1
|
Takayama A, Yoshida S, Kawakami K. Tadalafil use is associated with a lower incidence of Type 2 diabetes in men with benign prostatic hyperplasia: A population-based cohort study. J Intern Med 2024; 296:422-434. [PMID: 39287476 DOI: 10.1111/joim.20012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND Tadalafil, commonly prescribed for benign prostatic hyperplasia (BPH), may benefit patients with Type 2 diabetes mellitus (T2DM) for glycemic markers and complications. However, the association between the long-term use of tadalafil and the incidence of T2DM has not been investigated. METHODS We emulated a target trial of tadalafil use (5 mg/day) and the risk of T2DM using a population-based claims database in Japan. Patients who initiated tadalafil or alpha-blockers for BPH and had no history of diabetes diagnosis, no dispensing of glucose-lowering drugs, and no history of hemoglobin A1c levels of ≥6.5% (47-48 mmol/mol) were included. The primary outcome was the incidence of T2DM. Pooled logistic regression was used to estimate adjusted risk ratios (RRs) and 5-year cumulative incidence differences (CIDs). RESULTS A total of 5180 participants initiated tadalafil treatment and were compared with 20,049 patients who initiated alpha-blockers. The median follow-up time for each arm was 27.2 months (interquartile range [IQR], 12.0-47.9) in tadalafil users and 31.3 months (IQR, 13.7-57.2) in alpha-blocker users. The incidence rates of T2DM in tadalafil and alpha-blocker users were 5.4 (95% confidence interval [CI], 4.0-7.2) and 8.8 (95% CI, 7.8-9.8) per 1000-person years, respectively. Initiation of tadalafil was associated with a reduced risk of T2DM (RR, 0.47; 95% CI, 0.39-0.62; 5-year CID, -0.031; 95% CI, -0.040 to -0.019). CONCLUSION The incidence of T2DM was lower in men with BPH treated with tadalafil than in those treated with alpha-blockers. Thus, tadalafil may be more beneficial than alpha-blockers in preventing T2DM.
Collapse
Affiliation(s)
- Atsushi Takayama
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Satomi Yoshida
- Department of Clinical Medicine, Division of Social Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| |
Collapse
|
2
|
Cannarella R, Condorelli RA, Leanza C, Garofalo V, Aversa A, Papa G, Calogero AE, La Vignera S. Dapagliflozin improves erectile dysfunction in patients with type 2 diabetes mellitus: An open-label, non-randomized pilot study. Diabet Med 2024; 41:e15217. [PMID: 37669131 DOI: 10.1111/dme.15217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
INTRODUCTION The role of dapagliflozin on erectile dysfunction (ED), a condition widely affecting patients with type 2 diabetes mellitus (T2DM), has not yet been studied. AIM The aim of the study was to evaluate the effects of dapagliflozin alone or in combination with tadalafil on ED in patients with T2DM. METHODS This was an open-label, non-randomized pilot study involving 30 Caucasian male patients with T2DM and severe ED. They were equally divided into three groups, assigned to treatment with tadalafil 5 mg/day (Group 1), tadalafil 5 mg/day plus dapagliflozin 10 mg/day (Group 2) and dapagliflozin 10 mg/day (Group 3) for 3 months. The presence and the severity of ED were evaluated at enrolment and after treatment, by the International Index of Erectile Function 5-item (IIEF-5) questionnaire and the dynamic penile echo colour Doppler ultrasound (PCDU) examination. RESULTS At the end of treatment, the three groups showed a significant improvement in IIEF-5 score, by 294%, 375% and 197%, in Groups 1, 2 and 3, respectively. PCDU evaluation showed a significant increase in peak systolic velocity by 178.9%, 339% and 153%; acceleration time was significantly shortened in Group 2 (-26.2%) and was significantly lower than in Group 1 and 3 (-7.2% and -6.6%), while no significant difference was found in end-diastolic velocity after treatment. The greatest rates of improvement were observed in Group 2 for all the end points. CONCLUSIONS Dapagliflozin improves ED in patients with T2DM and enhances the efficacy of tadalafil. Further studies are needed to confirm our results explain the mechanism(s) by which dapagliflozin exerts its effects on ED.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Claudia Leanza
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Garofalo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Antonio Aversa
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giuseppe Papa
- Unit of Metabolic and Endocrine Disease, Centro Catanese di Medicina e Chirurgia Clinic, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Zhang X, Ha S, Lau HCH, Yu J. Excess body weight: Novel insights into its roles in obesity comorbidities. Semin Cancer Biol 2023; 92:16-27. [PMID: 36965839 DOI: 10.1016/j.semcancer.2023.03.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Excess body weight is a global health problem due to sedentary lifestyle and unhealthy diet, affecting 2 billion population worldwide. Obesity is a major risk factor for metabolic diseases. Notably, the metabolic risk of obesity largely depends on body weight distribution, of which visceral adipose tissues but not subcutaneous fats are closely associated with obesity comorbidities, including type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and certain types of cancer. Latest multi-omics and mechanistical studies reported the crucial involvement of genetic and epigenetic alterations, adipokines dysregulation, immunity changes, imbalance of white and brown adipose tissues, and gut microbial dysbiosis in mediating the pathogenic association between visceral adipose tissues and comorbidities. In this review, we explore the epidemiology of excess body weight and the up-to-date mechanism of how excess body weight and obesity lead to chronic complications. We also examine the utilization of visceral fat measurement as an accurate clinical parameter for risk assessment in healthy individuals and clinical outcome prediction in obese subjects. In addition, current approaches for the prevention and treatment of excess body weight and its related metabolic comorbidities are further discussed. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Suki Ha
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
4
|
Swiecicka A. The efficacy of PDE5 inhibitors in diabetic patients. Andrology 2023; 11:245-256. [PMID: 36367281 PMCID: PMC10107754 DOI: 10.1111/andr.13328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Phosphodiesterase 5 inhibitors (PDE5i), since their introduction in the late 1990s, have proven their efficacy in treating several conditions, predominantly pulmonary hypertension and erectile dysfunction where they remain the first-line therapeutic option. However, in the recent years, growing evidence from both animal and human studies has emerged to suggest the additional benefits of PDE5i in cardiovascular and metabolic disorders. This is of specific interest to the diabetes population where prevalent cardiovascular disease and metabolic dysregulation significantly contribute to the increased morbidity and mortality. OBJECTIVES To examine the available data on the non-standard, pleiotropic effects of PDE5i in patients with diabetes mellitus. MATERIALS AND METHODS The review of the published background research, preclinical studies and clinical trials. RESULTS In human studies, PDE5 inhibition appeared to be associated with reduced cardiovascular mortality and overall improved clinical outcomes in those with established cardiovascular disease. PDE5i were also consistently found to reduce albuminuria in subjects with diabetic nephropathy. Furthermore, animal data suggest a plausible effect of this group of medication on sensory function and neuropathic symptoms in diabetic neuropathy as well as improved wound healing. A decrease in insulin resistance and augmentation of beta cell function seen in preclinical studies has not been consistently demonstrated in human trials. DISCUSSION AND CONCLUSION In animal models, PDE5 inhibition appears to decrease oxidative stress and reduce some of the micro- and macrovascular complications associated with diabetes. However, data from human trials are limited and largely inconsistent, highlighting the need for adequately powered, randomised-controlled trials in diabetic cohorts in order to fully assess the benefits of PDE5i in this group of patients.
Collapse
Affiliation(s)
- Agnieszka Swiecicka
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
5
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Garcia-Oropesa EM, Martinez-Lopez YE, Ruiz-Cejudo SM, Martínez-Ezquerro JD, Diaz-Badillo A, Ramirez-Pfeiffer C, Bustamante-Fuentes A, Lopez-Sosa EB, Moctezuma-Chavez OO, Nava-Gonzalez EJ, Perales-Torres AL, Perez-Navarro LM, Rosas-Diaz M, Carter K, Tapia B, Lopez-Alvarenga JC. Looking for Crumbs in the Obesity Forest: Anti-obesity Interventions and Obesity-Associated Cardiometabolic Traits in the Mexican Population. History and Systematic Review With Meta-Analyses. Front Med (Lausanne) 2021; 8:665023. [PMID: 34805192 PMCID: PMC8595206 DOI: 10.3389/fmed.2021.665023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022] Open
Abstract
Mexicans and Mexican Americans share culture, genetic background, and predisposition for chronic complications associated with obesity and diabetes making imperative efficacious treatments and prevention. Obesity has been treated for centuries focused-on weight loss while other treatments on associated conditions like gout, diabetes (T2D), and hypertriglyceridemia. To date, there is no systematic review that synthesizes the origin of obesity clinics in Mexico and the efforts to investigate treatments for obesity tested by randomized clinical trials (RCT). We conducted systematic searches in Pubmed, Scopus, and Web of Science to retrieve anti-obesity RCT through 2019 and without an inferior temporal limit. The systematic review included RCT of anti-obesity treatments in the Mexican adult population, covering alternative medicine, pharmacological, nutritional, behavioral, and surgical interventions reporting metabolism-associated traits such as BMI, weight, waist circumference, triglycerides, glucose, among others. Only the studies with at least 3 months of treatment were included in the meta-analyses in order to reduce placebo effects. We found 634 entries, after removal of duplicates and screening the studies based on eligibility criteria, we analyzed 43 national, and 2 multinational-collaborative studies. Most of the national studies had small sample sizes, and the implemented strategies do not have replications in the population. The nutrition/behavioral interventions were difficult to blind, and most studies have medium-to-high risk of bias. Nutritional/behavioral interventions and medications showed effects on BMI, waist circumference, and blood pressure. Simple measures like pure water instead of sweet beverages decrease triglycerides and systolic blood pressure. Dark chocolate showed the highest effect for BMI and high blood pressure, and treatment with insulin increased weight in those with T2D. The study of obesity in Mexico has been on-going for more than four decades, the interest on RCT just increased until this millennium, but with small sample sizes and lack of replication. The interventions affect different cardiometabolic associated traits, which should be analyzed in detail in the population living near the Mexico-U.S. border; therefore, bi-national collaboration is desirable to disentangle the cultural effects on this population's treatment response. Systematic Review Registration:https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020221436, identifier: CRD42020221436.
Collapse
Affiliation(s)
- Esperanza M Garcia-Oropesa
- Laboratorio de Biología Molecular, Unidad Académica Multidisciplinaria Reynosa Aztlán (UAMRA), Universidad Autónoma de Tamaulipas, Reynosa, Mexico
| | - Yoscelina E Martinez-Lopez
- Programa de Doctorado en Ciencias Médicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Sonia María Ruiz-Cejudo
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento (UIESSAE), Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico.,Programa de Maestría y Doctorado en Música, Cognición Musical, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - José Darío Martínez-Ezquerro
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área Envejecimiento (UIESSAE), Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico.,Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Alvaro Diaz-Badillo
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States.,Programa de Maestría en Salud Pública, Universidad México-Americana del Norte (UMAN), Reynosa, Mexico
| | - Carlos Ramirez-Pfeiffer
- Programa de Maestría en Salud Pública, Universidad México-Americana del Norte (UMAN), Reynosa, Mexico
| | | | | | | | - Edna J Nava-Gonzalez
- Facultad de Salud Pública y Nutrición, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Adriana L Perales-Torres
- Laboratorio de Bromatología, Unidad Académica Multidisciplinaria Reynosa Aztlán (UAMRA), Universidad Autónoma de Tamaulipas Reynosa-Aztlán, Reynosa, Mexico
| | - Lucia M Perez-Navarro
- Servicio de Nefrología, Dirección de Investigación, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - Marisol Rosas-Diaz
- Laboratorio de Biología Molecular, Unidad Académica Multidisciplinaria Reynosa Aztlán (UAMRA), Universidad Autónoma de Tamaulipas, Reynosa, Mexico
| | - Kathleen Carter
- Research and Education Library of the School of Medicine, Education & Academic Affairs, University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Beatriz Tapia
- Office of Faculty Affairs and Department of Pediatrics, School of Medicine, The University of Texas Rio Grande Valley, Harlingen, TX, United States
| | - Juan C Lopez-Alvarenga
- Department of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States.,Programa de Maestría en Salud Pública, Universidad México-Americana del Norte (UMAN), Reynosa, Mexico
| |
Collapse
|
7
|
Campolo F, Pofi R, Venneri MA, Isidori AM. Priming metabolism with the type 5 phosphodiesterase: the role of cGMP-hydrolyzing enzymes. Curr Opin Pharmacol 2021; 60:298-305. [PMID: 34507030 DOI: 10.1016/j.coph.2021.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) signaling system is one of the most prominent regulators of many physiopathological processes in humans and rodents. It has been strongly established as an accomplished cellular signal involved in the regulation of energy homeostasis and cell metabolism, and pharmacological enhancement of cGMP has shown beneficial effects in metabolic disorders models. cGMP intracellular levels are finely regulated by phosphodiesterases (PDEs). The main enzyme responsible for the degradation of cGMP is PDE5. Preclinical and clinical studies have shown that PDE5 inhibitors (PDE5i) have beneficial effects on improving insulin resistance and glucose metabolism representing a promising therapeutic strategy for the treatment of metabolic disorders. This review aims to describe the molecular basis underlying the use of PDE5i to prompt cell metabolism and summarize current clinical trials assessing the effects of PDE5i on glucose metabolism.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Riccardo Pofi
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
8
|
Kilanowska A, Ziółkowska A. Role of Phosphodiesterase in the Biology and Pathology of Diabetes. Int J Mol Sci 2020; 21:E8244. [PMID: 33153226 PMCID: PMC7662747 DOI: 10.3390/ijms21218244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Glucose metabolism is the initiator of a large number of molecular secretory processes in β cells. Cyclic nucleotides as a second messenger are the main physiological regulators of these processes and are functionally divided into compartments in pancreatic cells. Their intracellular concentration is limited by hydrolysis led by one or more phosphodiesterase (PDE) isoenzymes. Literature data confirmed multiple expressions of PDEs subtypes, but the specific roles of each in pancreatic β-cell function, particularly in humans, are still unclear. Isoforms present in the pancreas are also found in various tissues of the body. Normoglycemia and its strict control are supported by the appropriate release of insulin from the pancreas and the action of insulin in peripheral tissues, including processes related to homeostasis, the regulation of which is based on the PDE- cyclic AMP (cAMP) signaling pathway. The challenge in developing a therapeutic solution based on GSIS (glucose-stimulated insulin secretion) enhancers targeted at PDEs is the selective inhibition of their activity only within β cells. Undeniably, PDEs inhibitors have therapeutic potential, but some of them are burdened with certain adverse effects. Therefore, the chance to use knowledge in this field for diabetes treatment has been postulated for a long time.
Collapse
Affiliation(s)
| | - Agnieszka Ziółkowska
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28, 65-046 Zielona Gora, Poland;
| |
Collapse
|
9
|
Baillie GS, Tejeda GS, Kelly MP. Therapeutic targeting of 3',5'-cyclic nucleotide phosphodiesterases: inhibition and beyond. Nat Rev Drug Discov 2019; 18:770-796. [PMID: 31388135 PMCID: PMC6773486 DOI: 10.1038/s41573-019-0033-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Phosphodiesterases (PDEs), enzymes that degrade 3',5'-cyclic nucleotides, are being pursued as therapeutic targets for several diseases, including those affecting the nervous system, the cardiovascular system, fertility, immunity, cancer and metabolism. Clinical development programmes have focused exclusively on catalytic inhibition, which continues to be a strong focus of ongoing drug discovery efforts. However, emerging evidence supports novel strategies to therapeutically target PDE function, including enhancing catalytic activity, normalizing altered compartmentalization and modulating post-translational modifications, as well as the potential use of PDEs as disease biomarkers. Importantly, a more refined appreciation of the intramolecular mechanisms regulating PDE function and trafficking is emerging, making these pioneering drug discovery efforts tractable.
Collapse
Affiliation(s)
- George S Baillie
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- Institute of Cardiovascular and Medical Science, University of Glasgow, Glasgow, UK
| | - Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|