1
|
Wareing B, Aktalay Hippchen A, Kolle SN, Birk B, Funk-Weyer D, Landsiedel R. Limitations and Modifications of Skin Sensitization NAMs for Testing Inorganic Nanomaterials. TOXICS 2024; 12:616. [PMID: 39195718 PMCID: PMC11360696 DOI: 10.3390/toxics12080616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Since 2020, the REACh regulation requires toxicological data on nanoforms of materials, including the assessment of their skin-sensitizing properties. Small molecules' skin sensitization potential can be assessed by new approach methodologies (NAMs) addressing three key events (KE: protein interaction, activation of dendritic cells, and activation of keratinocytes) combined in a defined approach (DA) described in the OECD guideline 497. In the present study, the applicability of three NAMs (DPRA, LuSens, and h-CLAT) to nine materials (eight inorganic nanomaterials (NM) consisting of CeO2, BaSO4, TiO2 or SiO2, and quartz) was evaluated. The NAMs were technically applicable to NM using a specific sample preparation (NANOGENOTOX dispersion protocol) and method modifications to reduce interaction of NM with the photometric and flowcytometric read-outs. The results of the three assays were combined according to the defined approach described in the OECD guideline No. 497; two of the inorganic NM were identified as skin sensitizers. However, data from animal studies (for ZnO, also human data) indicate no skin sensitization potential. The remaining seven test substances were assessed as "inconclusive" because all inorganic NM were outside the domain of the DPRA, and the achievable test concentrations were not sufficiently high according to the current test guidelines of all three NAMs. The use of these NAMs for (inorganic) NM and the relevance of the results in general are challenged in three ways: (i) NAMs need modification to be applicable to insoluble, inorganic matter; (ii) current test guidelines lack adequate concentration metrics and top concentrations achievable for NM; and (iii) NM may not cause skin sensitization by the same molecular and cellular key events as small organic molecules do; in fact, T-cell-mediated hypersensitivity may not be the most relevant reaction of the immune system to NM. We conclude that the NAMs adopted by OECD test guidelines are currently not a good fit for testing inorganic NM.
Collapse
Affiliation(s)
- Britta Wareing
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Ayse Aktalay Hippchen
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Susanne N. Kolle
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Barbara Birk
- BASF SE, Agriculture Solutions, 67117 Limburgerhof, Germany;
| | - Dorothee Funk-Weyer
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
| | - Robert Landsiedel
- BASF SE, Experimental Toxicology and Ecology, 67057 Ludwigshafen, Germany; (B.W.); (A.A.H.); (S.N.K.); (D.F.-W.)
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, 14195 Berlin, Germany
| |
Collapse
|
2
|
Hristozov D, Badetti E, Bigini P, Brunelli A, Dekkers S, Diomede L, Doak SH, Fransman W, Gajewicz-Skretna A, Giubilato E, Gómez-Cuadrado L, Grafström R, Gutleb AC, Halappanavar S, Hischier R, Hunt N, Katsumiti A, Kermanizadeh A, Marcomini A, Moschini E, Oomen A, Pizzol L, Rumbo C, Schmid O, Shandilya N, Stone V, Stoycheva S, Stoeger T, Merino BS, Tran L, Tsiliki G, Vogel UB, Wohlleben W, Zabeo A. Next Generation Risk Assessment approaches for advanced nanomaterials: Current status and future perspectives. NANOIMPACT 2024; 35:100523. [PMID: 39059749 DOI: 10.1016/j.impact.2024.100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
This manuscript discusses the challenges of applying New Approach Methodologies (NAMs) for safe by design and regulatory risk assessment of advanced nanomaterials (AdNMs). The authors propose a framework for Next Generation Risk Assessment of AdNMs involving NAMs that is aligned to the conventional risk assessment paradigm. This framework is exposure-driven, endpoint-specific, makes best use of pre-existing information, and can be implemented in tiers of increasing specificity and complexity of the adopted NAMs. The tiered structure of the approach, which effectively combines the use of existing data with targeted testing will allow safety to be assessed cost-effectively and as far as possible with even more limited use of vertebrates. The regulatory readiness of state-of-the-art emerging NAMs is assessed in terms of Transparency, Reliability, Accessibility, Applicability, Relevance and Completeness, and their appropriateness for AdNMs is discussed in relation to each step of the risk assessment paradigm along with providing perspectives for future developments in the respective scientific and regulatory areas.
Collapse
Affiliation(s)
- Danail Hristozov
- East European Research and Innovation Enterprise (EMERGE), Otets Paisiy Str. 46, 1303 Sofa, Bulgaria.
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Paolo Bigini
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Luisa Diomede
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| | - Shareen H Doak
- Swansea University Medical School, Faculty of Medicine, Health & Life Science, Singleton Park, Swansea SA2 8PP, United Kingdom
| | - Wouter Fransman
- Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Agnieszka Gajewicz-Skretna
- Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-309 Gdansk, Poland
| | - Elisa Giubilato
- GreenDecision Srl, Cannaregio 5904, 30121 Venezia, VE, Italy
| | - Laura Gómez-Cuadrado
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Roland Grafström
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, 17177 Stockholm, Sweden
| | - Arno C Gutleb
- Luxemburg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Building, Banting Driveway, Ottawa, Ontario K1A 0K9, Canada
| | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Neil Hunt
- Yordas Group, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Zamudio, Spain
| | - Ali Kermanizadeh
- University of Derby, College of Science and Engineering, Kedleston Road, Derby DE22 1GB, United Kingdom
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Elisa Moschini
- Luxemburg Institute of Science and Technology (LIST), 41, rue du Brill, L-4422 Belvaux, Luxembourg; Heriot-Watt University, School of Engineering and Physical Sciences (EPS), Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), David Brewster Building, Edinburgh EH14 4AS, United Kingdom
| | - Agnes Oomen
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Lisa Pizzol
- GreenDecision Srl, Cannaregio 5904, 30121 Venezia, VE, Italy
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Otmar Schmid
- Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Neeraj Shandilya
- Netherlands Organisation for Applied Scientific Research (TNO), Princetonlaan 6, 3584 CB Utrecht, the Netherlands
| | - Vicki Stone
- Heriot-Watt University, School of Engineering and Physical Sciences (EPS), Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), David Brewster Building, Edinburgh EH14 4AS, United Kingdom
| | - Stella Stoycheva
- Yordas Group, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Tobias Stoeger
- Helmholtz Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Lang Tran
- Institute of Occupational Medicine (IOM), Research Avenue North, Riccarton, Edinburgh EH14 4AP, United Kingdom
| | - Georgia Tsiliki
- Purposeful IKE, Tritis Septembriou 144, Athens 11251, Greece
| | - Ulla Birgitte Vogel
- The National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark
| | - Wendel Wohlleben
- BASF SE, RGA/AP - B7, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Alex Zabeo
- GreenDecision Srl, Cannaregio 5904, 30121 Venezia, VE, Italy
| |
Collapse
|
3
|
McLean P, Marshall J, García-Bilbao A, Beal D, Katsumiti A, Carrière M, Boyles MSP. A comparison of dermal toxicity models; assessing suitability for safe(r)-by-design decision-making and for screening nanomaterial hazards. Toxicol In Vitro 2024; 97:105792. [PMID: 38364873 DOI: 10.1016/j.tiv.2024.105792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The objective of Safe-by-Design (SbD) is to support the development of safer products and production processes, and enable safe use throughout a materials' life cycle; an intervention at an early stage of innovation can greatly benefit industry by reducing costs associated with the development of products later found to elicit harmful effects. Early hazard screening can support this process, and is needed for all of the expected nanomaterial exposure routes, including inhalation, ingestion and dermal. In this study, we compare in vitro and ex vivo cell models that represent dermal exposures (including HaCaT cells, primary keratinocytes, and reconstructed human epidermis (RhE)), and when possible consider these in the context of regulatory accepted OECD TG for in vitro dermal irritation. Various benchmark nanomaterials were used to assess markers of cell stress in each cell model. In addition, we evaluated different dosing strategies that have been used when applying the OECD TG for dermal irritation in assessment of nanomaterials, and how inconsistencies in the approach used can have considerable impact of the conclusions made. Although we could not demonstrate alignment of all models used, there was an indication that the simpler in vitro cell model aligned more closely with RhE tissue than ex vivo primary keratinocytes, supporting the use of HaCaT cells for screening of dermal toxicity of nanomaterials and in early-stage SbD decision-making.
Collapse
Affiliation(s)
- Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Jessica Marshall
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Amaia García-Bilbao
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | - David Beal
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew S P Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK; Centre for Biomedicine and Global Health, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK.
| |
Collapse
|
4
|
Di Cristo L, Keller JG, Leoncino L, Marassi V, Loosli F, Seleci DA, Tsiliki G, Oomen AG, Stone V, Wohlleben W, Sabella S. Critical aspects in dissolution testing of nanomaterials in the oro-gastrointestinal tract: the relevance of juice composition for hazard identification and grouping. NANOSCALE ADVANCES 2024; 6:798-815. [PMID: 38298600 PMCID: PMC10825926 DOI: 10.1039/d3na00588g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
The dissolution of a nanomaterial (NM) in an in vitro simulant of the oro-gastrointestinal (OGI) tract is an important predictor of its biodurability in vivo. The cascade addition of simulated digestive juices (saliva, stomach and intestine), including inorganic/organic biomacromolecules and digestive enzymes (complete composition, referred to as "Type 1 formulation"), strives for realistic representation of chemical composition of the OGI tract. However, the data robustness requires consideration of analytical feasibility, such as the use of simplified media. Here we present a systematic analysis of the effects exerted by different digestive juice formulations on the dissolution% (or half-life values) of benchmark NMs (e.g., zinc oxide, titanium dioxide, barium sulfate, and silicon dioxide). The digestive juices were progressively simplified by removal of components such as organic molecules, enzymes, and inorganic molecules (Type 2, 3 and 4). The results indicate that the "Type 1 formulation" augments the dissolution via sequestration of ions by measurable factors compared to formulations without enzymes (i.e., Type 3 and 4). Type 1 formulation is thus regarded as a preferable option for predicting NM biodurability for hazard assessment. However, for grouping purposes, the relative similarity among diverse nanoforms (NFs) of a NM is decisive. Two similarity algorithms were applied, and additional case studies comprising NFs and non NFs of the same substance were included. The results support the grouping decision by simplified formulation (Type 3) as a robust method for screening and grouping purposes.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| | - Johannes G Keller
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia Genova Italy
| | | | - Frederic Loosli
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
- University of Vienna Vienna Austria
| | - Didem Ag Seleci
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Georgia Tsiliki
- Institute for the Management of Information Systems, Athena Research Center Marousi Greece
| | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands
- University of Amsterdam Amsterdam The Netherlands
| | - Vicki Stone
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University Edinburgh UK
| | - Wendel Wohlleben
- Department of Material Physics and Department of Experimental Toxicology and Ecology, BASF SE Ludwigshafen Germany
| | - Stefania Sabella
- Istituto Italiano Di Tecnologia, Nanoregulatory Group, D3PharmaChemistry Genova Italy
| |
Collapse
|
5
|
Di Cristo L, Ude VC, Tsiliki G, Tatulli G, Romaldini A, Murphy F, Wohlleben W, Oomen AG, Pompa PP, Arts J, Stone V, Sabella S. Grouping of orally ingested silica nanomaterials via use of an integrated approach to testing and assessment to streamline risk assessment. Part Fibre Toxicol 2022; 19:68. [PMID: 36461106 PMCID: PMC9719179 DOI: 10.1186/s12989-022-00508-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Nanomaterials can exist in different nanoforms (NFs). Their grouping may be supported by the formulation of hypotheses which can be interrogated via integrated approaches to testing and assessment (IATA). IATAs are decision trees that guide the user through tiered testing strategies (TTS) to collect the required evidence needed to accept or reject a grouping hypothesis. In the present paper, we investigated the applicability of IATAs for ingested NFs using a case study that includes different silicon dioxide, SiO2 NFs. Two oral grouping hypotheses addressing local and systemic toxicity were identified relevant for the grouping of these NFs and verified through the application of oral IATAs. Following different Tier 1 and/or Tier 2 in vitro methods of the TTS (i.e., in vitro dissolution, barrier integrity and inflammation assays), we generated the NF datasets. Furthermore, similarity algorithms (e.g., Bayesian method and Cluster analysis) were utilized to identify similarities among the NFs and establish a provisional group(s). The grouping based on Tier 1 and/or Tier 2 testing was analyzed in relation to available Tier 3 in vivo data in order to verify if the read-across was possible and therefore support a grouping decision. RESULTS The measurement of the dissolution rate of the silica NFs in the oro-gastrointestinal tract and in the lysosome identified them as gradually dissolving and biopersistent NFs. For the local toxicity to intestinal epithelium (e.g. cytotoxicity, membrane integrity and inflammation), the biological results of the gastrointestinal tract models indicate that all of the silica NFs were similar with respect to the lack of local toxicity and, therefore, belong to the same group; in vivo data (although limited) confirmed the lack of local toxicity of NFs. For systemic toxicity, Tier 1 data did not identify similarity across the NFs, with results across different decision nodes being inconsistent in providing homogeneous group(s). Moreover, the available Tier 3 in vivo data were also insufficient to support decisions based upon the obtained in vitro results and relating to the toxicity of the tested NFs. CONCLUSIONS The information generated by the tested oral IATAs can be effectively used for similarity assessment to support a grouping decision upon the application of a hypothesis related to toxicity in the gastrointestinal tract. The IATAs facilitated a structured data analysis and, by means of the expert's interpretation, supported read-across with the available in vivo data. The IATAs also supported the users in decision making, for example, reducing the testing when the grouping was well supported by the evidence and/or moving forward to advanced testing (e.g., the use of more suitable cellular models or chronic exposure) to improve the confidence level of the data and obtain more focused information.
Collapse
Affiliation(s)
- Luisana Di Cristo
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| | - Victor C. Ude
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Georgia Tsiliki
- grid.19843.370000 0004 0393 5688Institute for the Management of Information Systems, Athena Research Center, Marousi, Greece
| | - Giuseppina Tatulli
- grid.25786.3e0000 0004 1764 2907Nanobiointeractions & Nanodiagnostics, Istituto Italiano Di Tecnologia (IIT), Via Morego, 30, 16163 Genoa, Italy
| | - Alessio Romaldini
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| | - Fiona Murphy
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Wendel Wohlleben
- grid.3319.80000 0001 1551 0781Department Material Physics and Department of Experimental Toxicology & Ecology, BASF SE, Ludwigshafen, Germany
| | - Agnes G. Oomen
- grid.31147.300000 0001 2208 0118National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands ,grid.7177.60000000084992262Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Pier P. Pompa
- grid.25786.3e0000 0004 1764 2907Nanobiointeractions & Nanodiagnostics, Istituto Italiano Di Tecnologia (IIT), Via Morego, 30, 16163 Genoa, Italy
| | | | - Vicki Stone
- grid.9531.e0000000106567444Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, EH14 4AS UK
| | - Stefania Sabella
- grid.25786.3e0000 0004 1764 2907D3 PharmaChemistry, Nanoregulatory Group, Italian Institute of Technology, Via Morego, 30, 16163 Genoa, Italy
| |
Collapse
|