1
|
Chen M, Zhou Y, Yang J, Yuan H. Network pharmacology and molecular docking technology-based predictive study and potential targets analysis of icariin for the treatment of diabetic nephropathy. Biochem Biophys Res Commun 2025; 751:151434. [PMID: 39923458 DOI: 10.1016/j.bbrc.2025.151434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/27/2024] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVE Epimedium glycoside is a flavonoid compound in Epimedium, which has been found to alleviate various chronic diseases. The effect and mechanism of icariin on the treatment of diabetes nephropathy still need to be clarified. In this study, we conducted network pharmacology and molecular docking analysis to reveal the mechanism of icariin treating DKD, and then validated its efficacy using a cell model. METHOD The structure and targets of icariin were screened using Traditional Chinese Medicine Systems Pharmacology (TCMSP), and their targets were annotated. Retrieve DKD targets from OMIM, GeneCards, and TTD databases. We constructed a protein-protein interaction (PPI) network using the STRING platform and visualized the results using Cytoscape 3.9.1 software. We also conducted GO and KEGG enrichment analysis on icariin and then performed molecular docking between icariin and key targets. Finally, we established a cell model of DKD to evaluate the efficacy of icariin in treating DKD. RESULT A total of 77 icariin targets were associated with DKD. The GO and KEGG enrichment results showed that the therapeutic effect of icariin on DKD was significantly correlated with inflammatory response, cell apoptosis, epithelial-mesenchymal transition, and PI3K/AKT signaling pathway. The molecular docking results indicate that icariin has a high affinity for key targets EGER, AKT1, and IGF1. Cell experiments showed that icariin inhibited high glucose-induced EMT, fibrosis-related proteins, levels of inflammatory factors TGF-β1, IL-6, and TNF-α, as well as phosphorylation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in renal tubular epithelial cells. In addition, icariin inhibited the increase in EGER and AKT1 mRNA levels caused by high glucose and alleviated the decrease in IGF1 mRNA levels. CONCLUSION Epimedium glycoside may protect DKD by targeting EGER, AKT1, and IGF1 to inhibit PI3K/AKT signaling, but the specific mechanism needs further exploration.
Collapse
Affiliation(s)
- Min Chen
- Clinical Laboratories, The People's Hospital of Le Zhi, Ziyang 641500, China.
| | - Yujie Zhou
- Obstetrical Department, The People's Hospital of Le Zhi, Ziyang 641500, China.
| | - Jianglin Yang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, China.
| | - Huixiong Yuan
- Department of Medical Laboratory, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise 533000, China.
| |
Collapse
|
2
|
Meng Q, Li Z, He X, Hu Y, Wu G, Huang J, Luo Z, Hu Y, Shen X. Anti-TNBC effects of Lappaol F by targeting epithelial-mesenchymal transition via regulation of GSK-3β/YAP/β-catenin and PI3K/AKT pathways. Front Pharmacol 2025; 16:1496511. [PMID: 39989901 PMCID: PMC11842333 DOI: 10.3389/fphar.2025.1496511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/17/2025] [Indexed: 02/25/2025] Open
Abstract
Purpose Lappaol F (LAF), a lignan extracted from Fructus Arctii, has a wide spectrum of anti-tumor effects, including inhibition of TNBC cell growth. However, the pharmacological mechanism of LAF targeting epithelial-mesenchymal transition (EMT) to inhibit Triple-negative breast cancer (TNBC) growth remains poorly understood. The present study aimed to reveal the potential mechanism of LAF against TNBC by in vivo and in vitro experiments. Methods In situ, transplantation-induced MDA-MB-231 solid tumor model in NCG mice and cultured MDA-MB-231 and Hs-578T cells were used to evaluate the anti-TNBC effect of LAF. Flow cytometry, wound healing, transwell assay, western blot, RT-PCR, and immunofluorescence analysis were carried out to investigate the pharmacological mechanism of LAF against TNBC. Results LAF significantly inhibited the growth of MDA-MB-231 tumors, with downregulated tumor level of vimentin and upregulated level of ZO-1. In MDA-MB-231 and Hs-578T cells, LAF markedly suppressed cell proliferation, migration and invasion, and promoted apoptosis. Similarly, LAF increased the expression of ZO-1 and occludin proteins in MDA-MB-231 cells, and inhibited the expression of vimentin, snail and slug proteins in MDA-MB-231 and Hs-578T cells, as well as the expression of N-caderin in Hs-578T cells. Moreover, LAF also inhibited the phosphorylation of GSK-3β, thereby inhibited the downstream nuclear translocation of β-catenin and the expression of YAP. Furthermore, LAF significantly inhibited the expression of PI3K and AKT, and the phosphorylation of downstream mTOR. Conclusion LAF showed anti-TNBC effect both in vitro and in vivo. Reversal of EMT by inhibiting GSK-3β/YAP/β-catenin signaling and PI3K/AKT/mTOR signaling contributes to the effect.
Collapse
Affiliation(s)
- Qiqi Meng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiping Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaofeng He
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuanhao Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Guiyun Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiawen Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhuohui Luo
- Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou, Hainan, China
- Hainan Pharmaceutical Research and Development Science Park, Haikou, Hainan, China
| | - Yingjie Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoling Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Tan K, Deng J, Liu Y, Zhang Y, Xiong Y, Yuan S, Liu J, Chen Z, Liu Y, Cao W. Yiqi Juanshen decoction alleviates renal interstitial fibrosis by targeting the LOXL2/PI3K/AKT pathway to suppress EMT and inflammation. Sci Rep 2025; 15:4248. [PMID: 39905060 PMCID: PMC11794949 DOI: 10.1038/s41598-025-86622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Chronic kidney disease (CKD) is a major health concern, with renal interstitial fibrosis (RIF) as a key feature. Effective management of RIF is crucial for treating CKD. Yiqi Juanshen decoction (YQJSD), as traditional Chinese medicine, has shown promising results in CKD treatment. This study evaluates YQJSD's effectiveness in ameliorating RIF and explores the underlying molecular mechanisms using the unilateral ureteral obstruction (UUO) model. YQJSD has been shown to effectively reduce serum creatinine and blood urea nitrogen levels, decrease extracellular matrix deposition, and down-regulate the expression of α-SMA, COL4α1, Fibronectin (FN). Mechanistically, YQJSD exerts its effects by modulating multiple pathways: it inhibits the NF-κB signaling pathway, inhibiting the expression of pro-inflammatory cytokines like NF-κB1, IL-1β, TNF-α, and CCR1. Simultaneously, YQJSD suppresses the epithelial-mesenchymal transition (EMT) by downregulating the expression of Snail1, Vimentin, Twist1, and FSP1, while increasing E-cadherin expression. Moreover, YQJSD can regulate the PI3K/AKT signaling pathway by decreasing the expression of LOXL2 and PIK3R1, along with p-AKT1/2/3. This modulation of the LOXL2/PI3K/AKT pathway contributes to the inhibition of both EMT and inflammation, highlighting a critical role in the therapeutic intervention against RIF. These findings suggest that YQJSD may serve as a promising therapeutic management of RIF in CKD patients.
Collapse
Affiliation(s)
- Kaiyue Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jingwei Deng
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yi Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yudi Zhang
- College of Combination of Chinese and Western Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing, 402760, China
| | - Yu Xiong
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Su Yuan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhiwei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuanyuan Liu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Wenfu Cao
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Rauf A, Olatunde A, Akram Z, Hemeg HA, Aljohani ASM, Al Abdulmonem W, Khalid A, Khalil AA, Islam MR, Thiruvengadam R, Kim S, Thiruvengadam M. The Role of Pomegranate ( Punica granatum) in Cancer Prevention and Treatment: Modulating Signaling Pathways From Inflammation to Metastasis. Food Sci Nutr 2025; 13:e4674. [PMID: 39898127 PMCID: PMC11782917 DOI: 10.1002/fsn3.4674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 02/04/2025] Open
Abstract
Punica granatum, commonly known as pomegranate, is a traditional medicinal agent owing to its antiquity. The scientific literature has shown that pomegranate extracts exhibit favorable modulation of diverse signaling pathways. These pathways encompass those implicated in inflammation, angiogenesis, hyperproliferation, cellular transformation, tumorigenesis initiation, and ultimately, a reduction in advanced metastasis and tumorigenesis. Pomegranate extracts in this context can be attributed to their high polyphenol content, which has been observed to possess inhibitory properties toward specific signaling pathways associated with cancer. As a formidable pathology, cancer is the most significant cause of death worldwide after cardiovascular disease. The annual incidence of cancer-related mortality has increased progressively. Modifying one's dietary patterns, engaging in regular physical exercise, and maintaining an optimal body mass index are three straightforward measures that an individual may undertake to mitigate their susceptibility to cancer. Incorporating diverse vegetables and fruits into one's dietary regimen exhibits promising potential for preventing a minimum of 20% cancer incidence and approximately 200,000 cancer-related mortalities annually. Vegetables and fruits contain high levels of minerals and phytochemicals, which help alleviate and prevent the harmful effects of cancer. These substances are safe and exhibit minimal toxicity in biological systems. Furthermore, they exhibit antioxidant properties and have garnered extensive approval for their use as nutritional supplements. Pomegranates are used in ancient cultures to prevent and treat various diseases. Extensive research on pomegranate extract, fruit, oil, and juice has revealed promising findings regarding their potential anti-proliferative, anti-tumorigenic, and anti-inflammatory properties through the modification of various signaling pathways related to cancer, thus demonstrating their potential as drugs to prevent and treat cancer. Emerging research indicates that pomegranate can potentially prevent and treat different cancers, including prostate, bladder, breast, skin, lung, and colon cancer.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of ChemistryUniversity of SwabiAnbarKhyber PakhtunkhwaPakistan
| | - Ahmed Olatunde
- Department of Medical BiochemistryAbubakar Tafawa Balewa UniversityBauchiNigeria
| | - Zuneera Akram
- Department of Pharmacology, Faculty of Pharmaceutical SciencesBaqai Medical UniversityKarachiPakistan
| | - Hassan A. Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesTaibah UniversityAl‐Medinah, Al‐MonawaraSaudi Arabia
| | - Abdullah S. M. Aljohani
- Department of Medical Biosciences, College of Veterinary MedicineQassim UniversityBuraydahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraydahSaudi Arabia
| | - Ahood Khalid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahorePunjabPakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health SciencesThe University of LahorePunjabPakistan
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health SciencesDaffodil International UniversityDhakaBangladesh
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS)Saveetha UniversityChennaiIndia
| | - Seung‐Hyun Kim
- Department of Crop Science, College of Sanghuh Life ScienceKonkuk UniversitySeoulRepublic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life ScienceKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
5
|
Bhartiya P, Jaiswal A, Negi M, Kaushik N, Ha Choi E, Kumar Kaushik N. Unlocking melanoma Suppression: Insights from Plasma-Induced potent miRNAs through PI3K-AKT-ZEB1 axis. J Adv Res 2025; 68:147-161. [PMID: 38447612 PMCID: PMC11785563 DOI: 10.1016/j.jare.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
INTRODUCTION Melanoma is a rare but highly malignant form of skin cancer. Although recent targeted and immune-based therapies have improved survival rates by 10-15%, effective melanoma treatment remains challenging. Therefore, novel, combinatorial therapy options such as non-thermal atmospheric pressure plasma (NTP) are being investigated to inhibit and prevent chemoresistance. Although several studies have reported the apoptotic and inhibitory effects of reactive oxygen species produced by NTP in the context of melanoma, the intricate molecular network that determines the role of microRNAs (miRNAs) in regulating NTP-mediated cell death remains unexplored. OBJECTIVES This study aimed to explore the molecular mechanisms and miRNA networks regulated by NTP-induced oxidative stress in melanoma cells. METHODS Melanoma cells were exposed to NTP and then subjected to high-throughput miRNA sequencing to identify NTP-regulated miRNAs. Various biological processes and underlying molecular mechanisms were assessed using Alamar Blue, propidium iodide (PI) uptake, cell migration, and clonogenic assays followed by qRT-PCR and flow cytometry. RESULTS NTP exposure for 3 min was sufficient to modulate the expression of several miRNAs, inhibiting cell growth. Persistent NTP exposure for 5 min increased differential miRNA regulation, PI uptake, and the expression of genes involved in cell cycle arrest and death. qPCR confirmed that miR-200b-3p and miR-215-5p upregulation contributed to decreased cell viability and migration. Mechanistically, inhibiting miR-200b-3p and miR-215-5p in SK-2 cells enhancedZEB1, PI3K, and AKT expression, increasing cell proliferation and viability. CONCLUSION This study demonstrated that NTP exposure for 5 min results in the differential regulation of miRNAs related to the PI3K-AKT-ZEB1 axis and cell cycle dysregulation to facilitate melanoma suppression.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea; Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Manorma Negi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, Republic of Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
6
|
Lu Q, Jiang J, Wang X, Wang R, Han X. Advancements in the Research of Astragalus membranaceus for the Treatment of Colorectal Cancer. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:119-146. [PMID: 39880662 DOI: 10.1142/s0192415x25500065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Colorectal cancer, characterized by its high incidence, concealed early symptoms, and poor prognosis at advanced stages, ranks as the third leading cause of cancer-related deaths worldwide. Astragalus membranaceus (AM) refers to the dried roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao and Astragalus membranaceus (Fisch.) Bge. In the theory of Traditional Chinese Medicine (TCM), it is believed to have the functions of tonifying qi and lifting yang, as well as generating body fluids and nourishing blood. It can effectively treat cancer caused by the deficiency of vital energy and susceptibility to external diseases. Modern research has confirmed that the active components of AM, including Astragalus polysaccharides, flavonoids (formononetin and calycosin), Astragalus saponins (Astragaloside I and Astragaloside III), and Astragalus nanovesicles, are effective in the treatment of colorectal cancer. The mechanisms mainly involve inducing apoptosis, inhibiting tumor angiogenesis and the metastasis of cancer cells, regulating the cell cycle and tumor microenvironment, and reversing drug resistance. Moreover, it offers a synergistic enhancement when used in combination with chemotherapy, radiotherapy, targeted therapy, or surgical treatment. AM also has great potential in treating colorectal cancer when combined with other herbs. This review summarizes the relevant research findings on the treatment of colorectal cancer with AM, as well as its main pharmacological effects and molecular mechanisms, aiming to provide guidance for the development of new drugs, and offer direction for the conduct of more related research and promoting the development and application of AM.
Collapse
Affiliation(s)
- Qiwen Lu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine (NJUCM), Nanjing, Jiangsu, P. R. China
| | - Jiaxin Jiang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine (NJUCM), Nanjing, Jiangsu, P. R. China
| | - Xi Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine (NJUCM), Nanjing, Jiangsu, P. R. China
| | - Rongling Wang
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin, Berlin, 10115 Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung e. V., (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Xuan Han
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine (NJUCM), Nanjing, Jiangsu, P. R. China
| |
Collapse
|
7
|
Zhang J, Peng J, Wang S, Wang L, Sun Y, Xia J, Cheng B, Hu Q. Perilipin2-dependent lipid droplets accumulation promotes metastasis of oral squamous cell carcinoma via epithelial-mesenchymal transition. Cell Death Discov 2025; 11:30. [PMID: 39875372 PMCID: PMC11775315 DOI: 10.1038/s41420-025-02314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Emerging evidence shows that lipid metabolic reprogramming plays a vital role in tumor metastasis. The effect and mechanism of fatty acids and lipid droplets (LDs), the core products of lipid metabolism, on the metastasis of oral squamous cell carcinoma (OSCC), need further exploration. In this study, the influence of palmitic acid (PA) and oleic acid (OA) on the migration and invasion ability of OSCC cells was determined by in vitro experiments. Genetic manipulation of PLIN2 was performed to explore its effect on the accumulation of LDs and OSCC metastasis. Possible mechanisms of these biological effects were clarified by detecting the levels of epithelial-mesenchymal transition (EMT) markers and phosphatidylinositol 3-kinase (PI3K) pathway proteins as well as conducting various bioinformatics analyses. The results indicated that PA/OA promoted the migration and invasion of OSCC cells and induced PLIN2-dependent LDs accumulation in vitro. Knockdown of PLIN2 inhibited the LDs accumulation and the migration and invasion of OSCC cells in vitro, while overexpression of PLIN2 enhanced those of OSCC cells in vitro and also promoted the metastasis of OSCC in vivo. Besides, PLIN2 up-regulation activated the PI3K pathway and subsequently enhanced EMT in OSCC cells in vitro. OSCC patients with higher PLIN2 expression possessed poorer prognosis and higher sensitivity to chemotherapy drugs (1S,3 R)-RSL3 and ML-210. In conclusion, PLIN2-dependent LDs accumulation could promote the metastasis of OSCC cells by regulating EMT. PLIN2 might be a potential therapeutic target for OSCC patients, especially those with obesity.
Collapse
Affiliation(s)
- Jiayu Zhang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Jianmin Peng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Siyu Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Wang
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yutong Sun
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Qinchao Hu
- Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
8
|
Zhang L, Gao S, Luan Y, Su S, Zhang E, Liu J, Xie S, Zhang Y, Yue W, Liu R, Yin C. Predictivity of Hepatic Steatosis Index for Gestational Hypertension and Preeclampsia: a Prospective Cohort Study. Int J Med Sci 2025; 22:834-844. [PMID: 39991765 PMCID: PMC11843148 DOI: 10.7150/ijms.104943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Context: Previous studies have reported that pregnant women with non-alcoholic fatty liver disease (NAFLD) face an increased risk of gestational hypertension (GH) and preeclampsia (PE). However, no study has assessed the relationship between the Hepatic Steatosis Index (HSI), a biomarker for NAFLD, in early pregnancy and the subsequent risk of GH and PE. Objective: We aimed to investigate the relationship between HSI in early pregnancy and the risks of GH and PE in Chinese women. Methods: Based on the China Birth Cohort Study conducted from February 2018 to December 2022, this prospective cohort study collected liver enzyme and body mass index data from pregnant participants during 6-13+6 gestational weeks. The incidences of GH and PE were monitored until delivery. Results: This study included 39,114 pregnant women, and GH and PE incidences were 4.2% and 4.1%, respectively. After multivariable adjustment, the risks of GH (Q2: OR = 1.35, 95% CI = 1.13-1.62; Q3: OR = 1.86, 95% CI = 1.57-2.20; Q4: OR = 3.81, 95% CI = 3.25-4.46) and PE (Q2: OR = 1.22, 95% CI = 1.01-1.47; Q3: OR = 1.96, 95% CI = 1.65-2.32; Q4: OR = 3.60, 95% CI = 3.07-4.22) significantly increased with higher HSI quartiles. Further analysis indicated that compared to women aged 35 years or older, HSI in pregnant women under 35 years had relatively stronger predictive value for GH (OR ≥ 35 = 4.527, 95% CI = 3.762-5.446 vs. OR < 35 = 2.325, 95% CI = 1.729-3.128) and PE (OR ≥ 35 = 4.13, 95% CI = 3.433-4.983 vs. OR < 35 = 2.348, 95% CI = 1.736-3.176). Conclusion: Elevated HSI may be associated with an increased risk of GH and PE.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Shen Gao
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Yingyi Luan
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Shaofei Su
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Enjie Zhang
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Jianhui Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Shuanghua Xie
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Yue Zhang
- Department of Research Management, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Wentao Yue
- Department of Research Management, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| | - Chenghong Yin
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, China
| |
Collapse
|
9
|
Zhang S, Wang Y, Han Z, Lu B, Sun K, Teng Z, Jin C, Li F, Yuan H, Guo F, Zhang Y. AL16431.1 is identified as a biomarker for bladder cancer progression and immunotherapy response. Sci Rep 2025; 15:1170. [PMID: 39774770 PMCID: PMC11706950 DOI: 10.1038/s41598-024-82425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
LncRNA AL161431.1 is currently known as a factor that can promote epithelial-mesenchymal transition. However, its role in the prognosis, immune infiltration and progression of bladder cancer (BLCA)patients is still unclear. The expression of AL161431.1 is elevated in BLCA tissues compared to normal tissues according to the TCGA database. By combining this data with clinical information, patients with high AL161431.1 expression have more advanced clinicopathological stages and shorter survival periods. Furthermore, AL161431.1 was identified as an independent prognostic factor for bladder cancer. We further analyzed the differences in immune infiltration, tumor mutation burden (TMB), immune checkpoints, and sensitivity to immunotherapy between groups with different levels of AL161431.1 expression. Enrichment analysis demonstrated that AL161431.1 is associated with numerous immune signaling pathways. High expression of AL161431.1 in cancer tissues was confirmed by qRT-PCR. CCK8, transwell, and wound healing demonstrated the oncogenic effects of AL161431.1. In conclusion, AL161431.1 is associated with immune infiltration in bladder cancer and has the potential to become a biomarker for predicting the prognosis of BLCA.
Collapse
Affiliation(s)
- Sihao Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Yaxuan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Baosai Lu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Kexin Sun
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Zhihai Teng
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Chenggen Jin
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Fang Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050011, China
| | - Hao Yuan
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Fengran Guo
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China
| | - Yanping Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050011, China.
| |
Collapse
|
10
|
Tan C, Zhou H, Xiong Q, Xian X, Liu Q, Zhang Z, Xu J, Yao H. Cromolyn sodium reduces LPS-induced pulmonary fibrosis by inhibiting the EMT process enhanced by MC-derived IL-13. Respir Res 2025; 26:3. [PMID: 39762844 PMCID: PMC11706190 DOI: 10.1186/s12931-024-03045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Sepsis is a systemic inflammatory response caused by infection. When this inflammatory response spreads to the lungs, it can lead to acute lung injury (ALI) or more severe acute respiratory distress syndrome (ARDS). Pulmonary fibrosis is a potential complication of these conditions, and the early occurrence of pulmonary fibrosis is associated with a higher mortality rate. The underlying mechanism of ARDS-related pulmonary fibrosis remains unclear. METHODS To evaluate the role of mast cell in sepsis-induced pulmonary fibrosis and elucidate its molecular mechanism. We investigated the level of mast cell and epithelial-mesenchymal transition(EMT) in LPS-induced mouse model and cellular model. We also explored the influence of cromolyn sodium and mast cell knockout on pulmonary fibrosis. Additionally, we explored the effect of MC-derived IL-13 on the EMT and illustrated the relationship between mast cell and pulmonary fibrosis. RESULTS Mast cell was up-regulated in the lung tissues of the pulmonary fibrotic mouse model compared to control groups. Cromolyn sodium and mast cell knockout decreased the expression of EMT-related protein and IL-13, alleviated the symptoms of pulmonary fibrosis in vivo and in vitro. The PI3K/AKT/mTOR signaling was activated in fibrotic lung tissue, whereas Cromolyn sodium and mast cell knockout inhibited this pathway. CONCLUSION The expression level of mast cell is increased in fibrotic lungs. Cromolyn sodium intervention and mast cell knockout alleviate the symptoms of pulmonary fibrosis probably via the PI3K/AKT/mTOR signaling pathway. Therefore, mast cell inhibition is a potential therapeutic target for sepsis-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Cheng Tan
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214002, Jiangsu Province, China
| | - Hang Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qiangfei Xiong
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Xian Xian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Qiyuan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Zexin Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China
| | - Jingjing Xu
- Department of Anesthesiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Wuxi, 214002, Jiangsu Province, China.
| | - Hao Yao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, 210011, Jiangsu Province, China.
| |
Collapse
|
11
|
Lakshmanan J, Jaganathan VL, Zhang B, Werner G, Allen TS, Schultz DJ, Klinge CM, Harbrecht BG. Anticancer Properties Against Select Cancer Cell Lines and Metabolomics Analysis of Tender Coconut Water. Anticancer Agents Med Chem 2025; 25:207-221. [PMID: 39411967 DOI: 10.2174/0118715206327789241008162423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND Tender Coconut Water (TCW) is a nutrient-rich dietary supplement that contains bioactive secondary metabolites and phytohormones with anti-oxidative and anti-inflammatory properties. Studies on TCW's anti-cancer properties are limited and the mechanism of its anti-cancer effects have not been defined. OBJECTIVE In the present study, we investigate TCW for its anti-cancer properties and, using untargeted metabolomics, we identify components form TCW with potential anti-cancer activity. METHODOLOGY Cell viability assay, BrdU incorporation assay, soft-agar assay, flow-cytometery, and Western blotting were used to analyze TCW's anticancer properties and to identify mechanism of action. Liquid chromatography- Tandem Mass Spectroscopy (LC-MS/MS) was used to identify TCW components. RESULTS TCW decreased the viability and anchorage-independent growth of HepG2 hepatocellular carcinoma (HCC) cells and caused S-phase cell cycle arrest. TCW inhibited AKT and ERK phosphorylation leading to reduced ZEB1 protein, increased E-cadherin, and reduced N-cadherin protein expression in HepG2 cells, thus reversing the 'epithelial-to-mesenchymal' (EMT) transition. TCW also decreased the viability of Hep3B hepatoma, HCT-15 colon, MCF-7 and T47D luminal A breast cancer (BC) and MDA-MB-231 and MDA-MB-468 triplenegative BC cells. Importantly, TCW did not inhibit the viability of MCF-10A normal breast epithelial cells. Untargeted metabolomics analysis of TCW identified 271 metabolites, primarily lipids and lipid-like molecules, phenylpropanoids and polyketides, and organic oxygen compounds. We demonstrate that three components from TCW: 3-hydroxy-1-(4-hydroxyphenyl)propan-1-one, iondole-3-carbox aldehyde and caffeic acid inhibit the growth of cancer cells. CONCLUSION TCW and its components exhibit anti-cancer effects. TCW inhibits the viability of HepG2 hepatocellular carcinoma cells by reversing the EMT process through inhibition of AKT and ERK signalling.
Collapse
Affiliation(s)
- Jaganathan Lakshmanan
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Vaitheesh L Jaganathan
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Boachun Zhang
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Grace Werner
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Tyler S Allen
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - David J Schultz
- Department of Biology, School of Medicine, University of Louisville, Louisville, KY, 40292, United States
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| | - Brian G Harbrecht
- Dr. Hiram C. Polk, Jr., MD, Department of Surgery, and Price Institute of Surgical Research, School of Medicine, University of Louisville, Louisville, KY, 40202, United States
| |
Collapse
|
12
|
Din ZU, Cui B, Wang C, Zhang X, Mehmood A, Peng F, Liu Q. Crosstalk between lipid metabolism and EMT: emerging mechanisms and cancer therapy. Mol Cell Biochem 2025; 480:103-118. [PMID: 38622439 DOI: 10.1007/s11010-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/19/2024] [Indexed: 04/17/2024]
Abstract
Lipids are the key component of all membranes composed of a variety of molecules that transduce intracellular signaling and provide energy to the cells in the absence of nutrients. Alteration in lipid metabolism is a major factor for cancer heterogeneity and a newly identified cancer hallmark. Reprogramming of lipid metabolism affects the diverse cancer phenotypes, especially epithelial-mesenchymal transition (EMT). EMT activation is considered to be an essential step for tumor metastasis, which exhibits a crucial role in the biological processes including development, wound healing, and stem cell maintenance, and has been widely reported to contribute pathologically to cancer progression. Altered lipid metabolism triggers EMT and activates multiple EMT-associated oncogenic pathways. Although the role of lipid metabolism-induced EMT in tumorigenesis is an attractive field of research, there are still significant gaps in understanding the underlying mechanisms and the precise contributions of this interplay. Further study is needed to clarify the specific molecular mechanisms driving the crosstalk between lipid metabolism and EMT, as well as to determine the potential therapeutic implications. The increased dependency of tumor cells on lipid metabolism represents a novel therapeutic target, and targeting altered lipid metabolism holds promise as a strategy to suppress EMT and ultimately inhibit metastasis.
Collapse
Affiliation(s)
- Zaheer Ud Din
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan, China
| | - Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian, 116044, Liaoning, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
13
|
Wang L, Zhang J, Ye S, Lu F. LncRNA H19 improves mesenchymal characteristics of buffalo (Bubalus bubalis) bone marrow-derived mesenchymal stem cells under hypoxic conditions. Res Vet Sci 2025; 182:105461. [PMID: 39612735 DOI: 10.1016/j.rvsc.2024.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/15/2024] [Accepted: 11/07/2024] [Indexed: 12/01/2024]
Abstract
As adult stem cells with various advantages, Bone marrow-derived mesenchymal stem cells (BMSCs) are valuable resources for veterinary treatment and animal reproduction. Previous studies have shown that hypoxia can induce epithelial-mesenchymal transition (EMT) and improve mesenchymal characteristics of BMSCs in vitro culture. However, the mechanism by which hypoxia improves the interstitial characteristics of buffalo BMSCs (bBMSCs) remains unclear. In this study, the effects of hypoxia on the mesenchymal characteristics of bBMSCs and the expression level of lncRNA H19 were examined, and then the effects of lncRNA H19 on maintaining the mesenchymal characteristics of bBMSCs under hypoxic culture conditions (5 % oxygen) as well as its mechanism also were explored, so as to further understand the molecular mechanism of mesenchymal characteristics maintenance of bBMSCs. The results showed that hypoxic culture conditions promoted EMT of bBMSCs, with lncRNA H19 expression up-regulated. When lncRNA H19 was knocked down in hypoxia, the expression level of Vimentin was down-regulated, the expression level of E-Cadherin was up-regulated, and EMT was inhibited. Meanwhile, the genes (p-PI3K and p-AKT1) involved in PI3K/AKT signaling pathway were inhibited by lncRNA H19 Knockdown. IGF-1 (10 ng/mL), an activator of PI3K/AKT signaling pathway, was added to rescued the inhibition of PI3K/AKT signaling pathway caused by lncRNA H19 Knockdown, with the effects of lncRNA H19 on EMT related genes also partially reversed. These findings not only provide theoretical guidance to elucidate the detailed regulation mechanism of hypoxia on mesenchymal nature maintenance of bBMSCs, but also provide positive support to further establish the stable in vitro culture system of bBMSCs.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China
| | - Jun Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning 530021, China
| | - Sheng Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding and Diease Control, Guangxi University, Nanning 530005, China.
| |
Collapse
|
14
|
Das A, Mitra A, Ghosh S, Sarkar S, Pal PK, Bandyopadhyay D, Chattopadhyay S. Arsenic-induced transition of thymic inflammation-to-fibrosis involves Stat3-Twist1 interaction: Melatonin to the rescue. Biofactors 2025; 51:e2110. [PMID: 39096306 DOI: 10.1002/biof.2110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/19/2024] [Indexed: 08/05/2024]
Abstract
Groundwater arsenic is a notorious toxicant and exposure to environmentally relevant concentrations persists as a healthcare burden across the world. Arsenic has been reported to jeopardize the normal functioning of the immune system, but there are still gaps in the understanding of thymic T cell biology. Immunotoxic influence of arsenic in thymic integrity demands a potent restorative molecule. The objectives of this study were to examine key signaling cross-talks associated with arsenic-induced immune alterations in the thymus and propose melatonin as a potential candidate against immunological complications arising from arsenic exposure. Swiss albino mice were exposed to sodium arsenite (0.05 mg/L; in drinking water) and melatonin (IP:10 mg/kg BW) for 28 days. Melatonin successfully protected thymus from arsenic-mediated tissue degeneration and maintained immune homeostasis including T cell maturation and proliferation by mitigating oxidative stress through Nrf2 upregulation. Additionally, melatonin exerted ameliorative effect against arsenic-induced apoptosis and inflammation by inhibiting p53-mediated mitochondrial cell death pathway and NF-κB-p65/STAT3-mediated proinflammatory pathway, respectively. For the first time, we showed that arsenic-induced profibrotic changes were inhibited by melatonin through targeting of inflammation-associated EMT. Our findings clearly demonstrate that melatonin can be a viable and promising candidate in combating arsenic-induced immune toxicity with no collateral damage, making it an important research target.
Collapse
Affiliation(s)
- Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Sourav Ghosh
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Swaimanti Sarkar
- Department of Physiology, University of Calcutta, Kolkata, India
| | - Palash Kumar Pal
- Department of Physiology, University of Calcutta, Kolkata, India
| | | | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, India
- Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, Kolkata, India
| |
Collapse
|
15
|
Famta P, Shah S, Dey B, Kumar KC, Bagasariya D, Vambhurkar G, Pandey G, Sharma A, Srinivasarao DA, Kumar R, Guru SK, Raghuvanshi RS, Srivastava S. Despicable role of epithelial-mesenchymal transition in breast cancer metastasis: Exhibiting de novo restorative regimens. CANCER PATHOGENESIS AND THERAPY 2025; 3:30-47. [PMID: 39872366 PMCID: PMC11764040 DOI: 10.1016/j.cpt.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2025]
Abstract
Breast cancer (BC) is the most prevalent cancer in women globally. Anti-cancer advancements have enabled the killing of BC cells through various therapies; however, cancer relapse is still a major limitation and decreases patient survival and quality of life. Epithelial-to-mesenchymal transition (EMT) is responsible for tumor relapse in several cancers. This highly regulated event causes phenotypic, genetic, and epigenetic changes in the tumor microenvironment (TME). This review summarizes the recent advancements regarding EMT using de-differentiation and partial EMT theories. We extensively review the mechanistic pathways, TME components, and various anti-cancer adjuvant and neo-adjuvant therapies responsible for triggering EMT in BC tumors. Information regarding essential clinical studies and trials is also discussed. Furthermore, we also highlight the recent strategies targeting various EMT pathways. This review provides a holistic picture of BC biology, molecular pathways, and recent advances in therapeutic strategies.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Biswajit Dey
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dadi A. Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | | | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
16
|
Arner EN, Alzhanova D, Westcott JM, Hinz S, Tiron CE, Blø M, Mai A, Virtakoivu R, Phinney N, Nord S, Aguilera KY, Rizvi A, Toombs JE, Reese TC, Fey V, Micklem D, Gausdal G, Ivaska J, Lorens JB, Brekken RA. AXL-TBK1 driven AKT3 activation promotes metastasis. Sci Signal 2024; 17:eado6057. [PMID: 39689180 DOI: 10.1126/scisignal.ado6057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
The receptor tyrosine kinase AXL promotes tumor progression, metastasis, and therapy resistance through the induction of epithelial-mesenchymal transition (EMT). Here, we found that activation of AXL resulted in the phosphorylation of TANK-binding kinase 1 (TBK1) and the downstream activation of AKT3 and Snail, a transcription factor critical for EMT. Mechanistically, we showed that TBK1 directly bound to and phosphorylated AKT3 in a manner dependent on the multiprotein complex mTORC1. Upon activation, AKT3 interacted with and promoted the nuclear accumulation of Snail, which led to increased EMT as assessed by marker abundance. In human pancreatic ductal adenocarcinoma tissue, nuclear AKT3 colocalized with Snail and correlated with worse clinical outcomes. Primary mouse pancreatic cancer cells deficient in AKT3 showed reduced metastatic spread in vivo, suggesting selective AKT3 inhibition as a potential therapeutic avenue for targeting EMT in aggressive cancers.
Collapse
Affiliation(s)
- Emily N Arner
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dina Alzhanova
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jill M Westcott
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stefan Hinz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Crina Elena Tiron
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Regional Institute of Oncology, Iasi, Romania
| | | | | | - Reetta Virtakoivu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Natalie Phinney
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Silje Nord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Ali Rizvi
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason E Toombs
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tanner C Reese
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vidal Fey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | | | | | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Department of Life Technologies, University of Turku, 20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - James B Lorens
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Rolf A Brekken
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Surgery and the Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
17
|
Lyukmanova EN, Kirichenko AV, Medyanik IA, Yashin KS, Kirpichnikov MP, Bychkov ML. Extracellular Vesicles from Plasma of Patients with Glioblastoma Promote Invasion of Glioblastoma Cells Even After Tumor Resection. Biomedicines 2024; 12:2834. [PMID: 39767739 PMCID: PMC11673896 DOI: 10.3390/biomedicines12122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Glioblastoma (GB) is a highly aggressive tumor, whose progression is mediated by secretion of extracellular vesicles (EVs), which can pass the brain-blood barrier and be found in the plasma. Here, we performed a comparative analysis of the effects of EVs from the plasma of healthy donors (hEVs) and GB patients before (bEVs) and after (aEVs) tumor surgical resection on invasion of normal astrocytes and GB cells. Methods: We performed the transwell invasion assay, analyzed MAP kinases activation by Western blotting, studied SNAI1/SNAI2 cellular localization by confocal microscopy, measured cadherins expression by flow cytometry, and analyzed secretion of cytokines, which regulate migration and inflammation, by immunoassay. Results: hEVs did not affect invasion of astrocytes and GB cells, there was down-regulated cadherins expression in astrocytes, while there was increased E- and N-cadherin expression in GB cells. hEVs increased the secretion of inflammation and adhesion regulators both in astrocytes and GB cells. bEVs enhanced the invasion of GB cells but not of astrocytes via MAP AKT, JNK1/2/3, and p38 kinases activation, stimulated the clasterization of SNAI1 in the GB cell nucleus, promoted an E/N cadherin switch, and caused the secretion of inflammation and adhesion regulators in astrocytes and GB cells. aEVs exhibited the most of pro-oncogenic effects of bEVs (stimulation of GB cell invasion, SNAI1 nuclear localization, JNK1/2/3 activation, E/N cadherin switch, and secretion of inflammation and adhesion regulators in astrocytes and GB cells). However, aEVs effects were less pronounced than those of bEVs. Conclusions: In our study, we revealed common and different effects of plasma-derived hEVs, aEVs, and bEVs. hEVs can stimulate some pro-oncogenic effects in GB cells. Being less tumorigenic then bEVs, aEVs are still able to promote invasion of GB cells, probably remaining after tumor resection.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Artem V. Kirichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Igor A. Medyanik
- Department of Neurosurgery, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.A.M.); (K.S.Y.)
| | - Konstantin S. Yashin
- Department of Neurosurgery, Privolzhsky Research Medical University, 603005 Nizhny Novgorod, Russia; (I.A.M.); (K.S.Y.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia; (A.V.K.); (M.P.K.)
| |
Collapse
|
18
|
Guo W, Liu M, Luo W, Peng J, Liu F, Ma X, Wang L, Yang S. FERMT1 promotes epithelial-mesenchymal transition of hepatocellular carcinoma by activating EGFR/AKT/β-catenin and EGFR/ERK pathways. Transl Oncol 2024; 50:102144. [PMID: 39353234 PMCID: PMC11472111 DOI: 10.1016/j.tranon.2024.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/10/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of fermitin family member 1 (FERMT1) on epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) via the EGFR/AKT/β-catenin and EGFR/ERK pathways. METHODS The expression of FERMT1 encoding protein kindlin-1 in HCC tissues was determined by immunohistochemistry, and FERMT1 mRNA expression in HCC tissues and cell lines was analyzed by qRT-PCR. After the FERMT1 expression of SNU182 and SNU387 interfered with siRNA, the cell viability, invasion, migration, and EMT were tested by CCK-8, transwell invasion, scratching, immunofluorescence/WB, respectively. Similarly, the effects of FERMT1 on the viability and metastasis of HCC were investigated in transplanted tumor and lung metastasis mouse models. The protein expressions of EGFR/AKT/β-catenin and EGFR/ERK pathways were analyzed by WB. In addition, the relationship between FERMT1 and EGFR was further determined by immunofluorescence double staining and Co-IP. RESULTS FERMT1 was significantly upregulated in HCC, and silencing FERMT1 inhibited the viability, invasion, migration, and EMT of HCC. Silencing FERMT1 also inhibited the activation of EGFR/AKT/β-catenin and EGFR/ERK pathways. In addition, inhibition of EGFR, AKT, or ERK confirmed that EGFR/AKT/β-catenin and EGFR/ERK pathways were involved in the promoting effects of FERMT1 on HCC. Co-IP and immunofluorescence experiments confirmed the targeting relationship between FERMT1 and EGFR. CONCLUSION FERMT1 was highly expressed in HCC and promoted viability, invasion, migration, and EMT of HCC by targeting EGFR to activate the EGFR/AKT/β-catenin and EGFR/ERK pathways. Our study revealed the role of FERMT1 in HCC and suggested that FERMT1 exerts biological effects through activating the EGFR/AKT/β-catenin and EGFR/ERK pathways.
Collapse
Affiliation(s)
- Wubin Guo
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou City, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Mengnan Liu
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Wei Luo
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jing Peng
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Fei Liu
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xin Ma
- Department of General Surgery, The Affifiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Sijin Yang
- Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou, China; National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Chen L, Xing J, Lv J, Si S, Wang H, Yu W. Corynoxine suppresses lung adenocarcinoma proliferation and metastasis via inhibiting PI3K/AKT pathway and suppressing Cyclooxygenase-2 expression. Hereditas 2024; 161:41. [PMID: 39511658 PMCID: PMC11542349 DOI: 10.1186/s41065-024-00343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common lung cancer subtype, and the prognosis of affected patients is generally poor. The traditional Chinese medicine Uncaria rhychophaylla has been reported to exhibit anti-lung cancer properties. Accordingly, the main bioactive ingredient in Uncaria rhychophaylla, Corynoxine, may hold great value as a treatment for lung cancer. METHODS The impact of Corynoxine on the viability of LUAD cells was assessed using the Cell Counting Kit-8 (CCK-8) assay. Apoptosis in A549 cells was evaluated via flow cytometry. Migration and invasion capabilities were determined through wound healing and Transwell assays, respectively. The key pathways targeted by Corynoxine in LUAD were identified using a network pharmacology approach. Additionally, Western immunoblotting, quantitative real-time PCR (qRT-PCR), and ELISA assays were conducted to validate the underlying mechanisms. The in vivo anti-tumor efficacy of Corynoxine was assessed in xenograft nude mice. RESULTS In this study, Corynoxine treatment was found to markedly suppress in vitro LUAD cell proliferative, migratory, and invasive activity. It additionally downregulated Vimentin and promoted E-cadherin upregulation consistent with the disruption of epithelial-mesenchymal transition (EMT) induction while also accelerating apoptotic death. Furthermore, network pharmacology analysis revealed that the PI3K/AKT pathway is a potential target of Corynoxine in LUAD. In vitro assays demonstrated that treatment with Corynoxine resulted in the suppression of PI3K/AKT signaling and a consequent drop in cyclooxygenase-2 (COX-2) expression. These findings were further confirmed in vivo in mice harboring A549 tumor xenografts in which Corynoxine was able to interfere with the PI3K/AKT/COX-2 signaling axis. CONCLUSION This study elucidated the potential effects of Corynoxine in suppressing proliferation and metastasis in LUAD, along with investigating the underlying mechanisms. These data highlight the promise of Corynoxine as a novel therapeutic tool for the treatment of individuals diagnosed with LUAD.
Collapse
Affiliation(s)
- Liping Chen
- Department of Central Laboratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China.
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Jing Xing
- Department of Central Laboratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiapei Lv
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Sainv Si
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Huaying Wang
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wanjun Yu
- Department of Respiratory, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
20
|
Narayanan A, More AS, Talreja M, Mali AM, Vinay SB, Bapat SA. A novel ITGB8 transcript variant sustains ovarian cancer cell survival through genomic instability and altered ploidy on a mutant p53 background. J Ovarian Res 2024; 17:218. [PMID: 39506768 PMCID: PMC11539462 DOI: 10.1186/s13048-024-01538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Transcript variants and protein isoforms are central to unique tissue functions and maintenance of homeostasis, in addition to being associated with aberrant states such as cancer, where their crosstalk with the mutated tumor suppressor p53 may contribute to genomic instability and chromosomal rearrangements. We previously identified several novel splice variants in ovarian cancer RNA-sequencing datasets; herein, we aimed to elucidate the biological effects of the Integrin Subunit Beta 8 variant (termed pITGB8-205). METHODS Resolution of the full-length sequence of pITGB8-205 through rapid amplification of cDNA ends (RACE-PCR). Cell cycle analysis and karyotype studies were performed to further explore genomic instability. RNA-seq and proteomics analyses were used to identify the differential expression of the genes. RESULTS This full-length study revealed a unique 5' sequence in pITGB8-205 that differed from the reported ITGB8-205 sequence, suggesting differential regulation of this novel transcript. Under a p53 mutant background, overexpression of pITGB8-205 triggered genetic instability reminiscent of oncogene-induced replicative stress with extensive abnormal mitoses and chromosomal and nuclear aberrations indicative of chromosomal instability, leading to near whole-genome duplication that imposes energy stress on cellular resources. Micronuclei and aneuploidy are striking features of pITGB8-205-overexpressing p53-mutant cells but are not enhanced in p53 wild-type (WT) cells. RNA-seq and proteomics analyses further suggested that p53 inactivation in ovarian cancer provides a permissive intracellular molecular niche for pITGB8-205 to mediate its effects on genomic instability. This observation is pivotal considering that most high-grade serous ovarian carcinoma (HGSC) tumors express mutant p53. The resulting aneuploid clones with enhanced self-renewal and survival capabilities disrupt clonal dominance under stress yet maintain a balance between replicative stress and prosurvival advantages. CONCLUSION pITGB8-205-overexpressing clones sustain ovarian tumor cell survival, achieve homeostasis and are formidable opponents of therapy.
Collapse
Affiliation(s)
- Aravindan Narayanan
- National Centre for Cell Science, Pune, 411007, India
- Savitribai Phule Pune University, Pune, India
| | - Ankita S More
- National Centre for Cell Science, Pune, 411007, India
- Savitribai Phule Pune University, Pune, India
| | - Muskan Talreja
- National Centre for Cell Science, Pune, 411007, India
- Institute for Excellence in Higher Education (IEHE), Kaliyasot Dam, Kolar Road, Bhopal, 46202, India
| | | | | | - Sharmila A Bapat
- National Centre for Cell Science, Pune, 411007, India.
- Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
21
|
Jiang Z, Xu Y, Yang L, Huang X, Bao J. Bile acid conjugated chitosan nanoparticles promote the proliferation and epithelial-mesenchymal transition of hepatocellular carcinoma by regulating the PI3K/Akt/mTOR pathway. Carbohydr Res 2024; 545:109296. [PMID: 39471534 DOI: 10.1016/j.carres.2024.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Bile acids have been known to play significant roles at certain physiological levels in gastrointestinal metabolism. Yet, they are known to be carcinogenic and aid in tumor progression in most cases, although the roles remain uncertain. Hence, we tested the cytotoxic potential of cholic acid (CA) loaded chitosan nanoparticles (CNPs) on Hep3B cells. The physicochemical properties of the CNPs synthesized with CA load (CA-CNPs) were determined using standard techniques such as ultraviolet-visible spectrophotometry (UV-Vis), fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The characteristic peak for chitosan nanoparticles were observed for plain CNPs (pCNPs) and CA-CNPs at around 300 nm as per UV-Vis analysis. FTIR analysis indicated the possible trapping of CA onto CNPs as certain peaks were retained and some peaks were shifted. XRD analysis determined that the peaks representing CA and pCNPs were collectively obtained in CA-CNPs. As per DLS analysis, the particle size, PDI and ζ-potential of the CA-CNPs were 259 nm, 0.284 and 30.4 mV. Further, the CA-CNPs were non-cytotoxic on Hep3B cells at the maximum tested concentration of 500 μg/mL. The viability at 500 μg/mL of CA-CNPs was two-fold higher than 500 μg/mL of pCNPs. Also, the pCNPs were not hemolytic and therefore could not have played a role in the increase of viability after treatment with CA-CNPs, which indicates that CA posed a major role in increased viability of Hep3B cells. As per quantitative PCR (qPCR), the upregulated gene expressions of PI3K, Akt, mTORC2, cMyc, Fibronectin, hVPS34, Slug and ZEB1 and the downregulated expression of the tumor suppressor PTEN indicates that PI3K/Akt/mTOR pathway mediated the induction of epithelial-to-mesenchymal transition (EMT) in response to CA-CNPs treatment on Hep3B cells.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Oncology, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, 222002, China
| | - Yi Xu
- Phase I Clinical Trial Center, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, 222002, China
| | - Liu Yang
- Department of Colorectal Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affifiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jun Bao
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
22
|
Ke B, Huang Y, Gong Y, Zhong H, Shi L. Overexpression of microRNA-611 inhibits TGF-β-induced epithelial-mesenchymal transition and migration in lung cancer cells through MAPKAP1. Cell Signal 2024; 123:111357. [PMID: 39173858 DOI: 10.1016/j.cellsig.2024.111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Metastasis is a major cause of death in patients with lung cancer (LC). microRNA-611 (miR-611), a miRNA, has been little studied in cancer. Here, we aimed to further elucidate the roles of miR-611 in epithelial-mesenchymal transition (EMT) and migration induced by transforming growth factor-β (TGF-β) in LC cells and the possible underlying mechanisms. miR-611 and MAPKAP1 expression was first identified in LC tissues from metastatic and nonmetastatic patients, and their expression was associated with overall survival. Gain- and loss-of-function experiments were performed to verify the impacts of miR-611 and MAPKAP1 on pAKT expression, EMT, and migration in LC cells treated with TGF-β. The interaction between miR-611 and MAPKAP1 was also determined with a luciferase reporter assay. In our study, miR-611 was expressed at low levels, and MAPKAP1 was highly expressed in LC tissues, which was associated with metastasis and short overall survival. Functionally, miR-611 inhibition or MAPKAP1 overexpression accelerated EMT and migration and upregulated pAKT in TGF-β-treated A549 and H1299 cells; miR-611 overexpression or MAPKAP1 silencing exerted the opposite effects as miR-611 inhibition or MAPKAP1 overexpression. Mechanistically, miR-611 could target and downregulate MAPKAP1. MAPKAP1 expression was also negatively correlated with miR-611 expression in LC tissues. In addition, miR-611 overexpression reduced the EMT and migration of TGF-β-treated A549 and H1299 cells by targeting MAPKAP1. In conclusion, miR-611 overexpression attenuated EMT and migration by targeting MAPKAP1 in TGF-β-induced LC cells, indicating that miR-611 is a biological target for LC treatment.
Collapse
Affiliation(s)
- Bin Ke
- Department of VIP Ward, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Yuanyuan Huang
- Department of VIP Ward, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Yuxin Gong
- Department of Respiratory Diseases,Zhujiang Hospital of Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Hai Zhong
- Department of Thoracic Surgery,Zhujiang Hospital of Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Lin Shi
- Department of Traditional Chinese Medicine,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China.
| |
Collapse
|
23
|
SenGupta S, Cohen E, Serrenho J, Ott K, Coulombe PA, Parent CA. TGFβ1-TNFα regulated secretion of neutrophil chemokines is independent of epithelial-mesenchymal transitions in breast tumor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617845. [PMID: 39416223 PMCID: PMC11483069 DOI: 10.1101/2024.10.11.617845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neutrophils have tumor-promoting roles in breast cancer and are detected in higher numbers in aggressive breast tumors. How aggressive breast tumors recruit neutrophils remains undefined. Here, we investigated the roles of TGF-β1 and TNF-α in the regulation of neutrophil recruitment by breast cancer cells. TGF-β1 and TNF-α are pro-inflammatory factors upregulated in breast tumors and induce epithelial to mesenchymal transitions (EMT), a process linked to cancer cell aggressiveness. We report that, as expected, dual treatment with TGF-β1 and TNF-α induces EMT signatures in premalignant M2 cells, which are part of the MCF10A breast cancer progression model. Conditioned media (CM) harvested from M2 cells treated with TGF-β1/TNF-α gives rise to amplified neutrophil chemotaxis compared to CM from control M2 cells. This response correlates with higher levels of the neutrophil chemokines CXCL1, CXCL2, and CXCL8 and is significantly attenuated in the presence of a CXCL8-neutralizing antibody. Furthermore, we found that secretion of CXCL1 and CXCL8 from treated M2 cells depends on p38MAPK activity. By combining gene editing, immunological and biochemical approaches, we show that the regulation of neutrophil recruitment and EMT signatures are not mechanistically linked in treated M2 cells. Finally, analysis of publicly available cancer cell line transcriptomic databases revealed a significant correlation between CXCL8 and TGF-β1/TNF-α-regulated or effector genes in breast cancer. Together, our findings establish a novel role for the TGF-β1/TNF-α/p38 MAPK signaling axis in regulating neutrophil recruitment in breast cancer, independent of TGF-β1/TNF-α regulated EMT.
Collapse
|
24
|
de Sá RE, de Araújo GS, Machado FDS, Souza JMT, Barros AB, Pinto FDCL, Agostinho JDL, Ayala AP, Marinho Filho JDB, Pessoa ODL, Araújo AJ. Withaphysalin Derivatives from Iochroma arborescens Induce Antiproliferative and Antimigratory Activities in vitro. PLANTA MEDICA 2024; 90:938-948. [PMID: 39159664 DOI: 10.1055/a-2381-5060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Withanolides are steroidal lactones commonly found in plants of the Solanaceae family that have significant medicinal value. In this study, three withanolides extracted from Iochroma arborescens leaves were isolated and characterized. These included withaphysalin F (3: ) and two newly identified epimeric compounds: 18R- and 18S-O-methyl-withaphysalin F (1: and 2: ). Their structures were elucidated by NMR, IR, MS, CD, and X-ray diffraction analysis, and their potential against cell proliferation and migration was investigated. The cytotoxic assay revealed activity against different tumor and non-tumor cell lines. (18S)-O-methyl-withaphysalin F (2: ) presented cell death effects after at least 6 hours of exposure. MDA-MB-231 cells were exposed to 0.06 and 0.6 µM of (18S)-O-methyl-withaphysalin F (2: ), and reductions in cell adhesion, migration, and clonogenicity were observed. Morphological analysis revealed negative regulation in filopodia, salience, and roughness, as well as alterations in cellular microarchitecture. These results provide clues as to the effects of (18S)-O-methyl-withaphysalin F (2: ), allowing new molecular modifications to improve potency and selectivity and increase our antineoplastic arsenal.
Collapse
Affiliation(s)
- Rodrigo Elísio de Sá
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Gisele Santos de Araújo
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Fabrício Dos Santos Machado
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Jessica Maria Teles Souza
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ayslan Batista Barros
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Francisco das Chagas Lima Pinto
- Laboratório de Fitoquímica de Plantas Medicinais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Joana Deyse Lima Agostinho
- Laboratório de Fitoquímica de Plantas Medicinais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Alejandro Pedro Ayala
- Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Otília Deusdênia Loiola Pessoa
- Laboratório de Fitoquímica de Plantas Medicinais, Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará (UFC), Fortaleza, CE, Brazil
| | - Ana Jérsia Araújo
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| |
Collapse
|
25
|
Wu Z, Xiang H, Wang X, Zhang R, Guo Y, Qu L, Zhou J, Xiao Y. Integrating network pharmacology, molecular docking and experimental verification to explore the therapeutic effect and potential mechanism of nomilin against triple-negative breast cancer. Mol Med 2024; 30:166. [PMID: 39342122 PMCID: PMC11439318 DOI: 10.1186/s10020-024-00928-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Nomilin is a limonoid compound known for its multiple biological activities, but its role in triple negative breast cancer (TNBC) remains unclear. This study aims to uncover the potential therapeutic effect of nomilin on TNBC and elucidate the specific mechanism of its action. METHODS We employed weighted gene co-expression network analysis (WGCNA), differential expression analysis, and the GeneCards database to identify potential targets for TNBC. Simultaneously, we utilized the Swiss Target Prediction, ChEMBL, and STITCH databases to identify potential targets of nomilin. The core targets and mechanisms of nomilin against TNBC were predicted through protein-protein interaction (PPI) network analysis, molecular docking, and enrichment analysis. The results of the network pharmacology were corroborated by conducting experiments. RESULTS A total of 17,204 TNBC targets were screened, and 301 potential targets of nomilin were identified. Through the PPI network, eight core targets of nomilin against TNBC were pinpointed, namely BCL2, Caspase3, CyclinD1, EGFR, HSP90AA1, KRAS, PARP1, and TNF. Molecular docking, molecular dynamics simulation and proteome microarray revealed that nomilin exhibits strong binding activity to these core proteins. Enrichment analysis results indicated that the anti-TNBC effect of nomilin is associated with PI3K/Akt pathway. In vitro and in vivo experiments have demonstrated that nomilin inhibits TNBC cell proliferation and migration while promoting cell apoptosis through the PI3K/Akt pathway. CONCLUSION For the first time, the research effectively discovered the objectives and mechanisms of nomilin in combating TNBC using network pharmacology, molecular docking, molecular dynamics simulation, proteome microarray and experimental confirmation, presenting a hopeful approach for treating TNBC.
Collapse
Affiliation(s)
- Zhixuan Wu
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Haoyi Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, China
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, Zhejiang Province, 310016, China
| | - Xiaowu Wang
- Department of Burns and Skin Repair Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, 325200, China
| | - Rongrong Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yangyang Guo
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Liangchen Qu
- Emergency Department, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 318000, China.
| | - Jingyao Zhou
- Pharmacy Department, Taizhou Central Hospital, Taizhou, Zhejiang Province, 318000, China.
| | - Yanyi Xiao
- The Dingli Clinical College of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China.
- Department of Thyroid and Breast Surgery, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang Province, 325000, China.
| |
Collapse
|
26
|
Chen XF, Liu PG, Sheng N, Li XS, Hu RK, Zhu LX, Feng P. Arctigenin inhibits the progression of colorectal cancer through epithelial-mesenchymal transition via PI3K/Akt/mTOR signaling pathway. PLoS One 2024; 19:e0308947. [PMID: 39331595 PMCID: PMC11432899 DOI: 10.1371/journal.pone.0308947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a significant disease worldwide, with high mortality rates. Conventional treatment methods often lead to metastasis and drug resistance, highlighting the need to explore new drugs and their potential molecular mechanisms. In this study, we investigated the effects of arctigenin on CRC cell proliferation, migration, invasion, apoptosis, and related protein expression, as well as its potential molecular mechanisms. METHODS The CCK-8 assay, transwell migration and invasion assays, flow cytometry, immunoblotting and immunofluorescence staining, western blot and an allograft tumor transplantation model was used. RESULTS Our study revealed that arctigenin effectively inhibited CRC cell proliferation, migration, and invasion in a dose-dependent manner, while also inducing apoptosis. At the molecular level, arctigenin significantly downregulated the expressions of PCNA, Bcl2, MMP-2, and MMP-9 and upregulated the expressions of Bax and cleaved caspase-3. Additionally, arctigenin demonstrated the ability to inhibit the epithelial-mesenchymal transition (EMT) process by upregulating E-cadherin and downregulating mesenchymal markers, such as N-cadherin, Vimentin, Snail, and Slug. Furthermore, arctigenin could inhibit the activation of the PI3K-AKT-mTOR signaling pathway, which has been implicated in cancer progression. In vivo experiments also showed that arctigenin significantly reduced tumor volume and size compared to the control group, with no significant adverse effects on the liver. CONCLUSIONS This is the first study to elucidate the mechanism by which arctigenin inhibits colorectal cancer metastasis through the PI3K-AKT-mTOR signaling pathway by suppressing the EMT process at the molecular level.
Collapse
Affiliation(s)
- Xiang-Fan Chen
- Biological Sample Bank, Afliated Hospital 2 of Nantong University, Nantong, China
| | - Pei-Gen Liu
- Department of General Surgery, Central Hospital of Panzhihua City, Panzhihua, Sichuan Province, China
| | - Nan Sheng
- Department of Clinical Laboratory, Afliated Hospital 2 of Nantong University, Nantong, China
| | - Xin-Shuai Li
- Department of Pharmacy, Afliated Hospital 2 of Nantong University, Nantong, China
| | - Rui-Kun Hu
- Personnel Department, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Long-Xun Zhu
- Department of Pharmacy, Afliated Hospital 2 of Nantong University, Nantong, China
| | - Panfeng Feng
- Department of Pharmacy, Afliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
27
|
Kutwin M, Sosnowska-Ławnicka M, Nasiłowska B, Lange A, Wierzbicki M, Jaworski S. The Delivery of Mimic miRNA-7 into Glioblastoma Cells and Tumour Tissue by Graphene Oxide Nanosystems. Nanotechnol Sci Appl 2024; 17:167-188. [PMID: 39280996 PMCID: PMC11402368 DOI: 10.2147/nsa.s469193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/28/2024] [Indexed: 09/18/2024] Open
Abstract
Purpose The use of nanotechnology in medicine has gained attention in developing drug delivery systems. GO has the potential to deliver microRNA (miRNA) mimics or antisense structures. MiRNAs regulate gene expression and their dysregulation is implicated in diseases, including cancer. This study aims to observe changes in morphology, viability, mRNA expression of mTOR/PI3K/Akt and PTEN genes in U87, U118, U251, A172 and T98 glioblastoma cells and xenograft models after GO self-assembly with mimic miRNA-7. Methods Colloidal suspension of graphene oxide (GO) was used for obtaining the GO-mimic miRNA-7 nanosystems by self-assembly method. The ultrastructure, size distribution and ATR-FTIR and UV-Vis spectrum were analyzed. The Zeta potential was measured to verify the stability of obtained nanosystem. The entrapment efficiency, loading capacity and released kinetics of mimic miRNA-7 form GO-mimic miRNA-7 nanosystems were analyzed. The transfection efficiency into the glioblastoma cell lines U87, U118, U251, A172 and T98 of mimic miRNA-7 delivered by GO nanosystems was measure by confocal microscopy and flow cytometry. The changes at mRNA expression level of mTOR, PI3K, AKT1 and PTEN genes was measured by qPCR analysis. The xenograft model of U87 and A172 tumour tissue was performed to analyze the effect at tumor size and volume after GO- mimic miRNA-7 nanosystem administration. Results The ultrastructure of GO-mimic miRNA-7 nanosystems showed high affinity of mimic miRNA into the GO. The results of transfection efficiency, cell morphology and viability showed that GO -miRNA-7 effectively deliver mimics miRNA-7 into U87, U118, U251, A172 and T98 glioblastoma cells. This approach can reverse miRNA-7 expression's downstream effects and target the mTOR PI3K/Akt pathway observed at gene expression level, reducing xenograft tumour size and volume. Conclusion The findings of the study could have significant implications for the development of advanced and precise GO based nanosystems specifically designed for miRNA therapy in cancer treatment.
Collapse
Affiliation(s)
- Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malwina Sosnowska-Ławnicka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Nasiłowska
- Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
28
|
Wei M, Yang X, Yang X, Huang Y, Yuan Z, Huang J, Wei J, Tian L. MLPH regulates EMT in pancreatic adenocarcinoma through the PI3K-AKT signaling pathway. J Cancer 2024; 15:5828-5838. [PMID: 39308678 PMCID: PMC11414609 DOI: 10.7150/jca.94573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is an extremely malignant tumor, and most patients develop postoperative metastases. Melanophilin (MLPH) is involved in the progression of various tumors, but its molecular mechanisms and role in pancreatic cancer progression are unknown. In this study, differential MLPH expression in cancer tissues and the adjacent tissues was evaluated using the Gene Expression Profiling Interaction Analysis 2 (GEPIA 2) and Human Protein Atlas (HPA) databases. The role of MLPH in PAAD proliferation, invasion, and migration in vitro was explored via clone formation, Cell Counting Kit-8 assay, Transwell assay, and western blot. The in vivo validation of function was performed using a metastatic nude mouse model. The result showed that the pancreatic cancer tissues had significantly higher MLPH expression levels than the noncancerous pancreatic tissues. MLPH expression changes were related to PAAD cell proliferation, invasion, and migration. The western blotting demonstrated that PAAD cells had reduced Epithelial-mesenchymal transition (EMT)-related marker expression. Furthermore, overexpressing MLPH enhanced cell proliferation, migration, and invasion, and increased EMT-related marker expression. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the molecular mechanism underlying the effect of MLPH on PAAD was significantly related to the PI3K-AKT pathway. LY294002 blocked the MLPH overexpression-mediated enhanced cell invasion and migration and inhibited EMT-associated marker expression. Conversely, 740Y-P reversed the inhibitory effects of MLPH downregulation and led to cell migration, invasion, and EMT. MLPH regulated EMT to mediate PAAD cell invasive migration through the PI3K-AKT pathway. The results indicated that MLPH is a possible target for blocking PAAD metastasis.
Collapse
Affiliation(s)
- Mengda Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Xi Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Xiaoying Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Yanqing Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Zhenmin Yuan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Junjie Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Junren Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Lei Tian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| |
Collapse
|
29
|
Proust B, Horvat A, Tadijan A, Vlašić I, Herak Bosnar M. Mitochondrial NME6 Influences Basic Cellular Processes in Tumor Cells In Vitro. Int J Mol Sci 2024; 25:9580. [PMID: 39273527 PMCID: PMC11395177 DOI: 10.3390/ijms25179580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
NME6 belongs to the family of nucleoside diphosphate kinase enzymes, whose major role is to transfer the terminal phosphate from NTPs, mostly ATP, to other (d)NDPs via a high-energy intermediate. Beside this basic enzymatic activity, the family, comprising 10 genes/proteins in humans, executes a number of diverse biochemical/biological functions in the cell. A few previous studies have reported that NME6 resides in the mitochondria and influences oxidative phosphorylation while interacting with RCC1L, a GTPase involved in mitochondrial ribosome assembly and translation. Considering the multifunctional role of NME family members, the goal of the present study was to assess the influence of the overexpression or silencing of NME6 on fundamental cellular events of MDA-MB-231T metastatic breast cancer cells. Using flow cytometry, Western blotting, and a wound-healing assay, we demonstrated that the overexpression of NME6 reduces cell migration and alters the expression of EMT (epithelial-mesenchymal transition) markers. In addition, NME6 overexpression influences cell cycle distribution exclusively upon DNA damage and impacts the MAPK/ERK signaling pathway, while it has no effect on apoptosis. To conclude, our results demonstrate that NME6 is involved in different cellular processes, providing a solid basis for future, more precise investigations of its role.
Collapse
Affiliation(s)
| | | | | | | | - Maja Herak Bosnar
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10002 Zagreb, Croatia; (B.P.); (A.H.); (A.T.); (I.V.)
| |
Collapse
|
30
|
Xu N, Wu J, Wang W, Sun S, Sun M, Bian Y, Zhang H, Liu S, Yu G. Anti-tumor therapy of glycyrrhetinic acid targeted liposome co-delivery of doxorubicin and berberine for hepatocellular carcinoma. Drug Deliv Transl Res 2024; 14:2386-2402. [PMID: 38236508 DOI: 10.1007/s13346-023-01512-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 01/19/2024]
Abstract
During the development of hepatocellular carcinoma (HCC), hepatic stellate cells undergo activation and transform into cancer-associated fibroblasts (CAFs) due to the influence of tumor cells. The interaction between CAFs and tumor cells can compromise the effectiveness of chemotherapy drugs and promote tumor proliferation, invasion, and metastasis. This study explores the potential of glycyrrhetinic acid (GA)-modified liposomes (lip-GA) as a strategy for co-delivery of berberine (Ber) and doxorubicin (Dox) to treat HCC. The characterizations of liposomes, including particle size, zeta potential, polydispersity index, stability and in vitro drug release, were investigated. The study evaluated the anti-proliferation and anti-migration effects of Dox&Ber@lip-GA on the Huh-7 + LX-2 cell model were through MTT and wound-healing assays. Additionally, the in vivo drug distribution and anti-tumor efficacy were investigated using the H22 + NIH-3T3-bearing mouse model. The results indicated that Dox&Ber@lip-GA exhibited a nanoscale particle size, accumulated specifically in the tumor region, and was efficiently taken up by tumor cells. Compared to other groups, Dox&Ber@lip-GA demonstrated higher cytotoxicity and lower migration rates. Additionally, it significantly reduced the deposition of extracellular matrix (ECM) and inhibited tumor angiogenesis, thereby suppressing tumor growth. In conclusion, Dox&Ber@lip-GA exhibited superior anti-tumor effects both in vitro and in vivo, highlighting its potential as an effective therapeutic strategy for combating HCC.
Collapse
Affiliation(s)
- Na Xu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, China.
| | - Weihao Wang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shujie Sun
- School of Nursing, Weifang University of Science and Technology, Weifang, China
| | - Mengmeng Sun
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Yandong Bian
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Huien Zhang
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
| | - Shuzhen Liu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China
| | - Guohua Yu
- School of Clinical Medicine, Weifang Medicine University, Weifang, China.
- Department of Oncology, The First Affiliated Hospital of Weifang Medical College: Weifang People's Hospital, Weifang, China.
| |
Collapse
|
31
|
Song S, Li B, Jin X, Li H, Wang H, Wang F, He Y, Zhang C. NAT10 Overexpression Promotes Tumorigenesis and Epithelial-Mesenchymal Transition Through AKT Pathway in Gastric Cancer. Dig Dis Sci 2024; 69:3261-3275. [PMID: 38990269 DOI: 10.1007/s10620-024-08472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/01/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND N-acetyltransferase 10 (NAT10), the only RNA cytosine acetyltransferase known in humans, contributes to cancer tumorigenesis and progression. This study aims to investigate the effect of NAT10 on the malignant biological properties of gastric cancer (GC) and its underlying mechanism. METHODS The expression and prognostic significance of NAT10 in GC were analyzed using The Cancer Genome Atlas (TCGA) and Sun Yat-sen University (SYSU) cohorts. The influence of NAT10 on the malignant biological behaviors of GC was detected by Cell Counting Kit-8 (CCK-8) assay, plate colony formation assay, 5-ethynyl-2'-deoxyuridine (EdU), Transwell migration and invasion assays, scratch wound assay, flow cytometric analysis, and animal studies. The overall level of N4 acetylcytidine (ac4C) in GC was detected by liquid chromatography with tandem mass spectrometry (LC-MS/MS). The downstream signal pathways of NAT10 were analyzed by Gene Set Enrichment Analysis (GSEA) and verified by Western blot (WB) and immunofluorescence (IF). RESULTS The significant upregulation of NAT10 expression in GC was associated with a poor prognosis. The knockdown of NAT10 markedly suppressed GC cell proliferation, migration, invasion, and cell cycle progression. Downregulating NAT10 reduced ac4C levels and inhibited AKT phosphorylation and epithelial-mesenchymal transition (EMT) in GC. CONCLUSIONS NAT10 functions as an oncogene and may provide a new therapeutic target in GC.
Collapse
Affiliation(s)
- Shenglei Song
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
- Department of General Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410002, People's Republic of China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Xinghan Jin
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Huijin Wang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, People's Republic of China
| | - Fuhui Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Changhua Zhang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China.
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
32
|
Shultz KD, Al Anbari YF, Wright NT. I told you to stop: obscurin's role in epithelial cell migration. Biochem Soc Trans 2024; 52:1947-1956. [PMID: 39051125 DOI: 10.1042/bst20240564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer.
Collapse
Affiliation(s)
- Kamrin D Shultz
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Yasmin F Al Anbari
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| |
Collapse
|
33
|
Sun H, Meng Y, Yao L, Du S, Li Y, Zhou Q, Liu Y, Dian Y, Sun Y, Wang X, Liang X, Deng G, Chen X, Zeng F. Ubiquitin-specific protease 22 controls melanoma metastasis and vulnerability to ferroptosis through targeting SIRT1/PTEN/PI3K signaling. MedComm (Beijing) 2024; 5:e684. [PMID: 39135915 PMCID: PMC11318338 DOI: 10.1002/mco2.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 08/15/2024] Open
Abstract
Metastasis is a major contributing factor that affects the prognosis of melanoma patients. Nevertheless, the underlying molecular mechanisms involved in melanoma metastasis are not yet entirely understood. Here, we identified ubiquitin-specific protease 22 (USP22) as a pro-oncogenic protein in melanoma through screening the survival profiles of 52 ubiquitin-specific proteases (USPs). USP22 demonstrates a strong association with poor clinical outcomes and is significantly overexpressed in melanoma. Ablation of USP22 expression remarkably attenuates melanoma migration, invasion, and epithelial-mesenchymal transition in vitro and suppresses melanoma metastasis in vivo. Mechanistically, USP22 controls melanoma metastasis through the SIRT1/PTEN/PI3K pathway. In addition, we conducted an United States Food and Drug Administration-approved drug library screening and identified topotecan as a clinically applicable USP22-targeting molecule by promoting proteasomal degradation of USP22. Finally, we found that both pharmacological and genetic silence of USP22 sensitize RSL3-induced ferroptosis through suppressing the PI3K/Akt/mTOR pathway and its downstream SCD, and ferroptosis inhibitor could partly rescued the decreased lung metastasis by topotecan in vivo. Overall, our findings reveal a prometastatic role of USP22 and identify topotecan as a potent USP22-targeting drug to limit melanoma metastasis.
Collapse
Affiliation(s)
- Huiyan Sun
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
- Department of Breast ReconstructionTianjin Medical UniversityCancer Institute and HospitalTianjinChina
| | - Yu Meng
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Lei Yao
- Department of Liver SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Songtao Du
- Department of Colorectal Surgical OncologyThe Tumor Hospital of Harbin Medical UniversityHarbinChina
| | - Yayun Li
- Department of DermatologyThe Third Xiangya Hospital Central South UniversityChangshaChina
| | - Qian Zhou
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yihuang Liu
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yating Dian
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Yuming Sun
- Department of Plastic and Cosmetic SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Xiaomin Wang
- Department of Breast SurgeryXiangya Hospital Central South UniversityChangshaChina
| | - Xiao‐wei Liang
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Guangtong Deng
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Xiang Chen
- Department of DermatologyXiangya Hospital Central South UniversityChangshaChina
- National Engineering Research Center of Personalized Diagnostic and Therapeutic TechnologyChangshaChina
- Furong LaboratoryChangshaChina
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)ChangshaChina
| | - Furong Zeng
- Department of OncologyXiangya Hospital Central South UniversityChangshaChina
| |
Collapse
|
34
|
Lahane GP, Dhar A, Bhat A. Therapeutic approaches and novel antifibrotic agents in renal fibrosis: A comprehensive review. J Biochem Mol Toxicol 2024; 38:e23795. [PMID: 39132761 DOI: 10.1002/jbt.23795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Renal fibrosis (RF) is one of the underlying pathological conditions leading to progressive loss of renal function and end-stage renal disease (ESRD). Over the years, various therapeutic approaches have been explored to combat RF and prevent ESRD. Despite significant advances in understanding the underlying molecular mechanism(s), effective therapeutic interventions for RF are limited. Current therapeutic strategies primarily target these underlying mechanisms to halt or reverse fibrotic progression. Inhibition of transforming growth factor-β (TGF-β) signaling, a pivotal mediator of RF has emerged as a central strategy to manage RF. Small molecules, peptides, and monoclonal antibodies that target TGF-β receptors or downstream effectors have demonstrated potential in preclinical models. Modulating the renin-angiotensin system and targeting the endothelin system also provide established approaches for controlling fibrosis-related hemodynamic changes. Complementary to pharmacological strategies, lifestyle modifications, and dietary interventions contribute to holistic management. This comprehensive review aims to summarize the underlying mechanisms of RF and provide an overview of the therapeutic strategies and novel antifibrotic agents that hold promise in its treatment.
Collapse
Affiliation(s)
- Ganesh Panditrao Lahane
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad, Telangana, India
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir, India
| |
Collapse
|
35
|
Pomella S, Melaiu O, Dri M, Martelli M, Gargari M, Barillari G. Effects of Angiogenic Factors on the Epithelial-to-Mesenchymal Transition and Their Impact on the Onset and Progression of Oral Squamous Cell Carcinoma: An Overview. Cells 2024; 13:1294. [PMID: 39120324 PMCID: PMC11311310 DOI: 10.3390/cells13151294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
High levels of vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF)-2 and angiopoietin (ANG)-2 are found in tissues from oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). As might be expected, VEGF, FGF-2, and ANG-2 overexpression parallels the development of new blood and lymphatic vessels that nourish the growing OPMDs or OSCCs and provide the latter with metastatic routes. Notably, VEGF, FGF-2, and ANG-2 are also linked to the epithelial-to-mesenchymal transition (EMT), a trans-differentiation process that respectively promotes or exasperates the invasiveness of normal and neoplastic oral epithelial cells. Here, we have summarized published work regarding the impact that the interplay among VEGF, FGF-2, ANG-2, vessel generation, and EMT has on oral carcinogenesis. Results from the reviewed studies indicate that VEGF, FGF-2, and ANG-2 spark either protein kinase B (AKT) or mitogen-activated protein kinases (MAPK), two signaling pathways that can promote both EMT and new vessels' formation in OPMDs and OSCCs. Since EMT and vessel generation are key to the onset and progression of OSCC, as well as to its radio- and chemo-resistance, these data encourage including AKT or MAPK inhibitors and/or antiangiogenic drugs in the treatment of this malignancy.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Ombretta Melaiu
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Maria Dri
- Department of Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Mirko Martelli
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Marco Gargari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (M.M.); (M.G.)
| |
Collapse
|
36
|
Jeyaraman M, Jeyaraman N, Ramasubramanian S, Balaji S, Nallakumarasamy A, Patro BP, Migliorini F. Ozone therapy in musculoskeletal medicine: a comprehensive review. Eur J Med Res 2024; 29:398. [PMID: 39085932 PMCID: PMC11290204 DOI: 10.1186/s40001-024-01976-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Musculoskeletal disorders encompass a wide range of conditions that impact the bones, joints, muscles, and connective tissues within the body. Despite the ongoing debate on toxicity and administration, ozone demonstrated promise in managing several musculoskeletal disorders, modulating pain and inflammation. A literature search was conducted. The research design, methods, findings, and conclusions of the studies were then examined to evaluate the physiological effects, clinical application, controversies, and safety of the application of ozone in musculoskeletal medicine. Ozone application demonstrates considerable therapeutic applications in the management of musculoskeletal disorders, including fractures, osteoarthritis, and chronic pain syndromes. Despite these advantages, studies have raised concerns regarding its potential toxicity and emphasized the importance of adhering to stringent administration protocols to ensure safety. Additionally, heterogeneities in patient reactions and hazards from oxidizing agents were observed. Given its anti-inflammatory and analgesic qualities, ozone therapy holds potential in the management of several musculoskeletal disorders. Additional high-quality research with long follow-up is required to refine indications, efficacy and safety profile. Finally, for wider clinical acceptability and utilization, the development of international recommendations is essential.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, 600077, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai, Tamil Nadu, 600077, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu, 600002, India
| | - Sangeetha Balaji
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, Tamil Nadu, 600002, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)-Karaikal, Puducherry, 605006, India
| | - Bishnu Prasad Patro
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar, Odisha, 751019, India
| | - Filippo Migliorini
- Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH University Medical Centre, Pauwelsstraße 30, 52074, Aachen, Germany.
- Department of Orthopaedic and Trauma Surgery, Academic Hospital of Bolzano (SABES-ASDAA), 39100, Bolzano, Italy.
- Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
| |
Collapse
|
37
|
Ma D, Zhang J, Du L, Shi J, Liu Z, Qin J, Chen X, Guo M. Colquhounia root tablet improves diabetic kidney disease by regulating epithelial-mesenchymal transition via the PTEN/PI3K/AKT pathway. Front Pharmacol 2024; 15:1418588. [PMID: 39130629 PMCID: PMC11310013 DOI: 10.3389/fphar.2024.1418588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus that can lead to end-stage renal disease. Colquhounia root tablet (CRT) has shown therapeutic potential in treating DKD, but its efficacy and underlying mechanisms remain to be elucidated. Methods A randomized controlled clinical trial was conducted on 61 DKD patients. The treatment group received CRT in addition to standard therapy, while the control group received standard therapy alone. Treatment efficacy and adverse events were evaluated after 3 months. Additionally, in vitro experiments using human renal tubular epithelial cells (HK-2) were performed to investigate the effect of CRT on high glucose (HG)-induced epithelial-mesenchymal transition (EMT) and the involvement of the PTEN/PI3K/AKT signaling pathway. Results CRT treatment significantly improved proteinuria and increased the effective treatment rate in DKD patients compared to the control group, with no significant difference in adverse events. Moreover, CRT reversed HG-induced EMT in HK-2 cells, as evidenced by the downregulation of α-SMA and upregulation of E-cadherin at both mRNA and protein levels. Mechanistically, CRT increased PTEN expression and inhibited the PI3K/AKT pathway, similar to the effects of the PI3K inhibitor LY29400. The combination of CRT and LY29400 further enhanced PTEN mRNA expression under HG conditions. Conclusion CRT effectively improves proteinuria in DKD patients and ameliorates HG-induced EMT in HK-2 cells. The underlying mechanism may involve the upregulation of PTEN and subsequent inhibition of the PI3K/AKT signaling pathway. These findings provide new insights into the therapeutic potential of CRT for DKD treatment.
Collapse
Affiliation(s)
- Donghong Ma
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
- Xinxiang Key Laboratory of Precise Therapy for Diabetic Kidney Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Jiao Zhang
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Lu Du
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Jingjing Shi
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Zhaoyan Liu
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
- Xinxiang Key Laboratory of Precise Therapy for Diabetic Kidney Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Jilin Qin
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
- Xinxiang Key Laboratory of Precise Therapy for Diabetic Kidney Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Xiaoxiao Chen
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
- Xinxiang Key Laboratory of Precise Therapy for Diabetic Kidney Disease, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| | - Minghao Guo
- Department of Nephrology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan Province, China
| |
Collapse
|
38
|
JIANG WEI, ZHOU MEI. Analysis of the role of dihydromyricetin derived from vine tea ( Ampelopsis grossedentata) on multiple myeloma by activating STAT1/RIG-I axis. Oncol Res 2024; 32:1359-1368. [PMID: 39055888 PMCID: PMC11267036 DOI: 10.32604/or.2024.043423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/24/2023] [Indexed: 07/28/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy and remains incurable as it lacks effective curative approaches; thus, novel therapeutic strategies are desperately needed. The study aimed to explore the therapeutic role of dihydromyricetin (DHM) in MM and explore its mechanisms. Human MM and normal plasma samples, human MM cell lines, and normal plasma cells were used for in vitro experiments. Cell counting kit-8 (CCK-8), flow cytometry, and trans-well assays were performed for the assessment of cell viability, apoptosis, migration, and invasion, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the mRNA expression of signal transducer and activator of transcription 1 (STAT1) and retinoic acid-inducible gene I (RIG-I). Western blotting was employed to assess E-cadherin, N-cadherin, signal transducer, STAT1, p-STAT1, and RIG-I protein expression. A tumor xenograft model was used for in vivo experiments. Here, dihydromyricetin (DHM) dose-dependently restrained viability, apoptosis, migration, and invasion, and facilitated apoptosis of U266 cells. After DHM treatment, the E-cadherin level was increased and the N-cadherin level was decreased in U266 and RPMI-8226 cells, suggesting the inhibitory effects of DHM on epithelial-mesenchymal transition (EMT) in MM. Besides, the levels of p-STAT1/STAT1 and RIG-I were down-regulated in MM. However, the STAT1 inhibitor fludarabine undid the suppressive effect of DMH on the malignant characteristics of U266 cells. Also, DHM inhibited MM tumor growth and EMT, and activated STAT1/RIG-I pathway in vivo. Collectively, this study first revealed that DHM can restrain EMT and tumor growth in MM by activating STAT1/RIG-I signaling, which provides a novel drug for the treatment of MM.
Collapse
Affiliation(s)
- WEI JIANG
- Department of Hematology, Shaoxing Shangyu People’s Hospital, Shaoxing, 312000, China
| | - MEI ZHOU
- Department of Hematology, Zhuji People’s Hospital, Shaoxing, 311800, China
| |
Collapse
|
39
|
Rangaswamy R, Sneha S, Hemavathy N, Umashankar V, Jeyakanthan J. Computational discovery of AKT serine/threonine kinase 1 inhibitors through shape screening for rheumatoid arthritis intervention. Mol Divers 2024:10.1007/s11030-024-10910-z. [PMID: 38970640 DOI: 10.1007/s11030-024-10910-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/02/2024] [Indexed: 07/08/2024]
Abstract
Rheumatoid Arthritis (RA) is a chronic, symmetrical inflammatory autoimmune disorder characterized by painful, swollen synovitis and joint erosions, which can cause damage to bone and cartilage and be associated with progressive disability. Despite expanded treatment options, some patients still experience inadequate response or intolerable adverse effects. Consequently, the treatment options for RA remain quite limited. The enzyme AKT1 is crucial in designing drugs for various human diseases, supporting cellular functions like proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. Therefore, AKT serine/threonine kinase 1 is considered crucial for targeting therapeutic strategies aimed at mitigating RA mechanisms. In this context, directing efforts toward AKT1 represents an innovative approach to developing new anti-arthritis medications. The primary objective of this research is to prioritize AKT1 inhibitors using computational techniques such as molecular modeling and dynamics simulation (MDS) and shape-based virtual screening (SBVS). A combined SBVS approach was employed to predict potent inhibitors against AKT1 by screening a pool of compounds sourced from the ChemDiv and IMPPAT databases. From the SBVS results, only the top three compounds, ChemDiv_7266, ChemDiv_2796, and ChemDiv_9468, were subjected to stability analysis based on their high binding affinity and favorable ADME/Tox properties. The SBVS findings have revealed that critical residues, including Glu17, Gly37, Glu85, and Arg273, significantly contribute to the successful binding of the highest-ranked lead compounds at the active site of AKT1. This insight helps to understand the specific binding mechanism of these leads in inhibiting RA, facilitating the rational design of more effective therapeutic agents.
Collapse
Affiliation(s)
- Raghu Rangaswamy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Tamil Nadu, Karaikudi, 630 003, India
| | - Subramaniyan Sneha
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Tamil Nadu, Karaikudi, 630 003, India
| | - Nagarajan Hemavathy
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Tamil Nadu, Karaikudi, 630 003, India
| | - Vetrivel Umashankar
- Virology & Biotechnology/Bioinformatics Division, ICMR-National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, 600 031, India
| | - Jeyaraman Jeyakanthan
- Structural Biology and Bio-Computing Lab, Department of Bioinformatics, Science Block, Alagappa University, Tamil Nadu, Karaikudi, 630 003, India.
| |
Collapse
|
40
|
Sivaganesh V, Ta TM, Peethambaran B. Pentagalloyl Glucose (PGG) Exhibits Anti-Cancer Activity against Aggressive Prostate Cancer by Modulating the ROR1 Mediated AKT-GSK3β Pathway. Int J Mol Sci 2024; 25:7003. [PMID: 39000112 PMCID: PMC11241829 DOI: 10.3390/ijms25137003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Androgen-receptor-negative, androgen-independent (ARneg-AI) prostate cancer aggressively proliferates and metastasizes, which makes treatment difficult. Hence, it is necessary to continue exploring cancer-associated markers, such as oncofetal Receptor Tyrosine Kinase like Orphan Receptor 1 (ROR1), which may serve as a form of targeted prostate cancer therapy. In this study, we identify that Penta-O-galloyl-β-D-glucose (PGG), a plant-derived gallotannin small molecule inhibitor, modulates ROR1-mediated oncogenic signaling and mitigates prostate cancer phenotypes. Results indicate that ROR1 protein levels were elevated in the highly aggressive ARneg-AI PC3 cancer cell line. PGG was selectively cytotoxic to PC3 cells and induced apoptosis of PC3 (IC50 of 31.64 µM) in comparison to normal prostate epithelial RWPE-1 cells (IC50 of 74.55 µM). PGG was found to suppress ROR1 and downstream oncogenic pathways in PC3 cells. These molecular phenomena were corroborated by reduced migration, invasion, and cell cycle progression of PC3 cells. PGG minimally and moderately affected RWPE-1 and ARneg-AI DU145, respectively, which may be due to these cells having lower levels of ROR1 expression in comparison to PC3 cells. Additionally, PGG acted synergistically with the standard chemotherapeutic agent docetaxel to lower the IC50 of both compounds about five-fold (combination index = 0.402) in PC3 cells. These results suggest that ROR1 is a key oncogenic driver and a promising target in aggressive prostate cancers that lack a targetable androgen receptor. Furthermore, PGG may be a selective and potent anti-cancer agent capable of treating ROR1-expressing prostate cancers.
Collapse
Affiliation(s)
- Vignesh Sivaganesh
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, 4170 City Ave, Philadelphia, PA 19131, USA
| | - Tram M. Ta
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
| | - Bela Peethambaran
- Department of Biology, Saint Joseph’s University, 600 S 43rd St, Philadelphia, PA 19104, USA; (V.S.); (T.M.T.)
| |
Collapse
|
41
|
Park SY, Park JH, Yang JW, Jung EJ, Ju YT, Jeong CY, Kim JY, Park T, Kim TH, Park M, Lee YJ, Jeong SH. SMARCD3 Overexpression Promotes Epithelial-Mesenchymal Transition in Gastric Cancer. Cancers (Basel) 2024; 16:2282. [PMID: 38927986 PMCID: PMC11201906 DOI: 10.3390/cancers16122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigates the role of SMARCD3 in gastric cancer by comparing its expression in signet ring cell (SRC) and well-differentiated (WD) groups within gastric cancer cell lines and tissues. We observed elevated SMARCD3 levels in the SRC group compared to the WD group. Functional analysis was conducted through both SMARCD3 knock-in and knock-out methods. Kaplan-Meier survival analysis indicated that higher SMARCD3 expression correlates with poorer overall survival in gastric cancer patients (HR 2.16, p < 0.001). SMARCD3 knock-out cells showed decreased proliferation, migration, invasion, and expression of epithelial-mesenchymal transition (EMT) markers, contrasting with results from temporary and stable SMARCD3 overexpression experiments, which demonstrated increased cell area and irregularity (p < 0.001). Further analysis revealed that SMARCD3 overexpression in MKN-74 cells significantly enhanced p-AKT-S473 and p-ERK levels (p < 0.05), and in KATO III cells, it increased β-catenin and PI3Kp85 activities (p < 0.05). Conversely, these activities decreased in SNU 601 cells following SMARCD3 depletion. The study concludes that SMARCD3 overexpression may serve as a negative prognostic marker and a potential therapeutic target in gastric cancer treatment due to its role in promoting EMT.
Collapse
Affiliation(s)
- Sun Yi Park
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Ji-Ho Park
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Jung Wook Yang
- Department of Pathology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Eun-Jung Jung
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Young-Tae Ju
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Chi-Young Jeong
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Ju-Yeon Kim
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Taejin Park
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Tae-Han Kim
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| | - Miyeong Park
- Department of Anesthesiology, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea
| | - Young-Joon Lee
- Department of Surgery, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea (C.-Y.J.)
| | - Sang-Ho Jeong
- Department of Surgery, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon 51472, Republic of Korea; (E.-J.J.); (T.-H.K.)
| |
Collapse
|
42
|
Aquino-Acevedo AN, Orengo-Orengo JA, Cruz-Robles ME, Saavedra HI. Mitotic kinases are emerging therapeutic targets against metastatic breast cancer. Cell Div 2024; 19:21. [PMID: 38886738 PMCID: PMC11184769 DOI: 10.1186/s13008-024-00125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
This review aims to outline mitotic kinase inhibitors' roles as potential therapeutic targets and assess their suitability as a stand-alone clinical therapy or in combination with standard treatments for advanced-stage solid tumors, including triple-negative breast cancer (TNBC). Breast cancer poses a significant global health risk, with TNBC standing out as the most aggressive subtype. Comprehending the role of mitosis is crucial for understanding how TNBC advances from a solid tumor to metastasis. Chemotherapy is the primary treatment used to treat TNBC. Some types of chemotherapeutic agents target cells in mitosis, thus highlighting the need to comprehend the molecular mechanisms governing mitosis in cancer. This understanding is essential for devising targeted therapies to disrupt these mitotic processes, prevent or treat metastasis, and improve patient outcomes. Mitotic kinases like Aurora kinase A, Aurora Kinase B, never in mitosis gene A-related kinase 2, Threonine-Tyrosine kinase, and Polo-kinase 1 significantly impact cell cycle progression by contributing to chromosome separation and centrosome homeostasis. When these kinases go awry, they can trigger chromosome instability, increase cell proliferation, and activate different molecular pathways that culminate in a transition from epithelial to mesenchymal cells. Ongoing clinical trials investigate various mitotic kinase inhibitors as potential biological treatments against advanced solid tumors. While clinical trials against mitotic kinases have shown some promise in the clinic, more investigation is necessary, since they induce severe adverse effects, particularly affecting the hematopoietic system.
Collapse
Affiliation(s)
- Alexandra N Aquino-Acevedo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Joel A Orengo-Orengo
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Melanie E Cruz-Robles
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Ponce Health Sciences University-Ponce Research Institute, 388 Luis Salas Zona Industrial Reparada 2, P.O. Box 7004, Ponce, Puerto Rico, 00716-2347, USA.
| |
Collapse
|
43
|
Xie Y, Su Y, Wang Y, Zhang D, Yu Q, Yan C. Structural clarification of mannoglucan GSBP-2 from Ganoderma sinense and its effects on triple-negative breast cancer migration and invasion. Int J Biol Macromol 2024; 269:131903. [PMID: 38688342 DOI: 10.1016/j.ijbiomac.2024.131903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Ganoderma sinense, known as Lingzhi in China, is a medicinal fungus with anti-tumor properties. Herein, crude polysaccharides (GSB) extracted from G. sinense fruiting bodies were used to selectively inhibit triple-negative breast cancer (TNBC) cells. GSBP-2 was purified from GSB, with a molecular weight of 11.5 kDa and a composition of α-l-Fucp-(1→, β-d-Glcp-(1→, β-d-GlcpA-(1→, →3)-β-d-Glcp-(1→, →3)-β-d-GlcpA-(1→, →4)-α-d-Galp-(1→,→6)-β-d-Manp-(1→, and →3,6)-β-d-Glcp-(1→ at a ratio of 1.0:6.3:1.7:5.5:1.5:4.3:8.0:7.9. The anti-MDA-MB-231 cell activity of GSBP-2 was determined by methyl thiazolyl tetrazolium, colony formation, scratch wound healing, and transwell migration assays. The results showed that GSBP-2 could selectively inhibit the proliferation, migration, and invasion of MDA-MB-231 cells through the regulation of genes targeting epithelial-mesenchymal transition (i.e., Snail1, ZEB1, VIM, CDH1, CDH2, and MMP9) in the MDA-MB-231 cells. Furthermore, Western blotting results indicated that GSBP-2 could restrict epithelial-mesenchymal transition by increasing E-cadherin and decreasing N-cadherin expression through the PI3K/Akt pathway. GSBP-2 also suppressed the angiogenesis of human umbilical vein endothelial cells. In conclusion, GSBP-2 could inhibit the proliferation, migration, and invasion of MDA-MB-231 cells and showed significant anti-angiogenic ability. These findings indicate that GSBP-2 is a promising therapeutic adjuvant for TNBC.
Collapse
Affiliation(s)
- Yikun Xie
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifan Su
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yurong Wang
- Department of Chinese Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
44
|
Hui San S, Ching Ngai S. E-cadherin re-expression: Its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene 2024; 909:148293. [PMID: 38373660 DOI: 10.1016/j.gene.2024.148293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
The major limitation of conventional chemotherapy drugs is their lack of specificity for cancer cells. As a selective apoptosis-inducing agent, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive alternative. However, most of the cancer cells are found to be either intrinsically resistant to the TRAIL protein or may develop resistance after multiple treatments, and TRAIL resistance can induce epithelial-to-mesenchymal transition (EMT) at a later stage, promoting cancer invasion and migration. Interestingly, E-cadherin loss has been linked to TRAIL resistance and initiation of EMT, making E-cadherin re-expression a potential target to overcome these obstacles. Recent research suggests that re-expressing E-cadherin may reduce TRAIL resistance by enhancing TRAIL-induced apoptosis and preventing EMT by modulating EMT signalling factors. This reversal of EMT, can also aid in improving TRAIL-induced apoptosis. Therefore, this review provides remarkable insights into the mechanisms underlying E-cadherin re-expression, clinical implications, and potentiation, as well as the research gaps of E-cadherin re-expression in the current cancer treatment.
Collapse
Affiliation(s)
- Ser Hui San
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
45
|
Vasileiou M, Diamantoudis SC, Tsianava C, Nguyen NP. Immunotherapeutic Strategies Targeting Breast Cancer Stem Cells. Curr Oncol 2024; 31:3040-3063. [PMID: 38920716 PMCID: PMC11203270 DOI: 10.3390/curroncol31060232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is a leading cause of cancer death in women worldwide. Despite the implementation of multiple treatment options, including immunotherapy, breast cancer treatment remains a challenge. In this review, we aim to summarize present challenges in breast cancer immunotherapy and recent advancements in overcoming treatment resistance. We elaborate on the inhibition of signaling cascades, such as the Notch, Hedgehog, Hippo, and WNT signaling pathways, which regulate the self-renewal and differentiation of breast cancer stem cells and, consequently, disease progression and survival. Cancer stem cells represent a rare population of cancer cells, likely originating from non-malignant stem or progenitor cells, with the ability to evade immune surveillance and develop resistance to immunotherapeutic treatments. We also discuss the interactions between breast cancer stem cells and the immune system, including potential agents targeting breast cancer stem cell-associated signaling pathways, and provide an overview of the emerging approaches to breast cancer stem cell-targeted immunotherapy. Finally, we consider the development of breast cancer vaccines and adoptive cellular therapies, which train the immune system to recognize tumor-associated antigens, for eliciting T cell-mediated responses to target breast cancer stem cells.
Collapse
Affiliation(s)
- Maria Vasileiou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | | | - Christina Tsianava
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Nam P. Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA
| |
Collapse
|
46
|
Zhao D, Cai F, Liu X, Li T, Zhao E, Wang X, Zheng Z. CEACAM6 expression and function in tumor biology: a comprehensive review. Discov Oncol 2024; 15:186. [PMID: 38796667 PMCID: PMC11127906 DOI: 10.1007/s12672-024-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is an immunoglobulin superfamily protein primarily expressed on epithelial surfaces and myeloid cells. It plays a significant role in cancer progression by inhibiting apoptosis, promoting drug resistance, and facilitating cancer cell invasion and metastasis. Overexpression of CEACAM6 has been observed in various cancers, including lung, breast, colorectal, and hepatocellular cancers, and is associated with poorer overall survival and disease-free survival. Its differential expression on tumor cell surfaces makes it a promising cancer marker. This review aims to provide a comprehensive summary of CEACAM6's role in different cancer types, its involvement in signaling pathways, and recent advancements in CEACAM6-targeted treatments.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
- China Medical University, Shenyang, China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Tingting Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Ershu Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinlong Wang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
47
|
Tolue Ghasaban F, Ghanei M, Mahmoudian RA, Taghehchian N, Abbaszadegan MR, Moghbeli M. MicroRNAs as the critical regulators of epithelial mesenchymal transition in pancreatic tumor cells. Heliyon 2024; 10:e30599. [PMID: 38726188 PMCID: PMC11079401 DOI: 10.1016/j.heliyon.2024.e30599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer (PC), as one of the main endocrine and digestive systems malignancies has the highest cancer related mortality in the world. Lack of the evident clinical symptoms and appropriate diagnostic markers in the early stages of tumor progression are the main reasons of the high mortality rate among PC patients. Therefore, it is necessary to investigate the molecular pathways involved in the PC progression, in order to introduce novel early diagnostic methods. Epithelial mesenchymal transition (EMT) is a critical cellular process associated with pancreatic tumor cells invasion and distant metastasis. MicroRNAs (miRNAs) are also important regulators of EMT process. In the present review, we discussed the role of miRNAs in regulation of EMT process during PC progression. It has been reported that the miRNAs mainly regulate the EMT process in pancreatic tumor cells through the regulation of EMT-specific transcription factors and several signaling pathways such as WNT, NOTCH, TGF-β, JAK/STAT, and PI3K/AKT. Considering the high stability of miRNAs in body fluids and their role in regulation of EMT process, they can be introduced as the non-invasive diagnostic markers in the early stages of malignant pancreatic tumors. This review paves the way to introduce a non-invasive EMT based panel marker for the early tumor detection among PC patients.
Collapse
Affiliation(s)
- Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Cayetano-Salazar L, Hernandez-Moreno JA, Bello-Martinez J, Olea-Flores M, Castañeda-Saucedo E, Ramirez M, Mendoza-Catalán MA, Navarro-Tito N. Regulation of cellular and molecular markers of epithelial-mesenchymal transition by Brazilin in breast cancer cells. PeerJ 2024; 12:e17360. [PMID: 38737746 PMCID: PMC11088821 DOI: 10.7717/peerj.17360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024] Open
Abstract
Breast cancer is the most common invasive neoplasm and the leading cause of cancer death in women worldwide. The main cause of mortality in cancer patients is invasion and metastasis, where the epithelial-mesenchymal transition (EMT) is a crucial player in these processes. Pharmacological therapy has plants as its primary source, including isoflavonoids. Brazilin is an isoflavonoid isolated from Haematoxilum brasiletto that has shown antiproliferative activity in several cancer cell lines. In this study, we evaluated the effect of Brazilin on canonical markers of EMT such as E-cadherin, vimentin, Twist, and matrix metalloproteases (MMPs). By Western blot, we evaluated E-cadherin, vimentin, and Twist expression and the subcellular localization by immunofluorescence. Using gelatin zymography, we determined the levels of secretion of MMPs. We used Transwell chambers coated with matrigel to determine the in vitro invasion of breast cancer cells treated with Brazilin. Interestingly, our results show that Brazilin increases 50% in E-cadherin expression and decreases 50% in vimentin and Twist expression, MMPs, and cell invasion in triple-negative breast cancer (TNBC) MDA-MB-231 and to a lesser extend in MCF7 ER+ breast cancer cells. Together, these findings position Brazilin as a new molecule with great potential for use as complementary or alternative treatment in breast cancer therapy in the future.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jose A. Hernandez-Moreno
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Jorge Bello-Martinez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Eduardo Castañeda-Saucedo
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Monica Ramirez
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Miguel A. Mendoza-Catalán
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|
49
|
Khaloozadeh F, Razmara E, Asgharpour-Babayian F, Fallah A, Ramezani R, Rouhollah F, Babashah S. Exosomes derived from colorectal cancer cells take part in activation of stromal fibroblasts through regulating PHLPP isoforms. EXCLI JOURNAL 2024; 23:634-654. [PMID: 38887393 PMCID: PMC11180944 DOI: 10.17179/excli2024-6926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Given that tumor cells primarily instigate systemic changes through exosome secretion, our study delved into the role of colorectal cancer (CRC)-secreted exosomal miR-224 in stromal reprogramming and its impact on endothelial cell angiogenesis. Furthermore, we assessed the potential clinical significance of a specific signature of circulating serum-derived miRNAs, serving as a non-invasive biomarker for CRC diagnosis. Circulating serum-derived miR-103a-3p, miR-135b-5p, miR-182-5p, and miR-224-5p were significantly up-regulated, while miR-215-5p, and miR-455-5p showed a significant down-regulation in CRC patients than in healthy individuals. Our findings indicated that the expressions of CAF-specific markers (α-SMA and FAP) and CAF-derived cytokines (IL-6, and SDF-1) were induced in fibroblasts stimulated with SW480 CRC exosomes, partly due to Akt activation. As a plausible mechanism, exosomal transfer of miR-224 from SW40 CRC cells may activate stromal fibroblasts, which in turn, may promote endothelial cell sprouting. The study identified PHLPP1 and PHLPP2 as direct targets of miR-224 and demonstrated that CRC-secreted exosomal miR-224 activates Akt signaling by regulating PHLPP1/2 in activated fibroblasts, thereby affecting the stromal cell proliferation and migration. This study established a panel of six-circulating serum-derived miRNAs as a non-invasive biomarker for CRC diagnosis. Also, we proposed a supporting model in which CRC-secreted exosomal miR-224 takes part in the stromal reprogramming to CAFs partly through regulating Akt signaling. This may affect the malignant biological behavior of activated stromal cells and thereby elicit a vascular response within the microenvironment of CRC cells. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Fatemeh Khaloozadeh
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alireza Fallah
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
| | - Reihaneh Ramezani
- Department of Family Therapy, Women Research Center, Alzahra University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Research and Development Center of Biotechnology, Tarbiat Modares University, Tehran, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
50
|
Freitas LAB, Sousa C, Lima BS, Duarte D, Gomes PATDM, Ramos CGC, Costa VDCM, Pitta MGDR, Rêgo MJBDM, de Simone CA, Videira M, Leite ACL. Thiazolyl-isatin derivatives: Synthesis, in silico studies, in vitro biological profile against breast cancer cells, mRNA expression, P-gp modulation, and interactions of Akt2 and VIM proteins. Chem Biol Interact 2024; 394:110954. [PMID: 38518852 DOI: 10.1016/j.cbi.2024.110954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
The literature reports that thiazole and isatin nuclei present a range of biological activities, with an emphasis on anticancer activity. Therefore, our proposal was to make a series of compounds using the molecular hybridization strategy, which has been used by our research group, producing hybrid molecules containing the thiazole and isatin nuclei. After structural planning and synthesis, the compounds were characterized and evaluated in vitro against breast cancer cell lines (T-47D, MCF-7 and MDA-MB-231) and against normal cells (PBMC). The activity profile on membrane proteins involved in chemoresistance and tumorigenic signaling proteins was also evaluated. Among the compounds tested, the compounds 4c and 4a stood out with IC50 values of 1.23 and 1.39 μM, respectively, against the MDA-MB-231 cell line. Both compounds exhibited IC50 values of 0.45 μM for the MCF-7 cell line. Compounds 4a and 4c significantly decreased P-gp mRNA expression levels in MCF-7, 4 and 2 folds respectively. Regarding the impact on tumorigenic signaling proteins, compound 4a inhibited Akt2 in MDA-MB-231 and compound 4c inhibited the mRNA expression of VIM in MCF-7.
Collapse
Affiliation(s)
- Luiz Alberto Barros Freitas
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carolina Sousa
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Beatriz Silva Lima
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Denise Duarte
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, 1349-008, Lisboa, Portugal
| | | | - Camila Gabriela Costa Ramos
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Maira Galdino da Rocha Pitta
- Núcleo de Pesquisa em Inovação Terapêutica Suely Galdino, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | | | - Carlos Alberto de Simone
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Mafalda Videira
- Pharmacological and Regulatory Sciences Group (PharmRegSci), Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisbon, Portugal
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil.
| |
Collapse
|