1
|
Kilbile JT, Sapkal SB, Renzi G, D'Agostino I, Boudjelal M, Tamboli Y, Cutarella L, Mori M, Sgambellone S, Villano S, Marri S, Lucarini L, Carradori S, Carta F, Supuran CT. Lasamide Containing Sulfonylpiperazines as Effective Agents for the Management of Glaucoma Associated Symptoms. ChemMedChem 2024; 19:e202400601. [PMID: 39319579 DOI: 10.1002/cmdc.202400601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
A series of 2,4-dichloro-5-{[4-(phenylsulfonyl)piperazin-1-yl]carbonyl}benzenesulfonamides were designed and synthesized through amidation of Lasamide 1 with substituted piperazines. The newly obtained compounds demonstrated remarkable inhibition potency and selectivity for the human (h) expressed Carbonic Anhydrase (CA; EC 4.2.1.1) II isoform. Selected compounds 7 and 9 were investigated in an in vivo model of glaucoma and showed relevant performances, with the latter being able to last the effect up to 4 hours. The results herein reported are in sustainment of Lasamide derivatives as a new class of compounds potentially exploitable for the management of uncontrolled intra ocular pressure (IOP).
Collapse
Affiliation(s)
- Jaydeo T Kilbile
- Department of Chemistry, School of Basic and Applied Sciences, MGM University, Chhatrapati Sambhajinagar, 431003, MS, India
| | - Suryakant B Sapkal
- Department of Chemistry, School of Basic and Applied Sciences, MGM University, Chhatrapati Sambhajinagar, 431003, MS, India
| | - Gioele Renzi
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Ilaria D'Agostino
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Mohamed Boudjelal
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, 14811, Saudi Arabia
| | - Yasinalli Tamboli
- King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs, Riyadh, 14811, Saudi Arabia
| | - Luigi Cutarella
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Silvia Sgambellone
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Serafina Villano
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Silvia Marri
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Laura Lucarini
- NEUROFARBA Department, Section of Pharmacology and Toxicology, University of Florence, 50139, Florence, Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
| | - Fabrizio Carta
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
2
|
Andreozzi G, Corvino A, Severino B, Magli E, Perissutti E, Frecentese F, Santagada V, Caliendo G, Fiorino F. Arylpiperazine Derivatives and Cancer: A New Challenge in Medicinal Chemistry. Pharmaceuticals (Basel) 2024; 17:1320. [PMID: 39458961 PMCID: PMC11510360 DOI: 10.3390/ph17101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: In recent decades, there has been a startling rise in the number of cancer patients worldwide, which has led to an amazing upsurge in the development of novel anticancer treatment candidates. On a positive note, arylpiperazines have garnered attention in cancer research due to their potential as scaffolds for developing anticancer agents. These compounds exhibit a diverse array of biological activities, including cytotoxic effects against cancer cells. Indeed, one of the key advantages of arylpiperazines lies in their ability to interact with various molecular targets implicated in cancer pathogenesis. Aim: Here, we focus on the chemical structures of several arylpiperazine derivatives, highlighting their anti-proliferative activity in different tumor cell lines. The modular structure, diverse biological activities, and potential for combination therapies of arylpiperazine compounds make them valuable candidates for further preclinical and clinical investigations in the fight against cancer. Conclusion: This review, providing a careful analysis of different arylpiperazines and their biological applications, allows researchers to refine the chemical structures to improve potency, selectivity, and pharmacokinetic properties, thus advancing their therapeutic potential in oncology.
Collapse
Affiliation(s)
- Giorgia Andreozzi
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Angela Corvino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Beatrice Severino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Elisa Magli
- Dipartimento di Sanità Pubblica, Università di Napoli Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Elisa Perissutti
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Francesco Frecentese
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Vincenzo Santagada
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Giuseppe Caliendo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| | - Ferdinando Fiorino
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (G.A.); (A.C.); (B.S.); (E.M.); (E.P.); (F.F.); (V.S.); (G.C.)
| |
Collapse
|
3
|
Wang S, Argikar UA, Chatzopoulou M, Cho S, Crouch RD, Dhaware D, Gu TJ, Heck CJS, Johnson KM, Kalgutkar AS, Liu J, Ma B, Miller GP, Rowley JA, Seneviratne HK, Zhang D, Khojasteh SC. Bioactivation and reactivity research advances - 2023 year in review. Drug Metab Rev 2024; 56:247-284. [PMID: 38963129 DOI: 10.1080/03602532.2024.2376023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Advances in the field of bioactivation have significantly contributed to our understanding and prediction of drug-induced liver injury (DILI). It has been established that many adverse drug reactions, including DILI, are associated with the formation and reactivity of metabolites. Modern methods allow us to detect and characterize these reactive metabolites in earlier stages of drug development, which helps anticipate and circumvent the potential for DILI. Improved in silico models and experimental techniques that better reflect in vivo environments are enhancing predictive capabilities for DILI risk. Further, studies on the mechanisms of bioactivation, including enzyme interactions and the role of individual genetic differences, have provided valuable insights for drug optimizations. Cumulatively, this progress is continually refining our approaches to drug safety evaluation and personalized medicine.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Upendra A Argikar
- Non-clinical Development, Bill and Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | | | - Sungjoon Cho
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Rachel D Crouch
- Department of Pharmacy and Pharmaceutical Sciences, Lipscomb University College of Pharmacy, Nashville, TN, USA
| | | | - Ting-Jia Gu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Carley J S Heck
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Groton, CT, USA
| | - Kevin M Johnson
- Drug Metabolism and Pharmacokinetics, Inotiv, Maryland Heights, MO, USA
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| |
Collapse
|
4
|
Afonso Urich JA, Marko V, Boehm K, Werner B, Zangger K, Saraf I, Paudel A, Kushwah V. Accelerative Solid-State Oxidation Behaviour of Amorphous and Partially Crystalline Venetoclax. AAPS PharmSciTech 2024; 25:114. [PMID: 38750299 DOI: 10.1208/s12249-024-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/06/2024] [Indexed: 09/05/2024] Open
Abstract
There is a growing focus on solid-state degradation, especially for its relevance in understanding interactions with excipients. Performing a solid-state degradation of Venetoclax (VEN), we delve into VEN's stability in different solid-state oxidative stress conditions, utilizing Peroxydone™ complex and urea peroxide (UHP). The investigation extends beyond traditional forced degradation scenarios, providing insights into VEN's behavior over 32 h, considering temperature and crystallinity conditions. Distinct behaviors emerge in the cases of Peroxydone™ complex and UHP. The partially crystalline (PC-VEN) form proves more stable with Peroxydone™, while the amorphous form (A-VEN) shows enhanced stability with UHP. N-oxide VEN, a significant degradation product, varies between these cases, reflecting the impact of different oxidative stress conditions. Peroxydone™ complex demonstrates higher reproducibility and stability, making it a promising option for screening impurities in solid-state oxidative stress scenarios. This research not only contributes to the understanding of VEN's stability in solid-state but also aids formulators in anticipating excipient incompatibilities owing to presence of reactive impurities (peroxides) and oxidation in the final dosage form.
Collapse
Affiliation(s)
| | - Viktoria Marko
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Katharina Boehm
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Bernd Werner
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010, Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, Heinrichstr. 28, 8010, Graz, Austria
| | - Isha Saraf
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria.
- Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010, Graz, Austria.
| | - Varun Kushwah
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010, Graz, Austria.
| |
Collapse
|
5
|
Singh Cham P, Kotwal P, Sharma K, Dhiman S, Singh L, Pratap Singh V, Kumar A, Nandi U, Pal Singh P. Cannabidiol-Based Prodrugs: Synthesis and Bioevaluation. ACS Med Chem Lett 2024; 15:221-229. [PMID: 38352838 PMCID: PMC10860190 DOI: 10.1021/acsmedchemlett.3c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Cannabidiol (CBD 1) is a nonpsychotic cannabinoid-based drug approved by the U.S. FDA for treating refractory epilepsy, namely, Lennox-Gastaut and Dravet syndrome. However, its low aqueous solubility and oral bioavailability are compensated by administering high doses, and there is an increased demand for conjugates with improved properties. In this direction, the present work is focused on synthesizing CBD-based prodrugs to address the issue of poor solubility and oral bioavailability. Several CBD-based prodrugs were synthesized and studied in a battery of assays: viz, release kinetic (ex vivo), solubility (in vitro), chemical stability (in vitro), plasma stability (ex vivo), pharmacokinetics (in vivo), and efficacy studies (in vivo). Among the synthesized prodrugs, the morpholinyl CBD-based prodrugs 3a and 3aa showed good release behavior, stability, better solubility, and a plasma profile. Moreover, prodrug candidate 3aa showed better therapeutic efficacy. The present study identifies CBD-based prodrugs with improved physiochemical properties and oral exposure.
Collapse
Affiliation(s)
- Pankaj Singh Cham
- Natural
Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankul Kotwal
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kuhu Sharma
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lakhvinder Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varun Pratap Singh
- Natural
Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parvinder Pal Singh
- Natural
Product & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine (CSIR-IIIM), Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Jiang N, Li KX, Wang JJ, Zhu YL, Zhu CY, Xu YH, Bryce MR. Amphiphilic Polyurethane with Cluster-Induced Emission for Multichannel Bioimaging in Living Cell Systems. ACS Macro Lett 2024; 13:52-57. [PMID: 38147539 PMCID: PMC10795471 DOI: 10.1021/acsmacrolett.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
The development of single-component materials with low cytotoxicity and multichannel fluorescence imaging capability is a research hotspot. In the present work, highly electron-deficient pyrazine monomers were covalently connected into a polyurethane backbone using addition polymerization with terminal poly(ethylene glycol) monomethyl ether units containing a high density of electron pairs. Thereby, an amphiphilic polyurethane-pyrazine (PUP) derivative has been synthesized. The polymer displays cluster-induced emission through compact inter- and/or intramolecular noncovalent interactions and extensive through-space electron coupling and delocalization. Molecular rigidity facilitates red-shifted emission. Based on hydrophilic/hydrophobic interactions and excitation dependence emission at low concentrations, PUP has been self-assembled into fluorescent nanoparticles (PUP NPs) without additional surfactant. PUP NPs have been used for cellular multicolor imaging to provide a variety of switchable colors on demand. This work provides a simple molecular design for environmentally sustainable, luminescent materials with excellent photophysical properties, biocompatibility, low cytotoxicity, and color modulation.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Jia-Jun Wang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - You-Liang Zhu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun 130103, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
Sharma K. Enhancement of Anticancer Potential of Artemisinin Derivatives through N-glycosylation. Curr Top Med Chem 2024; 24:2074-2091. [PMID: 39136507 DOI: 10.2174/0115680266322676240724114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 10/22/2024]
Abstract
Cancer cells have significantly higher intracellular free-metal ions levels than normal cells, and it is well known that artemisinin (ART) molecules or its derivatives sensitize cancer cells when its endoperoxide moiety combines with metal ions, resulting in the production of reactive oxygen species, lysosomal degradation of ferritin, or regulation of system Gpx4 leading to apoptosis, ferroptosis or cuproptosis. Artemisinin derivatives (ADs) are reported to interfere more efficiently with metal-regulatory-proteins (MRPs) controlling iron/copper homeostasis by interacting with cytoplasmic unbound metal ions and thereby promoting the association of MRP to mRNA molecules carrying the respective sequences. However, the simple artemisinin analogues are required to be administered in higher doses with repeated administration due to low solubility and smaller plasma half-lives. To overcome these problems, amino ARTs were introduced which are found to be more stable, and later on, a series of ARTs derivatives containing sugar moiety was developed in search of analogues having good water solubility and high pharmacological activity. This review focuses on the preparation of N-glycosylated amino-ART analogues with their application against cancer. The intrinsic capability of glycosylated ART compounds is to give sugar-- containing substrates, which can bind with lectin galectin-8 receptors on the cancer cells making these compounds more specific in targeting cancer. Various AD mechanism of action against cancer is also explored with clinical trials to facilitate the synthesis of newer derivatives. In the future, the latest nano-techniques can be used to create formulations of such compounds to make them more target-specific in cancer.
Collapse
Affiliation(s)
- Kiran Sharma
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
8
|
Romanelli MN, Braconi L, Gabellini A, Manetti D, Marotta G, Teodori E. Synthetic Approaches to Piperazine-Containing Drugs Approved by FDA in the Period of 2011-2023. Molecules 2023; 29:68. [PMID: 38202651 PMCID: PMC10780301 DOI: 10.3390/molecules29010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The piperazine moiety is often found in drugs or in bioactive molecules. This widespread presence is due to different possible roles depending on the position in the molecule and on the therapeutic class, but it also depends on the chemical reactivity of piperazine-based synthons, which facilitate its insertion into the molecule. In this paper, we take into consideration the piperazine-containing drugs approved by the Food and Drug Administration between January 2011 and June 2023, and the synthetic methodologies used to prepare the compounds in the discovery and process chemistry are reviewed.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Science, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy; (L.B.); (A.G.); (D.M.); (G.M.); (E.T.)
| | | | | | | | | | | |
Collapse
|
9
|
Rayala R, Chaudhari P, Bunnell A, Roberts B, Chakrabarti D, Nefzi A. Parallel Synthesis of Piperazine Tethered Thiazole Compounds with Antiplasmodial Activity. Int J Mol Sci 2023; 24:17414. [PMID: 38139243 PMCID: PMC10743568 DOI: 10.3390/ijms242417414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Thiazole and piperazine are two important heterocyclic rings that play a prominent role in nature and have a broad range of applications in agricultural and medicinal chemistry. Herein, we report the parallel synthesis of a library of diverse piperazine-tethered thiazole compounds. The reaction of piperazine with newly generated 4-chloromethyl-2-amino thiazoles led to the desired piperazine thiazole compounds with high purities and good overall yields. Using a variety of commercially available carboxylic acids, the parallel synthesis of a variety of disubstituted 4-(piperazin-1-ylmethyl)thiazol-2-amine derivatives is described. the screening of the compounds led to the identification of antiplasmodial compounds that exhibited interesting antimalarial activity, primarily against the Plasmodium falciparum chloroquine-resistant Dd2 strain. The hit compound 2291-61 demonstrated an antiplasmodial EC50 of 102 nM in the chloroquine-resistant Dd2 strain and a selectivity of over 140.
Collapse
Affiliation(s)
- Ramanjaneyulu Rayala
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Miami, FL 33199, USA; (R.R.); (P.C.); (A.B.)
| | - Prakash Chaudhari
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Miami, FL 33199, USA; (R.R.); (P.C.); (A.B.)
| | - Ashley Bunnell
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Miami, FL 33199, USA; (R.R.); (P.C.); (A.B.)
| | - Bracken Roberts
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; (B.R.); (D.C.)
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32826, USA; (B.R.); (D.C.)
| | - Adel Nefzi
- Herbert Wertheim College of Medicine, Center for Translational Science, Florida International University, Miami, FL 33199, USA; (R.R.); (P.C.); (A.B.)
| |
Collapse
|
10
|
Li X, Hu Y, He B, Li L, Tian Y, Xiao Y, Shang H, Zou Z. Design, synthesis and evaluation of ursodeoxycholic acid-cinnamic acid hybrids as potential anti-inflammatory agents by inhibiting Akt/NF-κB and MAPK signaling pathways. Eur J Med Chem 2023; 260:115785. [PMID: 37678142 DOI: 10.1016/j.ejmech.2023.115785] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
A series of ursodeoxycholic acid (UDCA)-cinnamic acid hybrids were designed and synthesized. The anti-inflammatory activity of these derivatives was screened through evaluating their inhibitory effects of LPS-induced nitric oxide production in RAW264.7 macrophages. The preliminary structure-activity relationship was concluded. Among them, 2m showed the best inhibitory activity against NO (IC50 = 7.70 μM) with no significant toxicity. Further study revealed that 2m significantly decreased the levels of TNF-α, IL-1β, IL-6 and PGE2, down-regulated the expression of iNOS and COX-2. Preliminary mechanism study indicated that the anti-inflammatory activity of 2m was related to the inhibition of the Akt/NF-κB and MAPK signaling pathway. Furthermore, 2m reduced inflammation by a mouse model of LPS-induced inflammatory disease in vivo. In brief, our findings indicated that 2m might serve as a new lead compound for further development of anti-inflammatory agents.
Collapse
Affiliation(s)
- Xiaoxue Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yue Hu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Bingxin He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yingjie Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Zhongmei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
11
|
Mohan S, Barel LA, Benrahla DE, Do B, Mao Q, Kitagishi H, Rivard M, Motterlini R, Foresti R. Development of carbon monoxide-releasing molecules conjugated to polysaccharides (glyco-CORMs) for delivering CO during obesity. Pharmacol Res 2023; 191:106770. [PMID: 37068532 DOI: 10.1016/j.phrs.2023.106770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
Metal carbonyls have been developed as carbon monoxide-releasing molecules (CO-RMs) to deliver CO for therapeutic purposes. The manganese-based CORM-401 has been recently reported to exert beneficial effects in obese animals by reducing body weight gain, improving glucose metabolism and reprogramming adipose tissue towards a healthy phenotype. Here, we report on the synthesis and characterization of glyco-CORMs, obtained by grafting manganese carbonyls on dextrans (70 and 40kDa), based on the fact that polysaccharides facilitate the targeting of drugs to adipose tissue. We found that glyco-CORMs efficiently deliver CO to cells in vitro with higher CO accumulation in adipocytes compared to other cell types. Oral administration of two selected glyco-CORMs (5b and 6b) resulted in CO accumulation in various organs, including adipose tissue. In addition, glyco-CORM 6b administered for eight weeks elicited anti-obesity and positive metabolic effects in mice fed a high fat diet. Our study highlights the feasibility of creating carriers with multiple functionalized CO-RMs.
Collapse
Affiliation(s)
- Shruti Mohan
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France.
| | | | | | - Bernard Do
- Materials and Health, University Paris-Saclay, 91400 Orsay, France; Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France.
| | - Qiyue Mao
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan.
| | - Michael Rivard
- ICMPE (UMR 7182), CNRS, UPEC, University Paris Est, F-94320 Thiais, France.
| | | | - Roberta Foresti
- University Paris-Est Créteil, INSERM, IMRB, F-94010, Créteil, France.
| |
Collapse
|
12
|
Tarifa L, Pilar Del Río M, Asensio L, López JA, Ciriano MA, Geer AM, Tejel C. Iridium-Catalyzed Regio- and Diastereoselective Synthesis of C-Substituted Piperazines. ACS Catal 2023; 13:3148-3152. [PMID: 36910865 PMCID: PMC9990149 DOI: 10.1021/acscatal.2c05895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/08/2023] [Indexed: 02/18/2023]
Abstract
Piperazine rings are essential motifs frequently found in commercial drugs. However, synthetic methodologies are mainly limited to N-substituted piperazines, preventing structural diversity. Disclosed herein is a straightforward catalytic method for the synthesis of complex C-substituted piperazines based on an uncommon head-to-head coupling of easily prepared imines. This 100% atom-economic process allows the selective formation of a sole diastereoisomer, a broad substrate scope, and a good functional group tolerance employing a bench-stable iridium catalyst under mild reaction conditions. Key to the success is the addition of N-oxides to the reaction mixture, as they notably enhance the catalytic activity and selectivity.
Collapse
Affiliation(s)
- Luis Tarifa
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - M Pilar Del Río
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Laura Asensio
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ana M Geer
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Das A, Choi A, Coldham I. Photocatalysis and Kinetic Resolution by Lithiation to Give Enantioenriched 2-Arylpiperazines. Org Lett 2023; 25:987-991. [PMID: 36735675 PMCID: PMC9942196 DOI: 10.1021/acs.orglett.3c00074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Piperazines are important heterocycles in drug compounds. We report the asymmetric synthesis of arylpiperazines by photocatalytic decarboxylative arylation (metallaphotoredox catalysis) then kinetic resolution using n-BuLi/(+)-sparteine. This gave a range of piperazines with very high enantioselectivities. Further functionalizations gave enantioenriched 2,2-disubstituted piperazines, and either N-substituent can be removed selectively. Late-stage functionalizations of enantioenriched piperazine derivatives were demonstrated, including synthesis of a drug compound with glycogen synthase kinase (GSK)-3β inhibitor activity with potential for treating Alzheimer's disease.
Collapse
|