and its related unfolded protein response were briefly introduced, summarizing the factors affecting the nanoparticle ability to induce ERS and expounding on the changes of ER morphology after exposure to nanoparticles. Finally, the specific role and molecular mechanism of ERS under the action of different nanoparticles were comprehensively analyzed, including the relationship between ERS and inflammation, oxidative stress, lipid metabolism and apoptosis. This review provides a foothold for future studies on the toxic mechanism of nanoparticles, and provides novel insights into the safe application of nanoparticles and the treatment of diseases.
Collapse
Affiliation(s)
- Binjing Li
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
13
|
Li H, Tao X, Song E, Song Y. Iron oxide nanoparticles oxidize transformed RAW 264.7 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. CHEMOSPHERE 2022; 300:134617. [PMID: 35430205 DOI: 10.1016/j.chemosphere.2022.134617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, Fe3O4 NPs and amino-functionalized analogue (Fe3O4-NH2 NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China.
| |
Collapse
|
14
|
Repar N, Jovičić EJ, Kump A, Birarda G, Vaccari L, Erman A, Kralj S, Nemec S, Petan T, Drobne D. Oleic Acid Protects Endothelial Cells from Silica-Coated Superparamagnetic Iron Oxide Nanoparticles (SPIONs)-Induced Oxidative Stress and Cell Death. Int J Mol Sci 2022; 23:ijms23136972. [PMID: 35806014 PMCID: PMC9267005 DOI: 10.3390/ijms23136972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have great potential for use in medicine, but they may cause side effects due to oxidative stress. In our study, we investigated the effects of silica-coated SPIONs on endothelial cells and whether oleic acid (OA) can protect the cells from their harmful effects. We used viability assays, flow cytometry, infrared spectroscopy, fluorescence microscopy, and transmission electron microscopy. Our results show that silica-coated SPIONs are internalized by endothelial cells, where they increase the amount of reactive oxygen species (ROS) and cause cell death. Exposure to silica-coated SPIONs induced accumulation of lipid droplets (LD) that was not dependent on diacylglycerol acyltransferase (DGAT)-mediated LD biogenesis, suggesting that silica-coated SPIONs suppress LD degradation. Addition of exogenous OA promoted LD biogenesis and reduced SPION-dependent increases in oxidative stress and cell death. However, exogenous OA protected cells from SPION-induced cell damage even in the presence of DGAT inhibitors, implying that LDs are not required for the protective effect of exogenous OA. The molecular phenotype of the cells determined by Fourier transform infrared spectroscopy confirmed the destructive effect of silica-coated SPIONs and the ameliorative role of OA in the case of oxidative stress. Thus, exogenous OA protects endothelial cells from SPION-induced oxidative stress and cell death independent of its incorporation into triglycerides.
Collapse
Affiliation(s)
- Neža Repar
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.R.); (D.D.)
| | - Eva Jarc Jovičić
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Ana Kump
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Giovanni Birarda
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (G.B.); (L.V.)
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (S.N.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sebastjan Nemec
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (S.K.); (S.N.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Toni Petan
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (E.J.J.); (A.K.); (T.P.)
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: (N.R.); (D.D.)
| |
Collapse
|
15
|
Tang X, Song F, Zhao W, Zhang Z, Cao Y. Intratracheal instillation of graphene oxide decreases anti-virus responses and lipid contents via suppressing Toll-like receptor 3 in mouse livers. J Appl Toxicol 2022; 42:1822-1831. [PMID: 35727742 DOI: 10.1002/jat.4359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
Recent studies revealed a causal relationship between Toll-like receptors (TLRs) and lipid droplet biogenesis. Interestingly, it has been reported before that nanomaterials (NMs) were capable to modulate TLRs, but it remains unclear if NMs could affect lipid levels via TLR signaling pathways. In this study, we investigated the influences of airway exposure to graphene oxide (GO) on TLR3 signaling pathways and lipid levels in mouse livers. Intratracheal instillation of GO (0.1, 1, and 5 mg/kg, once a day, totally 5 days) induced inflammatory cell infiltrations as indicated by hematoxylin-eosin (H&E) staining and fibrosis as indicated by Masson staining in lungs, accompanying with decreased TLR3 proteins. Consistently, a TLR3-regulated anti-virus protein, namely interferon induced protein with tetratricopeptide repeats 1 (IFIT1), as well as two TLR3-regulated lipid proteins, namely radical S-adenosyl methionine domain containing 2 (RSAD2) and perilipin 2 (PLIN2), were decreased in lungs. The protein levels of interferon-β in serum were also decreased. In livers, GO exposure induced disorganization of liver cells but not fibrosis. In agreement with the trends observed in lungs, TLR3, IFIT1, RSAD2, and PLIN2 proteins were decreased in livers. As a possible consequence, GO exposure dose-dependently decreased lipid levels in livers as indicated by oil red O and BODIPY 493/503 staining. We concluded that airway exposure to GO decreased anti-virus responses and lipid levels in mouse livers via the suppression of TLR3.
Collapse
Affiliation(s)
- Xiaomin Tang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhaohui Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
16
|
Chetyrkina MR, Fedorov FS, Nasibulin AG. In vitro toxicity of carbon nanotubes: a systematic review. RSC Adv 2022; 12:16235-16256. [PMID: 35733671 PMCID: PMC9152879 DOI: 10.1039/d2ra02519a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/19/2022] [Indexed: 12/20/2022] Open
Abstract
Carbon nanotube (CNT) toxicity-related issues provoke many debates in the scientific community. The controversial and disputable data about toxicity doses, proposed hazard effects, and human health concerns significantly restrict CNT applications in biomedical studies, laboratory practices, and industry, creating a barrier for mankind in the way of understanding how exactly the material behaves in contact with living systems. Raising the toxicity question again, many research groups conclude low toxicity of the material and its potential safeness at some doses for contact with biological systems. To get new momentum for researchers working on the intersection of the biological field and nanomaterials, i.e., CNT materials, we systematically reviewed existing studies with in vitro toxicological data to propose exact doses that yield toxic effects, summarize studied cell types for a more thorough comparison, the impact of incubation time, and applied toxicity tests. Using several criteria and different scientific databases, we identified and analyzed nearly 200 original publications forming a "golden core" of the field to propose safe doses of the material based on a statistical analysis of retrieved data. We also differentiated the impact of various forms of CNTs: on a substrate and in the form of dispersion because in both cases, some studies demonstrated good biocompatibility of CNTs. We revealed that CNTs located on a substrate had negligible impact, i.e., 90% of studies report good viability and cell behavior similar to control, therefore CNTs could be considered as a prospective conductive substrate for cell cultivation. In the case of dispersions, our analysis revealed mean values of dose/incubation time to be 4-5 μg mL-1 h-1, which suggested the material to be a suitable candidate for further studies to get a more in-depth understanding of its properties in biointerfaces and offer CNTs as a promising platform for fundamental studies in targeted drug delivery, chemotherapy, tissue engineering, biosensing fields, etc. We hope that the present systematic review will shed light on the current knowledge about CNT toxicity, indicate "dark" spots and offer possible directions for the subsequent studies based on the demonstrated here tabulated and statistical data of doses, cell models, toxicity tests, viability, etc.
Collapse
Affiliation(s)
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Nobel Str. 3 143026 Moscow Russia
- Aalto University FI-00076 15100 Espoo Finland
| |
Collapse
|
17
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
18
|
Chernick M, Kennedy A, Thomas T, Scott KCK, Hendren CO, Wiesner MR, Hinton DE. Impacts of ingested MWCNT-Embedded nanocomposites in Japanese medaka ( Oryzias latipes). Nanotoxicology 2022; 15:1403-1422. [PMID: 35166633 DOI: 10.1080/17435390.2022.2028919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Polymer nanocomposites combine the versatile, lightweight characteristics of polymers with the properties of nanomaterials. Polyethylene terephthalate glycol (PETG) is commonly used in polymer additive manufacturing due to its controllable transparency, high modulus, and mechanical properties. Multi-walled carbon nanotubes (MWCNTs) add tensile strength, electrical conductivity, and thermal stability. The increased use of nanocomposites has led to concern over potential human health risks. We assessed morphologic alterations to determine impacts of ingested abraded nanocomposites compared to its component materials, pristine MWCNTs (1000 mg/L) and PETG. Adult transparent Japanese medaka (Oryzias latipes) were administered materials via oral gavage in 7 doses over 16 days. In vivo observations revealed altered livers and gallbladders following exposure to pristine MWCNTs and nanocomposites. Subsequent histologic sections showed fish exposed to pristine MWCNTs had highly altered biliary structures, and exposure to nanocomposites resulted in hepatocellular alteration. Thyroid follicle proliferation was also observed in fish exposed to materials containing MWCNTs. Transmission electron microscopy of livers showed that hepatocytes of fish exposed to MWCNTs had widespread swelling of rough endoplasmic reticulum, pronounced lysosomal activity, and swelling of intrahepatic biliary passageways. Fish exposed to nanocomposites had areas of degenerated hepatocytes with interspersed cellular debris. Each analysis showed that fish exposed to pristine PETG were most similar to controls. These results suggest that MWCNTs are the source of toxicity in abraded nanocomposite materials but that nanocomposites may also have some unique effects. The similarities of many teleost and mammalian tissues are such that these findings may indicate human health risks.
Collapse
Affiliation(s)
- Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Alan Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Treye Thomas
- United States Consumer Product Safety Commission, Bethesda, Maryland, USA
| | - Keana C K Scott
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Christine Ogilvie Hendren
- Civil and Environmental Engineering, Duke University, Durham, NC, USA.,Department of Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | - Mark R Wiesner
- Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
19
|
Li S, Yan D, Huang C, Yang F, Cao Y. TiO 2 nanosheets promote the transformation of vascular smooth muscle cells into foam cells in vitro and in vivo through the up-regulation of nuclear factor kappa B subunit 2. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127704. [PMID: 34799167 DOI: 10.1016/j.jhazmat.2021.127704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 05/15/2023]
Abstract
Titanium dioxide (TiO2) nanomaterials have been shown to promote atherosclerosis through endothelial dysfunction. This study investigated the toxicity of TiO2 nanosheets (NSs) to vascular smooth muscle cells (VSMCs), one of the pivotal cells involved in all stages of atherosclerosis. Only a high concentration of TiO2 NSs (128 μg/mL) modestly induced cytotoxicity by decreasing thiols. RNA-sequencing data revealed that 64 μg/mL TiO2 NSs significantly down-regulated 94 genes and up-regulated 174 genes, respectively. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to SMC function and lipid metabolism were altered. TiO2 NSs increased nuclear factor kappa B subunit 2 (NFKB2), which led to a decrease in VSMC marker actin alpha 2, smooth muscle (ACTA2). On the other hand, macrophage marker CD36 and fatty acid synthase (FASN) proteins were increased. Additionally, TiO2 NSs induced inflammatory cytokines and lipid accumulation, and these effects were curtailed by NFKB inhibitor - triptolide. Furthermore, repeated TiO2 NS injection (5 mg/kg BW, once a day for 5 continuous days) into ICR mice led to increased NFKB2, CD36 and FASN, with a decreased ACTA2. Our results suggested that TiO2 NSs promoted the transformation of VSMCs into foam cells through the up-regulation of NFKB2.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Dejian Yan
- Institute of Advanced Materials, North China Electric Power University, Beijing 102206, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
20
|
Pei L, Yang W, Cao Y. Influences of Unmodified and Carboxylated Carbon Nanotubes on Lipid Profiles in THP-1 Macrophages: A Lipidomics Study. Int J Toxicol 2021; 41:16-25. [PMID: 34886715 DOI: 10.1177/10915818211056633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the possible roles of surface modifications in determining multi-walled carbon nanotube (MWCNT)-promoted endoplasmic reticulum (ER) stress-mediated lipid-laden macrophage foam cell formation are still in debate, we compared unmodified and carboxylated MWCNT-induced cytotoxicity, lipid profile changes, and expression of ER stress genes in THP-1 macrophages. Particularly, we focused on lipid profile changes by using lipidomics approaches. We found that unmodified and carboxylated MWCNTs significantly decreased cellular viability and appeared to damage the cellular membrane to a similar extent. Likewise, the results from Oil Red O staining showed that both types of MWCNTs slightly but significantly induced lipid accumulation. In keeping with Oil Red O staining results, lipidomics data showed that both types of MWCNTs up-regulated most of the lipid classes. Interestingly, almost all lipid classes were relatively higher in carboxylated MWCNT-exposed THP-1 macrophages compared with unmodified MWCNT-exposed cells, indicating that carboxylated MWCNTs more effectively changed lipid profiles. But in contrast to our expectation, none of the MWCNTs significantly induced the expression of ER stress genes. Even, compared with carboxylated MWCNTs, unmodified MWCNTs induced higher expression of lipid genes, including macrophage scavenger receptor 1 and fatty acid synthase. Combined, our results suggested that even though carboxylation did not significantly affect MWCNT-induced lipid accumulation, carboxylated MWCNTs were more potent to alter lipid profiles in THP-1 macrophages, indicating the need to use omics techniques to understand the exact nanotoxicological effects of MWCNTs. However, the differential effects of unmodified and carboxylated MWCNTs on lipid profiles might not be related with the induction of ER stress.
Collapse
Affiliation(s)
- Lanjie Pei
- 498598Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.,498598Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Wenxiang Yang
- 498598Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.,498598Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
21
|
Luo Y, Wang X, Cao Y. Transcriptomic-based toxicological investigations of graphene oxide with modest cytotoxicity to human umbilical vein endothelial cells: changes of Toll-like receptor signaling pathways. Toxicol Res (Camb) 2021; 10:1104-1115. [PMID: 34956614 PMCID: PMC8692726 DOI: 10.1093/toxres/tfab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
The wide uses of graphene oxide (GO) lead to the contact of GO with vascular systems, so it is necessary to investigate the toxicological effects of GO to endothelial cells. Recently, we reported that GO of small lateral size (<500 nm) was relatively biocompatible to human umbilical vein endothelial cells (HUVECs), but recent studies by using omics-techniques revealed that nanomaterials (NMs) even without acute cytotoxicity might induce other toxicological effects. This study investigated the effects of GO on HUVECs based on RNA-sequencing and bioinformatics analysis. Even after exposure to 100 μg/ml GO, the cellular viability of HUVECs was higher than 70%. Furthermore, 25 μg/ml GO was internalized but did not induce ultrastructural changes or intracellular superoxide. These results combined indicated GO's relatively high biocompatibility. However, by analyzing the most significantly altered Gene Ontology terms and Kyoto Encyclopedia of Gene and Genomes pathways, we found that 25 μg/ml GO altered pathways related to immune systems' functions and the responses to virus. We further verified that GO exposure significantly decreased Toll-like receptor 3 and interleukin 8 proteins, indicating an immune suppressive effect. However, THP-1 monocyte adhesion was induced by GO with or without the presence of inflammatory stimulus lipopolysaccharide. We concluded that GO might inhibit the immune responses to virus in endothelial cells at least partially mediated by the inhibition of TLR3. Our results also highlighted a need to investigate the toxicological effects of NMs even without acute cytotoxicity by omics-based techniques.
Collapse
Affiliation(s)
- Yingmei Luo
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510632, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
22
|
Favor OK, Pestka JJ, Bates MA, Lee KSS. Centrality of Myeloid-Lineage Phagocytes in Particle-Triggered Inflammation and Autoimmunity. FRONTIERS IN TOXICOLOGY 2021; 3:777768. [PMID: 35295146 PMCID: PMC8915915 DOI: 10.3389/ftox.2021.777768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
Exposure to exogenous particles found as airborne contaminants or endogenous particles that form by crystallization of certain nutrients can activate inflammatory pathways and potentially accelerate autoimmunity onset and progression in genetically predisposed individuals. The first line of innate immunological defense against particles are myeloid-lineage phagocytes, namely macrophages and neutrophils, which recognize/internalize the particles, release inflammatory mediators, undergo programmed/unprogrammed death, and recruit/activate other leukocytes to clear the particles and resolve inflammation. However, immunogenic cell death and release of damage-associated molecules, collectively referred to as "danger signals," coupled with failure to efficiently clear dead/dying cells, can elicit unresolved inflammation, accumulation of self-antigens, and adaptive leukocyte recruitment/activation. Collectively, these events can promote loss of immunological self-tolerance and onset/progression of autoimmunity. This review discusses critical molecular mechanisms by which exogenous particles (i.e., silica, asbestos, carbon nanotubes, titanium dioxide, aluminum-containing salts) and endogenous particles (i.e., monosodium urate, cholesterol crystals, calcium-containing salts) may promote unresolved inflammation and autoimmunity by inducing toxic responses in myeloid-lineage phagocytes with emphases on inflammasome activation and necrotic and programmed cell death pathways. A prototypical example is occupational exposure to respirable crystalline silica, which is etiologically linked to systemic lupus erythematosus (SLE) and other human autoimmune diseases. Importantly, airway instillation of SLE-prone mice with crystalline silica elicits severe pulmonary pathology involving accumulation of particle-laden alveolar macrophages, dying and dead cells, nuclear and cytoplasmic debris, and neutrophilic inflammation that drive cytokine, chemokine, and interferon-regulated gene expression. Silica-induced immunogenic cell death and danger signal release triggers accumulation of T and B cells, along with IgG-secreting plasma cells, indicative of ectopic lymphoid tissue neogenesis, and broad-spectrum autoantibody production in the lung. These events drive early autoimmunity onset and accelerate end-stage autoimmune glomerulonephritis. Intriguingly, dietary supplementation with ω-3 fatty acids have been demonstrated to be an intervention against silica-triggered murine autoimmunity. Taken together, further insight into how particles drive immunogenic cell death and danger signaling in myeloid-lineage phagocytes and how these responses are influenced by the genome will be essential for identification of novel interventions for preventing and treating inflammatory and autoimmune diseases associated with these agents.
Collapse
Affiliation(s)
- Olivia K. Favor
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Melissa A. Bates
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, United States
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
23
|
Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic Potential of Nanoparticles: Structural and Functional Modifications in DNA. Front Genet 2021; 12:728250. [PMID: 34659351 PMCID: PMC8511513 DOI: 10.3389/fgene.2021.728250] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid advancement of nanotechnology enhances the production of different nanoparticles that meet the demand of various fields like biomedical sciences, industrial, material sciences and biotechnology, etc. This technological development increases the chances of nanoparticles exposure to human beings, which can threaten their health. It is well known that various cellular processes (transcription, translation, and replication during cell proliferation, cell cycle, cell differentiation) in which genetic materials (DNA and RNA) are involved play a vital role to maintain any structural and functional modification into it. When nanoparticles come into the vicinity of the cellular system, chances of uptake become high due to their small size. This cellular uptake of nanoparticles enhances its interaction with DNA, leading to structural and functional modification (DNA damage/repair, DNA methylation) into the DNA. These modifications exhibit adverse effects on the cellular system, consequently showing its inadvertent effect on human health. Therefore, in the present study, an attempt has been made to elucidate the genotoxic mechanism of nanoparticles in the context of structural and functional modifications of DNA.
Collapse
Affiliation(s)
- Ritesh K Shukla
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Ashish Badiye
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| | - Kamayani Vajpayee
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Neeti Kapoor
- Department of Forensic Science, Government Institute of Forensic Science, Nagpur, India
| |
Collapse
|
24
|
Liu Y, Hu Q, Huang C, Cao Y. Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells. NANOIMPACT 2021; 23:100333. [PMID: 35559834 DOI: 10.1016/j.impact.2021.100333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/15/2023]
Abstract
Tubular nanomaterials (NMs), such as multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HNTs), may be used in biomedicine, but previous studies showed that MWCNTs induced toxicity to endothelial cells (ECs). However, the influence of tubular NMs on EC lipid profiles has gained little attention, probably because ECs are not traditionally considered to be involved in regulating lipid homeostasis. This study compared the different effects of MWCNTs and HNTs on lipid profile changes in human umbilical vein ECs (HUVECs). The results showed that MWCNTs but not HNTs of the same mass concentrations induced cytotoxicity, ultrastuctural changes and intracellular thiol depletion. Meanwhile, only MWCNTs promoted lipid accumulation due to the induction of ER stress leading to up-regulation of fatty acid synthase (FASN). Interestingly, lipidomics results showed that the main lipid classes induced by MWCNTs but not HNTs were ceramide (Cer) and phosphatidylinositol (PI), with most of the lipid classes unaltered or even decreased after NM exposure. Then, extra Cer and PI were added to explore the implications of increase of these lipids. Adding Cer promoted the cytotoxicity of MWCNTs to HUVECs, indicating the lipotoxic role of Cer. Whereas adding PI partially increased intracellular NO and decreased interleukin-6 (IL-6) release due to MWCNT exposure, indicating the signaling role of PI. These results indicated novel roles of lipid dysfunction in NM-induced toxicity to ECs, even though ECs are not the professional cells for controlling lipid homeostasis.
Collapse
Affiliation(s)
- Yanan Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Qilan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
25
|
Cao Y. Potential roles of Kruppel-like factors in mediating adverse vascular effects of nanomaterials: A review. J Appl Toxicol 2021; 42:4-16. [PMID: 33837572 DOI: 10.1002/jat.4172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
The development of nanotechnology leads to the exposure of human beings to nanomaterials (NMs), and there is a health concern about the adverse vascular effects of NMs. Current data from epidemiology, controlled human exposure, and animal studies suggested that exposure to NMs could induce cardiopulmonary effects. In support of in vivo findings, in vitro studies showed that direct contact of vascular cells with NMs could induce endothelial cell (EC) activation and promote macrophage foam cell formation, although only limited studies showed that NMs could damage vascular smooth muscle cells and promote their phenotypic switch. It has been proposed that NMs induced adverse vascular effects via different mechanisms, but it is still necessary to understand the upstream events. Kruppel-like factors (KLFs) are a set of C2H2 zinc finger transcription factors (TFs) that can regulate various aspects of vascular biology, but currently, the roles of KLF2 in mediating the adverse vascular effects of NMs have gained little attention by toxicologists. This review summarized current knowledge about the adverse vascular effects of NMs and proposed the potential roles of KLFs in mediating these effects based on available data from toxicological studies as well as the current understanding about KLFs in vascular biology. Finally, the challenges in investigating the role of KLFs in vascular toxicology were also summarized. Considering the important roles of KLFs in vascular biology, further studies are needed to understand the influence of NMs on KLFs and the downstream events.
Collapse
Affiliation(s)
- Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
26
|
Duan S, Zhang M, Li J, Tian J, Yin H, Wang X, Zhang L. Uterine metabolic disorder induced by silica nanoparticles: biodistribution and bioactivity revealed by labeling with FITC. J Nanobiotechnology 2021; 19:62. [PMID: 33639958 PMCID: PMC7916316 DOI: 10.1186/s12951-021-00810-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
Extensive application of nanomaterials has dramatically increased the risk of silica nanoparticle (SiNP, SiO2) exposure, yet their biological effect on reproduction has not been fully elucidated. By tracking the uterine biodistribution of SiNP in pregnant mice, this study was conducted to evaluate the biological effect of SiNP on reproduction. First, SiNP was conjugated with FITC, and then the FITC-SiNP was administrated to trophoblast (100 µg/mL, 24 h) in vitro and pregnant mice (0.25 mg/mouse, 2-24 h) in vivo. It was found that the FITC-SiNP was internalized by trophoblast and deposited in the uterus. The internalization of SiNP caused trophoblast dysfunction and apoptosis, while SiNP accumulation in the uterus induced diffuse inflammatory infiltration. The genome-wide alteration of gene expression was studied by high throughput sequencing analysis, where 75 genes were found to be dysregulated after SiNP exposure, among which ACOT2, SCD1, and CPT1A were demonstrated to regulate the biosynthesis of unsaturated fatty acids. Moreover, the suppression of unsaturated fatty acids caused mitochondrial overload of long-chain fatty acyl-CoA (LACoA), which further induced both trophoblast apoptosis and endometrial inflammation. In conclusion, the successful conjugation of FITC onto SiNP facilitated the tracking of SiNP in vitro and in vivo, while exposure to FITC-SiNP induced uterine metabolic disorder, which was regulated by the ACOT/CPT1A/SCD1 axis through the biosynthesis of unsaturated fatty acids signaling pathway.
Collapse
Affiliation(s)
- Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, 250001, Jinan, China.,School of Public Health, Zhengzhou University, 450001, Zhengzhou, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, 250001, Jinan, China
| | - Junxia Li
- School of Public Health, Weifang Medical University, 261053, Weifang, China
| | - Jiaqi Tian
- School of Public Health, Weifang Medical University, 261053, Weifang, China
| | - Haoyu Yin
- School of Public Health, Weifang Medical University, 261053, Weifang, China
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, 250001, Jinan, China.,Department of Obstetrics and Gynecology, Shandong Provincial Hospital, 250001, Jinan, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, 250001, Jinan, China.
| |
Collapse
|
27
|
Pogribna M, Hammons G. Epigenetic Effects of Nanomaterials and Nanoparticles. J Nanobiotechnology 2021; 19:2. [PMID: 33407537 PMCID: PMC7789336 DOI: 10.1186/s12951-020-00740-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
The rise of nanotechnology and widespread use of engineered nanomaterials in everyday human life has led to concerns regarding their potential effect on human health. Adverse effects of nanomaterials and nanoparticles on various molecular and cellular alterations have been well-studied. In contrast, the role of epigenetic alterations in their toxicity remains relatively unexplored. This review summarizes current evidence of alterations in cytosine DNA methylation and histone modifications in response to nanomaterials and nanoparticles exposures in vivo and in vitro. This review also highlights existing knowledge gaps regarding the role of epigenetic alterations in nanomaterials and nanoparticles toxicity. Additionally, the role of epigenetic changes as potential translational biomarkers for detecting adverse effects of nanomaterials and nanoparticles is discussed.
Collapse
Affiliation(s)
- Marta Pogribna
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
| | - George Hammons
- FDA/National Center for Toxicological Research, NCTR, HFT-110, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| |
Collapse
|
28
|
Cheng X, Guo H, Xian Y, Xie X. Changes of lipid profiles in human umbilical vein endothelial cells exposed to zirconia nanoparticles with or without the presence of free fatty acids. J Appl Toxicol 2020; 41:765-774. [PMID: 33222186 DOI: 10.1002/jat.4114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangjun Cheng
- Department of Orthopaedics The Second Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| | - Hao Guo
- Testing Department Chongqing Institute of Forensic Science Chongqing People's Republic of China
| | - Youqi Xian
- Application Department Thermo Fisher Scientific Chengdu People's Republic of China
| | - Xiaowei Xie
- Department of Orthopaedics The Second Affiliated Hospital of Chongqing Medical University Chongqing People's Republic of China
| |
Collapse
|
29
|
Lama S, Merlin-Zhang O, Yang C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2177. [PMID: 33142878 PMCID: PMC7694082 DOI: 10.3390/nano10112177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Toxicity studies for conventional oral drug formulations are standardized and well documented, as required by the guidelines of administrative agencies such as the US Food & Drug Administration (FDA), the European Medicines Agency (EMA) or European Medicines Evaluation Agency (EMEA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). Researchers tend to extrapolate these standardized protocols to evaluate nanoformulations (NFs) because standard nanotoxicity protocols are still lacking in nonclinical studies for testing orally delivered NFs. However, such strategies have generated many inconsistent results because they do not account for the specific physicochemical properties of nanomedicines. Due to their tiny size, accumulated surface charge and tension, sizeable surface-area-to-volume ratio, and high chemical/structural complexity, orally delivered NFs may generate severe topical toxicities to the gastrointestinal tract and metabolic organs, including the liver and kidney. Such toxicities involve immune responses that reflect different mechanisms than those triggered by conventional formulations. Herein, we briefly analyze the potential oral toxicity mechanisms of NFs and describe recently reported in vitro and in vivo models that attempt to address the specific oral toxicity of nanomedicines. We also discuss approaches that may be used to develop nontoxic NFs for oral drug delivery.
Collapse
Affiliation(s)
| | | | - Chunhua Yang
- Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Institute for Biomedical Sciences, Petite Science Center, Suite 754, 100 Piedmont Ave SE, Georgia State University, Atlanta, GA 30303, USA; (S.L.); (O.M.-Z.)
| |
Collapse
|
30
|
Ma R, Qi Y, Zhao X, Li X, Sun X, Niu P, Li Y, Guo C, Chen R, Sun Z. Amorphous silica nanoparticles accelerated atherosclerotic lesion progression in ApoE -/- mice through endoplasmic reticulum stress-mediated CD36 up-regulation in macrophage. Part Fibre Toxicol 2020; 17:50. [PMID: 33008402 PMCID: PMC7531166 DOI: 10.1186/s12989-020-00380-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Background The biosafety concern of silica nanoparticles (SiNPs) is rapidly expanding alongside with its mass production and extensive applications. The cardiovascular effects of SiNPs exposure have been gradually confirmed, however, the interaction between SiNPs exposure and atherosclerosis, and the underlying mechanisms still remain unknown. Thereby, this study aimed to explore the effects of SiNPs on the progression of atherosclerosis, and to investigate related mechanisms. Results We firstly investigated the in vivo effects of SiNPs exposure on atherosclerosis via intratracheal instillation of ApoE−/− mice fed a Western diet. Ultrasound microscopy showed a significant increase of pulse wave velocity (PWV) compared to the control group, and the histopathological investigation reflected a greater plaque burden in the aortic root of SiNPs-exposed ApoE−/− mice. Compared to the control group, the serum levels of total triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) were elevated after SiNPs exposure. Moreover, intensified macrophage infiltration and endoplasmic reticulum (ER) stress was occurred in plaques after SiNPs exposure, as evidenced by the upregulated CD68 and CHOP expressions. Further in vitro, SiNPs was confirmed to activate ER stress and induce lipid accumulation in mouse macrophage, RAW264.7. Mechanistic analyses showed that 4-PBA (a classic ER stress inhibitor) pretreatment greatly alleviated SiNPs-induced macrophage lipid accumulation, and reversed the elevated CD36 expression induced by SiNPs. Conclusions Our results firstly revealed the acceleratory effect of SiNPs on the progression of atherosclerosis in ApoE−/− mice, which was related to lipid accumulation caused by ER stress-mediated upregulation of CD36 expression in macrophage. Graphical abstract ![]()
Collapse
Affiliation(s)
- Ru Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yi Qi
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xinying Zhao
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xueyan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xuejing Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China. .,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China. .,Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Zhiwei Sun
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.,Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
31
|
Chen H, Humes ST, Rose M, Robinson SE, Loeb JC, Sabaraya IV, Smith LC, Saleh NB, Castleman WL, Lednicky JA, Sabo-Attwood T. Hydroxyl functionalized multi-walled carbon nanotubes modulate immune responses without increasing 2009 pandemic influenza A/H1N1 virus titers in infected mice. Toxicol Appl Pharmacol 2020; 404:115167. [PMID: 32771490 PMCID: PMC10636740 DOI: 10.1016/j.taap.2020.115167] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022]
Abstract
Growing use of carbon nanotubes (CNTs) have garnered concerns regarding their association with adverse health effects. Few studies have probed how CNTs affect a host's susceptibility to pathogens, particularly respiratory viruses. We reported that exposure of lung cells and mice to pristine single-walled CNTs (SWCNTs) leads to significantly increased influenza virus H1N1 strain A/Mexico/4108/2009 (IAV) titers in concert with repressed antiviral immune responses. In the present study, we investigated if hydroxylated multi-walled CNTs (MWCNTs), would result in similar outcomes. C57BL/6 mice were exposed to 20 μg MWCNTs on day 0 and IAV on day 3 and samples were collected on day 7. We investigated pathological changes, viral titers, immune-related gene expression in lung tissue, and quantified differential cell counts and cytokine and chemokine levels in bronchoalveolar lavage fluid. MWCNTs alone caused mild inflammation with no apparent changes in immune markers whereas IAV alone presented typical infection-associated inflammation, pathology, and titers. The co-exposure (MWCNTs + IAV) did not alter titers or immune cell profiles compared to the IAV only but increased concentrations of IL-1β, TNFα, GM-CSF, KC, MIPs, and RANTES and inhibited mRNA expression of Tlr3, Rig-i, Mda5, and Ifit2. Our findings suggest MWCNTs modulate immune responses to IAV with no effect on the viral titer and modest pulmonary injury, a result different from those reported for SWCNT exposures. This is the first study to show that MWCNTs modify cytokine and chemokine responses that control aspects of host defenses which may play a greater role in mitigating IAV infections.
Collapse
Affiliation(s)
- Hao Chen
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Sara T Humes
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Melanie Rose
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Sarah E Robinson
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Indu V Sabaraya
- Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - L Cody Smith
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Navid B Saleh
- Department of Civil, Architectural, and Environmental Engineering, University of Texas Austin, Austin, TX, 78712, USA
| | - William L Castleman
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, Gainesville, FL 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
32
|
Wang S, Ma J, Guo S, Huang Y, Cao Y. Transcriptomic analysis revealed that multi-walled carbon nanotubes diameter-dependently induced pyroptosis in THP-1 macrophages. NANOIMPACT 2020; 20:100270. [DOI: 10.1016/j.impact.2020.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
|
33
|
Yang T, Chen J, Gao L, Huang Y, Liao G, Cao Y. Induction of lipid droplets in THP-1 macrophages by multi-walled carbon nanotubes in a diameter-dependent manner: A transcriptomic study. Toxicol Lett 2020; 332:65-73. [PMID: 32649966 DOI: 10.1016/j.toxlet.2020.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023]
|
34
|
Luo Y, Peng J, Huang C, Cao Y. Graphene oxide size-dependently altered lipid profiles in THP-1 macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110714. [PMID: 32446100 DOI: 10.1016/j.ecoenv.2020.110714] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Previous studies focused on biocompatibility of graphene oxide (GO) to macrophages, but the impact of GO on lipid profiles in macrophages was less investigated. Herein, we investigated the interactions between THP-1 macrophages and GO of different sizes (GO of size 500-5000 nm, denoted as GO-L; GO of size < 500 nm, denoted as GO-S). We found that after 24 h exposure, the internalization of GO appeared to be minimal, whereas up to 50 μg/mL of GO-L but not GO-S reduced lipid accumulation, accompanying with a significantly reduced release of soluble monocyte chemoattractant protein-1 (MCP-1) but not interleukin-6 (IL-6). Moreover, lipidomic data showed that GO-L decreased the levels of 17 lipid classes, whereas GO-S only decreased the levels of 5 lipid classes. For comparison, 50 μg/mL carbon black (CB) significantly increased lipid accumulation with considerable particle internalization. GO-reduced lipid accumulation was not related with increase of reactive oxygen species (ROS) or induction of autophagy, and modulation of autophagy by chemicals showed no significant effect to alter the effects of GO-L on lipid accumulation. However, exposure to GO reduced the mRNA and protein levels of key components in peroxisome proliferators-activated receptor (PPAR) signaling pathway, a pathway that is related with lipid droplet biogenesis, and the modulation of PPARγ by chemicals altered the effects of GO-L on lipid accumulation. In conclusion, our results suggested that GO size-dependently altered lipid profiles in THP-1 macrophages that might be related with PPAR signaling pathway.
Collapse
Affiliation(s)
- Yingmei Luo
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan, 411105, China.
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, 210037, China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Lab of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
35
|
Wu B, Jiang M, Liu X, Huang C, Gu Z, Cao Y. Evaluation of toxicity of halloysite nanotubes and multi-walled carbon nanotubes to endothelial cells in vitro and blood vessels in vivo. Nanotoxicology 2020; 14:1017-1038. [PMID: 32574508 DOI: 10.1080/17435390.2020.1780642] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nanomaterials (NMs) with tubular structures, such as halloysite nanotubes (HNTs), have potential applications in biomedicine. Although the biocompatibility of HNTs has been investigated before, the toxicity of HNTs to blood vessels is rarely systemically evaluated. Herein, we compared the toxicity of HNTs and multi-walled carbon nanotubes (MWCNTs) to human umbilical vein endothelial cells (HUVECs) in vitro and blood vessels of mice in vivo. HUVECs internalized HNTs and MWCNTs, but the uptake of HNTs was not obviously changed by clathrin inhibitor. Exposure to NMs decreased cellular viability, activated apoptotic proteins and up-regulated adhesion molecules, including soluble vascular cell adhesion molecule 1 (sVCAM-1) and VCAM-1. As the mechanisms, NMs decreased NO levels, eNOS mRNA and eNOS/p-eNOS proteins. Meanwhile, NMs promoted intracellular ROS and autophagy dysfunction, shown as decreased protein levels of LC3, beclin-1 and ATG5. The eNOS regulator Kruppel-like factor 4 (KLF4) was inhibited, but another eNOS regulator KLF4 was surprisingly up-regulated. Under in vivo conditions, ICR mice intravenously injected with NMs (50 μg/mouse, once a day for 5 days) showed an increased percentage of neutrophils, monocytes and basophils. Meanwhile, autophagy dysfunction, eNOS uncoupling, activation of apoptotic proteins and alteration of KLF proteins were also observed in mouse aortas. All of the toxic effects were more pronounced for MWCNTs in comparison with HNTs based on the same mass concentrations. Our results may provide novel insights about the toxicity of NMs with tubular structures to blood vessels. Considering the toxicological data reported here, HNTs are probably safer nanocarriers compared with MWCNTs.
Collapse
Affiliation(s)
- Bihan Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Mengdie Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.,Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| | - Xuewu Liu
- Hunan Laboratory Animal Center, Hunan Drug Safety Evaluation Center, Liuyang, P.R. China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing, P.R. China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P.R. China
| |
Collapse
|
36
|
Lin J, Jiang Y, Luo Y, Guo H, Huang C, Peng J, Cao Y. Multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122286. [PMID: 32086094 DOI: 10.1016/j.jhazmat.2020.122286] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Pulmonary surfactant or its components can function as barriers toward nanomaterials (NMs) entering pulmonary systems. However, since pulmonary surfactant mainly consists of lipids, it may be necessary to investigate the effects of co-exposure to NMs and pulmonary surfactant or its components on lipid metabolism and related signaling pathways. Recently we found that multi-walled carbon nanotubes (MWCNTs) transformed THP-1 macrophages into lipid-laden foam cells via ER stress pathway. Here this study further investigated the impact of pulmonary surfactant component dipalmitoylphosphatidylcholine (DPPC) on this process. Up to 64 μg/mL hydroxylated or carboxylated MWCNTs induced lipid accumulation and IL-6 release in THP-1 macrophages, accompanying with increased oxidative stress and p-chop proteins (biomarker for ER stress). Incubation with 100 μg/mL DPPC led to MWCNT surface coating but did not significantly alter MWCNT internalization, lipid burden or IL-6 release. However, lipidomics indicated that DPPC altered lipid profliles in MWCNT-exposed cells. DPPC also led to a higher level of de novo lipogenesis regulator FASN in cells exposed to hydroxylated MWCNTs, as well as a higher level of p-chop and scavenger receptor MSR1 in cells exposed to carboxylated MWCNTs. Combined, DPPC did not significantly affect MWCNT-induced lipid accumulation but altered lipid components and ER stress in macrophages.
Collapse
Affiliation(s)
- Jinru Lin
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Ying Jiang
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yingmei Luo
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Hao Guo
- Chongqing Institute of Forensic Science, Chongqing 400021, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Yi Cao
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
37
|
Fan J, Chen Y, Yang D, Shen J, Guo X. Multi-walled carbon nanotubes induce IL-1β secretion by activating hemichannels-mediated ATP release in THP-1 macrophages. Nanotoxicology 2020; 14:929-946. [PMID: 32538272 DOI: 10.1080/17435390.2020.1777476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are known to induce pulmonary inflammatory effects through stimulating pro-inflammatory cytokine secretion from alveolar macrophages. Despite extensive studies on MWCNTs' pro-inflammatory reactivity, the understanding of molecular mechanisms involved is still incomplete. In this study, we investigated hemichannel's involvement in MWCNTs-induced macrophage IL-1β release. Our results showed that the unmodified and COOH MWCNTs could induce ATP release and ATP-P2X7R axis-dependent IL-1β secretion from THP-1 macrophages. By using various inhibitors, we confirmed that the MWCNTs-induced ATP release was primarily through hemichannels. EtBr dye uptake assay detected significant hemichannels opening in MWCNTs exposed THP-1 macrophages. Inhibition of hemichannels by CBX, 43Gap27, or 10Panx1 pretreatment results in decreased ATP and IL-1β release. The addition of ATP restored the reduced IL-1β secretion level from hemichannel inhibition. We also confirmed with five other types of MWCNTs that the induction of hemichannels by MWCNTs strongly correlates with their capacity to induce IL-1β secretion. Taken together, we conclude that hemichannels-mediated ATP release and subsequent NLRP3 inflammasome activation through P2X7R may be one mechanism by which MWCNTs induce macrophage IL-1β secretion. Our findings may provide a novel molecular mechanism for MWCNTs induced IL-1β secretion.
Collapse
Affiliation(s)
- Jingpu Fan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yiyong Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jie Shen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
38
|
Chatterjee N, Choi J. Endoplasmic reticulum stress mediated apoptosis via JNK in MWCNT-exposed in vitro systems: size, surface functionalization and cell type specificity. J Toxicol Sci 2020; 45:305-317. [DOI: 10.2131/jts.45.305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Korea
| |
Collapse
|
39
|
Sun Y, Gong J, Cao Y. Multi-Walled Carbon Nanotubes (MWCNTs) Activate Apoptotic Pathway Through ER Stress: Does Surface Chemistry Matter? Int J Nanomedicine 2019; 14:9285-9294. [PMID: 31819430 PMCID: PMC6886751 DOI: 10.2147/ijn.s217977] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 11/14/2019] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Physicochemical properties play a crucial role in determining the toxicity of multi-walled carbon nanotubes (MWCNTs). Recently we found that MWCNTs with longer length and smaller diameters could induce toxicity to human umbilical vein endothelial cells (HUVECs) through the activation of endoplasmic reticulum (ER) stress. In this study, we further investigated the possible contribution of hydroxylation and carboxylation to the cytotoxicity of MWCNTs. METHODS The HUVECs were exposed to pristine (code XFM19), hydroxylated (code XFM20; content of hydroxyl groups 1.76 wt%) and carboxylated (code XFM21; content of carboxyl groups 1.23 wt%) MWCNTs, respectively. Then, the internalization, cytotoxicity, oxidative stress and activation of apoptosis-ER stress pathway were measured. RESULTS In consequence, all types of MWCNTs could be internalized into the HUVECs, and the cellular viability was significantly reduced to a similar level. Moreover, the MWCNTs increased intracellular reactive oxygen species (ROS) and decreased glutathione (GSH) to similar levels, indicating their capacity of inducing oxidative stress. The Western blot results showed that all types of MWCNTs reduced BCL-2 and increased caspase-3, caspase-8, cleaved caspase-3 and cleaved caspase-8. The expression of ER stress gene DNA damage-inducible transcript 3 (DDIT3) and protein level of chop were only significantly induced by XFM20 and XFM21, whereas protein level of p-chop was promoted by XFM19 and XFM21. In addition, the pro-survival gene XBP-1s was significantly down-regulated by all types of MWCNTs. CONCLUSION These results suggested that MWCNTs could induce cytotoxicity to HUVECs via the induction of oxidative stress and apoptosis-ER stress, whereas a low degree of hydroxylation or carboxylation did not affect the toxicity of MWCNTs to HUVECs.
Collapse
Affiliation(s)
- Yongbing Sun
- National Engineering Research Center for Solid Preparation Technology of Chinese Medicines, Jiangxi University of Traditional Chinese Medicines, Jiangxi, Nanchang330006, People’s Republic of China
| | - Jianping Gong
- National Engineering Research Center for Solid Preparation Technology of Chinese Medicines, Jiangxi University of Traditional Chinese Medicines, Jiangxi, Nanchang330006, People’s Republic of China
| | - Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan411105, People’s Republic of China
| |
Collapse
|