1
|
Han L, Ren J, Xue Y, Xie G, Gao J, Fu Q, Shao P, Zhu H, Zhang M, Ding F. Palmitoleic acid inhibits Pseudomonas aeruginosa quorum sensing activation and protects lungs from infectious injury. Respir Res 2024; 25:423. [PMID: 39623416 PMCID: PMC11613874 DOI: 10.1186/s12931-024-03035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Unsaturated fatty acids targeting quorum sensing (QS) system have shown potential application in reducing bacterial virulence. We aim to investigate the effect of palmitoleic acid (PMA) on P. aeruginosa QS activation, and its impact on infection-induced lung injury. METHODS The influence of PMA on QS signaling molecule (3OC12-HSL and C4-HSL) concentrations, pyocyanin production, and QS gene transcription levels were examined in wildtype PAO1 culture. The roles of PMA in reducing infection-induced injury were assessed in human bronchial epithelial BEAS-2B cells and mouse lung infection models, respectively. PMA levels and QS signaling molecule concentrations were tested in the bronchoalveolar lavage fluid (BALF) of bronchiectasis patients with first-time detection of P. aeruginosa infection. RESULTS PMA administration dose-dependently suppressed the expression of QS signaling molecules, pyocyanin, and QS genes during the logarithmic stage of bacterial growth. In BEAS-2B cells, PMA-treated PAO1 filtrates significantly reduced cell apoptosis and expression of IL-8 and IL-6. In mouse lung infection models, prophylactically oral administration of PMA significantly downregulated the expression of P. aeruginosa QS signals and QS genes (lasR, rhlR, rhlI, lasB, rhlA, phzA1, phnA) in lungs, and relieved neutrophilic airway inflammation. Finally, PMA levels were negatively correlated with the concentrations of both 3OC12-HSL and C4-HSL in BALF of bronchiectasis patients, and positively correlated with their forced vital capacity (FVC) and forced expiratory volume in the first second (FEV1.0). CONCLUSION Our findings show that PMA inhibits P. aeruginosa QS activation and protects lungs from injury caused by bacterial virulence. Hence, PMA may serve as a potential anti-QS agent against P. aeruginosa infection and would help to alleviate lung injury in bronchiectasis patients.
Collapse
Affiliation(s)
- Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guogang Xie
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Shao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fengming Ding
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Sun J, Tong X, Wang D, Wang L, Zhang S, Liu S, Li X, Jia Q, Chen J, Ma Y, Fan H. Multi-drug resistant Pseudomonas aeruginosa isolation is an independent risk factor for recurrent hemoptysis after bronchial artery embolization in patients with idiopathic bronchiectasis: a retrospective cohort study. Respir Res 2024; 25:385. [PMID: 39462395 PMCID: PMC11514871 DOI: 10.1186/s12931-024-03019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Currently, there is a lack of research on multi-drug resistant Pseudomonas aeruginosa (MDR-PA) isolation in bronchiectasis-related hemoptysis. The aim of this study to analyze the risk factors for recurrent hemoptysis following bronchial artery embolization (BAE) and compare the recurrent hemoptysis-free rates between MDR-PA, non-MDR-PA, and non-PA isolation. METHODS A retrospective study was performed of patients diagnosed with idiopathic bronchiectasis-related recurrent hemoptysis who underwent BAE at an university-affiliated hospital. Patients were categorized based on PA susceptibility tests into non-PA, non-MDR-PA, and MDR-PA groups. Univariate and multivariate Cox regression were conducted to identify independent risk factors for recurrent hemoptysis. The Kaplan-Meier curves was conducted to compare recurrent hemoptysis-free rates after BAE for non-PA, non-MDR-PA, and MDR-PA. RESULTS A total of 432 patients were included. 181 (41.90%) patients experienced recurrent hemoptysis during a median follow-up period of 25 months. MDR-PA isolation (adjusted hazard ratio (aHR) 2.120; 95% confidence interval (CI) [1.249, 3.597], p = 0.005) was identified as an independent risk factor for recurrent hemoptysis. Antibiotic treatment (aHR 0.666; 95% CI [0.476, 0.932], p = 0.018) reduced the risk of recurrent hemoptysis. The cumulative recurrent hemoptysis-free rates for non-PA, non-MDR-PA, and MDR-PA were as follows: at 3 months, 88.96%, 88.24%, and 75.86%, respectively; at 1 year, 73.13%, 69.10%, and 51.72%; and at 3 years, 61.91%, 51.69%, and 41.10% (p = 0.034). CONCLUSION MDR-PA isolation was an independent risk factor of recurrent hemoptysis post-BAE. Reducing the occurrence of MDR-PA may effectively decrease the recurrence rates of hemoptysis.
Collapse
Affiliation(s)
- Jibo Sun
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Xiang Tong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Dongguang Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Lian Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Shijie Zhang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Sitong Liu
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Xiu Li
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Qingqing Jia
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China
| | - Jiehao Chen
- Animal Laboratory Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Ma
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Hong Fan
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Chengdu, 610041, China.
| |
Collapse
|
3
|
Moustafa DA, Fantone KM, Tucker SL, McCarty NA, Stecenko AA, Goldberg JB, Rada B. Flagellum-deficient Pseudomonas aeruginosa is more virulent than non-motile but flagellated mutants in a cystic fibrosis mouse model. Microbiol Spectr 2024; 12:e0132524. [PMID: 39248473 PMCID: PMC11448114 DOI: 10.1128/spectrum.01325-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/25/2024] [Indexed: 09/10/2024] Open
Abstract
Loss of the flagellum marks the pathoadaptation of Pseudomonas aeruginosa to the cystic fibrosis (CF) airway environment during lung disease. Losing the flagellum is advantageous to the bacterium as the flagellum can be recognized by immune cells. The primary purpose of the flagellum is, however, to provide motility to the bacterium. Our goal was to determine whether the loss of flagellar motility or the loss of flagellum expression contributes to P. aeruginosa lung infection in CF. To address this, wild-type and gut-corrected FABP-human cystic fibrosis transmembrane conductance regulator (hCFTR) mice deficient in the murine Cftr gene were infected intratracheally with lethal doses of wild-type or flagellum-deficient P. aeruginosa. While there was no significant difference in the survival of wild-type mice after infection with either of the bacterial strains, a significantly higher mortality was observed in FABP-hCFTR mice infected with flagellum-deficient P. aeruginosa, compared to mice infected with their flagellated counterparts. When FABP-hCFTR mice were infected with isogenic, motility-deficient flagellated mutants, animal survival and lung bacterial titers were similar to those observed in mice infected with the wild-type bacterium. Airway levels of neutrophils and the amount neutrophil elastase were similar in mice infected with either the wild-type bacteria or the flagellum-deficient P. aeruginosa. Our results show that FABP-hCFTR mice have a different response to flagellum loss in P. aeruginosa compared to wild-type animals. The loss of flagellum expression, rather than the loss of motility, is the main driver behind the increased virulence of flagellum-deficient P. aeruginosa in CF. These observations provide new insight into P. aeruginosa virulence in CF.IMPORTANCEPseudomonas aeruginosa, a major respiratory pathogen in cystic fibrosis, is known to lose its flagellum during the course of infection in the airways. Here, we show that the loss of flagellum leads to a more enhanced virulence in Cftr-deficient cystic fibrosis mice than in control animals. Loss of flagellum expression, rather than the loss of flagellar swimming motility, represents the main driver behind this increased virulence suggesting that this appendage plays a specific role in P. aeruginosa virulence in cystic fibrosis airways.
Collapse
Affiliation(s)
- Dina A. Moustafa
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kayla M. Fantone
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, USA
| | - Samantha L. Tucker
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, USA
| | - Nael A. McCarty
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arlene A. Stecenko
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Division of Pulmonology, Asthma, Cystic Fibrosis and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Moon SM, Cho H, Shin B. Exploring the Association of Bacterial Coinfections with Clinical Characteristics of Patients with Nontuberculous Mycobacterial Pulmonary Disease. Tuberc Respir Dis (Seoul) 2024; 87:505-513. [PMID: 39362831 PMCID: PMC11468447 DOI: 10.4046/trd.2024.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/17/2024] [Accepted: 04/24/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Clinical data for bacterial coinfection of the lower respiratory tract in patients with nontuberculous mycobacterial pulmonary disease (NTM-PD) are scarce. This study aims to assess the prevalence of bacterial coinfection and clinical features in NTM-PD patients. METHODS This retrospective study screened 248 patients with NTM-PD who underwent bronchoscopy between July 2020 and July 2022, from whom newly diagnosed NTM-PD patients were analyzed. Bacterial culture using bronchial washing fluid was performed at the time of NTM-PD diagnosis. RESULTS In the 180 patients (median age 65 years; 68% female), Mycobacterium avium complex (86%) was the most frequent NTM isolated. Bacterial coinfections were detected in 80 (44%) patients. Among them, the most common bacterium was Klebsiella pneumoniae (n=25/80, 31.3%), followed by Pseudomonas aeruginosa (n=20/80, 25%) and Staphylococcus aureus (n=20/80, 25%). Compared with NTM-PD patients without bacterial coinfections, patients with bacterial coinfections showed more frequent extensive lung involvement (33% vs. 1%, p<0.001). Additionally, compared with NTM-PD patients without P. aeruginosa infection, those with P. aeruginosa infection were older (74 years vs. 64 years, p=0.001), had more frequent respiratory symptoms (cough/excessive mucus production 70% vs. 38%, p=0.008; dyspnea 30% vs. 13%, p=0.047), and had extensive lung involvement (60% vs. 9%, p<0.001). CONCLUSION Less than half of patients with newly diagnosed NTM-PD had bacterial coinfections, linked to extensive lung involvement. Specifically, P. aeruginosa coinfection was significantly associated with older age, more frequent respiratory symptoms, and extensive lung involvement.
Collapse
Affiliation(s)
- Seong Mi Moon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Hyunkyu Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Beomsu Shin
- Department of Allergy, Pulmonology and Critical Care Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| |
Collapse
|
5
|
Song J, Sin S, Kang HR, Oh YM, Jeong I. Clinical Impacts of Pseudomonas aeruginosa Isolation in Patients with Bronchiectasis: Findings from KMBARC Registry. J Clin Med 2024; 13:5011. [PMID: 39274224 PMCID: PMC11396479 DOI: 10.3390/jcm13175011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background:Pseudomonas aeruginosa isolation in bronchiectasis is associated with a poor prognosis, including increased hospital admissions, exacerbation, and mortality. In this study, we aimed to evaluate the clinical characteristics and outcomes of P. aeruginosa isolation from patients with bronchiectasis in South Korea. Methods: This multicenter prospective cohort study analyzed 936 patients with bronchiectasis. We examined the prevalence of P. aeruginosa isolates and other microbiological characteristics. Additionally, the clinical characteristics related to disease severity and 1-year prognosis were compared between patients with and without P. aeruginosa isolation. Propensity score matching was used to mitigate confounding biases. Results: Of the 936 patients with bronchiectasis, P. aeruginosa was isolated from 89. A total of 445 matched patients-356 patients without (non-Pseudomonas group) and 89 with (Pseudomonas group) P. aeruginosa isolation-were analyzed. The Pseudomonas group showed poorer lung function, greater involvement of radiographic bronchiectasis, and a higher proportion of cystic bronchiectasis than the non-Pseudomonas group. After one year, more patients in the Pseudomonas group were admitted for bronchiectasis than in the non-Pseudomonas group. Moreover, the Bronchiectasis Health Questionnaire scores were significantly lower in the Pseudomonas group than in the non-Pseudomonas group. Conclusions: The isolation of P. aeruginosa was independently associated with increased disease severity and poor clinical outcomes in Korean patients with bronchiectasis.
Collapse
Affiliation(s)
- Jinhwa Song
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Sooim Sin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| | - Hye-Rin Kang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Ina Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul 04564, Republic of Korea
| |
Collapse
|
6
|
Urra G, Valdés-Muñoz E, Suardiaz R, Hernández-Rodríguez EW, Palma JM, Ríos-Rozas SE, Flores-Morales CA, Alegría-Arcos M, Yáñez O, Morales-Quintana L, D’Afonseca V, Bustos D. From Proteome to Potential Drugs: Integration of Subtractive Proteomics and Ensemble Docking for Drug Repurposing against Pseudomonas aeruginosa RND Superfamily Proteins. Int J Mol Sci 2024; 25:8027. [PMID: 39125594 PMCID: PMC11312079 DOI: 10.3390/ijms25158027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to discover therapeutic targets and repurpose commercial existing drugs. Using subtractive proteomics, we refined the dataset to discard redundant proteins and minimize potential cross-interactions with human proteins and the microbiome proteins. We identified 12 key proteins, including a histidine kinase and members of the RND efflux pump family, known for their roles in antibiotic resistance, virulence, and antigenicity. Predictive modeling of the three-dimensional structures of these RND proteins and subsequent molecular ensemble-docking simulations led to the identification of MK-3207, R-428, and Suramin as promising inhibitor candidates. These compounds demonstrated high binding affinities and effective inhibition across multiple metrics. Further refinement using non-covalent interaction index methods provided deeper insights into the electronic effects in protein-ligand interactions, with Suramin exhibiting superior binding energies, suggesting its broad-spectrum inhibitory potential. Our findings confirm the critical role of RND efflux pumps in antibiotic resistance and suggest that MK-3207, R-428, and Suramin could be effectively repurposed to target these proteins. This approach highlights the potential of drug repurposing as a viable strategy to combat P. aeruginosa infections.
Collapse
Affiliation(s)
- Gabriela Urra
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| | - Elizabeth Valdés-Muñoz
- Doctorado en Biotecnología Traslacional, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3480094, Chile;
| | - Reynier Suardiaz
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Erix W. Hernández-Rodríguez
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
- Unidad de Bioinformática Clínica, Centro Oncológico, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile
| | - Jonathan M. Palma
- Facultad de Ingeniería, Universidad de Talca, Curicó 3344158, Chile;
| | - Sofía E. Ríos-Rozas
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| | | | - Melissa Alegría-Arcos
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile; (M.A.-A.); (O.Y.)
| | - Osvaldo Yáñez
- Núcleo de Investigación en Data Science, Facultad de Ingeniería y Negocios, Universidad de las Américas, Santiago 7500000, Chile; (M.A.-A.); (O.Y.)
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Pte. N° 1670, Talca 3467987, Chile;
| | - Vívian D’Afonseca
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Católica del Maule, Ave. San Miguel 3605, Talca 3466706, Chile
| | - Daniel Bustos
- Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3480094, Chile; (G.U.); (E.W.H.-R.); (S.E.R.-R.)
| |
Collapse
|
7
|
Fang J, Xu Y, Lin C, Yang J, Zhai D, Zhuang Q, Qiu W, Wang Y, Zhang L. Increasing serum miR-223-3p indicates the onset, severe development, and adverse prognosis of bronchiectasis: a retrospective study. BMC Pulm Med 2024; 24:354. [PMID: 39039507 PMCID: PMC11264367 DOI: 10.1186/s12890-024-03170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND miR-223-3p has been demonstrated as a Pseudomonas aeruginosa colonization-related miRNA in bronchiectasis (BE), but its clinical value in BE has not been revealed, which is of great significance for the clinical diagnosis and monitoring of BE. This study aimed to identify a reliable biomarker for screening BE and predicting patients' outcomes. METHODS The serum expression of miR-223-3p was compared between healthy individuals (n = 101) and BE patients (n = 133) and evaluated its potential in distinguishing BE patients. The severity of BE patients was estimated by BSI and FACED score, and the correlation of miR-223-3p with inflammation and severity of BE patients was evaluated by Pearson correlation analysis. BE patients were followed up for 3 years, and the predictive value of miR-223-3p in prognosis was assessed by logistic regression analysis. RESULTS Significant upregulation of miR-223-3p was observed in BE patients, which significantly distinguished BE patients and showed positive correlations with C-reactive protein (CRP), procalcitonin (PCT), interleukin 6 (IL-6), and neutrophil-to-lymphocyte ratio (NLR) of BE patients. Additionally, miR-223-3p was also positively correlated with BSI and FACED scores, indicating its correlation with inflammation and severity of BE. BE patients with adverse prognoses showed a higher serum miR-223-3p level, which was identified as an adverse prognostic factor and discriminated patients with different prognoses. CONCLUSION Increasing serum miR-223-3p can be considered a biomarker for the onset, severity, and prognosis of BE.
Collapse
Affiliation(s)
- Jia Fang
- Respiratory Medicine Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China
| | - Yao Xu
- Medical Laboratory Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, China
| | - Chenghui Lin
- Respiratory Medicine Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China
| | - Jiewen Yang
- Department of Emergency, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, China
| | - Dongxu Zhai
- Department of Gastroenterology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, China
| | - Qingyuan Zhuang
- Department of Clinical Pharmacy, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523710, China
| | - Wangli Qiu
- Respiratory Medicine Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China
| | - Yun Wang
- Respiratory Medicine Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China.
| | - Longjuan Zhang
- Department of Ultrasonography, The First Dongguan Affiliated Hospital of Guangdong Medical University, No. 42, Jiaoping Road, Tangxia Town, Dongguan, 523710, China.
| |
Collapse
|
8
|
Zhou Y, He X, Tang J, Zhang D, Liu Y, Xue Y, Jiang N, Zhang J, Wang X. Total sputum nitrate/nitrite is associated with exacerbations and Pseudomonas aeruginosa colonisation in bronchiectasis. ERJ Open Res 2024; 10:01045-2023. [PMID: 39040581 PMCID: PMC11261385 DOI: 10.1183/23120541.01045-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/16/2024] [Indexed: 07/24/2024] Open
Abstract
Background Sputum nitrate/nitrite, which is the main component of reactive nitrogen species, is a potential biomarker of disease severity and progression in bronchiectasis. This study aimed to determine the association between nitrate/nitrite and exacerbations and airway microbiota in bronchiectasis. Methods We measured total nitrate/nitrite concentration in sputum samples collected from 85 patients with stable bronchiectasis, performed 16S ribosomal RNA sequencing of sputum samples and predicted the denitrification ability of airway microbiota using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Relationships between sputum total nitrate/nitrite and disease severity, exacerbations and airway microbiota were examined. Results Higher total sputum nitrate/nitrite was associated with more severe bronchiectasis defined by E-FACED (exacerbation, forced expiratory volume in 1 s, age, chronic colonisation by Pseudomonas aeruginosa, radiological extension and dyspnoea) (p=0.003) or Bronchiectasis Severity Index (p=0.006) and more exacerbations in the prior 12 months (p=0.005). Moreover, total sputum nitrate/nitrite was significantly higher in patients with worse cough score (p=0.03), worse sputum purulence score (p=0.01) and worse Medical Research Council dyspnoea score (p=0.02). In addition, the total sputum nitrate/nitrite of the P. aeruginosa colonised (PA) group was higher than that of the non-P. aeruginosa colonised (NPA) group (p=0.04), and the relative abundance of P. aeruginosa was positively correlated with total nitrate/nitrite (r=0.337, p=0.002). Denitrification module (M00529) was also significantly enriched in the PA group compared to the NPA group through PICRUSt analyses. Using receiver-operating characteristic analysis, total nitrate/nitrite was associated with exacerbations during 1-year follow-up (area under the curve 0.741, p=0.014). Conclusions Sputum nitrate/nitrite is a biomarker of disease severity and associated with P. aeruginosa colonisation in bronchiectasis.
Collapse
Affiliation(s)
- Yaya Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint first authors
| | - Xinliang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint first authors
| | - Jian Tang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongmei Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Liu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu'e Xue
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nanchuan Jiang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianchu Zhang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint senior authors
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint senior authors
| |
Collapse
|
9
|
Aksamit TR, Locantore N, Addrizzo-Harris D, Ali J, Barker A, Basavaraj A, Behrman M, Brunton AE, Chalmers S, Choate R, Dean NC, DiMango A, Fraulino D, Johnson MM, Lapinel NC, Maselli DJ, McShane PJ, Metersky ML, Miller BE, Naureckas ET, O'Donnell AE, Olivier KN, Prusinowski E, Restrepo MI, Richards CJ, Rhyne G, Schmid A, Solomon GM, Tal-Singer R, Thomashow B, Tino G, Tsui K, Varghese SA, Warren HE, Winthrop K, Zha BS. Five-Year Outcomes among U.S. Bronchiectasis and NTM Research Registry Patients. Am J Respir Crit Care Med 2024; 210:108-118. [PMID: 38668710 DOI: 10.1164/rccm.202307-1165oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/24/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Nontuberculous mycobacteria (NTM) are prevalent among patients with bronchiectasis. However, the long-term natural history of patients with NTM and bronchiectasis is not well described. Objectives: To assess the impact of NTM on 5-year clinical outcomes and mortality in patients with bronchiectasis. Methods: Patients in the Bronchiectasis and NTM Research Registry with ⩾5 years of follow-up were eligible. Data were collected for all-cause mortality, lung function, exacerbations, hospitalizations, and disease severity. Outcomes were compared between patients with and without NTM at baseline. Mortality was assessed using Cox proportional hazards models and the log-rank test. Measurements and Main Results: In total, 2,634 patients were included: 1,549 (58.8%) with and 1,085 (41.2%) without NTM at baseline. All-cause mortality (95% confidence interval) at Year 5 was 12.1% (10.5%, 13.7%) overall, 12.6% (10.5%, 14.8%) in patients with NTM, and 11.5% (9.0%, 13.9%) in patients without NTM. Independent predictors of 5-year mortality were baseline FEV1 percent predicted, age, hospitalization within 2 years before baseline, body mass index, and sex (all P < 0.01). The probabilities of acquiring NTM or Pseudomonas aeruginosa were approximately 4% and 3% per year, respectively. Spirometry, exacerbations, and hospitalizations were similar, regardless of NTM status, except that annual exacerbations were lower in patients with NTM (P < 0.05). Conclusions: Outcomes, including exacerbations, hospitalizations, rate of loss of lung function, and mortality rate, were similar across 5 years in patients with bronchiectasis with or without NTM.
Collapse
Affiliation(s)
- Timothy R Aksamit
- COPD Foundation, Washington, District of Columbia
- Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | | - Juzar Ali
- Health Sciences Center, Louisiana State University, New Orleans, Louisiana
| | - Alan Barker
- Division of Pulmonary and Critical Care, School of Medicine, Oregon Health and Science University, Portland, Oregon
| | | | - Megan Behrman
- University of Kansas Medical Center, University of Kansas, Kansas City, Kansas
| | | | - Sarah Chalmers
- Pulmonary Disease and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Radmila Choate
- COPD Foundation, Washington, District of Columbia
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky
| | - Nathan C Dean
- Schmidt Chest Clinic, Intermountain Medical Center, Murray, Utah
| | - Angela DiMango
- Center for Chest Disease, College of Physicians and Surgeons, Columbia University, New York, New York
| | - David Fraulino
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Connecticut, Farmington, Connecticut
| | | | - Nicole C Lapinel
- Section of Pulmonary, Critical Care Medicine, Department of Medicine, Northwell Health, New Hyde Park, New York
| | | | - Pamela J McShane
- Health Science Center, University of Texas at Tyler, Tyler, Texas
| | - Mark L Metersky
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Connecticut, Farmington, Connecticut
| | | | - Edward T Naureckas
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Anne E O'Donnell
- Georgetown University Medical Center, Georgetown University, Washington, District of Columbia
| | - Kenneth N Olivier
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Elly Prusinowski
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | | | - Christopher J Richards
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Gloria Rhyne
- Department of Infectious Disease, Oregon Health and Science University - Portland State University School of Public Health, Oregon Health and Science University School of Medicine, Portland, Oregon; and
| | - Andreas Schmid
- University of Kansas Medical Center, University of Kansas, Kansas City, Kansas
| | - George M Solomon
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Byron Thomashow
- Center for Chest Disease, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Gregory Tino
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kevin Tsui
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Sumith Abraham Varghese
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Heather E Warren
- Division of Pulmonary, Critical Care and Sleep Medicine, School of Medicine, University of Connecticut, Farmington, Connecticut
| | - Kevin Winthrop
- Department of Infectious Disease, Oregon Health and Science University - Portland State University School of Public Health, Oregon Health and Science University School of Medicine, Portland, Oregon; and
| | | |
Collapse
|
10
|
Zhao X, Qin J, Chen G, Yang C, Wei J, Li W, Jia W. Whole-genome sequencing, multilocus sequence typing, and resistance mechanism of the carbapenem-resistant Pseudomonas aeruginosa in China. Microb Pathog 2024; 192:106720. [PMID: 38815778 DOI: 10.1016/j.micpath.2024.106720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Pseudomonas aeruginosa is a significant pathogen responsible for severe multisite infections with high morbidity and mortality rates. This study analyzed carbapenem-resistant Pseudomonas aeruginosa (CRPA) at a tertiary hospital in Shandong, China, using whole-genome sequencing (WGS). The objective was to explore the mechanisms and molecular characteristics of carbapenem resistance. A retrospective analysis of 91 isolates from January 2022 to March 2023 was performed, which included strain identification and antimicrobial susceptibility testing. WGS was utilized to determine the genome sequences of these CRPA strains, and the species were precisely identified using average nucleotide identification (ANI), with further analysis on multilocus sequence typing and strain relatedness. Some strains were found to carry the ampD and oprD genes, while only a few harbored carbapenemase genes or related genes. Notably, all strains possessed the mexA, mexE, and mexX genes. The major lineage identified was ST244, followed by ST235. The study revealed a diverse array of carbapenem resistance mechanisms among hospital isolates, differing from previous studies in mainland China. It highlighted that carbapenem resistance is not due to a single mechanism but rather a combination of enzyme-mediated resistance, AmpC overexpression, OprD dysfunction, and efflux pump overexpression. This research provides valuable insights into the evolutionary mechanisms and molecular features of CRPA resistance in this region, aiding in the national prevention and control of CRPA, and offering references for targeting and developing new drugs.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Jiangnan Qin
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Guang Chen
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Wei
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Wanxiang Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Wei Jia
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong Province, China.
| |
Collapse
|
11
|
Chotirmall SH, Chalmers JD. The Precision Medicine Era of Bronchiectasis. Am J Respir Crit Care Med 2024; 210:24-34. [PMID: 38949497 PMCID: PMC11197062 DOI: 10.1164/rccm.202403-0473pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 07/02/2024] Open
Affiliation(s)
- Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore; and
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom
| |
Collapse
|
12
|
Elbarbary NK, Dandrawy MK, Hadad G, Abdelhaseib M, Osman AAA, Alenazy R, Elbagory I, Abdelmotilib NM, Elnoamany F, Ibrahim GA, Gomaa RA. Bacterial Quality and Molecular Detection of Food Poisoning Virulence Genes Isolated from Nasser Lake Fish, Aswan, Egypt. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6095430. [PMID: 38962099 PMCID: PMC11222005 DOI: 10.1155/2024/6095430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
The microbial analysis of fish is critical for ensuring overall health. Uncooked fish can serve as a conduit for transmitting several types of microbes; the current investigation sought to assess the bacterial levels in various kinds of fish from Nasser Lake, Aswan, Egypt, considered the chief source of potable water in Egypt. Two hundred and fifty fish samples, including 50 of each Oreochromis niloticus, Sander lucioperca, Lates niloticus, Clarias gariepinus, and Mormyrus kannume, from Nasser Lake, Aswan, Egypt, were collected to detect the bacterial load, isolation, and identification of Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio parahaemolyticus and their virulence genes. The findings revealed that Oreochromis niloticus and Clarias gariepinus exhibited higher bacterial loads than other fish species. Incidences of bacterial contamination among examined fishes were 28.8%, 20.4%, and 16% for Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio parahaemolyticus, respectively. Additionally, PCR analysis detected the presence of aerA (60%) and Act (40%) genes in A. hydrophila, rpoB (70%) and LasB (30%) genes in P. aeruginosa, and ToxR (70%) and tdh (50%) genes in V. parahaemolyticus. The study suggested that the bacterial contamination levels in Oreochromis niloticus and Clarias gariepinus could be notably more significant than in other species that could potentially be harmful to the consumers, especially considering the identification of particular bacteria known to cause foodborne illnesses. Further recommendations emphasized that regular monitoring and assessments are required to preserve their quality.
Collapse
Affiliation(s)
- Nady Khairy Elbarbary
- Department of Food Hygiene and ControlFaculty of Veterinary MedicineAswan University, Aswan 81528, Egypt
| | - Mohamed K. Dandrawy
- Department of Food Hygiene and ControlFaculty of Veterinary MedicineSouth Valley University, Qena 83522, Egypt
| | - Ghada Hadad
- Department of Animal Hygiene and ZoonosesFaculty of Veterinary MedicineUniversity of Sadat City, Sadat, Egypt
| | - Maha Abdelhaseib
- Department of Food HygieneSafety and TechnologyFaculty of Veterinary MedicineAssiut University, Assiut 71526, Egypt
| | - Amna A. A. Osman
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesAswan University, Aswan 81528, Egypt
| | - Rawaf Alenazy
- Department of Medical LaboratoryCollege of Applied Medical Sciences-ShaqraShaqra University, Shaqra 11961, Saudi Arabia
| | - Ibrahim Elbagory
- Department of PharmaceuticsFaculty of PharmacyNorthern Border University, Rafhaa 76321, Saudi Arabia
| | - Neveen M. Abdelmotilib
- Department of Food TechnologyArid Lands Cultivation Research Institute (ALCRI)City of Scientific Research and Technological Applications (SRTA-CITY), New Borg El-Arab City 21934, Egypt
| | - Fagelnour Elnoamany
- General Administration for Laboratories AffairsNational Food Safety Authority (NFSA), Cairo, Egypt
| | - Ghada A. Ibrahim
- Department of BacteriologyAgriculture Research Center (ARC)Animal Health Research Institute, Ismailia 41511, Egypt
| | - Reda A. Gomaa
- Department of Food Science and TechnologyFaculty of Agriculture and Natural ResourcesAswan University, Aswan 81528, Egypt
| |
Collapse
|
13
|
Rizk AM, Elsayed MM, Abd El Tawab AA, Elhofy FI, Soliman EA, Kozytska T, Brangsch H, Sprague LD, Neubauer H, Wareth G. Phenotypic and genotypic characterization of resistance and virulence in Pseudomonas aeruginosa isolated from poultry farms in Egypt using whole genome sequencing. Vet Microbiol 2024; 292:110063. [PMID: 38554598 DOI: 10.1016/j.vetmic.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is an ESKAPE pathogen that can quickly develop resistance to most antibiotics. This bacterium is a zoonotic pathogen that can be found in humans, animals, foods, and environmental samples, making it a One-Health concern. P. aeruginosa threatens the poultry industry in Egypt, leading to significant economic losses. However, the investigation of this bacterium using NGS technology is nearly non-existent in Egypt. In this study, 38 isolates obtained from broiler farms of the Delta region were phenotypically investigated, and their genomes were characterized using whole genome sequencing (WGS). The study found that 100% of the isolates were resistant to fosfomycin and harbored the fosA gene. They were also resistant to trimethoprim/sulfamethoxazole, although only one isolate harbored the sul1 gene. Non-susceptibility (resistant, susceptible with increased dose) of colistin was observed in all isolates. WGS analysis revealed a high level of diversity between isolates, and MLST analysis allocated the 38 P. aeruginosa isolates into 11 distinct sequence types. The most predominant sequence type was ST267, found in 13 isolates, followed by ST1395 in 8 isolates. The isolates were susceptible to almost all tested antibiotics carrying only few different antimicrobial resistance (AMR) genes. Various AMR genes that confer resistance mainly to ß-lactam, aminoglycoside, sulfonamide, and phenicol compounds were identified. Additionally, several virulence associated genes were found without any significant differences in number and distribution among isolates. The majority of the virulence genes was identified in almost all isolates. The fact that P. aeruginosa, which harbors several AMR and virulence-associated factors, is present in poultry farms is alarming and threatens public health. The misuse of antimicrobial compounds in poultry farms plays a significant role in resistance development. Thus, increasing awareness and implementing strict veterinary regulations to guide the use of veterinary antibiotics is required to reduce health and environmental risks. Further studies from a One-Health perspective using WGS are necessary to trace the potential transmission routes of resistance between animals and humans and clarify resistance mechanisms.
Collapse
Affiliation(s)
- Amira M Rizk
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Marwa M Elsayed
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Ashraf A Abd El Tawab
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Fatma I Elhofy
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Enas A Soliman
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt
| | - Tamara Kozytska
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany
| | - Hanka Brangsch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany
| | - Lisa D Sprague
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany
| | - Gamal Wareth
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Moshtohor, Egypt; Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena 07743, Germany; Institute of Infectious Diseases and Infection Control, Jena University Hospital, Jena 07747, Germany.
| |
Collapse
|
14
|
Mac Aogáin M, Tiew PY, Jaggi TK, Narayana JK, Singh S, Hansbro PM, Segal LN, Chotirmall SH. Targeting respiratory microbiomes in COPD and bronchiectasis. Expert Rev Respir Med 2024; 18:111-125. [PMID: 38743428 DOI: 10.1080/17476348.2024.2355155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION This review summarizes our current understanding of the respiratory microbiome in COPD and Bronchiectasis. We explore the interplay between microbial communities, host immune responses, disease pathology, and treatment outcomes. AREAS COVERED We detail the dynamics of the airway microbiome, its influence on chronic respiratory diseases, and analytical challenges. Relevant articles from PubMed and Medline (January 2010-March 2024) were retrieved and summarized. We examine clinical correlations of the microbiome in COPD and bronchiectasis, assessing how current therapies impact upon it. The potential of emerging immunotherapies, antiinflammatories and antimicrobial strategies is discussed, with focus on the pivotal role of commensal taxa in maintaining respiratory health and the promising avenue of microbiome remodeling for disease management. EXPERT OPINION Given the heterogeneity in microbiome composition and its pivotal role in disease development and progression, a shift toward microbiome-directed therapeutics is appealing. This transition, from traditional 'pathogencentric' diagnostic and treatment modalities to those acknowledging the microbiome, can be enabled by evolving crossdisciplinary platforms which have the potential to accelerate microbiome-based interventions into routine clinical practice. Bridging the gap between comprehensive microbiome analysis and clinical application, however, remains challenging, necessitating continued innovation in research, diagnostics, trials, and therapeutic development pipelines.
Collapse
Affiliation(s)
- Micheál Mac Aogáin
- Department of Biochemistry, St. James's Hospital, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | | | - Shivani Singh
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, Australia
| | - Leopoldo N Segal
- Division of Pulmonary Critical Care & Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore
| |
Collapse
|
15
|
Alam MA, Mangapuram P, Fredrick FC, Singh B, Singla A, Kumar A, Jain R. Bronchiectasis-COPD Overlap Syndrome: A Comprehensive Review of its Pathophysiology and Potential Cardiovascular Implications. THERAPEUTIC ADVANCES IN PULMONARY AND CRITICAL CARE MEDICINE 2024; 19:29768675241300808. [PMID: 39655338 PMCID: PMC11626662 DOI: 10.1177/29768675241300808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024]
Abstract
Bronchiectasis-Chronic Obstructive Pulmonary Disease Overlap Syndrome (BCOS) is a complex pulmonary condition that merges bronchiectasis and chronic obstructive pulmonary disease (COPD), presenting unique clinical challenges. Patients with BCOS typically exhibit a range of symptoms from both conditions, including a chronic productive cough, reduced lung function, frequent exacerbations, and diminished exercise tolerance. The etiology of BCOS involves multiple factors such as genetic predisposition, respiratory infections, tobacco smoke, air pollutants, and other inflammatory mediators. Accurate diagnosis requires a comprehensive approach, incorporating pulmonary function tests to evaluate airflow limitation, radiographic imaging to identify structural lung abnormalities, and blood eosinophil counts to detect underlying inflammation. Treatment strategies are tailored to individual symptom profiles and severity, potentially including bronchodilators, inhaled corticosteroids, and pulmonary therapy to improve lung function and quality of life. Patients with BCOS are also at an increased risk for cardiovascular complications, such as stroke, ischemic heart disease, and cor pulmonale. Additionally, medications like beta-agonists and muscarinic antagonists used in COPD treatment can further affect cardiac risk by altering heart rate. This paper aims to provide a thorough understanding of BCOS, addressing its development, diagnosis, treatment, and associated cardiovascular complications, to aid healthcare providers in managing this multifaceted condition and improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Bhupinder Singh
- Icahn School of Medicine at Mount Sinai, NYC Health+Hospitals, Queens, NY, USA
| | | | - Avi Kumar
- Department of Pulmonary Medicine, Fortis Escorts Heart Institute, Okhla, Delhi, India
| | - Rohit Jain
- Department of Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
16
|
Cheng M, Chen R, Liao L. T2SS-peptidase XcpA associated with LasR evolutional phenotypic variations provides a fitness advantage to Pseudomonas aeruginosa PAO1. Front Microbiol 2023; 14:1256785. [PMID: 37954251 PMCID: PMC10637944 DOI: 10.3389/fmicb.2023.1256785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa possesses hierarchical quorum sensing (QS) systems. The intricate QS network of P. aeruginosa synchronizes a suite of virulence factors, contributing to the mortality and morbidity linked to the pathogenicity of this bacterium. Previous studies have revealed that variations in the lasR gene are frequently observed in chronic isolates of cystic fibrosis (CF). Specifically, LasRQ45stop was identified as a common variant among CF, lasR mutants during statistical analysis of the clinical lasR mutants in the database. In this study, we introduced LasRQ45stop into the chromosome of P. aeruginosa PAO1 through allelic replacement. The social traits of PAO1 LasRQ45stop were found to be equivalent to those of PAO1 LasR-null isolates. By co-evolving with the wild-type in caseinate broth, elastase-phenotypic-variability variants were derived from the LasRQ45stop subpopulation. Upon further examination of four LasRQ45stop sublines, we determined that the variation of T2SS-peptidase xcpA and mexT genes plays a pivotal role in the divergence of various phenotypes, including public goods elastase secretion and other pathogenicity traits. Furthermore, XcpA mutants demonstrated a fitness advantage compared to parent strains during co-evolution. Numerous phenotypic variations were associated with subline-specific genetic alterations. Collectively, these findings suggest that even within the same parental subline, there is ongoing microevolution of individual mutational trajectory diversity during adaptation.
Collapse
Affiliation(s)
- Mengmeng Cheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ruiyi Chen
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Lisheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Wijit K, Sonthisombat P, Diewsurin J. A score to predict Pseudomonas aeruginosa infection in older patients with community-acquired pneumonia. BMC Infect Dis 2023; 23:700. [PMID: 37858082 PMCID: PMC10585923 DOI: 10.1186/s12879-023-08688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND In Thailand, the incidence of community-acquired pseudomonal pneumonia among 60- to 65-year-olds ranges from 10.90% to 15.51%, with a mortality rate of up to 19.00%. Antipseudomonal agents should be selected as an empirical treatment for elderly patients at high risk for developing this infection. The purpose of this study was to identify risk factors and develop a risk predictor for Pseudomonas aeruginosa infection in older adults with community-acquired pneumonia (CAP). METHODS A retrospective data collection from an electronic database involved the elderly hospitalized patients with P. aeruginosa- and non-P. aeruginosa-causing CAP, admitted between January 1, 2016, and June 30, 2021. Risk factors for P. aeruginosa infection were analysed using logistic regression, and the instrument was developed by scoring each risk factor based on the beta coefficient and evaluating discrimination and calibration using the area under the receiver operating characteristic curve (AuROC) and observed versus predicted probability (E/O) ratio. RESULTS The inclusion criteria were met by 81 and 104 elderly patients diagnosed with CAP caused by P. aeruginosa and non-P. aeruginosa, respectively. Nasogastric (NG) tube feeding (odd ratios; OR = 40.68), bronchiectasis (B) (OR = 4.13), immunocompromised condition (I) (OR = 3.76), and other chronic respiratory illnesses (r) such as atelectasis, pulmonary fibrosis, and lung bleb (OR = 2.61) were the specific risk factors for infection with P. aeruginosa. The "60-B-r-I-NG" risk score was named after the 4 abbreviated risk variables and found to have good predicative capability (AuROC = 0.77) and accuracy comparable to or near true P. aeruginosa infection (E/O = 1). People who scored at least two should receive empirically antipseudomonal medication. CONCLUSIONS NG tube feeding before admission, bronchiectasis, immunocompromisation, atelectasis, pulmonary fibrosis and lung bleb were risk factors for pseudomonal CAP in the elderly. The 60-B-r-I-NG was developed for predicting P. aeruginosa infection with a high degree of accuracy, equal to or comparable to the existing P. aeruginosa infection. Antipseudomonal agents may be started in patients who are at least 60 years old and have a score of at least 2 in order to lower mortality and promote the appropriate use of these medications.
Collapse
Affiliation(s)
- Kingkarn Wijit
- The College of Pharmacotherapy of Thailand, Nonthaburi, Thailand
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Paveena Sonthisombat
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Jaruwan Diewsurin
- Department of Medicine, Buddhachinaraj Hospital, Phitsanulok, Thailand
| |
Collapse
|
18
|
Delgado-Cano D, Clemente A, Adrover-Jaume C, Vaquer A, López M, Martínez R, Roig IM, Iglesias A, Cosío BG, de la Rica R. Facemask analyses for the non-invasive detection of chronic and acute P. aeruginosa lung infections using nanoparticle-based immunoassays. Analyst 2023; 148:4837-4843. [PMID: 37622408 DOI: 10.1039/d3an00979c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a pathogen that persistently colonizes the respiratory tract of patients with chronic lung diseases. The risk of acquiring a chronic P. aeruginosa infection can be minimized by rapidly detecting the pathogen in the patient's airways and promptly administrating adequate antibiotics. However, the rapid detection of P. aeruginosa in the lungs involves the analysis of sputum, which is a highly complex matrix that is not always available. Here, we propose an alternative diagnosis based on analyzing breath aerosols. In this approach, nanoparticle immunosensors identify bacteria adhered to the polypropylene layer of a surgical facemask that was previously worn by the patient. A polypropylene processing protocol was optimized to ensure the efficient capture and analysis of the target pathogen. The proposed analytical platform has a theoretical limit of detection of 105 CFU mL-1 in aerosolized mock samples, and a dynamic range between 105 and 108 CFU mL-1. When tested with facemasks worn by patients, the biosensors were able to detect chronic and acute P. aeruginosa lung infections, and to differentiate them from respiratory infections caused by other pathogens. The results shown here pave the way to diagnose Pseudomonas infections at the bedside, as well as to identify the progress from chronic to acute infection.
Collapse
Affiliation(s)
- David Delgado-Cano
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
| | - Antonio Clemente
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III Madrid, Spain
| | - Cristina Adrover-Jaume
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Andreu Vaquer
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
- Department of Chemistry, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Meritxell López
- Inflamación, Reparación y Cáncer en Enfermedades Respiratorias (i-RESPIRE), Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Rocío Martínez
- Inflamación, Reparación y Cáncer en Enfermedades Respiratorias (i-RESPIRE), Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Isabel M Roig
- Department of Respiratory Medicine, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Amanda Iglesias
- Inflamación, Reparación y Cáncer en Enfermedades Respiratorias (i-RESPIRE), Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Borja G Cosío
- Inflamación, Reparación y Cáncer en Enfermedades Respiratorias (i-RESPIRE), Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Respiratory Medicine, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Roberto de la Rica
- Multidisciplinary Sepsis Group, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain.
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
19
|
Zhou Y, Xu B, Wang L, Zhang C, Li S. Fine Particulate Matter Perturbs the Pulmonary Microbiota in Broiler Chickens. Animals (Basel) 2023; 13:2862. [PMID: 37760262 PMCID: PMC10525718 DOI: 10.3390/ani13182862] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Fine particulate matter (PM2.5) seriously affects the respiratory tract health of both animals and humans. Growing evidence indicates that the pulmonary microbiota is involved in the development of respiratory tract health; however, there is still much that is unknown about the specific changes of pulmonary microbiota caused by PM2.5 in broilers. (2) In this experiment, a total of 48 broilers were randomly divided into a control group and PM-exposure group. The experiment lasted for 21 days. Microbiota, inflammation biomarkers, and histological markers in the lungs were determined. (3) On the last day of the experiment, PM significantly disrupted the structure of lung tissue and induced chronic pulmonary inflammation by increasing IL-6, TNFα, and IFNγ expression and decreasing IL-10 expression. PM exposure significantly altered the α and β diversity of pulmonary microbiota. At the phylum level, PM exposure significantly decreased the Firmicutes abundance and increased the abundance of Actinobacteria and Proteobacteria. At the genus level, PM exposure significantly increased the abundance of Rhodococcus, Achromobacter, Pseudomonas, and Ochrobactrum. We also observed positive associations of the above altered genera with lung TNFα and IFNγ expression. (4) The results suggest that PM perturbs the pulmonary microbiota and induces chronic inflammation, and the pulmonary microbiota possibly contributes to the development of lung inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.Z.); (B.X.); (L.W.); (C.Z.)
| |
Collapse
|
20
|
Wiehlmann L, Klockgether J, Hammerbacher AS, Salunkhe P, Horatzek S, Munder A, Peilert JF, Gulbins E, Eberl L, Tümmler B. A VirB4 ATPase of the mobile accessory genome orchestrates core genome-encoded features of physiology, metabolism, and virulence of Pseudomonas aeruginosa TBCF10839. Front Cell Infect Microbiol 2023; 13:1234420. [PMID: 37577372 PMCID: PMC10413270 DOI: 10.3389/fcimb.2023.1234420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Pseudomonas aeruginosa TBCF10839 is a highly virulent strain that can persist and replicate in human neutrophils. Screening of a signature-tagged mutagenesis (STM) TBCF10839 transposon library in phagocytosis tests identified a mutant that carried the transposon in the VirB4 homolog 5PG21 of an integrative and conjugative element (ICE)-associated type IV secretion system of the pKLC102 subtype. 5P21 TBCF10839 insertion mutants were deficient in metabolic versatility, secretion, quorum sensing, and virulence. The mutants were efficiently killed in phagocytosis tests in vitro and were avirulent in an acute murine airway infection model in vivo. The inactivation of 5PG21 silenced the rhl, las, and pqs operons and the gene expression for the synthesis of hydrogen cyanide, the antimetabolite l-2-amino-4-methoxy-trans-3-butenoic acid, and the H2- and H3-type VI secretion systems and their associated effectors. The mutants were impaired in the utilization of carbon sources and stored compounds that are not funneled into intermediary metabolism. This showcase demonstrates that a single gene of the mobile accessory genome can become an essential element to operate the core genome-encoded features of metabolism and virulence.
Collapse
Affiliation(s)
- Lutz Wiehlmann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Research Core Unit Genomics, Hannover Medical School, Hannover, Germany
| | - Jens Klockgether
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Anna-Silke Hammerbacher
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Prabhakar Salunkhe
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Sonja Horatzek
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Antje Munder
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| | | | - Erich Gulbins
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leo Eberl
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover, Germany
| |
Collapse
|
21
|
Khayat MT, Abbas HA, Ibrahim TS, Elbaramawi SS, Khayyat AN, Alharbi M, Hegazy WAH, Yehia FAZA. Synergistic Benefits: Exploring the Anti-Virulence Effects of Metformin/Vildagliptin Antidiabetic Combination against Pseudomonas aeruginosa via Controlling Quorum Sensing Systems. Biomedicines 2023; 11:biomedicines11051442. [PMID: 37239113 DOI: 10.3390/biomedicines11051442] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
22
|
Rosenboom I, Oguz S, Lüdemann IM, Ringshausen FC, Rademacher J, Sedlacek L, Tümmler B, Cramer N. Pseudomonas aeruginosa population genomics among adults with bronchiectasis across Germany. ERJ Open Res 2023; 9:00156-2023. [PMID: 37377651 PMCID: PMC10291309 DOI: 10.1183/23120541.00156-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 06/29/2023] Open
Abstract
Genome sequencing of 130 Pseudomonas aeruginosa isolates from 110 bronchiectasis patients identified a few dominant clones common in the global bacterial population and numerous rare clones infrequently seen in the environment or other human infections https://bit.ly/3lIfD2X.
Collapse
Affiliation(s)
- Ilona Rosenboom
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Sibel Oguz
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Idalina M. Lüdemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| | - Felix C. Ringshausen
- German Center for Infection Research (DZIF), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), Frankfurt am Main, Germany
| | - Jessica Rademacher
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Ludwig Sedlacek
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| | - Nina Cramer
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Hannover, Germany
| |
Collapse
|
23
|
Investigating the effect of the probiotic Lactobacillus plantarum and the prebiotic fructooligosaccharides on Pseudomonas aeruginosa metabolome, virulence factors and biofilm formation as potential quorum sensing inhibitors. Microb Pathog 2023; 177:106057. [PMID: 36878335 DOI: 10.1016/j.micpath.2023.106057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) uses quorum sensing signaling (QS) molecules to control the expression of virulence factors and biofilm formation. In this study, the effects of the probiotic's (Lactobacillus plantarum (L. plantarum)) lysate and cell-free supernatant and the prebiotic (Fructooligosaccharides (FOS)) on the levels of P. aeruginosa QS molecules, virulence factors, biofilm density and metabolites were observed. These effects were investigated using exofactor assays, crystal violet and liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach. Results showed that in comparison to untreated P. aeruginosa, the L. plantarum cell-free supernatant (5%) and FOS (2%) significantly reduced the levels of the virulence factor pyoverdine (PVD) and several metabolites in the QS pathway including Pseudomonas autoinducer-2 (PAI-2). Metabolomics study revealed that the level of different secondary metabolites involved in the biosynthesis of vitamins, amino acids and the tricarboxylic acid (TCA) cycle were also affected. L. Plantarum was found to have a higher impact on the metabolomics profile of P. aeruginosa and its QS molecules compared to FOS. Lastly, a decrease in the formation of the P. aeruginosa biofilm was observed in a time-dependent pattern upon treatment with either cell-free supernatant of L. plantarum (5%), FOS (2%) or a combination of both treatments (5% + 2%). The latter showed the highest effect with 83% reduction in biofilm density at 72 h incubation. This work highlighted the important role probiotics and prebiotics play as potential QS inhibitors for P. aeruginosa. Moreover, it demonstrated the significant role of LC-MS metabolomics for investigating the altered biochemical and QS pathways in P. aeruginosa.
Collapse
|
24
|
Salvà-Serra F, Jaén-Luchoro D, Marathe NP, Adlerberth I, Moore ERB, Karlsson R. Responses of carbapenemase-producing and non-producing carbapenem-resistant Pseudomonas aeruginosa strains to meropenem revealed by quantitative tandem mass spectrometry proteomics. Front Microbiol 2023; 13:1089140. [PMID: 36845973 PMCID: PMC9948630 DOI: 10.3389/fmicb.2022.1089140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with increasing incidence of multidrug-resistant strains, including resistance to last-resort antibiotics, such as carbapenems. Resistances are often due to complex interplays of natural and acquired resistance mechanisms that are enhanced by its large regulatory network. This study describes the proteomic responses of two carbapenem-resistant P. aeruginosa strains of high-risk clones ST235 and ST395 to subminimal inhibitory concentrations (sub-MICs) of meropenem by identifying differentially regulated proteins and pathways. Strain CCUG 51971 carries a VIM-4 metallo-β-lactamase or 'classical' carbapenemase; strain CCUG 70744 carries no known acquired carbapenem-resistance genes and exhibits 'non-classical' carbapenem-resistance. Strains were cultivated with different sub-MICs of meropenem and analyzed, using quantitative shotgun proteomics based on tandem mass tag (TMT) isobaric labeling, nano-liquid chromatography tandem-mass spectrometry and complete genome sequences. Exposure of strains to sub-MICs of meropenem resulted in hundreds of differentially regulated proteins, including β-lactamases, proteins associated with transport, peptidoglycan metabolism, cell wall organization, and regulatory proteins. Strain CCUG 51971 showed upregulation of intrinsic β-lactamases and VIM-4 carbapenemase, while CCUG 70744 exhibited a combination of upregulated intrinsic β-lactamases, efflux pumps, penicillin-binding proteins and downregulation of porins. All components of the H1 type VI secretion system were upregulated in strain CCUG 51971. Multiple metabolic pathways were affected in both strains. Sub-MICs of meropenem cause marked changes in the proteomes of carbapenem-resistant strains of P. aeruginosa exhibiting different resistance mechanisms, involving a wide range of proteins, many uncharacterized, which might play a role in the susceptibility of P. aeruginosa to meropenem.
Collapse
Affiliation(s)
- Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain,*Correspondence: Francisco Salvà-Serra, ✉
| | - Daniel Jaén-Luchoro
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | | | - Ingegerd Adlerberth
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R. B. Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Culture Collection University of Gothenburg (CCUG), Department of Clinical Microbiology, Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Roger Karlsson
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden,Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden,Nanoxis Consulting AB, Gothenburg, Sweden,Roger Karlsson, ✉
| |
Collapse
|
25
|
Everett MJ, Davies DT, Leiris S, Sprynski N, Llanos A, Castandet J, Lozano C, LaRock CN, LaRock DL, Corsica G, Docquier JD, Pallin TD, Cridland A, Blench T, Zalacain M, Lemonnier M. Chemical Optimization of Selective Pseudomonas aeruginosa LasB Elastase Inhibitors and Their Impact on LasB-Mediated Activation of IL-1β in Cellular and Animal Infection Models. ACS Infect Dis 2023; 9:270-282. [PMID: 36669138 PMCID: PMC9926489 DOI: 10.1021/acsinfecdis.2c00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LasB elastase is a broad-spectrum exoprotease and a key virulence factor of Pseudomonas aeruginosa, a major pathogen causing lung damage and inflammation in acute and chronic respiratory infections. Here, we describe the chemical optimization of specific LasB inhibitors with druglike properties and investigate their impact in cellular and animal models of P. aeruginosa infection. Competitive inhibition of LasB was demonstrated through structural and kinetic studies. In vitro LasB inhibition was confirmed with respect to several host target proteins, namely, elastin, IgG, and pro-IL-1β. Furthermore, inhibition of LasB-mediated IL-1β activation was demonstrated in macrophage and mouse lung infection models. In mice, intravenous administration of inhibitors also resulted in reduced bacterial numbers at 24 h. These highly potent, selective, and soluble LasB inhibitors constitute valuable tools to study the proinflammatory impact of LasB in P. aeruginosa infections and, most importantly, show clear potential for the clinical development of a novel therapy for life-threatening respiratory infections caused by this opportunistic pathogen.
Collapse
Affiliation(s)
- Martin J. Everett
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France,
| | - David T. Davies
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Simon Leiris
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Nicolas Sprynski
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Agustina Llanos
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | | | - Clarisse Lozano
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Christopher N. LaRock
- Department
of Microbiology and Immunology, Rollins
Research Center, 1510
Clifton Rd, Atlanta, Georgia 30322, United States
| | - Doris L. LaRock
- Department
of Microbiology and Immunology, Rollins
Research Center, 1510
Clifton Rd, Atlanta, Georgia 30322, United States
| | - Giuseppina Corsica
- Dipartimento
di Biotecnologie Mediche, Università
degli Studi di Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Jean-Denis Docquier
- Dipartimento
di Biotecnologie Mediche, Università
degli Studi di Siena, Viale Bracci 16, 53100 Siena, Italy,Centre
d’Ingénierie des Protéines - InBioS, University of Liège, Allée du six Août 11, 4000 Liège, Belgium
| | - Thomas D. Pallin
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Andrew Cridland
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Toby Blench
- Charles
River Laboratories, 8-9 The Spire Green Centre, Harlow, Essex CM19 5TR, U.K.
| | - Magdalena Zalacain
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| | - Marc Lemonnier
- Antabio
SAS, Biostep, 436 rue Pierre et Marie Curie, 31670 Labège, France
| |
Collapse
|
26
|
A truncated mutation of MucA in Pseudomonas aeruginosa from a bronchiectasis patient affects T3SS expression and inflammasome activation. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1740-1747. [PMID: 36604139 PMCID: PMC9828237 DOI: 10.3724/abbs.2022169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic airway infection in bronchiectasis patients and is closely associated with poor prognosis. Strains isolated from chronically infected patients typically have a mucoid phenotype due to the overproduction of alginate. In this study, we isolate a P. aeruginosa strain from the sputum of a patient with bronchiectasis and find that a truncated mutation occurred in mucA, which is named mucA117. mucA117 causes the strain to transform into a mucoid phenotype, downregulates the expression of T3SS and inflammasome ligands such as fliC and allows it to avoid inflammasome activation. The truncated mutation of the MucA protein may help P. aeruginosa escape clearance by the immune system, enabling long-term colonization.
Collapse
|
27
|
Liu Y, Xie YZ, Shi YH, Yang L, Chen XY, Wang LW, Qu JM, Weng D, Wang XJ, Liu HP, Ge BX, Xu JF. Airway acidification impaired host defense against Pseudomonas aeruginosa infection by promoting type 1 interferon β response. Emerg Microbes Infect 2022; 11:2132-2146. [PMID: 35930458 PMCID: PMC9487950 DOI: 10.1080/22221751.2022.2110524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Airway microenvironment played an important role in the progression of chronic respiratory disease. Here we showed that standardized pondus hydrogenii (pH) of exhaled breath condensate (EBC) of bronchiectasis patients was significantly lower than that of controls and was significantly correlated with bronchiectasis severity index (BSI) scores and disease prognosis. EBC pH was lower in severe patients than that in mild and moderate patients. Besides, acidic microenvironment deteriorated Pseudomonas aeruginosa (P. aeruginosa) pulmonary infection in mice models. Mechanistically, acidic microenvironment increased P. aeruginosa outer membrane vesicles (PA_OMVs) released and boosted it induced the activation of interferon regulatory factor3 (IRF3)-interferonβ (IFN-β) signalling pathway, ultimately compromised the anti-bacteria immunity. Targeted knockout of IRF3 or type 1 interferon receptor (IFNAR1) alleviated lung damage and lethality of mice after P. aeruginosa infection that aggravated by acidic microenvironment. Together, these findings identified airway acidification impaired host resistance to P. aeruginosa infection by enhancing it induced the activation of IRF3-IFN-β signalling pathway. Standardized EBC pH may be a useful biomarker of disease severity and a potential therapeutic target for the refractory P. aeruginosa infection. The study also provided one more reference parameter for drug selection and new drug discovery for bronchiectasis.
Collapse
Affiliation(s)
- Yang Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.,Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ying-Zhou Xie
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.,Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yi-Han Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.,Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ling Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.,Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiao-Yang Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospitial of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Fujian 362000, China
| | - Ling-Wei Wang
- Department of Respiratory Diseases and Critic Care Unit, Shenzhen Institute of Respiratory Disease, Shenzhen Key Laboratory of Respiratory Disease, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Jie-Ming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Dong Weng
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.,Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiao-Jian Wang
- Institute of Immunology and Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang 310003, China
| | - Hai-Peng Liu
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Bao-Xue Ge
- Clinical and Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200092, China.,Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
28
|
García Clemente M, Olveira C, Girón R, Máiz L, Sibila O, Golpe R, Menéndez R, Rodríguez J, Barreiro E, Rodríguez Hermosa JL, Prados C, De la Rosa D, Carbajal CM, Solís M, Martínez-García MÁ. Impact of Chronic Bronchial Infection by Staphylococcus aureus on Bronchiectasis. J Clin Med 2022; 11:3960. [PMID: 35887723 PMCID: PMC9319377 DOI: 10.3390/jcm11143960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
The objective of the study was to analyze the factors associated with chronic bronchial infection (CBI) due to methicillin-susceptible Staphylococcus aureus (SA) and assess the clinical impact on severity, exacerbations, hospitalizations, and loss of lung function compared to patients with no isolation of PPMs in a large longitudinal series of patients from the Spanish bronchiectasis registry (RIBRON). Material and methods: A prospective, longitudinal, multicenter study was conducted with patients included in the RIBRON registry between January 2015 and October 2020. The inclusion criteria were an age of 18 years or older and an initial diagnosis of bronchiectasis. Patients recorded in the registry had a situation of clinical stability in the absence of an exacerbation in the four weeks before their inclusion. All patients were encouraged to provide a sputum sample at each visit for microbiological culture. Annual pulmonary function tests were performed according to the national spirometry guidelines. Results: A total of 426 patients were ultimately included in the study: 77 patients (18%) with CBI due to SA and 349 (82%) who did not present any isolation of PPMs in sputum. The mean age was 66.9 years (16.2), and patients 297 (69.7%) were female, with an average BMI of 25.1 (4.7) kg/m2 and an average Charlson index of 1.74 (1.33). The mean baseline value of FEV1 2 L was 0.76, with a mean FEV1% of 78.8% (23.1). One hundred and seventy-two patients (40.4%) had airflow obstruction with FEV1/FVC < 0.7. The mean predictive FACED score was 1.62 (1.41), with a mean value of 2.62 (2.07) for the EFACED score and 7.3 (4.5) for the BSI score. Patients with CBI caused by SA were younger (p < 0.0001), and they had a lower BMI (p = 0.024) and more exacerbations in the previous year (p = 0.019), as well as in the first, second, and third years of follow-up (p = 0.020, p = 0.001, and p = 0.018, respectively). As regards lung function, patients with CBI due to SA had lower levels of FEV1% at the time of inclusion in the registry (p = 0.021), and they presented more frequently with bronchial obstruction (p = 0.042). A lower age (OR: 0.97; 95% CI: 0.94−0.99; p < 0.001), lower FEV1 value% (OR: 0.98; 95% CI: 0.97−0.99; p = 0.035), higher number of affected lobes (OR: 1.53; 95% CI: 1.2−1.95; p < 0.001), and the presence of two or more exacerbations in the previous year (OR: 2.33; 95% CI: 1.15−4.69; p = 0.018) were observed as independent factors associated with CBI due to SA. The reduction in FEv1% in all patients included in the study was −0.31%/year (95% CI: −0.7; −0.07) (p = 0.110). When the reduction in FEv1% is analyzed in the group of patients with CBI due to SA and the group without pathogens, we observed that the reduction in FEV1% was −1.19% (95% CI: −2.09, −0.69) (p < 0.001) in the first group and −0.02% (95% CI: −0.07, −0.01) (p = 0.918) in the second group. According to a linear regression model (mixed effects) applied to determine which factors were associated with a more pronounced reduction in FEv1% in the overall group (including those with CBI due to SA and those with no PPM isolation), age (p = 0.0019), use of inhaled corticosteroids (p = 0.004), presence of CBI due to SA (p = 0.007), female gender (p < 0.001), and the initial value of FEV1 (p < 0.001) were significantly related. Conclusions: Patients with non-CF bronchiectasis with CBI due to SA were younger, with lower FEV1% values, more significant extension of bronchiectasis, and a higher number of exacerbations of mild to moderate symptoms than those with no PPM isolation in respiratory secretions. The reduction in FEV1% was −1.19% (95% CI: −2.09, −0.69) (p < 0.001) in patients with CBI caused by SA.
Collapse
Affiliation(s)
- Marta García Clemente
- Respiratory Department, Central University Hospital, 33011 Oviedo, Spain;
- Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Casilda Olveira
- Respiratory Department, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29003 Málaga, Spain
| | - Rosa Girón
- Respiratory Department, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28015 Madrid, Spain; (R.G.); (M.S.)
| | - Luis Máiz
- Respiratory Department, Hospital Ramón y Cajal, 28015 Madrid, Spain;
| | - Oriol Sibila
- Respiratory Department, Hospital Clinic, 08035 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28015 Madrid, Spain;
| | - Rafael Golpe
- Respiratory Department, Hospital Lucus Augusti, 27080 Lugo, Spain;
| | - Rosario Menéndez
- Respiratory Department, Hospital Universitario y Politécnico La Fe, 46003 Valencia, Spain;
| | - Juan Rodríguez
- Respiratory Department, Hospital San Agustín, 33401 Avilés, Spain;
| | - Esther Barreiro
- Respiratory Department, Hospital del Mar-IMIM, Parc de Salut Mar, 08003 Barcelona, Spain;
| | - Juan Luis Rodríguez Hermosa
- Pulmonary Department, Research Institute of Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Respiratory Department, Hospital Clinico San Carlos, 28015 Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, 28015 Madrid, Spain
| | | | - David De la Rosa
- Respiratory Department, Hospital Santa Creu I Sant Pau, 08041 Barcelona, Spain;
| | | | - Marta Solís
- Respiratory Department, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28015 Madrid, Spain; (R.G.); (M.S.)
| | - Miguel Ángel Martínez-García
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28015 Madrid, Spain;
- Respiratory Department, Hospital Universitario y Politécnico La Fe, 46003 Valencia, Spain;
| |
Collapse
|
29
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 363] [Impact Index Per Article: 181.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
30
|
Ren J, Ding Y, Zhao J, Sun Y. Bronchiectasis in patients with antineutrophil cytoplasmic antibody-associated vasculitis: a case control study on clinical features and prognosis. Expert Rev Respir Med 2022; 16:697-705. [PMID: 35687867 DOI: 10.1080/17476348.2022.2088512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Bronchiectasis was reported in 2%-40% of patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV), but there were no studies on the prevalence, risk factors and impact of AAV-associated bronchiectasis in Chinese patients. RESEARCH DESIGN AND METHODS AAV patients were retrospectively enrolled. The clinical, laboratory and imaging features and the prognosis were analyzed and compared between those with and without bronchiectasis. RESULTS Bronchiectasis was present in 48/212 (22.6%) of our AAV patients, among whom 41 were confirmed in 210 patients (19.5%) who received chest HRCT at the initial diagnosis of AAV. There were more women and fewer smokers in those with bronchiectasis as compared to those without. Cases with positive anti-MPO were more likely to have bronchiectasis (26.2%), and those with bronchiectasis were more likely to be anti-MPO positive (93.8%). Patients who had a diagnosis of bronchiectasis before AAV were more likely to have nervous system involvement, while patients without bronchiectasis had higher 24h proteinuria. The presence of bronchiectasis showed no significant effect on the 1, 3, 5-year survival. CONCLUSIONS Nearly 20% of patients showed bronchiectasis on chest HRCT at the initial diagnosis of AAV, and positivity of anti-MPO was associated with bronchiectasis in a Chinese cohort of AAV patients.
Collapse
Affiliation(s)
- Jiaqi Ren
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, Haidian, China
| | - Yanling Ding
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, Haidian, China
| | - Jinxia Zhao
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, Haidian, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, Haidian, China
| |
Collapse
|