1
|
Anwar MA, El Gedaily RA, Salama A, Aboulthana WM, Kandil ZA, Abdel-Dayem SIA. Phytochemical analysis and wound healing properties of Malva parviflora L. ethanolic extract. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118983. [PMID: 39490430 DOI: 10.1016/j.jep.2024.118983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scientific publications documented the use of plants from Genus Malva to treat inflammatory diseases and skin disorders by our ancestors. Malva parviflora L. has reported benefits for wound healing in traditional medicine; however, there is a lack of experimental study to validate these claims. AIM We initiated this study to explore the metabolites and verify the wound healing properties of M. parviflora using in vivo and in vitro models. MATERIALS AND METHODS Liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was used to identify the ethanolic extract different metabolites. Additionally, total phenolic content was determined using Folin-Ciocalteu reagent. To verify the extract wound healing potential, an in vivo rat wound excision model was employed. Round wounds (5 mm in diameter) were created by a sterile biopsy punch needle. The wounds were treated with plant extracts (2.5% and 5%) as well as a commercially available wound healing product (Mebo®) for 10 days. The results were assessed as follows: 1) Measuring the reduction% in wound area compared to the original wound size. 2) Evaluation of the levels of wound healing biomarkers, namely collagen type I (Col-1), alpha smooth muscle actin (α-SMA), extracellular signal-regulated kinases-1 (ERK1), and matrix metalloproteinase-9 (MMP9) levels. 3) Performing histopathological examination of the wound tissue. The antioxidant properties of the M. parviflora leaves ethanolic extract were investigated using various assays: total antioxidant capacity (TAC), iron reducing power (IRP), 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals scavenging assays. Furthermore, the anti-inflammatory activity was confirmed by calculating the inhibition percentages of protein denaturation and the activity of the proteinase enzyme. RESULTS Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis revealed the presence of various secondary metabolites in M. parviflora ethanolic extract, including phenolic acids (cinnamic and ferulic acids), flavonoids (quercetin and "iso"rhamnetin monoglucuronides), fatty acids (hydroxy-octadecatrienoic and oxo-octadecatrienoic acids), in addition to chlorophyll derivatives and carotenoids (pheophorbide-a and lutein, respectively). Malva extracts significantly reduced wound size compared to untreated control group. The extracts also promoted wound healing by upregulating collagen I, α-SMA, and ERK1 levels, while downregulating MMP9 expression. Notably, the effect of 2.5% and 5% extracts was similar or exceeds those of Mebo®, supported by histopathological results. Finally, M. parviflora ethanolic extract exhibited antioxidant and anti-inflammatory potentials comparable to the used standards. CONCLUSION Our study provides evidence-based support for the wound healing properties of M. parviflora L. leaves ethanolic extract. This is further strengthened by the fact that many of the identified metabolites possess wound healing, antioxidant, and/or anti-inflammatory activities.
Collapse
Affiliation(s)
- Mohamed A Anwar
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Rania A El Gedaily
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Wael M Aboulthana
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, 33 El Bohouth St., P.O. 12622, Dokki, Giza, Egypt.
| | - Zeinab A Kandil
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| | - Shymaa I A Abdel-Dayem
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
2
|
Wu W, Zhang B, Wang W, Bu Q, Li Y, Zhang P, Zeng L. Plant-Derived Exosome-Like Nanovesicles in Chronic Wound Healing. Int J Nanomedicine 2024; 19:11293-11303. [PMID: 39524918 PMCID: PMC11549884 DOI: 10.2147/ijn.s485441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The incidence of chronic wounds is steadily increasing each year, yet conventional treatments for chronic wounds yield unsatisfactory results. The delayed healing of chronic wounds significantly affects patient quality of life, placing a heavy burden on patients, their families, and the healthcare system. Therefore, there is an urgent need to find new treatment methods for chronic wounds. Plant-derived exosome-like nanovesicles (PELNs) may be able to accelerate chronic wound healing. PELNs possess advantages such as good accessibility (due in part to high isolation yields), low immunogenicity, and good stability. Currently, there are limited reports regarding the role of PELNs in chronic wound healing and their associated mechanisms, highlighting their novelty and the necessity for further research. This review aims to provide an overview of PELNs, discussing isolation methods, composition, and their mechanisms of action in chronic wound healing. Finally, we summarize future opportunities and challenges related to the use of PELNs for the treatment of chronic wounds, and offer some new insights and solutions.
Collapse
Affiliation(s)
- Weiquan Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Bing Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Weiqi Wang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Qiujin Bu
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuange Li
- Department of Radiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Peihua Zhang
- Institute of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Li Zeng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| |
Collapse
|
3
|
Fang B, Peng Z, Chen B, Rao J. Hemp Protein Isolate-Based Natural Thermal-Reversible Hydrogel as a Novel Wound Dressing Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51916-51931. [PMID: 39302428 DOI: 10.1021/acsami.4c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Hydrogels, due to their excellent microstructure and mechanical strength, have become a novel biomaterial in wound dressing. However, plant proteins have never been considered because of their poor original gelling performances and insufficient rheological properties. Here, we reported the fabrication of a plant protein-based thermal-reversible gel using a reverse micelle-extracted hemp protein isolate (HPI). A systematic study was conducted to fully reveal their microstructure, rheological properties, and anti-inflammatory effect to lay a foundation for this newly developed plant protein hydrogel as a potential natural wound dressing. By modulating protein concentration (4% HPI) and temperature (85 °C), a thermal-reversible HPI gel appeared as a filament structure with the major molecular driving force of hydrophobic interactions and hydrogen bonds. By characterizing the rheological properties, lower gel strength and wider linear viscoelastic regime were determined in the thermal-reversible HPI gel compared with a thermal-irreversible HPI gel. Besides, large amplitude oscillatory shear data identified the thermal-reversible gel as a soft gel which demonstrated intracycle strain stiffening and shear thinning behavior. Moreover, the thermal-reversible HPI gel is nontoxic and has benefits in neutrophil growth with injectability and perfect wound coverage. This study opens a novel means to form a natural thermal-reversible hydrogel that can be a new material source for wound dressing.
Collapse
Affiliation(s)
- Baochen Fang
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Zhicheng Peng
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
4
|
Vinchhi P, Wui WT, Patel MM. Healing with herbs: an alliance with 'nano' for wound management. Expert Opin Drug Deliv 2024; 21:1115-1141. [PMID: 39095934 DOI: 10.1080/17425247.2024.2388214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Wound healing is an intricate and continual process influenced by numerous factors that necessitate suitable environments to attain healing. The natural ability of wound healing often gets altered by several external and intrinsic factors, leading to chronic wound occurrence. Numerous wound dressings have been developed; however, the currently available alternatives fail to coalesce in all conditions obligatory for rapid skin regeneration. AREA COVERED An extensive review of articles on herbal nano-composite wound dressings was conducted using PubMed, Scopus, and Google Scholar databases, from 2006 to 2024. This review entails the pathophysiology and factors leading to non-healing wounds, wound dressing types, the role of herbal bio-actives for wound healing, and the advantages of employing nanotechnology to deliver herbal actives. Numerous nano-composite wound dressings incorporated with phytoconstituents, herbal extracts, and essential oils are discussed. EXPERT OPINION There is a strong substantiation that several herbal bio-actives possess anti-inflammatory, antimicrobial, antioxidant, analgesic, and angiogenesis promoter activities that accelerate the wound healing process. Nanotechnology is a promising strategy to deliver herbal bio-actives as it ascertains their controlled release, enhances bioavailability, improves permeability to underlying skin layers, and promotes wound healing. A combination of herbal actives and nano-based dressings offers a novel arena for wound management.
Collapse
Affiliation(s)
| | - Wong Tin Wui
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Malaysia
| | - Mayur M Patel
- Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
5
|
Yang S, Wang H, Zhao D, Zhang S, Hu C. Polymyxins: recent advances and challenges. Front Pharmacol 2024; 15:1424765. [PMID: 38974043 PMCID: PMC11224486 DOI: 10.3389/fphar.2024.1424765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Antibiotic resistance is a pressing global health challenge, and polymyxins have emerged as the last line of defense against multidrug-resistant Gram-negative (MDR-GRN) bacterial infections. Despite the longstanding utility of colistin, the complexities surrounding polymyxins in terms of resistance mechanisms and pharmacological properties warrant critical attention. This review consolidates current literature, focusing on polymyxins antibacterial mechanisms, resistance pathways, and innovative strategies to mitigate resistance. We are also investigating the pharmacokinetics of polymyxins to elucidate factors that influence their in vivo behavior. A comprehensive understanding of these aspects is pivotal for developing next-generation antimicrobials and optimizing therapeutic regimens. We underscore the urgent need for advancing research on polymyxins to ensure their continued efficacy against formidable bacterial challenges.
Collapse
Affiliation(s)
- Shan Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hairui Wang
- Institute of Respiratory Health, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Dan Zhao
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Shurong Zhang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Gang R, Okello D, Kang Y. Medicinal plants used for cutaneous wound healing in Uganda; ethnomedicinal reports and pharmacological evidences. Heliyon 2024; 10:e29717. [PMID: 38694090 PMCID: PMC11058731 DOI: 10.1016/j.heliyon.2024.e29717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Background Wounds have become a major health challenge worldwide, presenting marked humanistic and economic burdens such as disabilities and death. Annually, approximately 14 million people suffer from wounds worldwide and 80 % of these occur in developing countries like Uganda. In Uganda, besides many cases of daily wound occurrences, approximately 10 % of surgical procedures become septic wounds and consequently lead to increased morbidity and mortality. Accordingly, several ethnomedicinal studies have identified plants used for wound treatment in different parts of Uganda and the wound healing activities of some plants have been reported. However, at present, these information remain largely separated without an all-inclusive repository containing ethnomedicinal and pharmacological information of the plants used for wound healing in Uganda, thus retarding appropriate evaluation. Therefore, this review focused on extensively exploring the plants used for treating cutaneous wounds in Uganda, along with associated ethnomedicinal information and their globally reported pharmacological potential. Methods Electronic data bases including Google Scholar, PubMed, and Science Direct were searched using key terms for required information contained in English peer reviewed articles, books, and dissertations. Additionally, correlations between selected parameters were determined with coefficient of determination (r2). Results The literature survey revealed that 165 species belonging to 62 families are traditionally used to treat wounds in Uganda. Most of the species belonged to families of Asteraceae (14 %), Fabaceae (10 %), and Euphorbiaceae (7 %). The commonest plant parts used for wound treatment include leaf (48 %), root (22 %), stembark (11 %), and stem (7 %), which are prepared majorly by poultice (34 %), decoction (13 %), as well as powdering (25 %). Fifty-four (33 %) of the plant species have been investigated for their wound healing activities whereas, one hundred eleven (67 %) have not been scientifically investigated for their wound healing effects. Pearson correlation coefficient between the number of wound healing plant families per part used and percent of each plant part used was 0.97, and between the number of wound healing plant families per method of preparation and percent of each method of preparation was 0.95, showing in both strong positively marked relationships. Conclusion The preliminarily investigated plants with positive wound healing properties require further evaluation to possible final phases, with comprehensive identification of constituent bioactive agents. Additionally, the wound healing potential of the scientifically uninvestigated plants with claimed healing effects needs examination. Subsequently, information regarding efficacy, safety, bioactive principles, and mechanism of action could prove valuable in future development of wound healing therapies.
Collapse
Affiliation(s)
- Roggers Gang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, South Korea
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Denis Okello
- Department of Biological Sciences, Faculty of Sciences, Kabale University, P. O. Box 317, Kabale, Uganda
| | - Youngmin Kang
- Korean Convergence Medical Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, South Korea
| |
Collapse
|
7
|
Wang Y, Vizely K, Li CY, Shen K, Shakeri A, Khosravi R, Smith JR, Alteza EAII, Zhao Y, Radisic M. Biomaterials for immunomodulation in wound healing. Regen Biomater 2024; 11:rbae032. [PMID: 38779347 PMCID: PMC11110865 DOI: 10.1093/rb/rbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The substantial economic impact of non-healing wounds, scarring, and burns stemming from skin injuries is evident, resulting in a financial burden on both patients and the healthcare system. This review paper provides an overview of the skin's vital role in guarding against various environmental challenges as the body's largest protective organ and associated developments in biomaterials for wound healing. We first introduce the composition of skin tissue and the intricate processes of wound healing, with special attention to the crucial role of immunomodulation in both acute and chronic wounds. This highlights how the imbalance in the immune response, particularly in chronic wounds associated with underlying health conditions such as diabetes and immunosuppression, hinders normal healing stages. Then, this review distinguishes between traditional wound-healing strategies that create an optimal microenvironment and recent peptide-based biomaterials that modulate cellular processes and immune responses to facilitate wound closure. Additionally, we highlight the importance of considering the stages of wounds in the healing process. By integrating advanced materials engineering with an in-depth understanding of wound biology, this approach holds promise for reshaping the field of wound management and ultimately offering improved outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Ying Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Katrina Vizely
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Karen Shen
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Amid Shakeri
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Ramak Khosravi
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - James Ryan Smith
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Toronto General Research Institute, University Health Network, Toronto, ON M5G 2C4 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
8
|
Shen H, Zhang C, Meng Y, Qiao Y, Ma Y, Chen J, Wang X, Pan L. Biomimetic Hydrogel Containing Copper Sulfide Nanoparticles and Deferoxamine for Photothermal Therapy of Infected Diabetic Wounds. Adv Healthc Mater 2024; 13:e2303000. [PMID: 38063809 DOI: 10.1002/adhm.202303000] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/26/2023] [Indexed: 03/28/2024]
Abstract
Inducing cell migration from the edges to the center of a wound, promoting angiogenesis, and controlling bacterial infection are very important for diabetic wound healing. Incorporating growth factors and antibiotics into hydrogels for wound dressing is considered a potential strategy to meet these requirements. However, some present drawbacks greatly slow down their development toward application, such as the short half-life and high price of growth factors, low antibiotic efficiency against drug-resistant bacteria, insufficient ability of hydrogels to promote cell migration, etc. Deferoxamine (DFO) can upregulate the expression of HIF-1α, thus stimulating the secretion of angiogenesis-related endogenous growth factors. Copper sulfide (CuS) nanoparticles possess excellent antibacterial performance combined with photothermal therapy (PTT). Herein, DFO and CuS nanoparticles are incorporated into a biomimetic hydrogel, which mimics the structure and function of the extracellular matrix (ECM), abbreviated as DFO/CuS-ECMgel. This biomimetic hydrogel is expected to be able to promote cell adhesion and migration, be degraded by cell-secreted matrix metalloproteinases (MMPs), and then release DFO and CuS nanoparticles at the wound site to exert their therapeutic effects. As a result, the three crucial requirements for diabetic wound healing, "beneficial for cell adhesion and migration, promoting angiogenesis, effectively killing drug-resistant bacteria," can be achieved simultaneously.
Collapse
Affiliation(s)
- Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Chun Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Ye Meng
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yi Qiao
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yane Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jialing Chen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xiaona Wang
- Department of Internal Medicine of Jiangsu University Hospital Workers, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lei Pan
- Department of Breast Surgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, China
| |
Collapse
|
9
|
Nqoro X, Taziwa R. Polymer-Based Functional Materials Loaded with Metal-Based Nanoparticles as Potential Scaffolds for the Management of Infected Wounds. Pharmaceutics 2024; 16:155. [PMID: 38399218 PMCID: PMC10892860 DOI: 10.3390/pharmaceutics16020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Wound infection due to bacterial invasion at the wound site is one of the primary challenges associated with delayed wound healing. Microorganisms tend to form biofilms that protect them from harm, leading to their multidrug resistance. The alarming increase in antibiotic resistance poses a threat to wound healing. Hence, the urgent need for novel wound dressing materials capable of managing bacterial infection is crucial for expediting wound recovery. There is considerable interest in polymeric wound dressings embedded with bioactive substances, such as metal-based nanoparticles, as potential solutions for treating microbially infected wounds. Metal-based nanoparticles have been widely used for the management of infected wounds due to their broad antimicrobial efficacy. This review focuses on polymer-based and bioactive wound dressings loaded with metal-based nanoparticles like silver, gold, magnesium oxide, or zinc oxide. When compared, zinc oxide-loaded dressings exhibited higher antibacterial activity against Gram-positive strains and silver nanoparticle-loaded dressings against gram-negative strains. However, wound dressings infused with both nanoparticles displayed a synergistic effect against both strains of bacteria. Furthermore, these dressings displayed antibiofilm activity and the generation of reactive oxygen species while accelerating wound closure both in vitro and in vivo.
Collapse
Affiliation(s)
- Xhamla Nqoro
- Department of Applied Science, Faculty of Natural Sciences, Walter Sisulu University, Old King William’s Town Road, Potsdam Site, East London 5200, South Africa;
| | | |
Collapse
|
10
|
Freitas CS, Pereira PR, Cardoso RV, Pauli FP, Ribeiro RCB, Da Silva FDC, Ferreira VF, Paschoalin VMF. Antimicrobial and wound healing potential of naphthoquinones encapsulated in nanochitosan. Front Bioeng Biotechnol 2024; 11:1284630. [PMID: 38239922 PMCID: PMC10794614 DOI: 10.3389/fbioe.2023.1284630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction: The use of chitosan in pharmaceutical formulations is an advantageous approach due to this compound intrinsic biodegradability and biocompatibility, as well as ready availability and low polymer cost. Methods: Herein, the naphthoquinones 3- chloromethylene-menadione (NQ1) and 2,3-dichloro-1,4-naphthoquinone (NQ2) were nanoencapsulated into chitosan (CNP) by the ionotropic gelatinization technique and characterized by DLS, FTIR, SEM, TGA and DSC, and their release profiles evaluated. The antimicrobial and wound healing activities were investigated. Results and Discussion: Homogeneous chitosan nanocapsulses of about 193 nm and Z potential ranging from +30.6 to +33.1 mV loaded with NQ1 (CNP-NQ1) or NQ2 (CNPQNQ2). With nanoencapsulation efficiencies of ≥ 96%, the solubility of naphthoquinones in aqueous environments was improved, making them suitable for biological system applications. The encapsulated naphthoquinones displayed a controlled release of approximately 80% for CNP-NQ1 and 90% for CNP-NQ2 over an 8 h period at 36°C. Both CNP-NQ1 and CNP-NQ2 retained the already established free naphthoquinone antimicrobial activity against two Staphylococcus aureus strains, Staphylococcus epidermidis, Streptococcus pyogenes and Pseudomonas aeruginosa. Although presenting low toxicity to healthy human cells, only CNP-NQ1 displayed therapeutic indices above 100 for S. aureus and S. epidermidis and above 27 for S. pyogenes and P. aeruginosa, allowing for safe use in human tissues. Furthermore, CNP-NQ1 did not impair the migration of human fibroblast cells in scratch assays, adding promising wound healing properties to this formulation. These findings emphasize that CNP-NQ1 may be useful in protecting injured skin tissue from bacterial contamination, avoiding skin infections not only by reducing bacterial loads but also by accelerating the healing process until complete dermal tissue recovery.
Collapse
Affiliation(s)
- Cyntia Silva Freitas
- Advanced Analysis Laboratory in Biochemistry and Molecular Biology, Department of Biochemistry, Chemistry Institute, Federal University of Rio De Janeiro, Programa de Pós-Graduação em Ciência de Alimentos, Rio de Janeiro, Brazil
| | - Patricia Ribeiro Pereira
- Advanced Analysis Laboratory in Biochemistry and Molecular Biology, Department of Biochemistry, Chemistry Institute, Federal University of Rio De Janeiro, Programa de Pós-Graduação em Ciência de Alimentos, Rio de Janeiro, Brazil
- Department of Biochemistry, Chemistry Institute, Federal University of Rio De Janeiro, Programa de Pós-Graduação em Química, Rio de Janeiro, Brazil
| | - Raiane Vieira Cardoso
- Advanced Analysis Laboratory in Biochemistry and Molecular Biology, Department of Biochemistry, Chemistry Institute, Federal University of Rio De Janeiro, Programa de Pós-Graduação em Ciência de Alimentos, Rio de Janeiro, Brazil
| | - Fernanda Petzold Pauli
- Applied Organic Synthesis Laboratory, Department of Organic Chemistry, Chemistry Institute, Federal Fluminense University, Niterói, Brazil
| | - Ruan Carlos Busquet Ribeiro
- Applied Organic Synthesis Laboratory, Department of Organic Chemistry, Chemistry Institute, Federal Fluminense University, Niterói, Brazil
| | - Fernando De Carvalho Da Silva
- Applied Organic Synthesis Laboratory, Department of Organic Chemistry, Chemistry Institute, Federal Fluminense University, Niterói, Brazil
| | - Vitor Francisco Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Federal Fluminense University, Niterói, Brazil
| | - Vania Margaret Flosi Paschoalin
- Advanced Analysis Laboratory in Biochemistry and Molecular Biology, Department of Biochemistry, Chemistry Institute, Federal University of Rio De Janeiro, Programa de Pós-Graduação em Ciência de Alimentos, Rio de Janeiro, Brazil
- Department of Biochemistry, Chemistry Institute, Federal University of Rio De Janeiro, Programa de Pós-Graduação em Química, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Chen YJ, Hsu CY, Lin CH. Chronic Leg Ulcer Associated with Cutaneous IgG4-Related Disease. INT J LOW EXTR WOUND 2023; 22:792-797. [PMID: 35068233 DOI: 10.1177/15347346221075873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Chronic leg ulcer occurs in up to 13% of the general population and leads to economic and health care burdens. Approximately 20% of chronic nonhealing wounds are related to autoimmune diseases or vasculitis. Of these, chronic wounds associated with IgG4-related disease, a group of fibroinflammatory disorders that can have cutaneous and systemic involvement, are rarely reported. This case report describes a chronic leg ulcer associated with cutaneous IgG4-related disease. In addition to disease control with anti-inflammatory agents, following the principles of wound management and providing adjuvant wound treatment (eg, debridement, dressing, photobiomodulation therapy, or hyperbaric oxygen therapy) can promote the wound healing process.
Collapse
Affiliation(s)
- Yi-Jye Chen
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yi Hsu
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Chih-Hsun Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
12
|
Zintle M, Siwaphiwe P, Marthe Carine F, Thierry Youmbi F, Derek Tantoh N, Suprakas Sinha R, Blessing Atim A. Antibacterial study of carbopol-mastic gum/silver nanoparticle-based topical gels with carvacrol/neem bark extract in vitro. J Wound Care 2023; 32:clxxxi-clxxxix. [PMID: 37703219 DOI: 10.12968/jowc.2023.32.sup9a.clxxxi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
BACKGROUND Resistance to antimicrobial drugs as a result of prolonged use usually results in clinical failure, especially in wound infections. Development of effective antimicrobial therapeutics for the management of infected wounds from a natural source with improved therapeutic effects is a pressing need. OBJECTIVE In this study, carbopol-mastic gum-based topical gels were loaded with silver nanoparticles in combination with either neem bark extract or carvacrol oil. The effect of combining silver nanoparticles with neem bark extract or the essential oil carvacrol in the prepared gel formulations was investigated on selected bacterial strains. METHOD The prepared gels were characterised by Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy, followed by antimicrobial analysis against selected strains of bacteria. RESULTS There was no interaction between the loaded natural extract or essential oil and the polymer used for the preparation of the formulations, which was visible from the FTIR spectra of the formulations. The gels were selective and effective against selected strains of bacteria. However, the combination of the silver nanoparticles with essential oil or natural extract in some of the gel formulations rendered the formulation ineffective against some of the bacterial strains. CONCLUSION The gel formulations were effective against bacterial strains such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis which are the common causes of wound infections. Incorporation of silver nanoparticles into the topical formulations with natural extracts is usually a good approach to overcome antibiotic-resistant infections. However, the combination of antibacterial agents must be managed carefully.
Collapse
Affiliation(s)
- Mbese Zintle
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape, South Africa
| | - Peteni Siwaphiwe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape, South Africa
| | - Fotsing Marthe Carine
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Fonkui Thierry Youmbi
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Ndinteh Derek Tantoh
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
| | - Ray Suprakas Sinha
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus, Johannesburg, South Africa
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
| | | |
Collapse
|
13
|
Chu X, Xiong Y, Knoedler S, Lu L, Panayi AC, Alfertshofer M, Jiang D, Rinkevich Y, Lin Z, Zhao Z, Dai G, Mi B, Liu G. Immunomodulatory Nanosystems: Advanced Delivery Tools for Treating Chronic Wounds. RESEARCH (WASHINGTON, D.C.) 2023; 6:0198. [PMID: 37456931 PMCID: PMC10348408 DOI: 10.34133/research.0198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The increasingly aging society led to a rise in the prevalence of chronic wounds (CWs), posing a significant burden to public health on a global scale. One of the key features of CWs is the presence of a maladjusted immune microenvironment characterized by persistent and excessive (hyper)inflammation. A variety of immunomodulatory therapies have been proposed to address this condition. Yet, to date, current delivery systems for immunomodulatory therapy remain inadequate and lack efficiency. This highlights the need for new therapeutic delivery systems, such as nanosystems, to manage the pathological inflammatory imbalance and, ultimately, improve the treatment outcomes of CWs. While a plethora of immunomodulatory nanosystems modifying the immune microenvironment of CWs have shown promising therapeutic effects, the literature on the intersection of immunomodulatory nanosystems and CWs remains relatively scarce. Therefore, this review aims to provide a comprehensive overview of the pathogenesis and characteristics of the immune microenvironment in CWs, discuss important advancements in our understanding of CW healing, and delineate the versatility and applicability of immunomodulatory nanosystems-based therapies in the therapeutic management of CWs. In addition, we herein also shed light on the main challenges and future perspectives in this rapidly evolving research field.
Collapse
Affiliation(s)
- Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samuel Knoedler
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02152, USA
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwig-Guttmann-Strasse 13, 67071 Ludwigshafen/Rhine, Germany
| | - Michael Alfertshofer
- Division of Hand, Plastic and Aesthetic Surgery, Ludwig - Maximilian University Munich, Munich, Germany
| | - Dongsheng Jiang
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Zhiming Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Guandong Dai
- Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
14
|
Chelmuș-Burlacu A, Tang E, Pieptu D. Phenotypic Modulation of Adipose-Derived Stem Cells and Fibroblasts Treated with Povidone-Iodine and Chlorhexidine in Mono and Coculture Models. Biomedicines 2023; 11:1855. [PMID: 37509495 PMCID: PMC10377167 DOI: 10.3390/biomedicines11071855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Topical antiseptics are essential in wound treatment, and adipose-derived stem cells (ADSCs) have recently been proven to facilitate healing. However, the impact of antiseptics on ADSCs has not been fully elucidated, especially in relation to other relevant cell types present in the wound microenvironment, e.g., fibroblasts. This study evaluated the effects of chlorhexidine and povidone-iodine on four cellular constructs in 2D and 3D in vitro culture systems. Cell constructs were treated with two concentrations of each antiseptic, after which cell migration activity, α-SMA, and Ki67 marker expressions were assessed and compared. Both tested concentrations of povidone-iodine impaired migration and sprouting compared to chlorhexidine, which had minimal effects when used in low concentrations. The gap in the wound healing assay did not close after 24 h of povidone-iodine treatment, although, at the lower concentration, cells started to migrate in a single-cell movement pattern. Similarly, in 3D culture systems, sprouting with reduced spike formation was observed at high povidone-iodine concentrations. Both antiseptics modulated α-SMA and Ki67 marker expressions at 5 days following treatment. Although both antiseptics had cytotoxic effects dependent on drug concentration and cell type, povidone-iodine contributed more substantially to the healing process than chlorhexidine, acting especially on fibroblasts.
Collapse
Affiliation(s)
- Alina Chelmuș-Burlacu
- Plastic Surgery Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Eric Tang
- Phoenix Biomedical Ltd., Macclesfield SK10 3HZ, UK
| | - Dragoș Pieptu
- Plastic Surgery Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania
- Plastic Surgery Department, Regional Oncology Institute, 700483 Iași, Romania
| |
Collapse
|
15
|
Öhnstedt E, Vågesjö E, Fasth A, Lofton Tomenius H, Dahg P, Jönsson S, Tyagi N, Åström M, Myktybekova Z, Ringstad L, Jorvid M, Frank P, Hedén P, Roos S, Phillipson M. Engineered bacteria to accelerate wound healing: an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial. EClinicalMedicine 2023; 60:102014. [PMID: 37251631 PMCID: PMC10220316 DOI: 10.1016/j.eclinm.2023.102014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Background Impaired wound healing is a growing medical problem and very few approved drugs with documented clinical efficacy are available. CXCL12-expressing lactic acid bacteria, Limosilactobacillus reuteri (ILP100-Topical), has been demonstrated to accelerate wound healing in controlled preclinical models. In this first-in-human study, the primary objective was to determine safety and tolerability of the drug candidate ILP100-Topical, while secondary objectives included assessments of clinical and biologic effects on wound healing by traditionally accepted methods and explorative and traceable assessments. Methods SITU-SAFE is an adaptive, randomised, double-blind, placebo-controlled, first-in-human phase 1 trial (EudraCT 2019-000680-24) consisting of a single (SAD) and a multiple ascending dose (MAD) part of three dose cohorts each. The study was performed at the Phase 1 Unit, Uppsala University Hospital, Uppsala, Sweden. Data in this article were collected between Sep 20th, 2019 and Oct 20th 2021. In total 240 wounds were induced on the upper arms in 36 healthy volunteers. SAD: 12 participants, 4 wounds (2/arm), MAD: 24 participants, 8 wounds (4/arm). Wounds in each participant were randomised to treatment with placebo/saline or ILP100-Topical. Findings In all individuals and doses, ILP100-Topical was safe and well-tolerated with no systemic exposure. A combined cohort analysis showed a significantly larger proportion of healed wounds (p = 0.020) on Day 32 by multi-dosing of ILP100-Topical when compared to saline/placebo (76% (73/96) and 59% (57/96) healed wounds, respectively). In addition, time to first registered healing was shortened by 6 days on average, and by 10 days at highest dose. ILP100-Topical increased the density of CXCL12+ cells in the wounds and local wound blood perfusion. Interpretation The favourable safety profile and observed effects on wound healing support continued clinical development of ILP100-Topical for the treatment of complicated wounds in patients. Funding Ilya Pharma AB (Sponsor), H2020 SME Instrument Phase II (#804438), Knut and Alice Wallenberg foundation.
Collapse
Affiliation(s)
- Emelie Öhnstedt
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
- Uppsala University, Department of Medical Cell Biology, 751 23 Uppsala, Sweden
| | - Evelina Vågesjö
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
- Uppsala University, Department of Medical Cell Biology, 751 23 Uppsala, Sweden
| | - Andreas Fasth
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | | | - Pia Dahg
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Sofia Jönsson
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Nisha Tyagi
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala BioCenter, 750 07 Uppsala, Sweden
| | - Mikael Åström
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | | | - Lovisa Ringstad
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Margareth Jorvid
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Peter Frank
- Ilya Pharma AB, Dag Hammarskjölds Väg 30, 752 37 Uppsala, Sweden
| | - Per Hedén
- Sofiahemmet, Valhallavägen 91, 114 86 Stockholm, Sweden
| | - Stefan Roos
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala BioCenter, 750 07 Uppsala, Sweden
| | - Mia Phillipson
- Uppsala University, Department of Medical Cell Biology, 751 23 Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
16
|
Shalini R, Moola Joghee Nanjan C, Nanjan MJ, Madhunapantula SV, Karnik M, Selvaraj J, Ganesh GNK. 1-Tetracosanol isolated from the leaves of Eupatorium glandulosum, accelerates wound healing by expressing inflammatory cytokines and matrix metalloproteinase. JOURNAL OF ETHNOPHARMACOLOGY 2023:116654. [PMID: 37225028 DOI: 10.1016/j.jep.2023.116654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leave paste of the plant, Eupatorium glandulosum H. B & K, has been traditionally used to treat cuts and wounds by the tribal community of the Nilgiris district of Tamilnadu, India. AIM OF THE STUDY The present study was carried out to investigate the wound healing potential of this plant extract and the compound, 1-Tetracosanol, isolated from the ethyl acetate fraction. MATERIALS AND METHODS An in vitro study was designed to compare the viability, migration and apoptosis of the fresh methanolic extract fractions and 1-Tetracosanol using mouse fibroblast NIH3T3 cell lines and human keratinocytes HaCaT cell lines, respectively. 1-Tetracosanol was evaluated for its viability, migration, qPCR analysis, in silico, in vitro and in vivo. RESULTS 1-Tetracosanol at the concentration of 800, 1600, 3200 μM has significant wound closure of 99% at 24 h. The compound when screened in silico against various wound healing markers, TNF-α, IL-12, IL-18, GM-CSF and MMP-9, revealed high binding energy of -5, 4.9 and -6.4 kcal/mol for TNF-α, IL-18 and MMP-9, respectively. Gene expression and the release of cytokines increased at an early stage of the wound repair. 1-Tetracosanol, at 2% gel showed 97.35 ± 2.06% wound closure at 21st day. CONCLUSION 1-Tetracosanol is a good lead for drug development targeted towards wound healing activity and work in this direction is in progress.
Collapse
Affiliation(s)
- R Shalini
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| | - Chandrasekar Moola Joghee Nanjan
- School of Life Sciences, JSS Academy of Higher Education & Research (Ooty Campus), Longwood, Mysuru Road, Ooty, The Nilgiris, 643001, Tamilnadu, India.
| | | | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research, Mysore, 570015, Karnataka, India
| | - Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Academy of Higher Education & Research, Mysore, 570015, Karnataka, India
| | - Jubi Selvaraj
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| | - G N K Ganesh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, 643001, Tamil Nadu, India
| |
Collapse
|
17
|
Blasi-Romero A, Ångström M, Franconetti A, Muhammad T, Jiménez-Barbero J, Göransson U, Palo-Nieto C, Ferraz N. KR-12 Derivatives Endow Nanocellulose with Antibacterial and Anti-Inflammatory Properties: Role of Conjugation Chemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24186-24196. [PMID: 37167266 DOI: 10.1021/acsami.3c04237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This work combines the wound-healing-related properties of the host defense peptide KR-12 with wood-derived cellulose nanofibrils (CNFs) to obtain bioactive materials, foreseen as a promising solution to treat chronic wounds. Amine coupling through carbodiimide chemistry, thiol-ene click chemistry, and Cu(I)-catalyzed azide-alkyne cycloaddition were investigated as methods to covalently immobilize KR-12 derivatives onto CNFs. The effects of different coupling chemistries on the bioactivity of the KR12-CNF conjugates were evaluated by assessing their antibacterial activities against Escherichia coli and Staphylococcus aureus. Potential cytotoxic effects and the capacity of the materials to modulate the inflammatory response of lipopolysaccharide (LPS)-stimulated RAW 245.6 macrophages were also investigated. The results show that KR-12 endowed CNFs with antibacterial activity against E. coli and exhibited anti-inflammatory properties and those conjugated by thiol-ene chemistry were the most bioactive. This finding is attributed to a favorable peptide conformation and accessibility (as shown by molecular dynamics simulations), driven by the selective chemistry and length of the linker in the conjugate. The results represent an advancement in the development of CNF-based materials for chronic wound care. This study provides new insights into the effect of the conjugation chemistry on the bioactivity of immobilized host defense peptides, which we believe to be of great value for the use of host defense peptides as therapeutic agents.
Collapse
Affiliation(s)
- Anna Blasi-Romero
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Molly Ångström
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | | | - Taj Muhammad
- Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Derio-Bizkaia 48160, Spain
- Department of Inorganic & Organic Chemistry, Faculty of Science and Technology, University of the Basque Country, Leioa 48940, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Bilbao 48009, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Madrid 28029, Spain
| | - Ulf Göransson
- Pharmacognosy, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden
| | - Carlos Palo-Nieto
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| | - Natalia Ferraz
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, P.O. Box 35, SE-75103 Uppsala, Sweden
| |
Collapse
|
18
|
Ten Voorde W, Saghari M, Boltjes J, de Kam ML, Zhuparris A, Feiss G, Buters TP, Prens EP, Damman J, Niemeyer-van der Kolk T, Moerland M, Burggraaf J, van Doorn MBA, Rissmann R. A multimodal, comprehensive characterization of a cutaneous wound model in healthy volunteers. Exp Dermatol 2023. [PMID: 37051698 DOI: 10.1111/exd.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Development of pharmacological interventions for wound treatment is challenging due to both poorly understood wound healing mechanisms and heterogeneous patient populations. A standardized and well-characterized wound healing model in healthy volunteers is needed to aid in-depth pharmacodynamic and efficacy assessments of novel compounds. The current study aims to objectively and comprehensively characterize skin punch biopsy-induced wounds in healthy volunteers with an integrated, multimodal test battery. Eighteen (18) healthy male and female volunteers received three biopsies on the lower back, which were left to heal without intervention. The wound healing process was characterized using a battery of multimodal, non-invasive methods as well as histology and qPCR analysis in re-excised skin punch biopsies. Biophysical and clinical imaging read-outs returned to baseline values in 28 days. Optical coherence tomography detected cutaneous differences throughout the wound healing progression. qPCR analysis showed involvement of proteins, quantified as mRNA fold increase, in one or more healing phases. All modalities used in the study were able to detect differences over time. Using multidimensional data visualization, we were able to create a distinction between wound healing phases. Clinical and histopathological scoring were concordant with non-invasive imaging read-outs. This well-characterized wound healing model in healthy volunteers will be a valuable tool for the standardized testing of novel wound healing treatments.
Collapse
Affiliation(s)
- Wouter Ten Voorde
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Mahdi Saghari
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Jiry Boltjes
- Centre for Human Drug Research, Leiden, the Netherlands
| | | | | | - Gary Feiss
- Cutanea Life Sciences, Wayne, Pennsylvania, USA
| | - Thomas P Buters
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
| | - Errol P Prens
- Department of Dermatology Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Jeffrey Damman
- Department of Pathology Erasmus Medical Centre, Rotterdam, the Netherlands
| | | | | | - Jacobus Burggraaf
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| | | | - Robert Rissmann
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Centre, Leiden, the Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
| |
Collapse
|
19
|
Tatarusanu SM, Sava A, Profire BS, Pinteala T, Jitareanu A, Iacob AT, Lupascu F, Simionescu N, Rosca I, Profire L. New Smart Bioactive and Biomimetic Chitosan-Based Hydrogels for Wounds Care Management. Pharmaceutics 2023; 15:pharmaceutics15030975. [PMID: 36986836 PMCID: PMC10060009 DOI: 10.3390/pharmaceutics15030975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Wound management represents a continuous challenge for health systems worldwide, considering the growing incidence of wound-related comorbidities, such as diabetes, high blood pressure, obesity, and autoimmune diseases. In this context, hydrogels are considered viable options since they mimic the skin structure and promote autolysis and growth factor synthesis. Unfortunately, hydrogels are associated with several drawbacks, such as low mechanical strength and the potential toxicity of byproducts released after crosslinking reactions. To overcome these aspects, in this study new smart chitosan (CS)-based hydrogels were developed, using oxidized chitosan (oxCS) and hyaluronic acid (oxHA) as nontoxic crosslinkers. Three active product ingredients (APIs) (fusidic acid, allantoin, and coenzyme Q10), with proven biological effects, were considered for inclusion in the 3D polymer matrix. Therefore, six API-CS-oxCS/oxHA hydrogels were obtained. The presence of dynamic imino bonds in the hydrogels' structure, which supports their self-healing and self-adapting properties, was confirmed by spectral methods. The hydrogels were characterized by SEM, swelling degree, pH, and the internal organization of the 3D matrix was studied by rheological behavior. Moreover, the cytotoxicity degree and the antimicrobial effects were also investigated. In conclusion, the developed API-CS-oxCS/oxHA hydrogels have real potential as smart materials in wound management, based on their self-healing and self-adapting properties, as well as on the benefits of APIs.
Collapse
Affiliation(s)
- Simona-Maria Tatarusanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
- Research & Development Department, Antibiotice Company, 1 ValeaLupului Street, 707410 Iasi, Romania
| | - Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Bianca-Stefania Profire
- Department of Internal Medicine, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Tudor Pinteala
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Alexandra Jitareanu
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Andreea-Teodora Iacob
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Florentina Lupascu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "PetruPoni" Institute of Macromolecular Chemistry, 41A GrigoreGhica-Voda Alley, 700487 Iasi, Romania
| | - Irina Rosca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, "PetruPoni" Institute of Macromolecular Chemistry, 41A GrigoreGhica-Voda Alley, 700487 Iasi, Romania
| | - Lenuta Profire
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 16 Universitatii Street, 700115 Iași, Romania
| |
Collapse
|
20
|
Role of Innate Immune Cells in Chronic Diabetic Wounds. J Indian Inst Sci 2023. [DOI: 10.1007/s41745-022-00355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
21
|
Liu S, Matsuo T, Abe T. Revisiting Cryptocyanine Dye, NK-4, as an Old and New Drug: Review and Future Perspectives. Int J Mol Sci 2023; 24:4411. [PMID: 36901839 PMCID: PMC10002675 DOI: 10.3390/ijms24054411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
NK-4 plays a key role in the treatment of various diseases, such as in hay fever to expect anti-allergic effects, in bacterial infections and gum abscesses to expect anti-inflammatory effects, in scratches, cuts, and mouth sores from bites inside the mouth for enhanced wound healing, in herpes simplex virus (HSV)-1 infections for antiviral effects, and in peripheral nerve disease that causes tingling pain and numbness in hands and feet, while NK-4 is used also to expect antioxidative and neuroprotective effects. We review all therapeutic directions for the cyanine dye NK-4, as well as the pharmacological mechanism of NK-4 in animal models of related diseases. Currently, NK-4, which is sold as an over-the-counter drug in drugstores, is approved for treating allergic diseases, loss of appetite, sleepiness, anemia, peripheral neuropathy, acute suppurative diseases, wounds, heat injuries, frostbite, and tinea pedis in Japan. The therapeutic effects of NK-4's antioxidative and neuroprotective properties in animal models are now under development, and we hope to apply these pharmacological effects of NK-4 to the treatment of more diseases. All experimental data suggest that different kinds of utility of NK-4 in the treatment of diseases can be developed based on the various pharmacological properties of NK-4. It is expected that NK-4 could be developed in more therapeutic strategies to treat many types of diseases, such as neurodegenerative and retinal degenerative diseases.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8558, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
22
|
Gwarzo ID, Mohd Bohari SP, Abdul Wahab R, Zia A. Recent advances and future prospects in topical creams from medicinal plants to expedite wound healing: a review. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2053340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Iliyasu Datti Gwarzo
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
| | - Siti Pauliena Mohd Bohari
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Cosmetic and Fragrance Laboratory, Institute of Bioproduct Development, Universiti Teknologi Malaysia, UTM Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Advance Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Arifullah Zia
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor, Malaysia
- Department of Biology, Faculty of Science, Nangarhar University, Darunta, Jalalabad, Afghanistan
| |
Collapse
|
23
|
Rai V, Agrawal DK. Male or female sex: considerations and translational aspects in diabetic foot ulcer research using rodent models. Mol Cell Biochem 2022. [PMID: 36574098 DOI: 10.1007/s11010-022-04642-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Recombinant Expression of Human IL-33 Protein and Its Effect on Skin Wound Healing in Diabetic Mice. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120734. [PMID: 36550940 PMCID: PMC9774120 DOI: 10.3390/bioengineering9120734] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Chronic refractory wounds are one of the complications of diabetes mellitus that require effective therapy. The dermal-wound-healing property of IL-33 in diabetics is little understood. Therefore, this study aimed to express recombinant humanized mature IL-33 (rhmatIL-33) in Escherichia coli BL21 (DE3) and demonstrate its efficacy on dermal wounds in streptozotocin (STZ)-induced diabetic and nondiabetic mice by the dorsal incisional skin wound model. Results revealed that the rhmatIL-33 accelerated the scratch-healing of keratinocytes and fibroblasts at the cellular level. The wounds of diabetic mice (DM) showed more severe ulceration and inflammation than wild-type mice (WT), and the exogenous administration of rhmatIL-33 increased wound healing in both diabetic and wild-type mice. Compared with the up-regulation of endogenous IL-33 mRNA after injury in WT mice, the IL-33 mRNA decreased after injury in DM mice. Exogenous IL-33 administration increased the endogenous IL-33 mRNA in the DM group but decreased the IL-33 mRNA expression level of the WT group, indicating that IL-33 plays a balancing role in wound healing. IL-33 administration also elevated ILC2 cells in the wounds of diabetic and non-diabetic mice and improve the transcript levels of YM1, a marker of M2 macrophages. In conclusion, Hyperglycemia in diabetic mice inhibited the expression of IL-33 in the dermal wound. Exogenous addition of recombinant IL-33 promoted wound healing in diabetic mice by effectively increasing the level of IL-33 in wound tissue, increasing ILC2 cells, and accelerating the transformation of macrophage M1 to M2 phenotype.
Collapse
|
25
|
The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022; 10:biomedicines10092226. [PMID: 36140332 PMCID: PMC9496351 DOI: 10.3390/biomedicines10092226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Current research across the globe still focuses strongly on naturally derived biomaterials in various fields, particularly wound care. There is a need for more effective therapies that will address the physiological deficiencies underlying chronic wound treatment. The use of moist bioactive scaffolds has significantly increased healing rates compared to local and traditional treatments. However, failure to heal or prolonging the wound healing process results in increased financial and social stress imposed on health institutions, caregivers, patients, and their families. The urgent need to identify practical, safe, and cost-effective wound healing scaffolding from natural-based biomaterials that can be introduced into clinical practice is unequivocal. Naturally derived products have long been used in wound healing; however, clinical trial evaluations of these therapies are still in their infancy. Additionally, further well-designed clinical trials are necessary to confirm the efficacy and safety of natural-based biomaterials in treating wounds. Thus, the focus of this review is to describe the current insight, the latest discoveries in selected natural-based wound healing implant products, the possible action mechanisms, and an approach to clinical studies. We explore several tested products undergoing clinical trials as a novel approach to counteract the debilitating effects of impaired wound healing.
Collapse
|
26
|
Raepsaet C, Alves P, Cullen B, Gefen A, Lázaro-Martínez JL, Lev-Tov H, Najafi B, Santamaria N, Sharpe A, Swanson T, Woo K, Beeckman D. Study protocol for the development of a core outcome set (COS) for clinical effectiveness trials of bordered foam dressings in the treatment of complex wounds. J Tissue Viability 2022; 31:625-629. [DOI: 10.1016/j.jtv.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
|
27
|
Pereira RVS, Ugarte-Berzal E, Vandooren J, Nylander K, Martens E, Van Mellaert L, Van Damme J, Vranckx JJ, Matthys P, Alamäe T, Phillipson M, Visnapuu T, Opdenakker G. Chlorite-Oxidized Oxyamylose (COAM) Has Antibacterial Activity and Positively Affects Skin Wound Healing. J Inflamm Res 2022; 15:4995-5008. [PMID: 36065319 PMCID: PMC9440681 DOI: 10.2147/jir.s375487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/30/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To verify the antibacterial and immunomodulatory effects of the amylose derivative – chlorite-oxidized oxyamylose (COAM) – in a skin wound setting. Methods In vitro antibacterial effects of COAM against opportunistic bacterial pathogens common to skin wounds, including Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA), were determined by cultivation methods. The effects of COAM on myeloid cell infiltration into full thickness skin wounds were investigated in wild-type and in transgenic CX3CR1-GFP mice. Results On the basis of in vitro experiments, an antibacterial effect of COAM against Staphylococcus species including MRSA was confirmed. The minimum inhibitory concentration of COAM was determined as 2000 µg/mL against these bacterial strains. Control full thickness skin wounds yielded maximal neutrophil influxes and no additive effect on neutrophil influx was observed following topical COAM-treatment. However, COAM administration increased local CX3CR1 macrophage counts at days 3 and 4 and induced a trend towards better wound healing. Conclusion Aside from its known broad antiviral impact, COAM possesses in vitro antibacterial effects specifically against Gram-positive opportunistic pathogens of the skin and modulates in vivo macrophage contents in mouse skin wounds.
Collapse
Affiliation(s)
- Rafaela Vaz Sousa Pereira
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Estefania Ugarte-Berzal
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jennifer Vandooren
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Karin Nylander
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Erik Martens
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lieve Van Mellaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jan Jeroen Vranckx
- Department of Development & Regeneration & Department of Plastic & Reconstructive Surgery, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Patrick Matthys
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Tiina Alamäe
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Mia Phillipson
- Department of Medical Cell Biology, Division of Integrative Physiology, Uppsala University, Uppsala, Sweden
| | - Triinu Visnapuu
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Ghislain Opdenakker
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Correspondence: Ghislain Opdenakker, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1044, Leuven, 3000, Belgium, Tel +32 16 37 9020, Fax +32 16 33 3026, Email
| |
Collapse
|
28
|
Neutralizing Staphylococcus aureus Virulence with AZD6389, a Three mAb Combination, Accelerates Closure of a Diabetic Polymicrobial Wound. mSphere 2022; 7:e0013022. [PMID: 35642538 PMCID: PMC9241520 DOI: 10.1128/msphere.00130-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nonhealing diabetic foot ulcers (DFU), a major complication of diabetes, are associated with high morbidity and mortality despite current standard of care. Since Staphylococcus aureus is the most common pathogen isolated from nonhealing and infected DFU, we hypothesized that S. aureus virulence factors would damage tissue, promote immune evasion and alter the microbiome, leading to bacterial persistence and delayed wound healing. In a diabetic mouse polymicrobial wound model with S. aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, we report a rapid bacterial proliferation, prolonged pro-inflammatory response and large necrotic lesions unclosed for up to 40 days. Treatment with AZD6389, a three-monoclonal antibody combination targeting S. aureus alpha toxin, 4 secreted leukotoxins, and fibrinogen binding cell-surface adhesin clumping factor A resulted in full skin re-epithelization 21 days after inoculation. By neutralizing multiple virulence factors, AZD6389 effectively blocked bacterial agglutination and S. aureus-mediated cell killing, abrogated S. aureus-mediated immune evasion and targeted the bacteria for opsonophagocytic killing. Neutralizing S. aureus virulence not only facilitated S. aureus clearance in lesions, but also reduced S. pyogenes and P. aeruginosa numbers, damaging inflammatory mediators and markers for neutrophil extracellular trap formation 14 days post initiation. Collectively, our data suggest that AZD6389 holds promise as an immunotherapeutic approach against DFU complications. IMPORTANCE Diabetic foot ulcers (DFU) represent a major complication of diabetes and are associated with poor quality of life and increased morbidity and mortality despite standard of care. They have a complex pathogenesis starting with superficial skin lesions, which often progress to deeper tissue structures up to the bone and ultimately require limb amputation. The skin microbiome of diabetic patients has emerged as having an impact on DFU occurrence and chronicity. DFU are mostly polymicrobial, and the Gram-positive bacterium Staphylococcus aureus detected in more than 95% of cases. S. aureus possess a collection of virulence factors which participate in disease progression and may facilitate growth of other pathogens. Here we show in a diabetic mouse wound model that targeting some specific S. aureus virulence factors with a multimechanistic antibody combination accelerated wound closure and promoted full skin re-epithelization. This work opens promising new avenues for the treatment of DFU.
Collapse
|
29
|
Agwa MM, Sabra S, Atwa NA, Dahdooh HA, Lithy RM, Elmotasem H. Potential of frankincense essential oil-loaded whey protein nanoparticles embedded in frankincense resin as a wound healing film based on green technology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
30
|
Lu Y, Chang N, Zhao X, Xue R, Liu J, Yang L, Li L. Activated Neutrophils Secrete Chitinase-Like 1 and Attenuate Liver Inflammation by Inhibiting Pro-Inflammatory Macrophage Responses. Front Immunol 2022; 13:824385. [PMID: 35529851 PMCID: PMC9069964 DOI: 10.3389/fimmu.2022.824385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/21/2022] [Indexed: 11/26/2022] Open
Abstract
Excessive activation and recruitment of neutrophils are generally considered to be associated with pathological aggravation of multiple diseases. However, as the role of neutrophils in tissue injury repair is receiving increasing attention, it is necessary to further explore the beneficial role of activated neutrophils in promoting the resolution of inflammation after injury. In this study, we found that activated neutrophils have a crucial function in suppressing liver inflammation. In methionine-choline-deficient and high-fat (MCDHF) diet induced liver inflammation in mice, tail vein injection of activated neutrophils (A-Neu, stimulated by sphingosine 1-phosphate) inhibited the expressions of pro-inflammatory cytokines in the liver, including C-C chemokine motif ligand 4, tumor necrosis factor and nitric oxide synthase 2, and attenuated liver injury. However, non-activated neutrophils (N-Neu) did not have these effects. In vitro, pro-inflammatory macrophages were co-cultured with N-Neu or A-Neu by transwell, respectively. A-Neu was found to suppress the pro-inflammatory phenotype of macrophages by using RT-qPCR, western blot and cytometric bead array. Microarray analysis showed that there were systematic variations in transcript expression levels between N-Neu and A-Neu. GeneVenn software was used to show the gene expression overlap between GO terms including Regulation of Cell Communication, Cytokine Secretion, Inflammatory Response and Extracellular Space clusters. We identified that Chitinase-like 1 (CHIL1) secreted by S1P activated neutrophils may be an important mediators affecting the pro-inflammatory macrophage responses. In the injured liver of mice induced by MCDHF diet, the expression of Chil1 mRNA increased and was positively correlated with the neutrophil marker Ly6g. Moreover, the secretion of CHIL1 in A-Neu increased significantly. Strikingly, the effect of A-Neu on macrophage response was reproduced by incubating pro-inflammatory macrophages with recombinant CHIL1. A-Neu conditioned medium were incubated with CHIL1 antibody-conjugated protein G beads, magnetically separated to immunodepletion CHIL1 from the A-Neu supernatant, which can partially weaken its inhibitory effect of A-Neu on the production of macrophage pro-inflammatory cytokines. Together, the conclusions indicated that A-Neu could inhibit the pro-inflammatory macrophage responses by secreting CHIL1, thereby effectively inhibiting liver inflammation.
Collapse
|
31
|
Geissel FJ, Platania V, Gogos A, Herrmann IK, Belibasakis GN, Chatzinikolaidou M, Sotiriou GA. Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. J Colloid Interface Sci 2022; 608:3141-3150. [PMID: 34815083 DOI: 10.1016/j.jcis.2021.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022]
Abstract
Implant infections due to bacterial biofilms constitute a major healthcare challenge today. One way to address this clinical need is to modify the implant surface with an antimicrobial nanomaterial. Among such nanomaterials, nanosilver is arguably the most powerful one, due to its strong and broad antimicrobial activity. However, there is still a lack of understanding on how physicochemical characteristics of nanosilver coatings affect their antibiofilm activity. More specifically, the contributions of silver (Ag)+ ion-mediated vs. contact-based mechanisms to the observed antimicrobial activity are yet to be elucidated. To address this knowledge gap, we produce here nanosilver coatings on substrates by flame aerosol direct deposition that allows for facile control of the coating composition and Ag particle size. We systematically study the effect of (i) nanosilver content in composite Ag silica (SiO2) coatings from 0 (pure SiO2) up to 50 wt%, (ii) the Ag particle size and (iii) the coating thickness on the antibiofilm activity against Staphylococcus aureus (S. aureus), a clinically-relevant pathogen often present on the surface of surgically-installed implants. We show that the Ag+ ion concentration in solution largely drives the observed antibiofilm effect independently of Ag size and coating thickness. Furthermore, co-incubation of both pure SiO2 and nanosilver coatings in the same well also reveals that the antibiofilm effect stems predominantly from the released Ag+ ions, which is especially pronounced for coatings featuring the smallest Ag particle sizes, rather than direct bacterial contact inhibition. We also examine the biocompatibility of the developed nanosilver coatings in terms of pre-osteoblastic cell viability and proliferation, comparing it to that of pure SiO2. This study lays the foundation for the rational design of nanosilver-based antibiofilm implant coatings.
Collapse
Affiliation(s)
- Felix J Geissel
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Varvara Platania
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Switzerland and Particles Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Switzerland and Particles Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Heraklion, Greece; Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Georgios A Sotiriou
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Yasom S, Khumsri W, Boonsongserm P, Kitkumthorn N, Ruangvejvorachai P, Sooksamran A, Wanotayan R, Mutirangura A. B1 siRNA Increases de novo DNA Methylation of B1 Elements and Promotes Wound Healing in Diabetic Rats. Front Cell Dev Biol 2022; 9:802024. [PMID: 35127718 PMCID: PMC8807477 DOI: 10.3389/fcell.2021.802024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Alu (B1 in rodents) hypomethylation, commonly found in diabetes mellitus patients, increases DNA damage and, consequently, delays the healing process. Alu siRNA increases Alu methylation, reduces DNA damage, and promotes cell proliferation.Aim: To explore whether B1 siRNA treatment restores B1 hypomethylation, resulting in a reduction in DNA damage and acceleration of the healing process in diabetic rat wounds.Methods: We generated splinted-excisional wounds in a streptozotocin (STZ)-induced type I diabetic rat model and treated the wounds with B1 siRNA/Ca-P nanoparticles to generate de novo DNA methylation in B1 intersperse elements. After treatment, we investigated B1 methylation levels, wound closure rate, wound histopathological structure, and DNA damage markers in diabetic wounds compared to nondiabetic wounds.Results: We reported that STZ-induced diabetic rat wounds exhibited B1 hypomethylation, wound repair defects, anatomical feature defects, and greater DNA damage compared to normal rats. We also determined that B1 siRNA treatment by Ca-P nanoparticle delivery restored a decrease in B1 methylation levels, remedied delayed wound healing, and improved the histological appearance of the wounds by reducing DNA damage.Conclusion: B1 hypomethylation is inducible in an STZ-induced type I diabetes rat model. Restoration of B1 hypomethylation using B1 siRNA leads to increased genome stability and improved wound repair in diabetes. Thus, B1 siRNA intervention may be a promising strategy for reprogramming DNA methylation to treat or prevent DNA damage-related diseases.
Collapse
Affiliation(s)
- Sakawdaurn Yasom
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Wilunplus Khumsri
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Papatson Boonsongserm
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
| | - Nakarin Kitkumthorn
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Apasee Sooksamran
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rujira Wanotayan
- Department of Radiological Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Disease, Department of Anatomy, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Apiwat Mutirangura,
| |
Collapse
|
33
|
Öhnstedt E, Lofton Tomenius H, Frank P, Roos S, Vågesjö E, Phillipson M. Accelerated Wound Healing in Minipigs by On-Site Production and Delivery of CXCL12 by Transformed Lactic Acid Bacteria. Pharmaceutics 2022; 14:pharmaceutics14020229. [PMID: 35213962 PMCID: PMC8876577 DOI: 10.3390/pharmaceutics14020229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/22/2023] Open
Abstract
Non-healing wounds are a growing medical problem and result in considerable suffering. The lack of pharmaceutical treatment options reflects the multistep wound healing process, and the complexity of both translation and assessment of treatment efficacy. We previously demonstrated accelerated healing of full-thickness wounds in mice following topical application of the probiotic bacteria Limosilactobacillus reuteri R2LC transformed to express CXCL12. In this study, safety and biological effects of a freeze-dried formulation of CXCL12-producing L. reuteri (ILP100) were investigated in induced full-thickness wounds in minipigs, and different wound healing evaluation methods (macroscopic, planimetry, 2D-photographs, 3D-scanning, ultrasound) were compared. We found that treatment with ILP100 was safe and accelerated healing, as granulation tissue filled wound cavities 1 day faster in treated compared to untreated/placebo-treated wounds. Furthermore, evaluation using planimetry resulted in 1.5 days faster healing than using 2D photographs of the same wounds, whereas the areas measured using 2D photographs were smaller compared to those obtained from 3D scans accounting for surface curvatures, whereas ultrasound imaging enabled detailed detection of thin epithelial layers. In conclusion, topical administration of the drug candidate ILP100 warrants further clinical development as it was proven to be safe and to accelerate healing using different evaluation methods in minipigs.
Collapse
Affiliation(s)
- Emelie Öhnstedt
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden; (E.Ö.); (H.L.T.); (E.V.)
- Ilya Pharma AB, Dag Hammarskjölds Väg, 752 37 Uppsala, Sweden;
| | - Hava Lofton Tomenius
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden; (E.Ö.); (H.L.T.); (E.V.)
- Ilya Pharma AB, Dag Hammarskjölds Väg, 752 37 Uppsala, Sweden;
| | - Peter Frank
- Ilya Pharma AB, Dag Hammarskjölds Väg, 752 37 Uppsala, Sweden;
| | - Stefan Roos
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden;
| | - Evelina Vågesjö
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden; (E.Ö.); (H.L.T.); (E.V.)
- Ilya Pharma AB, Dag Hammarskjölds Väg, 752 37 Uppsala, Sweden;
| | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, 751 23 Uppsala, Sweden; (E.Ö.); (H.L.T.); (E.V.)
- The Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence:
| |
Collapse
|
34
|
Bardill JR, Laughter MR, Stager M, Liechty KW, Krebs MD, Zgheib C. Topical gel-based biomaterials for the treatment of diabetic foot ulcers. Acta Biomater 2022; 138:73-91. [PMID: 34728428 PMCID: PMC8738150 DOI: 10.1016/j.actbio.2021.10.045] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating ailment for many diabetic patients with increasing prevalence and morbidity. The complex pathophysiology of DFU wound environments has made finding effective treatments difficult. Standard wound care treatments have limited efficacy in healing these types of chronic wounds. Topical biomaterial gels have been developed to implement novel treatment approaches to improve therapeutic effects and are advantageous due to their ease of application, tunability, and ability to improve therapeutic release characteristics. Here, we provide an updated, comprehensive review of novel topical biomaterial gels developed for treating chronic DFUs. This review will examine preclinical data for topical gel treatments in diabetic animal models and clinical applications, focusing on gels with protein/peptides, drug, cellular, herbal/antioxidant, and nano/microparticle approaches. STATEMENT OF SIGNIFICANCE: By 2050, 1 in 3 Americans will develop diabetes, and up to 34% of diabetic patients will develop a diabetic foot ulcer (DFU) in their lifetime. Current treatments for DFUs include debridement, infection control, maintaining a moist wound environment, and pressure offloading. Despite these interventions, a large number of DFUs fail to heal and are associated with a cost that exceeds $31 billion annually. Topical biomaterials have been developed to help target specific impairments associated with DFU with the goal to improve healing. A summary of these approaches is needed to help better understand the current state of the research. This review summarizes recent research and advances in topical biomaterials treatments for DFUs.
Collapse
Affiliation(s)
- James R Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | | | - Michael Stager
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Melissa D Krebs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
35
|
|
36
|
Malhotra P, Shukla M, Meena P, Kakkar A, Khatri N, Nagar RK, Kumar M, Saraswat SK, Shrivastava S, Datt R, Pandey S. Mesenchymal stem cells are prospective novel off-the-shelf wound management tools. Drug Deliv Transl Res 2022; 12:79-104. [PMID: 33580481 DOI: 10.1007/s13346-021-00925-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Chronic/non-healing cutaneous wounds pose a debilitating burden on patients and healthcare system. Presently, treatment modalities are rapidly shifting pace from conventional methods to advanced wound care involving cell-based therapies. Mesenchymal stem cells (MSCs) have come across as a prospective option due to its pleiotropic functions viz. non-immunogenicity, multipotency, multi-lineage plasticity and secretion of growth factors, cytokines, microRNAs (miRNA), exosomes, and microvesicles as part of their secretome for assisting wound healing. We outline the therapeutic role played by MSCs and its secretome in suppressing tissue inflammation, causing immunomodulation, aiding angiogenesis and assisting in scar-free wound healing. We further assess the mechanism of action by which MSCs contribute in manifesting tissue repair. The review flows ahead in exploring factors that influence healing behavior including effect of multiple donor sites, donor age and health status, tissue microenvironment, and in vitro expansion capability. Moving ahead, we overview the advancements achieved in extending the lifespan of cells upon implantation, influence of genetic modifications aimed at altering MSC cargo, and evaluating bioengineered matrix-assisted delivery methods toward faster healing in preclinical and clinical models. We also contribute toward highlighting the challenges faced in commercializing cell-based therapies as standard of care treatment regimens. Finally, we strongly advocate and highlight its application as a futuristic technology for revolutionizing tissue regeneration.
Collapse
Affiliation(s)
- Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Poonam Meena
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rakesh K Nagar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Sumit K Saraswat
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Supriya Shrivastava
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Private Ltd, Roz Ka Meo Industrial Area, Distt. Mewat, Nuh, 122103, Haryana, India.
| |
Collapse
|
37
|
Shaibi KMM, Leeba B, Jamuna S, Babu R. Phytochemical Analysis, In Vitro Antioxidant, and Wound Healing Activities of Turbinaria ornata (Turner) J. Agardh from Gulf of Mannar, India. Appl Biochem Biotechnol 2022; 194:395-406. [PMID: 34851476 DOI: 10.1007/s12010-021-03752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
Turbinaria ornata (Turner) J., tropical brown algae, was found in the South Pacific and Indian Ocean ecosystems. In accordance with recent studies, Turbinaria ornata J. has potent anti-inflammatory effects. Therefore, this study is aimed to explore the biological activities of ethanolic extract of T. ornata J. by analyzing the presence of phytochemical components, antioxidant property, antimicrobial activity, and the wound healing activity. From the results, phytochemical analysis of ethanolic extract of T. ornata J. showed the presence of alkaloids, saponins, oils, total phenolic, and total flavonoid content which were estimated to be 0.683±0.001 Abs and 0.433±0.001 Abs, respectively. Antioxidant activity of the ethanolic extract of T. ornata J. extract showed remarkable DPPH radical scavenging activity of about 58.8% at 200μg/mL and total antioxidant activity of 0.257 Abs at 100μg/mL concentration, as compared to that of their respective controls. The ethanolic extract of T. ornata J. exhibited the maximum zone of inhibition against the clinical pathogens like Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Candida albicans, and Methicillin-resistant Staphylococcus aureus with their potent antimicrobial activity. Wound healing effects of the ethanolic extract of T. ornata J were analyzed by using zebrafish model. The results showed the rapid and significant regeneration of the wounded caudal fin on day 14. Therefore, the preliminary results of this study strongly support that the ethanolic extract of T. ornata J. may be effective in wound healing and regeneration of the wounded tissues.
Collapse
Affiliation(s)
- K M Mohamed Shaibi
- Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, India
| | - Balan Leeba
- Bionyme Laboratories Pvt Ltd, No.109, 1st Cross Street, Shanthi Nagar, Chromepet, Chennai, Tamil Nadu, 600 044, India.
| | - Sankar Jamuna
- Bionyme Laboratories Pvt Ltd, No.109, 1st Cross Street, Shanthi Nagar, Chromepet, Chennai, Tamil Nadu, 600 044, India
| | - Ramesh Babu
- Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, India
| |
Collapse
|
38
|
Jifar WW, Atnafie SA, Angalaparameswari S. A Review: Matrix Metallopeptidase-9 Nanoparticles Targeted for the Treatment of Diabetic Foot Ulcers. J Multidiscip Healthc 2021; 14:3321-3329. [PMID: 34880623 PMCID: PMC8646228 DOI: 10.2147/jmdh.s343085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes foot ulcers are a leading cause of death in diabetic individuals. There are very few medicines and treatments that have received regulatory clearance for this indication, and numerous compounds from various pharmacological classes are now in various stages of clinical studies for diabetic foot ulcers treatment. Multiple risk factors contribute to diabetic foot ulcers, including neuropathy, peripheral artery disease, infection, gender, cigarette smoking, and age. The present difficulties in diabetic foot ulcers treatment are related to bacterial resistance to currently utilized antibiotics. Inhibition of the quorum sensing (QS) system and targeting matrix metallopeptidase-9 (MMP-9) are promising. This study focuses on the difficulties of existing treatment, current treatment technique, and novel pharmacological targets for diabetic foot ulcer. The electronic data base search diabetic for literature on foot ulcers treatment was carried out using Science Direct, PubMed, Google-Scholar, Springer Link, Scopus, and Wiley up to 2021. Becaplermin, a medication that targets MMP-9, glyceryl trinitrate, which inhibits the bacterial quorum sensing system, probiotic therapy, and nano technological solutions are just a few of the novel pharmaceuticals being developed for diabetic foot ulcers treatment. A combination of therapies, rather than one particular agent, will be the best option for treatment of Diabetes foot ulcer since it is multifactorial factors that render occurs of diabetic foot ulcer.
Collapse
Affiliation(s)
- Wakuma Wakene Jifar
- Mettu University, College of Health Sciences, Department of Pharmacy, Mettu, Ethiopia
| | - Seyfe Asrade Atnafie
- University of Gondar, College of Medicine and Health Sciences, School of Pharmacy, Department of Pharmacology, Gondar, Ethiopia
| | | |
Collapse
|
39
|
Vågesjö E, Grigoleit P, Fasth A, Phillipson M. How can we optimize the development of drugs for wound healing? Expert Opin Drug Discov 2021; 17:93-96. [PMID: 34651533 DOI: 10.1080/17460441.2022.1992381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Evelina Vågesjö
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,Ilya Pharma AB, Uppsala, Sweden
| | | | | | - Mia Phillipson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.,The Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
Santorelli A, Bernini M, Orzalesi L, Avvedimento S, Palumbo P, Kothari A, Fausto A, Magalotti C, Buzzi G, Sandroni S, Calabrese C. Treatment With Oxygen-Enriched Olive Oil Improves Healing Parameters Following Augmentation-Mastopexy. Aesthet Surg J Open Forum 2021; 3:ojab016. [PMID: 34131642 PMCID: PMC8196542 DOI: 10.1093/asjof/ojab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Breast augmentation-mastopexy can yield an aesthetically attractive breast, but the 1-stage procedure is prone to unsatisfactory outcomes, including poor wound healing. OBJECTIVES The authors evaluated whether postsurgical application of a polyurethane bra cup coated with oxygen-enriched olive oil (NovoX Cup; Moss SpA, Lesa, Novara, Italy) would decrease pain associated with augmentation-mastopexy and improve the quality of the surgical scar. METHODS This retrospective study was conducted at a single center from January 2016 to June 2019. All patients underwent 1-stage augmentation-mastopexy with the inverted T incision. For 2 weeks postsurgically, wounds were dressed either with the oxygen-enriched olive oil bra or with Fitostimoline (Farmaceutici Damor SpA, Naples, Italy). Patients indicated their pain intensity on postoperative days 2, 3, and 10, and patients and independent observers scored scar quality on the Patient and Observer Scar Assessment Scale (POSAS) 6 and 12 months after the procedure. RESULTS A total of 240 women (120 per study arm) completed the study. All the patients had satisfactory aesthetic results, and there were no tolerability concerns with either postoperative dressing. Compared with patients in the Fitostimoline group, patients who received the oxygen-enriched olive oil bra cup had significantly lower pain levels, and their surgical scars were given better scores on the POSAS. CONCLUSIONS The results suggest that maintenance of the surgical wound in a film of oxygen-enriched olive oil for 2 weeks is a safe, effective modality for suppressing pain and promoting healing following augmentation-mastopexy. LEVEL OF EVIDENCE 2
Collapse
Affiliation(s)
- Adriano Santorelli
- Corresponding Author: Dr Adriano Santorelli, Department of Plastic Surgery, Academy of Aesthetic Sciences, via Raffaele Morghen 88, 80129, Naples, Italy. E-mail:
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mazurek P, Yuusuf NA, Silau H, Mordhorst H, Pamp SJ, Brook MA, Skov AL. Simultaneous delivery of several antimicrobial drugs from multi‐compartment glycerol‐silicone membranes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Piotr Mazurek
- Danish Polymer Centre, Department of Chemical Engineering Technical University of Denmark Kongens Lyngby Denmark
| | - Nuura A. Yuusuf
- Research Group for Genomic Epidemiology National Food Institute, Technical University of Denmark Kongens Lyngby Denmark
| | - Harald Silau
- Danish Polymer Centre, Department of Chemical Engineering Technical University of Denmark Kongens Lyngby Denmark
| | - Hanne Mordhorst
- Research Group for Genomic Epidemiology National Food Institute, Technical University of Denmark Kongens Lyngby Denmark
| | - Sünje J. Pamp
- Research Group for Genomic Epidemiology National Food Institute, Technical University of Denmark Kongens Lyngby Denmark
| | - Michael A. Brook
- Department of Chemistry and Chemical Biology McMaster University Hamilton Ontario Canada
| | - Anne L. Skov
- Danish Polymer Centre, Department of Chemical Engineering Technical University of Denmark Kongens Lyngby Denmark
- Glysious, R&D Kongens Lyngby Denmark
| |
Collapse
|
42
|
Scepankova H, Combarros-Fuertes P, Fresno JM, Tornadijo ME, Dias MS, Pinto CA, Saraiva JA, Estevinho LM. Role of Honey in Advanced Wound Care. Molecules 2021; 26:4784. [PMID: 34443372 PMCID: PMC8398244 DOI: 10.3390/molecules26164784] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
Honey is a natural product rich in several phenolic compounds, enzymes, and sugars with antioxidant, anticarcinogenic, anti-inflammatory, and antimicrobial potential. Indeed, the development of honey-based adhesives for wound care and other biomedical applications are topics being widely investigated over the years. Some of the advantages of the use of honey for wound-healing solutions are the acceleration of dermal repair and epithelialization, angiogenesis promotion, immune response promotion and the reduction in healing-related infections with pathogenic microorganisms. This paper reviews the main role of honey on the development of wound-healing-based applications, the main compounds responsible for the healing capacity, how the honey origin can influence the healing properties, also highlighting promising results in in vitro and in vivo trials. The challenges in the use of honey for wound healing are also covered and discussed. The delivery methodology (direct application, incorporated in fibrous membranes and hydrogels) is also presented and discussed.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Patricia Combarros-Fuertes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - José María Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - María Eugenia Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, Campus de Vegazana, University of León, 24071 León, Spain; (P.C.-F.); (J.M.F.); (M.E.T.)
| | - Miguel Sousa Dias
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.S.); (C.A.P.); (J.A.S.)
| | - Letícia M. Estevinho
- CIMO, Mountain Research Center, Polytechnic Institute of Bragança, Campus Santa Apolónia, 5301-855 Bragança, Portugal;
| |
Collapse
|
43
|
Cutaneous Wound Healing: An Update from Physiopathology to Current Therapies. Life (Basel) 2021; 11:life11070665. [PMID: 34357037 PMCID: PMC8307436 DOI: 10.3390/life11070665] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023] Open
Abstract
The skin is the biggest organ of human body which acts as a protective barrier against deleterious agents. When this barrier is damaged, the organism promotes the healing process with several molecular and cellular mechanisms, in order to restore the physiological structure of the skin. The physiological control of wound healing depends on the correct balance among its different mechanisms. Any disruption in the balance of these mechanisms can lead to problems and delay in wound healing. The impairment of wound healing is linked to underlying factors as well as aging, nutrition, hypoxia, stress, infections, drugs, genetics, and chronic diseases. Over the years, numerous studies have been conducted to discover the correct approach and best therapies for wound healing, including surgical procedures and non-surgical treatments such as topical formulations, dressings, or skin substitutes. Thus, this general approach is necessary to facilitate the direction of further studies. This work provides updated concepts of physiological mechanisms, the factors that can interfere, and updated treatments used in skin wound healing.
Collapse
|
44
|
Riwaldt S, Corydon TJ, Pantalone D, Sahana J, Wise P, Wehland M, Krüger M, Melnik D, Kopp S, Infanger M, Grimm D. Role of Apoptosis in Wound Healing and Apoptosis Alterations in Microgravity. Front Bioeng Biotechnol 2021; 9:679650. [PMID: 34222218 PMCID: PMC8248797 DOI: 10.3389/fbioe.2021.679650] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Functioning as the outermost self-renewing protective layer of the human organism, skin protects against a multitude of harmful biological and physical stimuli. Consisting of ectodermal, mesenchymal, and neural crest-derived cell lineages, tissue homeostasis, and signal transduction are finely tuned through the interplay of various pathways. A health problem of astronauts in space is skin deterioration. Until today, wound healing has not been considered as a severe health concern for crew members. This can change with deep space exploration missions and commercial spaceflights together with space tourism. Albeit the molecular process of wound healing is not fully elucidated yet, there have been established significant conceptual gains and new scientific methods. Apoptosis, e.g., programmed cell death, enables orchestrated development and cell removal in wounded or infected tissue. Experimental designs utilizing microgravity allow new insights into the role of apoptosis in wound healing. Furthermore, impaired wound healing in unloading conditions would depict a significant challenge in human-crewed exploration space missions. In this review, we provide an overview of alterations in the behavior of cutaneous cell lineages under microgravity in regard to the impact of apoptosis in wound healing. We discuss the current knowledge about wound healing in space and simulated microgravity with respect to apoptosis and available therapeutic strategies.
Collapse
Affiliation(s)
- Stefan Riwaldt
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas J. Corydon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Aarhus, Denmark
| | - Desiré Pantalone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Petra Wise
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Markus Wehland
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Marcus Krüger
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Melnik
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Sascha Kopp
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Manfred Infanger
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Grimm
- Department of Microgravity and Translational Regenerative Medicine, University Clinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke University, Magdeburg, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Research Group “Magdeburger Arbeitsgemeinschaft für Forschung unter Raumfahrt-und Schwerelosigkeitsbedingungen” (MARS), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
45
|
Imbarak N, Abdel-Aziz HI, Farghaly LM, Hosny S. Effect of mesenchymal stem cells versus aloe vera on healing of deep second-degree burn. Stem Cell Investig 2021; 8:12. [PMID: 34268441 DOI: 10.21037/sci-2020-030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/25/2021] [Indexed: 01/09/2023]
Abstract
Background Burn injuries constitute a major health problem which cause more severe physiological stress than other traumas. Aloe vera has been used in traditional medicine for a long time for burn treatment. Mesenchymal stem cells (MSCs) have delivered new approaches to the management of deep burns. The present study assessed the effect of aloe vera versus MSCs on experimentally induced deep second-degree burn. Methods Sixty adult female albino rats randomized into 6 groups: group I served as negative control, group II received topical aloe vera only, group III were injected intradermally with MSCs, group IV subjected to burn injury, group V received topical aloe vera post burn and group VI were injected intradermally with MSCs post burn. Healing of burn injury was evaluated grossly. Skin specimens were obtained after 14 & 21-days post-burn induction and prepared for histological techniques (H&E and Masson's trichrome stain). Polymerase chain reaction (PCR) analysis of Sry gene for group VI was done. Results After 14 days, groups V&VI showed fully regenerated epidermis with a significant increase in the epidermal thickness and a significant decrease in the optical density of collagen fibers compared to control groups. After 21 days, group V showed less epidermal thickness compared to that of day 14 and nearly normal collagen fibers arrangement. However, group VI showed a significant increase in the epidermal thickness compared to groups V&I and an interwoven collagen fibers arrangement with a significant decrease in the optical density of collagen fibers in comparison to control groups. PCR results of the tested samples revealed that 100% of the recipient rats contain Sry positive gene. Conclusions Topical aloe vera promoted burn wound healing faster and better than intradermal injection of MSCs.
Collapse
Affiliation(s)
- Nahla Imbarak
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University Ismailia, Egypt.,Tissue Culture Unit, Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - H Ismail Abdel-Aziz
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University Ismailia, Egypt
| | - Lamiaa M Farghaly
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University Ismailia, Egypt
| | - Somaya Hosny
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University Ismailia, Egypt.,Tissue Culture Unit, Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
46
|
Belvedere R, Pessolano E, Novizio N, Tosco A, Eletto D, Porta A, Filippelli A, Petrella F, Petrella A. The promising pro-healing role of the association of mesoglycan and lactoferrin on skin lesions. Eur J Pharm Sci 2021; 163:105886. [PMID: 34022411 DOI: 10.1016/j.ejps.2021.105886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022]
Abstract
Skin wound repair represents an important topic for the therapeutic challenges. Many molecules are commonly used as active principles of topical devices to induce the correct tissue regeneration. Among these molecules, mesoglycan, a mixture of glycosaminoglycans, and the lactoferrin have recently aroused interest. Here, for the first time, we used mesoglycan/lactoferrin to treat the cell populations mainly involved in wound healing. We showed that human keratinocytes, fibroblasts and endothelial cells migrate and invade more rapidly when treated with the association. Moreover, we found that mesoglycan/lactoferrin, are able to trigger the differentiation process of keratinocytes, the switch of the fibroblasts into myofibroblasts, the acquisition of a mesenchymal phenotype for the endothelial cells which, in this way, start to form the capillary-like structures. Additionally, we proved that the well known antimicrobial behavior of lactoferrin encourages the inhibition of S. aureus and P. aeruginosa biofilm formation by the whole association, providing an appealing feature for this formulation. Finally, by the in vivo analysis, we showed that the mesoglycan/lactoferrin favors the closure of skin wounds performed on the mice back. Beside the decrease of the lesion diameters, by a confocal analysis of mice biopsies we found that the use of the association strongly promote cell activation underlying the correct tissue regeneration. These results encourage to further investigation aiming the development of a new topical patch that includes this association.
Collapse
Affiliation(s)
| | | | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Fisciano (SA) Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano (SA) Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano (SA) Italy
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano (SA) Italy
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi (SA), Italy
| | - Francesco Petrella
- Primary Care - Wound Care Service, Health Local Agency Naples 3 South, Via Libertà 42, 80055 Portici (Napoli), Italy
| | | |
Collapse
|
47
|
McArdle C, Abbah SA, Bhowmick S, Collin E, Pandit A. Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model. Biomater Sci 2021; 9:3136-3149. [PMID: 33725045 DOI: 10.1039/d0bm01928c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypertrophic scarring (HS) is an intractable complication associated with cutaneous wound healing. Although transforming growth factor β1 (TGF-β1) has long been documented as a central regulatory cytokine in fibrogenesis and fibroplasia, there is currently no cure. Gene therapy is emerging as a powerful tool to attenuate the overexpression of TGF-β1 and its signaling activities. An effective approach may require transferring multiple genes to regulate different aspects of TGF-β1 signaling activities in a Spatio-temporal manner. Herein we report the additive anti-fibrotic effects of two plasmid DNAs encoding interleukin 10 (IL-10) and decorin (DCN) co-delivered via a biphasic 3D collagen scaffold reservoir platform. Combined gene therapy significantly attenuated inflammation and extracellular matrix components' accumulation in a rabbit ear ulcer model; and suppressed the expressions of genes associated with fibrogenesis, including collagen type I, as well as TGF-β1 and TGF-β2, while enhancing the genes commonly associated with regenerative healing including collagen type III. These findings may serve to provide a non-viral gene therapy platform that is safe, optimized, and effective to deliver multiple genes onto the diseased tissue in a wider range of tissue fibrosis-related maladies.
Collapse
Affiliation(s)
- Ciarstan McArdle
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sunny Akogwu Abbah
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sirsendu Bhowmick
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Estelle Collin
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| |
Collapse
|
48
|
De La Pena A, Mukhtar M, Yokosawa R, Carrasquilla S, Simmons CS. Quantifying cellular forces: Practical considerations of traction force microscopy for dermal fibroblasts. Exp Dermatol 2021; 30:74-83. [PMID: 32767472 PMCID: PMC7769991 DOI: 10.1111/exd.14166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Traction force microscopy (TFM) is a well-established technique traditionally used by biophysicists to quantify the forces adherent biological cells exert on their microenvironment. As image processing software becomes increasingly user-friendly, TFM is being adopted by broader audiences to quantify contractility of (myo)fibroblasts. While many technical reviews of TFM's computational mechanics are available, this review focuses on practical experimental considerations for dermatology researchers new to cell mechanics and TFM who may wish to implement a higher throughput and less expensive alternative to collagen compaction assays. Here, we describe implementation of experimental methods, analysis using open-source software and troubleshooting of common issues to enable researchers to leverage TFM for their investigations into skin fibroblasts.
Collapse
Affiliation(s)
| | | | | | | | - Chelsey S. Simmons
- Department of Mechanical and Aerospace Engineering
- J. Crayton Pruitt Department of Biomedical Engineering
- Division of Cardiovascular Medicine, University of Florida
| |
Collapse
|
49
|
Abstract
In the past decade, the frequency of chronic wounds in older population has increased, and their impact on quality of life is substantial. Chronic wounds are a public health problem associated with very high economic and psychosocial costs. These wounds result from various pathologies and comorbidities, such arterial and venous insufficiency, diabetes mellitus and continuous skin pressure. Recently, the role of infection and biofilms in the healing of chronic wounds has been the subject of considerable research. This paper presents an overview of various methods and products used to manage chronic wounds and discusses recent advances in wound care. To decide on the best treatment for any wound, it is crucial to holistically assess the patient and the wound. Additionally, multiple strategies could be used to prevent or treat chronic wounds.
Collapse
Affiliation(s)
- Maria Azevedo
- Researcher, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Carmen Lisboa
- Lecturer and Researcher in Medical Microbiology, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Acácio Rodrigues
- Lecturer and Researcher in Medical Microbiology, Faculty of Medicine, Porto; Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital São João, Portugal
| |
Collapse
|
50
|
Hu J, Guo S, Hu H, Sun J. Systematic review of the efficacy of topical haemoglobin therapy for wound healing. Int Wound J 2020; 17:1323-1330. [PMID: 32427424 PMCID: PMC7948847 DOI: 10.1111/iwj.13392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia is a common cause of poor wound healing, for which a variety of oxygen therapies have been developed. In order to overcome the limitations of traditional methods of treatment, namely the type of equipment, its setting, safety and cost, local haemoglobin therapy has been developed, although no reviews have so far been published. Here, we systematically review the current evidence to establish the efficacy, scope, adverse reactions, and required precautions of this new form of therapy. A search of the literature was conducted in the PubMed, Embase, Scopus, CENTRAL, CINAHL, and Web of science databases, with 17 studies meeting the eligibility criteria, comprising one animal model study and 16 clinical studies. Local haemoglobin therapy is able to safely and effectively promote the healing of a variety of wounds, especially those that are chronic and non-healing. However, premature discontinuation of this treatment can result in impediment to wound healing and even deterioration of the wound. The distinct benefit of the elimination of slough and relief of pain suggests that this technique may represent a new generation of debridement technology. Furthermore, its ease of use and convenience enables patient self-management, thereby greatly reducing health care costs.
Collapse
Affiliation(s)
- Jieman Hu
- Department of Gastrointestinal Colorectal and Anal Surgerythe First Hospital of Jilin UniversityChangchunChina
- School of Nursing, Jilin UniversityChangchunChina
| | - Shaoning Guo
- School of Nursing, Jilin UniversityChangchunChina
- Department of AnesthesiologyThe First Hospital of Jilin UniversityChangchunChina
| | - Haiyan Hu
- Department of Gastrointestinal Colorectal and Anal Surgerythe First Hospital of Jilin UniversityChangchunChina
| | - Jianan Sun
- Department of Gastrointestinal Colorectal and Anal Surgerythe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|