1
|
Tan C, xiao Y, Liu T, Chen S, Zhou J, Zhang S, Hu Y, Wu A, Li C. Development of multi-epitope mRNA vaccine against Clostridioides difficile using reverse vaccinology and immunoinformatics approaches. Synth Syst Biotechnol 2024; 9:667-683. [PMID: 38817826 PMCID: PMC11137598 DOI: 10.1016/j.synbio.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024] Open
Abstract
Clostridioides difficile (C. difficile), as the major pathogen of diarrhea in healthcare settings, has become increasingly prevalent within community populations, resulting in significant morbidity and mortality. However, the therapeutic options for Clostridioides difficile infection (CDI) remain limited, and as of now, no authorized vaccine is available to combat this disease. Therefore, the development of a novel vaccine against C. difficile is of paramount importance. In our study, the complete proteome sequences of 118 strains of C. difficile were downloaded and analyzed. We found four antigenic proteins that were highly conserved and can be used for epitope identification. We designed two vaccines, WLcd1 and WLcd2, that contain the ideal T-cell and B-cell epitopes, adjuvants, and the pan HLA DR-binding epitope (PADRE) sequences. The biophysical and chemical assessments of these vaccine candidates indicated that they were suitable for immunogenic applications. Molecular docking analyses revealed that WLcd1 bonded with higher affinity to Toll-like receptors (TLRs) than WLcd2. Furthermore, molecular dynamics (MD) simulations, performed using Gmx_MMPBSA v1.56, confirmed the binding stability of WLcd1 with TLR2 and TLR4. The preliminary findings suggested that this multi-epitope vaccine could be a promising candidate for protection against CDI; however, experimental studies are necessary to confirm these predictions.
Collapse
Affiliation(s)
- Caixia Tan
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Yuanyuan xiao
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Ting Liu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Siyao Chen
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Juan Zhou
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Sisi Zhang
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Yiran Hu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China
- National Clinical Research Center for Geriatric Disorders (XiangYa Hospital), Changsha, Hunan Province, 410008, China
| |
Collapse
|
2
|
Dhanushkumar T, M E S, Selvam PK, Rambabu M, Dasegowda KR, Vasudevan K, George Priya Doss C. Advancements and hurdles in the development of a vaccine for triple-negative breast cancer: A comprehensive review of multi-omics and immunomics strategies. Life Sci 2024; 337:122360. [PMID: 38135117 DOI: 10.1016/j.lfs.2023.122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Triple-Negative Breast Cancer (TNBC) presents a significant challenge in oncology due to its aggressive behavior and limited therapeutic options. This review explores the potential of immunotherapy, particularly vaccine-based approaches, in addressing TNBC. It delves into the role of immunoinformatics in creating effective vaccines against TNBC. The review first underscores the distinct attributes of TNBC and the importance of tumor antigens in vaccine development. It then elaborates on antigen detection techniques such as exome sequencing, HLA typing, and RNA sequencing, which are instrumental in identifying TNBC-specific antigens and selecting vaccine candidates. The discussion then shifts to the in-silico vaccine development process, encompassing antigen selection, epitope prediction, and rational vaccine design. This process merges computational simulations with immunological insights. The role of Artificial Intelligence (AI) in expediting the prediction of antigens and epitopes is also emphasized. The review concludes by encapsulating how Immunoinformatics can augment the design of TNBC vaccines, integrating tumor antigens, advanced detection methods, in-silico strategies, and AI-driven insights to advance TNBC immunotherapy. This could potentially pave the way for more targeted and efficacious treatments.
Collapse
Affiliation(s)
- T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Santhosh M E
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Prasanna Kumar Selvam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Majji Rambabu
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - K R Dasegowda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
| |
Collapse
|
3
|
Zhou X, Gao M, De X, Sun T, Bai Z, Luo J, Wang F, Ge J. Bacterium-like particles derived from probiotics: progress, challenges and prospects. Front Immunol 2023; 14:1263586. [PMID: 37868963 PMCID: PMC10587609 DOI: 10.3389/fimmu.2023.1263586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Bacterium-like particles (BLPs) are hollow peptidoglycan particles obtained from food-grade Lactococcus lactis inactivated by hot acid. With the advantage of easy preparation, high safety, great stability, high loading capacity, and high mucosal delivery efficiency, BLPs can load and display proteins on the surface with the help of protein anchor (PA), making BLPs a proper delivery system. Owning to these features, BLPs are widely used in the development of adjuvants, vaccine carriers, virus/antigens purification, and enzyme immobilization. This review has attempted to gather a full understanding of the technical composition, characteristics, applications. The mechanism by which BLPs induces superior adaptive immune responses is also discussed. Besides, this review tracked the latest developments in the field of BLPs, including Lactobacillus-derived BLPs and novel anchors. Finally, the main limitations and proposed breakthrough points to further enhance the immunogenicity of BLPs vaccines were discussed, providing directions for future research. We hope that further developments in the field of antigen delivery of subunit vaccines or others will benefit from BLPs.
Collapse
Affiliation(s)
- Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhikun Bai
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jilong Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China
| |
Collapse
|
4
|
SOLVx therapeutics vaccine - Activate T-cell immunity using broad surveillance epitope strategy against mutant strains SARS-COV2. Biomed Pharmacother 2022; 152:113212. [PMID: 35653885 PMCID: PMC9149046 DOI: 10.1016/j.biopha.2022.113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/17/2023] Open
Abstract
Highly mutable Coronavirus-19 continuously reconstructs its genome and renders prophylactic vaccines ineffective. The objective of the present study was to demonstrate the anti-viral efficacy and safety of the SOLVx therapeutics vaccine. The peptides were designed with Neo7Logix R&D and synthesized with Genescript GLP laboratory with 95 % purity. BALB/C mice were used to develop the HCoV-229E mutant coronavirus model and viral mRNA confirmation in the lung tissue was assessed with qPCR. Mice were euthanized and effects of treatment on various parameters (Viral mRNA in lungs, cytokine levels, PBMC differentiation, hematological and biochemical) were assessed with respective biological samples. Immuno-typing analysis of PBMCs by flowcytometry showed marked increase in T cell subsets, % of B cells and NK cell population in mice treated with SOLVx (Series 1) in a dose dependent manner. Serum immunoglobulin G, and M levels were increased significantly (P < 0.001). In the peptide treatment groups, there was a dose dependent statistically significant decrease in IL-6, IL-10 and TNF-α levels (P < 0.001). IFN-γ was elevated in treatment group significantly (P < 0.001). In conclusion, the qPCR results suggested that the SOLVx vaccine (Series 1) reduced the SARS-COV2 virus infectivity in a dose dependent manner. The humoral, cellular and functional activity of the SOLVx showed that it worked through multi-mechanistic targeting the virus evolution, offering immune response, defense and eradication of the SARS-COV2 virus.
Collapse
|
5
|
Michalik M, Djahanschiri B, Leo JC, Linke D. An Update on "Reverse Vaccinology": The Pathway from Genomes and Epitope Predictions to Tailored, Recombinant Vaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:45-71. [PMID: 34918241 DOI: 10.1007/978-1-0716-1892-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter, we review the computational approaches that have led to a new generation of vaccines in recent years. There are many alternative routes to develop vaccines based on the concept of reverse vaccinology. They all follow the same basic principles-mining available genome and proteome information for antigen candidates, and recombinantly expressing them for vaccine production. Some of the same principles have been used successfully for cancer therapy approaches. In this review, we focus on infectious diseases, describing the general workflow from bioinformatic predictions of antigens and epitopes down to examples where such predictions have been used successfully for vaccine development.
Collapse
Affiliation(s)
| | - Bardya Djahanschiri
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Jack C Leo
- Department of Biosciences, Nottingham Trent University, Nottingham, UK
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Das NC, Chakraborty P, Bayry J, Mukherjee S. In Silico Analyses on the Comparative Potential of Therapeutic Human Monoclonal Antibodies Against Newly Emerged SARS-CoV-2 Variants Bearing Mutant Spike Protein. Front Immunol 2022; 12:782506. [PMID: 35082779 PMCID: PMC8784557 DOI: 10.3389/fimmu.2021.782506] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/07/2021] [Indexed: 12/19/2022] Open
Abstract
Since the start of the pandemic, SARS-CoV-2 has already infected more than 250 million people globally, with more than five million fatal cases and huge socio-economic losses. In addition to corticosteroids, and antiviral drugs like remdesivir, various immunotherapies including monoclonal antibodies (mAbs) to S protein of SARS-CoV-2 have been investigated to treat COVID-19 patients. These mAbs were initially developed against the wild-type SARS-CoV-2; however, emergence of variant forms of SARS-CoV-2 having mutations in the spike protein in several countries including India raised serious questions on the potential use of these mAbs against SARS-CoV-2 variants. In this study, using an in silico approach, we have examined the binding abilities of eight mAbs against several SARS-CoV-2 variants of Alpha (B.1.1.7) and Delta (B.1.617.2) lineages. The structure of the Fab region of each mAb was designed in silico and subjected to molecular docking against each mutant protein. mAbs were subjected to two levels of selection based on their binding energy, stability, and conformational flexibility. Our data reveal that tixagevimab, regdanvimab, and cilgavimab can efficiently neutralize most of the SARS-CoV-2 Alpha strains while tixagevimab, bamlanivimab, and sotrovimab can form a stable complex with the Delta variants. Based on these data, we have designed, by in silico, a chimeric antibody by conjugating the CDRH3 of regdanivimab with a sotrovimab framework to combat the variants that could potentially escape from the mAb-mediated neutralization. Our finding suggests that though currently available mAbs could be used to treat COVID-19 caused by the variants of SARS-CoV-2, better results could be expected with the chimeric antibodies.
Collapse
Affiliation(s)
- Nabarun Chandra Das
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Pritha Chakraborty
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | - Suprabhat Mukherjee
- Integrative Biochemistry and Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| |
Collapse
|
7
|
Immunoinformatics and reverse vaccinomic approaches for effective design. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300457 DOI: 10.1016/b978-0-323-91172-6.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of mutagenic strains of severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) worst hit the world which already suffered from the Coronavirus disease-2019 (COVID-19) pandemic for 2 years. Due to recent advances in vaccinomics, many vaccine candidates are available but their efficacy against a mutant version of SARS-CoV-2 has remained uncertain. The immune-informatics-based reverse vaccinomic approaches have shown promising investigations recently for the development of cost-effective vaccinomics candidates in a very short period of time. The strategic vaccine development of selected epitopes using artificial intelligence for both B- and T-cells is a very crucial step in this process. This approach provides a highly effective and immunogenic vaccine that offers immunological safety against autoimmunity and other adverse effects over ethnicities, pregnant women, and vulnerable age groups. Several researchers have developed effective vaccine candidates using computational vaccinology and the immune-informatics approach. In this process, a unique peptide sequence of viral proteins such as Nucleocapsid, spike, envelope protein was identified by various in silico tools which are acting as immunological epitopes against TLRs, T-cells, and B-cells. While the conventional immunological vaccine studies take years for vaccine candidature, the immunoinformatics approach is a time-efficient way for the next generation research to study host-pathogen interactions and vaccine development. It is also cost-effective and leads to a better understanding of disease pathogenesis, diagnosis, and immunological response. Owing to the advantage of immunoinformatics-based vaccine approaches the present chapter aimed to discuss vaccine development using immunoinformatics approaches. Besides, the current challenges and future aspects have also been discussed herewith.
Collapse
|
8
|
Bagheri A, Nezafat N, Eslami M, Ghasemi Y, Negahdaripour M. Designing a therapeutic and prophylactic candidate vaccine against human papillomavirus through vaccinomics approaches. INFECTION GENETICS AND EVOLUTION 2021; 95:105084. [PMID: 34547435 DOI: 10.1016/j.meegid.2021.105084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Human papillomavirus (HPV) is the main cause of cervical cancer, the 4th prominent cause of death in women globally. Previous vaccine development projects have led to several approved prophylactic vaccines available commercially, all of which are made using major capsid-based (L1). Administration of minor capsid protein (L2) gave rise to the second generation investigational prophylactic HPV vaccines, none of which are approved yet due to low immunogenicity provided by the L2 capsid protein. On the other hand, post-translation proteins, E6 and E7, have been utilized to develop experimental therapeutic vaccines. Here, in silico designing of a therapeutic and prophylactic vaccine against HPV16 is performed. METHODS In this study, several immunoinformatic and computational tools were administered to identify and design a vaccine construct with dual prophylactic and therapeutic applications consisting of several epitope regions on L2, E6, and E7 proteins of HPV16. RESULTS Immunodominant epitope regions (aa 12-23 and 78-78 of L2 protein, aa 11-27 of E6 protein, and aa 70-89 of E7 protein) were employed, which offered adequate immunogenicity to induce immune responses. Resuscitation-promoting factors (RpfB and RpfE) of Mycobacterium tuberculosis were integrated in two separate constructs as TLR4 agonists to act as vaccine adjuvants. Following physiochemical and structural evaluations carried out by various bioinformatics tools, the designed constructs were modeled and validated, resulting in two 3D structures. Molecular docking and molecular dynamic simulations suggested stable ligand-receptor interactions between the designed construct and TLR4. CONCLUSION Ultimately, this study led to suggest the designed construct as a potential vaccine candidate with both prophylactic and therapeutic applications against HPV by promoting Th1, Th2, CTL, and B cell immune responses, which should be further confirmed in experimental studies.
Collapse
Affiliation(s)
- Ashkan Bagheri
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Mahboobeh Eslami
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
In Silico Prediction of a Multitope Vaccine against Moraxella catarrhalis: Reverse Vaccinology and Immunoinformatics. Vaccines (Basel) 2021; 9:vaccines9060669. [PMID: 34207238 PMCID: PMC8234879 DOI: 10.3390/vaccines9060669] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
Moraxella catarrhalis (M. catarrhalis) is a Gram-negative bacterium that can cause serious respiratory tract infections and middle ear infections in children and adults. M. catarrhalis has demonstrated an increasing rate of antibiotic resistance in the last few years, thus development of an effective vaccine is a major health priority. We report here a novel designed multitope vaccine based on the mapped epitopes of the vaccine candidates filtered out of the whole proteome of M. catarrhalis. After analysis of 1615 proteins using a reverse vaccinology approach, only two proteins (outer membrane protein assembly factor BamA and LPS assembly protein LptD) were nominated as potential vaccine candidates. These proteins were found to be essential, outer membrane, virulent and non-human homologs with appropriate molecular weight and high antigenicity score. For each protein, cytotoxic T lymphocyte (CTL), helper T lymphocyte (HTL) and B cell lymphocyte (BCL) epitopes were predicted and confirmed to be highly antigenic and cover conserved regions of the proteins. The mapped epitopes constituted the base of the designed multitope vaccine where suitable linkers were added to conjugate them. Additionally, beta defensin adjuvant and pan-HLA DR-binding epitope (PADRE) peptide were also incorporated into the construct to improve the stimulated immune response. The constructed multitope vaccine was analyzed for its physicochemical, structural and immunological characteristics and it was found to be antigenic, soluble, stable, non-allergenic and have a high affinity to its target receptor. Although the in silico analysis of the current study revealed that the designed multitope vaccine has the ability to trigger a specific immune response against M. catarrhalis, additional translational research is required to confirm the effectiveness of the designed vaccine.
Collapse
|
10
|
Rouka E, Gourgoulianis KI, Zarogiannis SG. In silico investigation of the viroporin E as a vaccine target against SARS-CoV-2. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1057-L1063. [PMID: 33822639 PMCID: PMC8203416 DOI: 10.1152/ajplung.00443.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Viroporins, integral viral membrane ion channel proteins, interact with host-cell proteins deregulating physiological processes and activating inflammasomes. Severity of COVID-19 might be associated with hyperinflammation, thus we aimed at the complete immunoinformatic analysis of the SARS-CoV-2 viroporin E, P0DTC4. We also identified the human proteins interacting with P0DTC4 and the enriched molecular functions of the corresponding genes. The complete sequence of P0DTC4 in FASTA format was processed in 10 databases relative to secondary and tertiary protein structure analyses and prediction of optimal vaccine epitopes. Three more databases were accessed for the retrieval and the molecular functional characterization of the P0DTC4 human interactors. The immunoinformatics analysis resulted in the identification of 4 discontinuous B-cell epitopes along with 1 linear B-cell epitope and 11 T-cell epitopes which were found to be antigenic, immunogenic, nonallergen, nontoxin, and unable to induce autoimmunity thus fulfilling prerequisites for vaccine design. The functional enrichment analysis showed that the predicted host interactors of P0DTC4 target the cellular acetylation network. Two of the identified host-cell proteins – BRD2 and BRD4 – have been shown to be promising targets for antiviral therapy. Thus, our findings have implications for COVID-19 therapy and indicate that viroporin E could serve as a promising vaccine target against SARS-CoV-2. Validation experiments are required to complement these in silico results.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Sotirios G Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece.,Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
11
|
Ezaj MMA, Junaid M, Akter Y, Nahrin A, Siddika A, Afrose SS, Nayeem SMA, Haque MS, Moni MA, Hosen SMZ. Whole proteome screening and identification of potential epitopes of SARS-CoV-2 for vaccine design-an immunoinformatic, molecular docking and molecular dynamics simulation accelerated robust strategy. J Biomol Struct Dyn 2021; 40:6477-6502. [PMID: 33586620 DOI: 10.1080/07391102.2021.1886171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the most cryptic pandemic outbreak of the 21st century, has gripped more than 1.8 million people to death and infected almost eighty six million. As it is a new variant of SARS, there is no approved drug or vaccine available against this virus. This study aims to predict some promising cytotoxic T lymphocyte epitopes in the SARS-CoV-2 proteome utilizing immunoinformatic approaches. Firstly, we identified 21 epitopes from 7 different proteins of SARS-CoV-2 inducing immune response and checked for allergenicity and conservancy. Based on these factors, we selected the top three epitopes, namely KAYNVTQAF, ATSRTLSYY, and LTALRLCAY showing functional interactions with the maximum number of MHC alleles and no allergenicity. Secondly, the 3D model of selected epitopes and HLA-A*29:02 were built and Molecular Docking simulation was performed. Most interestingly, the best two epitopes predicted by docking are part of two different structural proteins of SARS-CoV-2, namely Membrane Glycoprotein (ATSRTLSYY) and Nucleocapsid Phosphoprotein (KAYNVTQAF), which are generally target of choice for vaccine designing. Upon Molecular Docking, interactions between selected epitopes and HLA-A*29:02 were further validated by 50 ns Molecular Dynamics (MD) simulation. Analysis of RMSD, Rg, SASA, number of hydrogen bonds, RMSF, MM-PBSA, PCA, and DCCM from MD suggested that ATSRTLSYY is the most stable and promising epitope than KAYNVTQAF epitope. Moreover, we also identified B-cell epitopes for each of the antigenic proteins of SARS CoV-2. Findings of our work will be a good resource for wet lab experiments and will lessen the timeline for vaccine construction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Md Muzahid Ahmed Ezaj
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh.,Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh
| | - Md Junaid
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Department of Biotechnology & Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | - Afsana Nahrin
- Department of Pharmacy, University of Science and Technology Chittagong, Chattogram, Bangladesh
| | - Aysha Siddika
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Department of Chemistry, University of Chittagong, Chattogram, Bangladesh
| | - Syeda Samira Afrose
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Department of Chemistry, University of Chittagong, Chattogram, Bangladesh
| | - S M Abdul Nayeem
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chattogram, Bangladesh.,Department of Chemistry, University of Chittagong, Chattogram, Bangladesh
| | - Md Sajedul Haque
- Department of Chemistry, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, School of Public Health and Community Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - S M Zahid Hosen
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, BCSIR Laboratories Chattogram, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh.,Pancreatic Research Group, South Western Sydney Clinical School, and Ingham Institute for Applied Medical Research, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Jaiswal S, Kumar M, Mandeep, Sunita, Singh Y, Shukla P. Systems Biology Approaches for Therapeutics Development Against COVID-19. Front Cell Infect Microbiol 2020; 10:560240. [PMID: 33194800 PMCID: PMC7655984 DOI: 10.3389/fcimb.2020.560240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the systems biology approaches for promoting the development of new therapeutic drugs is attaining importance nowadays. The threat of COVID-19 outbreak needs to be vanished for global welfare, and every section of research is focusing on it. There is an opportunity for finding new, quick, and accurate tools for developing treatment options, including the vaccine against COVID-19. The review at this moment covers various aspects of pathogenesis and host factors for exploring the virus target and developing suitable therapeutic solutions through systems biology tools. Furthermore, this review also covers the extensive details of multiomics tools i.e., transcriptomics, proteomics, genomics, lipidomics, immunomics, and in silico computational modeling aiming towards the study of host-virus interactions in search of therapeutic targets against the COVID-19.
Collapse
Affiliation(s)
- Shweta Jaiswal
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Mohit Kumar
- Soil Microbial Ecology and Environmental Toxicology Laboratory, Department of Zoology, University of Delhi, Delhi, India
- Department of Zoology, Hindu College, University of Delhi, Delhi, India
| | - Mandeep
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Sunita
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Yogendra Singh
- Bacterial Pathogenesis Laboratory, Department of Zoology, University of Delhi, Delhi, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
13
|
Dong R, Chu Z, Yu F, Zha Y. Contriving Multi-Epitope Subunit of Vaccine for COVID-19: Immunoinformatics Approaches. Front Immunol 2020; 11:1784. [PMID: 32849643 PMCID: PMC7399176 DOI: 10.3389/fimmu.2020.01784] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 01/10/2023] Open
Abstract
COVID-19 has recently become the most serious threat to public health, and its prevalence has been increasing at an alarming rate. The incubation period for the virus is ~1-14 days and all age groups may be susceptible to a fatality rate of about 5.9%. COVID-19 is caused by a novel single-stranded, positive (+) sense RNA beta coronavirus. The development of a vaccine for SARS-CoV-2 is an urgent need worldwide. Immunoinformatics approaches are both cost-effective and convenient, as in silico predictions can reduce the number of experiments needed. In this study, with the aid of immunoinformatics tools, we tried to design a multi-epitope vaccine that can be used for the prevention and treatment of COVID-19. The epitopes were computed by using B cells, cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) base on the proteins of SARS-CoV-2. A vaccine was devised by fusing together the B cell, HTL, and CTL epitopes with linkers. To enhance the immunogenicity, the β-defensin (45 mer) amino acid sequence, and pan-HLA DR binding epitopes (13aa) were adjoined to the N-terminal of the vaccine with the help of the EAAAK linker. To enable the intracellular delivery of the modeled vaccine, a TAT sequence (11aa) was appended to C-terminal. Linkers play vital roles in producing an extended conformation (flexibility), protein folding, and separation of functional domains, and therefore, make the protein structure more stable. The secondary and three-dimensional (3D) structure of the final vaccine was then predicted. Furthermore, the complex between the final vaccine and immune receptors (toll-like receptor-3 (TLR-3), major histocompatibility complex (MHC-I), and MHC-II) were evaluated by molecular docking. Lastly, to confirm the expression of the designed vaccine, the mRNA of the vaccine was enhanced with the aid of the Java Codon Adaptation Tool, and the secondary structure was generated from Mfold. Then we performed in silico cloning. The final vaccine requires experimental validation to determine its safety and efficacy in controlling SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Rong Dong
- Department of Biomedicine, Guizhou University School of Medicine, Guiyang, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases (Guizhou Provincial People's Hospital), Guiyang, China
| | - Zhugang Chu
- Department of Urinary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Fuxun Yu
- NHC Key Laboratory of Pulmonary Immunological Diseases (Guizhou Provincial People's Hospital), Guiyang, China
| | - Yan Zha
- Department of Biomedicine, Guizhou University School of Medicine, Guiyang, China
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
- NHC Key Laboratory of Pulmonary Immunological Diseases (Guizhou Provincial People's Hospital), Guiyang, China
| |
Collapse
|
14
|
Design of a Multiepitope-Based Peptide Vaccine against the E Protein of Human COVID-19: An Immunoinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2683286. [PMID: 32461973 PMCID: PMC7212276 DOI: 10.1155/2020/2683286] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022]
Abstract
Background A new endemic disease has spread across Wuhan City, China, in December 2019. Within few weeks, the World Health Organization (WHO) announced a novel coronavirus designated as coronavirus disease 2019 (COVID-19). In late January 2020, WHO declared the outbreak of a “public-health emergency of international concern” due to the rapid and increasing spread of the disease worldwide. Currently, there is no vaccine or approved treatment for this emerging infection; thus, the objective of this study is to design a multiepitope peptide vaccine against COVID-19 using an immunoinformatics approach. Method Several techniques facilitating the combination of the immunoinformatics approach and comparative genomic approach were used in order to determine the potential peptides for designing the T-cell epitope-based peptide vaccine using the envelope protein of 2019-nCoV as a target. Results Extensive mutations, insertion, and deletion were discovered with comparative sequencing in the COVID-19 strain. Additionally, ten peptides binding to MHC class I and MHC class II were found to be promising candidates for vaccine design with adequate world population coverage of 88.5% and 99.99%, respectively. Conclusion The T-cell epitope-based peptide vaccine was designed for COVID-19 using the envelope protein as an immunogenic target. Nevertheless, the proposed vaccine rapidly needs to be validated clinically in order to ensure its safety and immunogenic profile to help stop this epidemic before it leads to devastating global outbreaks.
Collapse
|
15
|
Zawawi A, Forman R, Smith H, Mair I, Jibril M, Albaqshi MH, Brass A, Derrick JP, Else KJ. In silico design of a T-cell epitope vaccine candidate for parasitic helminth infection. PLoS Pathog 2020; 16:e1008243. [PMID: 32203551 PMCID: PMC7117776 DOI: 10.1371/journal.ppat.1008243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/02/2020] [Accepted: 02/20/2020] [Indexed: 11/20/2022] Open
Abstract
Trichuris trichiura is a parasite that infects 500 million people worldwide, leading to colitis, growth retardation and Trichuris dysentery syndrome. There are no licensed vaccines available to prevent Trichuris infection and current treatments are of limited efficacy. Trichuris infections are linked to poverty, reducing children's educational performance and the economic productivity of adults. We employed a systematic, multi-stage process to identify a candidate vaccine against trichuriasis based on the incorporation of selected T-cell epitopes into virus-like particles. We conducted a systematic review to identify the most appropriate in silico prediction tools to predict histocompatibility complex class II (MHC-II) molecule T-cell epitopes. These tools were used to identify candidate MHC-II epitopes from predicted ORFs in the Trichuris genome, selected using inclusion and exclusion criteria. Selected epitopes were incorporated into Hepatitis B core antigen virus-like particles (VLPs). Bone marrow-derived dendritic cells and bone marrow-derived macrophages responded in vitro to VLPs irrespective of whether the VLP also included T-cell epitopes. The VLPs were internalized and co-localized in the antigen presenting cell lysosomes. Upon challenge infection, mice vaccinated with the VLPs+T-cell epitopes showed a significantly reduced worm burden, and mounted Trichuris-specific IgM and IgG2c antibody responses. The protection of mice by VLPs+T-cell epitopes was characterised by the production of mesenteric lymph node (MLN)-derived Th2 cytokines and goblet cell hyperplasia. Collectively our data establishes that a combination of in silico genome-based CD4+ T-cell epitope prediction, combined with VLP delivery, offers a promising pipeline for the development of an effective, safe and affordable helminth vaccine.
Collapse
Affiliation(s)
- Ayat Zawawi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ruth Forman
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Hannah Smith
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Iris Mair
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Murtala Jibril
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Munirah H. Albaqshi
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew Brass
- Faculty of Biology, Medicine and Health, Division of Informatics, Imaging and Data Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jeremy P. Derrick
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Kathryn J. Else
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
16
|
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9:13-30. [PMID: 32161726 PMCID: PMC7049754 DOI: 10.2147/itt.s241064] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of vaccines have resulted in a remarkable improvement in global health. It has saved several lives, reduced treatment costs and raised the quality of animal and human lives. Current traditional vaccines came empirically with either vague or completely no knowledge of how they modulate our immune system. Even at the face of potential vaccine design advance, immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine allergy) are being raised. And these concerns have driven immunologists toward research for a better approach to vaccine design that will consider these challenges. Currently, immunoinformatics has paved the way for a better understanding of some infectious disease pathogenesis, diagnosis, immune system response and computational vaccinology. The importance of this immunoinformatics in the study of infectious diseases is diverse in terms of computational approaches used, but is united by common qualities related to host–pathogen relationship. Bioinformatics methods are also used to assign functions to uncharacterized genes which can be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of women that are pregnant into vaccine trials and programs. The essence of this review is to give insight into the need to focus on novel computational, experimental and computation-driven experimental approaches for studying of host–pathogen interactions and thus making a case for its use in vaccine development.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Wilson Okechukwu Obialor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martins Ositadimma Ifeanyichukwu
- Department of Immunology, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Anambra, Nigeria.,Department of Medical Laboratory Science,Faculty of Health Science and Technology, College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus, Nnewi, Nigeria
| | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, Aston, PA 19014-1298, USA
| | - George Ogonna Emechebe
- Department of Pediatrics, Faculty of Clinical Medicine, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Samson Adedeji Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Gordon C Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
17
|
Sharma M, Krammer F, García-Sastre A, Tripathi S. Moving from Empirical to Rational Vaccine Design in the 'Omics' Era. Vaccines (Basel) 2019; 7:vaccines7030089. [PMID: 31416125 PMCID: PMC6789792 DOI: 10.3390/vaccines7030089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
An ideal vaccine provides long lasting protection against a pathogen by eliciting a well-rounded immune response which engages both innate and adaptive immunity. However, we have a limited understanding of how components of innate immunity, antibody and cell-mediated adaptive immunity interact and function together at a systems level. With advances in high-throughput ‘Omics’ methodologies it has become possible to capture global changes in the host, at a cellular and molecular level, that are induced by vaccination and infection. Analysis of these datasets has shown the promise of discovering mechanisms behind vaccine mediated protection, immunological memory, adverse effects as well as development of more efficient antigens and adjuvants. In this review, we will discuss how systems vaccinology takes advantage of new technology platforms and big data analysis, to enable the rational development of better vaccines.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru 560012, India
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru 560012, India.
- Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
18
|
Mottram L, Chakraborty S, Cox E, Fleckenstein J. How genomics can be used to understand host susceptibility to enteric infection, aiding in the development of vaccines and immunotherapeutic interventions. Vaccine 2019; 37:4805-4810. [PMID: 30709726 PMCID: PMC6663652 DOI: 10.1016/j.vaccine.2019.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Thanks to the modern sequencing era, the extent to which infectious disease imposes selective pressures on the worldwide human population is being revealed. This is aiding our understanding of the underlying immunological and host mechanistic defenses against these pathogens, as well as potentially assisting in the development of vaccines and therapeutics to control them. As a consequence, the workshop "How genomics can be used to understand host susceptibility to enteric infection, aiding in the development of vaccines and immunotherapeutic interventions" at the VASE 2018 meeting, aimed to discuss how genomics and related tools could be used to assist Shigella and ETEC vaccine development. The workshop featured four short presentations which highlighted how genomic applications can be used to assist in the identification of genetic patterns related to the virulence of disease, or host genetic factors that could contribute to immunity or successful vaccine responses. Following the presentations, there was an open debate with workshop attendees to discuss the best ways to utilise such genomic studies, to improve or accelerate the process of both Shigella and ETEC vaccine development. The workshop concluded by making specific recommendations on how genomic research methods could be strengthened and harmonised within the ETEC and Shigella research communities.
Collapse
Affiliation(s)
- Lynda Mottram
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Subhra Chakraborty
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - James Fleckenstein
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, United States; Medicine Service, Veterans Affairs Medical Center, St. Louis, MO, United States
| |
Collapse
|
19
|
Qiu X, Duvvuri VR, Bahl J. Computational Approaches and Challenges to Developing Universal Influenza Vaccines. Vaccines (Basel) 2019; 7:E45. [PMID: 31141933 PMCID: PMC6631137 DOI: 10.3390/vaccines7020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
The traditional design of effective vaccines for rapidly-evolving pathogens, such as influenza A virus, has failed to provide broad spectrum and long-lasting protection. With low cost whole genome sequencing technology and powerful computing capabilities, novel computational approaches have demonstrated the potential to facilitate the design of a universal influenza vaccine. However, few studies have integrated computational optimization in the design and discovery of new vaccines. Understanding the potential of computational vaccine design is necessary before these approaches can be implemented on a broad scale. This review summarizes some promising computational approaches under current development, including computationally optimized broadly reactive antigens with consensus sequences, phylogenetic model-based ancestral sequence reconstruction, and immunomics to compute conserved cross-reactive T-cell epitopes. Interactions between virus-host-environment determine the evolvability of the influenza population. We propose that with the development of novel technologies that allow the integration of data sources such as protein structural modeling, host antibody repertoire analysis and advanced phylodynamic modeling, computational approaches will be crucial for the development of a long-lasting universal influenza vaccine. Taken together, computational approaches are powerful and promising tools for the development of a universal influenza vaccine with durable and broad protection.
Collapse
Affiliation(s)
- Xueting Qiu
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Venkata R Duvvuri
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Justin Bahl
- Center for Ecology of Infectious Diseases, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA 30606, USA.
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| |
Collapse
|
20
|
Abstract
With the rise in novel infectious agents and disease pandemics, a new era of vaccine discovery is necessary. To address this, the new field of immunomics is described, which is synergistically powered by integrating bioinformatics methodologies with technological advances in biology and high-throughput instrumentation. By incorporating biological data from immunology and molecular biology with current genomics and proteomics, immunomics is geared to deliver an insight into immune function, optimal stimulation of immune responses and precise mapping and rational selection of immune targets that cover antigenic diversity. These efforts are expected to contribute towards the development of new generation of vaccines, tailored to both the genetic make-up of the human population and of the pathogen. Vaccine technologies are also being explored for prevention or control of non-communicable diseases.
Collapse
|
21
|
Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. Trained Immunity-Based Vaccines: A New Paradigm for the Development of Broad-Spectrum Anti-infectious Formulations. Front Immunol 2018; 9:2936. [PMID: 30619296 PMCID: PMC6304371 DOI: 10.3389/fimmu.2018.02936] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Challenge with specific microbial stimuli induces long lasting epigenetic changes in innate immune cells that result in their enhanced response to a second challenge by the same or unrelated microbial insult, a process referred to as trained immunity. This opens a new avenue in vaccinology to develop Trained Immunity-based Vaccines (TIbV), defined as vaccine formulations that induce training in innate immune cells. Unlike conventional vaccines, which are aimed to elicit only specific responses to vaccine-related antigens, TIbV aim to stimulate broader responses. As trained immunity is generally triggered by pattern recognition receptors (PRRs), TIbV should be formulated with microbial structures containing suitable PRR-ligands. The TIbV concept we describe here may be used for the development of vaccines focused to promote host resistance against a wide spectrum of pathogens. Under the umbrella of trained immunity, a broad protection can be achieved by: (i) increasing the nonspecific effector response of innate immune cells (e.g., monocyte/macrophages) to pathogens, (ii) harnessing the activation state of dendritic cells to enhance adaptive T cell responses to both specific and nonrelated (bystander) antigens. This capacity of TIbV to promote responses beyond their nominal antigens may be particularly useful when conventional vaccines are not available or when multiple coinfections and/or recurrent infections arise in susceptible individuals. As the set of PRR-ligands chosen is essential not only for stimulating trained immunity but also to drive adaptive immunity, the precise design of TIbV will improve with the knowledge on the functional relationship among the different PRRs. While the TIbV concept is emerging, a number of the current anti-infectious vaccines, immunostimulants, and even vaccine adjuvants may already fall in the TIbV category. This may apply to increase immunogenicity of novel vaccine design approaches based on small molecules, like those achieved by reverse vaccinology.
Collapse
Affiliation(s)
- Silvia Sánchez-Ramón
- Department of Clinical Immunology and IdISSC, Hospital Clínico San Carlos, Madrid, Spain.,Department of Immunology, ENT and Ophthalmology, Complutense University School of Medicine, Madrid, Spain
| | | | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - David Sancho
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Óscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | | |
Collapse
|
22
|
Bragazzi NL, Gianfredi V, Villarini M, Rosselli R, Nasr A, Hussein A, Martini M, Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is ("Isolate-Inactivate-Inject") Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front Public Health 2018; 6:62. [PMID: 29556492 PMCID: PMC5845111 DOI: 10.3389/fpubh.2018.00062] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Vaccines are public health interventions aimed at preventing infections-related mortality, morbidity, and disability. While vaccines have been successfully designed for those infectious diseases preventable by preexisting neutralizing specific antibodies, for other communicable diseases, additional immunological mechanisms should be elicited to achieve a full protection. “New vaccines” are particularly urgent in the nowadays society, in which economic growth, globalization, and immigration are leading to the emergence/reemergence of old and new infectious agents at the animal–human interface. Conventional vaccinology (the so-called “vaccinology 1.0”) was officially born in 1796 thanks to the contribution of Edward Jenner. Entering the twenty-first century, vaccinology has shifted from a classical discipline in which serendipity and the Pasteurian principle of the three Is (isolate, inactivate, and inject) played a major role to a science, characterized by a rational design and plan (“vaccinology 3.0”). This shift has been possible thanks to Big Data, characterized by different dimensions, such as high volume, velocity, and variety of data. Big Data sources include new cutting-edge, high-throughput technologies, electronic registries, social media, and social networks, among others. The current mini-review aims at exploring the potential roles as well as pitfalls and challenges of Big Data in shaping the future vaccinology, moving toward a tailored and personalized vaccine design and administration.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), School of Public Health, University of Genoa, Genoa, Italy
| | - Vincenza Gianfredi
- Department of Experimental Medicine, Unit of Public Health, School of Specialization in Hygiene and Preventive Medicine, University of Perugia, Perugia, Italy
| | - Milena Villarini
- Unit of Public Health, Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Ahmed Nasr
- Department of Medicine and Surgery, Pathology University Milan Bicocca, San Gerardo Hospital, Monza, Italy
| | - Amr Hussein
- Medical Faculty, University of Parma, Parma, Italy
| | - Mariano Martini
- Section of History of Medicine and Ethics, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Masoud Behzadifar
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|