1
|
Cozzolino M, Panyi G. Intracellular acidity impedes KCa3.1 activation by Riluzole and SKA-31. Front Pharmacol 2024; 15:1380655. [PMID: 38638868 PMCID: PMC11024243 DOI: 10.3389/fphar.2024.1380655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/20/2024] Open
Abstract
Background The unique microenvironment in tumors inhibits the normal functioning of tumor-infiltrating lymphocytes, leading to immune evasion and cancer progression. Over-activation of KCa3.1 using positive modulators has been proposed to rescue the anti-tumor response. One of the key characteristics of the tumor microenvironment is extracellular acidity. Herein, we analyzed how intra- and extracellular pH affects K+ currents through KCa3.1 and if the potency of two of its positive modulators, Riluzole and SKA-31, is pH sensitive. Methods Whole-cell patch-clamp was used to measure KCa3.1 currents either in activated human peripheral lymphocytes or in CHO cells transiently transfected with either the H192A mutant or wild-type hKCa3.1 in combination with T79D-Calmodulin, or with KCa2.2. Results We found that changes in the intra- and extracellular pH minimally influenced the KCa3.1-mediated K+ current. Extracellular pH, in the range of 6.0-8.0, does not interfere with the capacity of Riluzole and SKA-31 to robustly activate the K+ currents through KCa3.1. Contrariwise, an acidic intracellular solution causes a slow, but irreversible loss of potency of both the activators. Using different protocols of perfusion and depolarization we demonstrated that the loss of potency is strictly time and pH-dependent and that this peculiar effect can be observed with a structurally similar channel KCa2.2. While two different point mutations of both KCa3.1 (H192A) and its associated protein Calmodulin (T79D) do not limit the effect of acidity, increasing the cytosolic Ca2+ concentration to saturating levels eliminated the loss-of-potency phenotype. Conclusion Based on our data we conclude that KCa3.1 currents are not sensitive the either the intracellular or the extracellular pH in the physiological and pathophysiological range. However, intracellular acidosis in T cells residing in the tumor microenvironment could hinder the potentiating effect of KCa3.1 positive modulators administered to boost their activity. Further research is warranted both to clarify the molecular interactions between the modulators and KCa3.1 at different intracellular pH conditions and to define whether this loss of potency can be observed in cancer models as well.
Collapse
Affiliation(s)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Dupuy M, Gueguinou M, Potier-Cartereau M, Lézot F, Papin M, Chantôme A, Rédini F, Vandier C, Verrecchia F. SK Ca- and Kv1-type potassium channels and cancer: Promising therapeutic targets? Biochem Pharmacol 2023; 216:115774. [PMID: 37678626 DOI: 10.1016/j.bcp.2023.115774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Ion channels are transmembrane structures that allow the passage of ions across cell membranes such as the plasma membrane or the membranes of various organelles like the nucleus, endoplasmic reticulum, Golgi apparatus or mitochondria. Aberrant expression of various ion channels has been demonstrated in several tumor cells, leading to the promotion of key functions in tumor development, such as cell proliferation, resistance to apoptosis, angiogenesis, invasion and metastasis. The link between ion channels and these key biological functions that promote tumor development has led to the classification of cancers as oncochannelopathies. Among all ion channels, the most varied and numerous, forming the largest family, are the potassium channels, with over 70 genes encoding them in humans. In this context, this review will provide a non-exhaustive overview of the role of plasma membrane potassium channels in cancer, describing 1) the nomenclature and structure of potassium channels, 2) the role of these channels in the control of biological functions that promotes tumor development such as proliferation, migration and cell death, and 3) the role of two particular classes of potassium channels, the SKCa- and Kv1- type potassium channels in cancer progression.
Collapse
Affiliation(s)
- Maryne Dupuy
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| | | | | | - Frédéric Lézot
- Sorbonne University, INSERM UMR933, Hôpital Trousseau (AP-HP), Paris F-75012, France
| | - Marion Papin
- N2C UMR 1069, University of Tours, INSERM, Tours, France
| | | | - Françoise Rédini
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France
| | | | - Franck Verrecchia
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000 Nantes, France.
| |
Collapse
|
3
|
Angulo J, Fernández A, Sevilleja-Ortiz A, Sánchez-Ferrer A, Rodríguez-Mañas L, El Assar M. Upregulation of Orai Channels Contributes to Aging-Related Vascular Alterations in Rat Coronary Arteries. Int J Mol Sci 2023; 24:13402. [PMID: 37686206 PMCID: PMC10487684 DOI: 10.3390/ijms241713402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Vascular territories display heterogeneous sensitivity to the impacts of aging. The relevance of the STIM/Orai system to vascular function depends on the vascular bed. We aimed to evaluate the contribution of the STIM/Orai system to aging-related vascular dysfunction in rat coronary circulation. Vascular function was evaluated according to myography in coronary arteries from young (three-month-old) and older (twenty-month-old) rats. The effects of aging and STIM/Orai inhibition on the contraction and relaxation of the coronary arteries and on the protein expression of STIM-1, Orai1, and Orai3 in these vessels were determined. Aging-related hypercontractility to serotonin and endothelin-1 in arteries from male rats was reversed by STIM/Orai inhibition with YM-58483 or by specifically blocking the Orai1 channel with Synta66. The inhibitory effects of Synta66 on coronary vasoconstriction were also observed in older female rats. YM-58483 relaxed serotonin- but not KCl-contracted arteries from males. STIM/Orai inhibition improved defective endothelial vasodilations in aged arteries, even in the presence of NO synthase and cyclooxygenase inhibitors, but not in KCl-contracted segments. YM-58483 significantly enhanced relaxations to calcium-activated potassium channel stimulation in aged vessels. Increased protein expression of Orai1 and Orai3 was detected in arterial homogenates and sections from older rats. Upregulation of the Orai channel contributes to aging-related coronary dysfunction, revealing a potential target in reducing CVD risk.
Collapse
Affiliation(s)
- Javier Angulo
- Servicio de Histología, Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (A.F.); (A.S.-O.)
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | - Argentina Fernández
- Servicio de Histología, Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (A.F.); (A.S.-O.)
| | - Alejandro Sevilleja-Ortiz
- Servicio de Histología, Unidad de Investigación Cardiovascular (IRYCIS/UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain; (A.F.); (A.S.-O.)
| | - Alberto Sánchez-Ferrer
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, 28905 Getafe, Spain;
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Mariam El Assar
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Fundación para la Investigación Biomédica, Hospital Universitario de Getafe, 28905 Getafe, Spain;
| |
Collapse
|
4
|
Orfali R, AlFaiz A, Rahman MA, Lau L, Nam YW, Zhang M. K Ca2 and K Ca3.1 Channels in the Airways: A New Therapeutic Target. Biomedicines 2023; 11:1780. [PMID: 37509419 PMCID: PMC10376499 DOI: 10.3390/biomedicines11071780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023] Open
Abstract
K+ channels are involved in many critical functions in lung physiology. Recently, the family of Ca2+-activated K+ channels (KCa) has received more attention, and a massive amount of effort has been devoted to developing selective medications targeting these channels. Within the family of KCa channels, three small-conductance Ca2+-activated K+ (KCa2) channel subtypes, together with the intermediate-conductance KCa3.1 channel, are voltage-independent K+ channels, and they mediate Ca2+-induced membrane hyperpolarization. Many KCa2 channel members are involved in crucial roles in physiological and pathological systems throughout the body. In this article, different subtypes of KCa2 and KCa3.1 channels and their functions in respiratory diseases are discussed. Additionally, the pharmacology of the KCa2 and KCa3.1 channels and the link between these channels and respiratory ciliary regulations will be explained in more detail. In the future, specific modulators for small or intermediate Ca2+-activated K+ channels may offer a unique therapeutic opportunity to treat muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
- Biomedical Research Administration, Research Centre, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia
| | - Ali AlFaiz
- Biomedical Research Administration, Research Centre, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh 12231, Saudi Arabia
| | - Mohammad Asikur Rahman
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
5
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Naseem MU, Gurrola-Briones G, Romero-Imbachi MR, Borrego J, Carcamo-Noriega E, Beltrán-Vidal J, Zamudio FZ, Shakeel K, Possani LD, Panyi G. Characterization and Chemical Synthesis of Cm39 (α-KTx 4.8): A Scorpion Toxin That Inhibits Voltage-Gated K + Channel K V1.2 and Small- and Intermediate-Conductance Ca 2+-Activated K + Channels K Ca2.2 and K Ca3.1. Toxins (Basel) 2023; 15:41. [PMID: 36668861 PMCID: PMC9866218 DOI: 10.3390/toxins15010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
A novel peptide, Cm39, was identified in the venom of the scorpion Centruroides margaritatus. Its primary structure was determined. It consists of 37 amino acid residues with a MW of 3980.2 Da. The full chemical synthesis and proper folding of Cm39 was obtained. Based on amino acid sequence alignment with different K+ channel inhibitor scorpion toxin (KTx) families and phylogenetic analysis, Cm39 belongs to the α-KTx 4 family and was registered with the systematic number of α-KTx 4.8. Synthetic Cm39 inhibits the voltage-gated K+ channel hKV1.2 with high affinity (Kd = 65 nM). The conductance-voltage relationship of KV1.2 was not altered in the presence of Cm39, and the analysis of the toxin binding kinetics was consistent with a bimolecular interaction between the peptide and the channel; therefore, the pore blocking mechanism is proposed for the toxin-channel interaction. Cm39 also inhibits the Ca2+-activated KCa2.2 and KCa3.1 channels, with Kd = 502 nM, and Kd = 58 nM, respectively. However, the peptide does not inhibit hKV1.1, hKV1.3, hKV1.4, hKV1.5, hKV1.6, hKV11.1, mKCa1.1 K+ channels or the hNaV1.5 and hNaV1.4 Na+ channels at 1 μM concentrations. Understanding the unusual selectivity profile of Cm39 motivates further experiments to reveal novel interactions with the vestibule of toxin-sensitive channels.
Collapse
Affiliation(s)
- Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Georgina Gurrola-Briones
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Margarita R. Romero-Imbachi
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Jesus Borrego
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Edson Carcamo-Noriega
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - José Beltrán-Vidal
- Grupo de Investigaciones Herpetológicas y Toxinológicas, Centro de Investigaciones Biomédicas, Departamento de Biología, Facultad de Ciencias Naturales, Exactas y de la Educación, Universidad del Cauca, Sector Tulcan, Calle 2 N 3N-100, Popayán 190002, Cauca, Colombia
| | - Fernando Z. Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnologia, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca 62210, Morelos, Mexico
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Egyetem ter. 1, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
A Detailed Study to Discover the Trade between Left Atrial Blood Flow, Expression of Calcium-Activated Potassium Channels and Valvular Atrial Fibrillation. Cells 2022; 11:cells11091383. [PMID: 35563689 PMCID: PMC9103658 DOI: 10.3390/cells11091383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The present study aimed to explore the correlation between calcium-activated potassium channels, left atrial flow field mechanics, valvular atrial fibrillation (VAF), and thrombosis. The process of transforming mechanical signals into biological signals has been revealed, which offers new insights into the study of VAF. Methods: Computational fluid dynamics simulations use numeric analysis and algorithms to compute flow parameters, including turbulent shear stress (TSS) and wall pressure in the left atrium (LA). Real-time PCR and western blotting were used to detect the mRNA and protein expression of IKCa2.3/3.1, ATK1, and P300 in the left atrial tissue of 90 patients. Results: In the valvular disease group, the TSS and wall ressure in the LA increased, the wall pressure increased in turn in all disease groups, mainly near the mitral valve and the posterior portion of the LA, the increase in TSS was the most significant in each group near the mitral valve, and the middle and lower part of the back of the LA and the mRNA expression and protein expression levels of IKCa2.3/3.1, AKT1, and P300 increased (p < 0.05) (n = 15). The present study was preliminarily conducted to elucidate whether there might be a certain correlation between IKCa2.3 and LA hemodynamic changes. Conclusions: The TSS and wall pressure changes in the LA are correlated with the upregulation of mRNA and protein expression of IKCa2.3/3.1, AKT1, and P300.
Collapse
|
8
|
SK Channels Modulation Accelerates Equilibrium Recovery in Unilateral Vestibular Neurectomized Rats. Pharmaceuticals (Basel) 2021; 14:ph14121226. [PMID: 34959626 PMCID: PMC8707273 DOI: 10.3390/ph14121226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
We have previously reported in a feline model of acute peripheral vestibulopathy (APV) that the sudden, unilateral, and irreversible loss of vestibular inputs induces selective overexpression of small conductance calcium-activated potassium (SK) channels in the brain stem vestibular nuclei. Pharmacological blockade of these ion channels by the selective antagonist apamin significantly alleviated the evoked vestibular syndrome and accelerated vestibular compensation. In this follow-up study, we aimed at testing, using a behavioral approach, whether the antivertigo (AV) effect resulting from the antagonization of SK channels was species-dependent or whether it could be reproduced in a rodent APV model, whether other SK channel antagonists reproduced similar functional effects on the vestibular syndrome expression, and whether administration of SK agonist could also alter the vestibular syndrome. We also compared the AV effects of apamin and acetyl-DL-leucine, a reference AV compound used in human clinic. We demonstrate that the AV effect of apamin is also found in a rodent model of APV. Other SK antagonists also produce a trend of AV effect when administrated during the acute phase of the vertigo syndrome. Conversely, the vertigo syndrome is worsened upon administration of SK channel agonist. It is noteworthy that the AV effect of apamin is superior to that of acetyl-DL-leucine. Taken together, these data reinforce SK channels as a pharmacological target for modulating the manifestation of the vertigo syndrome during APV.
Collapse
|
9
|
Proulx É, Power SK, Oliver DK, Sargin D, McLaurin J, Lambe EK. Apamin Improves Prefrontal Nicotinic Impairment in Mouse Model of Alzheimer's Disease. Cereb Cortex 2021; 30:563-574. [PMID: 31188425 DOI: 10.1093/cercor/bhz107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Disruption of attention is an early and disabling symptom of Alzheimer's disease (AD). The underlying cellular mechanisms are poorly understood and treatment options for patients are limited. These early attention deficits are evident in the TgCRND8 mouse, a well-established murine model of AD that recapitulates several features of the disease. Here, we report severe impairment of the nicotinic receptor-mediated excitation of prefrontal attentional circuitry in TgCRND8 mice relative to wild-type littermate controls. We demonstrate that this impairment can be remedied by apamin, a bee venom neurotoxin peptide that acts as a selective antagonist to the SK family of calcium-sensitive potassium channels. We probe this seeming upregulation of calcium-sensitive inhibition and find that the attenuated nicotinic firing rates in TgCRND8 attention circuits are mediated neither by greater cellular calcium signals nor by elevated SK channel expression. Instead, we find that TgCRND8 mice show enhanced functional coupling of nicotinic calcium signals to inhibition. This SK-mediated inhibition exerts a powerful negative feedback on nicotinic excitation, dampening attention-relevant signaling in the TgCRND8 brain. These mechanistic findings identify a new cellular target involved in the modulation of attention and a novel therapeutic target for early attention deficits in AD.
Collapse
Affiliation(s)
- É Proulx
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - S K Power
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - D K Oliver
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - D Sargin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8
| | - J McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Biological Sciences and Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada M4N 3M5
| | - E K Lambe
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, M5S 1A8.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada M5G 1E2.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| |
Collapse
|
10
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
11
|
Langthaler S, Rienmüller T, Scheruebel S, Pelzmann B, Shrestha N, Zorn-Pauly K, Schreibmayer W, Koff A, Baumgartner C. A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Comput Biol 2021; 17:e1009091. [PMID: 34157016 PMCID: PMC8219159 DOI: 10.1371/journal.pcbi.1009091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/18/2021] [Indexed: 11/18/2022] Open
Abstract
Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.
Collapse
Affiliation(s)
- Sonja Langthaler
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Theresa Rienmüller
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| | - Susanne Scheruebel
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Brigitte Pelzmann
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Niroj Shrestha
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Klaus Zorn-Pauly
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Wolfgang Schreibmayer
- Research Unit on Ion Channels and Cancer Biology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Andrew Koff
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York City, New York, United States of America
| | - Christian Baumgartner
- Institute of Health Care Engineering with European Testing Center for Medical Devices, Graz University of Technology, Graz, Austria
| |
Collapse
|
12
|
Sahranavard T, Carbone F, Montecucco F, Xu S, Al-Rasadi K, Jamialahmadi T, Sahebkar A. The role of potassium in atherosclerosis. Eur J Clin Invest 2021; 51:e13454. [PMID: 33216974 DOI: 10.1111/eci.13454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive inflammatory condition with a leading prevalence worldwide. Endothelial dysfunction leads to low-density lipoprotein trafficking into subendothelial space and the subsequent form of oxidized LDL (ox-LDL) within intimal layer, perpetuating the vicious cycle of endothelial dysfunction. K+ exerts beneficial effects in vascular wall by reducing LDL oxidization, vascular smooth muscle cells (VSMCs) proliferation, and free radical generation. K+ also modulates vascular tone through a regulatory effect on cell membrane potential. MATERIALS AND METHODS The most relevant papers on the association between 'potassium channels' and 'atherosclerosis' were selected among those deposited on PubMed from 1990 to 2020. RESULTS Here, we provide a short narrative review that elaborates on the role of K+ in atherosclerosis. This review also update the current knowledge about potential pharmacological agents targeting K+ channels with a special focus on pleiotropic activities of agents such as statins, sulfonylureas and dihydropyridines. CONCLUSION In this review, the mechanism of different K+ channels on vascular endothelium will be summarized, mainly focusing on their pathophysiological role in atherosclerosis and potential therapeutic application.
Collapse
Affiliation(s)
- Toktam Sahranavard
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa School of Medicine, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Genoa, Italy.,First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| |
Collapse
|
13
|
Palomba NP, Martinello K, Cocozza G, Casciato S, Mascia A, Di Gennaro G, Morace R, Esposito V, Wulff H, Limatola C, Fucile S. ATP-evoked intracellular Ca 2+ transients shape the ionic permeability of human microglia from epileptic temporal cortex. J Neuroinflammation 2021; 18:44. [PMID: 33588880 PMCID: PMC7883449 DOI: 10.1186/s12974-021-02096-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
Background Intracellular Ca2+ modulates several microglial activities, such as proliferation, migration, phagocytosis, and inflammatory mediator secretion. Extracellular ATP, the levels of which significantly change during epileptic seizures, activates specific receptors leading to an increase of intracellular free Ca2+ concentration ([Ca2+]i). Here, we aimed to functionally characterize human microglia obtained from cortices of subjects with temporal lobe epilepsy, focusing on the Ca2+-mediated response triggered by purinergic signaling. Methods Fura-2 based fluorescence microscopy was used to measure [Ca2+]i in primary cultures of human microglial cells obtained from surgical specimens. The perforated patch-clamp technique, which preserves the cytoplasmic milieu, was used to measure ATP-evoked Ca2+-dependent whole-cell currents. Results In human microglia extracellular ATP evoked [Ca2+]i increases depend on Ca2+ entry from the extracellular space and on Ca2+ mobilization from intracellular compartments. Extracellular ATP also induced a transient fivefold potentiation of the total transmembrane current, which was completely abolished when [Ca2+]i increases were prevented by removing external Ca2+ and using an intracellular Ca2+ chelator. TRAM-34, a selective KCa3.1 blocker, significantly reduced the ATP-induced current potentiation but did not abolish it. The removal of external Cl− in the presence of TRAM-34 further lowered the ATP-evoked effect. A direct comparison between the ATP-evoked mean current potentiation and mean Ca2+ transient amplitude revealed a linear correlation. Treatment of microglial cells with LPS for 48 h did not prevent the ATP-induced Ca2+ mobilization but completely abolished the ATP-mediated current potentiation. The absence of the Ca2+-evoked K+ current led to a less sustained ATP-evoked Ca2+ entry, as shown by the faster Ca2+ transient kinetics observed in LPS-treated microglia. Conclusions Our study confirms a functional role for KCa3.1 channels in human microglia, linking ATP-evoked Ca2+ transients to changes in membrane conductance, with an inflammation-dependent mechanism, and suggests that during brain inflammation the KCa3.1-mediated microglial response to purinergic signaling may be reduced. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02096-0.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Vincenzo Esposito
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Human Neurosciences, Sapienza Rome University, Rome, Italy
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Physiology and Pharmacology "V. Erspamer", Sapienza Rome University, Rome, Italy
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli, IS, Italy.,Department of Physiology and Pharmacology "V. Erspamer", Sapienza Rome University, Rome, Italy
| |
Collapse
|
14
|
Li JQ, Qian BH. [Pathogenesis and diagnosis of hereditary stomatocytosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:521-524. [PMID: 32654471 PMCID: PMC7378278 DOI: 10.3760/cma.j.issn.0253-2727.2020.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J Q Li
- Department of Transfusion Medicine, Changhai Hospital Naval Military Medical University, PLA Research & Innovation Base of Pediatric Hemolytic Anemia, Shanghai 200433, China
| | - B H Qian
- Department of Transfusion Medicine, Changhai Hospital Naval Military Medical University, PLA Research & Innovation Base of Pediatric Hemolytic Anemia, Shanghai 200433, China
| |
Collapse
|
15
|
Angstadt JD, Rebel MI, Connolly MK. Effects of calcium-activated potassium channel modulators on afterhyperpolarizing potentials in identified motor and mechanosensory neurons of the medicinal leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:69-85. [PMID: 33483833 DOI: 10.1007/s00359-021-01462-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/26/2022]
Abstract
Calcium-activated potassium (KCa) channels contribute to multiple neuronal properties including spike frequency and afterhyperpolarizing potentials (AHPs). KCa channels are classified as KCa1.1, KCa2, or KCa3.1 based on single-channel conductance and pharmacology. Ca2+-dependent AHPs in vertebrates are categorized as fast, medium, or slow. Fast and medium AHPs are generated by KCa1.1 and KCa2 channels, respectively. The KCa subtype responsible for slow AHPs is unclear. Prolonged, Ca2+-dependent AHPs have been described in several leech neurons. Unfortunately, apamin and other KCa blockers often prove ineffective in the leech. An alternative approach is to utilize KCa modulators, which alter channel sensitivity to Ca2+. Vertebrate KCa2 channels are targeted selectively by the positive modulator CyPPA and the negative modulator NS8593. Here we show that AHPs in identified motor and mechanosensory leech neurons are enhanced by CyPPA and suppressed by NS8593. Our results indicate that KCa2 channels underlie prolonged AHPs in these neurons and suggest that KCa2 modulators may serve as effective tools to explore the role of KCa channels in leech physiology.
Collapse
Affiliation(s)
| | - Matthew I Rebel
- Siena College, Loudonville, NY, USA
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Megan K Connolly
- Siena College, Loudonville, NY, USA
- Physician Assistant Studies Department, Marist College, Poughkeepsie, NY, USA
| |
Collapse
|
16
|
Takeshita N, Oe T, Kiso T, Kakimoto S. A K Ca3.1 Channel Opener, ASP0819, Modulates Nociceptive Signal Processing from Peripheral Nerves in Fibromyalgia-Like Pain in Rats. J Pain Res 2021; 14:23-34. [PMID: 33469353 PMCID: PMC7811477 DOI: 10.2147/jpr.s274563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/20/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose Although abnormal peripheral and central pain processing has been observed in fibromyalgia (FM) patients, the biomechanics and pathophysiology, surrounding the peripheral mechanism are not well understood. An intermediate conductance channel, KCa3.1, is expressed in peripheral sensory nerve fibers where it maintains the resting membrane potential and controls nerve firing, making it a plausible target for peripheral therapeutic interventions. ASP0819, a KCa3.1 channel opener, is an orally available molecular entity and is used in this investigation to elucidate the role of KCa3.1 in signal processing of pain in FM. Methods Human or rat KCa3.1 channel-expressing cells were used for evaluating the main action of the compound. Effects of the compound on withdrawal behavior by mechanical stimulation were examined in reserpine-induced myalgia (RIM) and vagotomy-induced myalgia (VIM) models of rats. In addition, in vivo electrophysiological analysis was performed to examine the peripheral mechanisms of action of the compound. Other pain models were also examined. Results ASP0819 increased the negative membrane potential in a concentration-dependent manner. Oral administration of ASP0819 significantly recovered the decrease in muscle pressure threshold in rat FM models of RIM and VIM. The in vivo electrophysiological experiments showed that Aδ- and C-fibers innervating the leg muscles in the RIM model demonstrated increased spontaneous and mechanically evoked firing compared with normal rats. Intravenous infusion of ASP0819 significantly reduced both the spontaneous activity and mechanically evoked responses in Aδ-fibers in the rat RIM model. ASP0819 significantly reduced the number of abdominal contractions as an indicator of abdominal pain behaviors in the rat visceral extension model and withdrawal responses in the osteoarthritis model, respectively. Conclusion These findings suggest that ASP0819 may be a promising analgesic agent with the ability to modulate peripheral pain signal transmission. Its use in the treatment of several pain conditions should be explored, chief amongst these being FM pain.
Collapse
Affiliation(s)
| | - Tomoya Oe
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | - Tetsuo Kiso
- Drug Discovery Research, Astellas Pharma Inc, Ibaraki, Japan
| | | |
Collapse
|
17
|
Abstract
Potassium channels are the most diverse and ubiquitous family of ion channels found in cells. The Ca2+ and voltage gated members form a subfamily that play a variety of roles in both excitable and non-excitable cells and are further classified on the basis of their single channel conductance to form the small conductance (SK), intermediate conductance (IK) and big conductance (BK) K+ channels.In this chapter, we will focus on the mechanisms underlying the gating of BK channels, whose function is modified in different tissues by different splice variants as well as the expanding array of regulatory accessory subunits including β, γ and LINGO subunits. We will examine how BK channels are modified by these regulatory subunits and describe how the channel gating is altered by voltage and Ca2+ whilst setting this in context with the recently published structures of the BK channel. Finally, we will discuss how BK and other calcium-activated channels are modulated by novel ion channel modulators and describe some of the challenges associated with trying to develop compounds with sufficient efficacy, potency and selectivity to be of therapeutic benefit.
Collapse
|
18
|
Tiffner A, Derler I. Molecular Choreography and Structure of Ca 2+ Release-Activated Ca 2+ (CRAC) and K Ca2+ Channels and Their Relevance in Disease with Special Focus on Cancer. MEMBRANES 2020; 10:E425. [PMID: 33333945 PMCID: PMC7765462 DOI: 10.3390/membranes10120425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Ca2+ ions play a variety of roles in the human body as well as within a single cell. Cellular Ca2+ signal transduction processes are governed by Ca2+ sensing and Ca2+ transporting proteins. In this review, we discuss the Ca2+ and the Ca2+-sensing ion channels with particular focus on the structure-function relationship of the Ca2+ release-activated Ca2+ (CRAC) ion channel, the Ca2+-activated K+ (KCa2+) ion channels, and their modulation via other cellular components. Moreover, we highlight their roles in healthy signaling processes as well as in disease with a special focus on cancer. As KCa2+ channels are activated via elevations of intracellular Ca2+ levels, we summarize the current knowledge on the action mechanisms of the interplay of CRAC and KCa2+ ion channels and their role in cancer cell development.
Collapse
Affiliation(s)
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
19
|
Flavahan S, Flavahan NA. Cooling-induced dilatation of cutaneous arteries is mediated by increased myoendothelial communication. Am J Physiol Heart Circ Physiol 2020; 319:H123-H132. [PMID: 32469638 DOI: 10.1152/ajpheart.00159.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cold exposure causes cutaneous vasoconstriction via a reflex increase in sympathetic activity and a local effect to augment adrenergic constriction. Local cooling also initiates cutaneous dilatation, which may function to restrain cold-induced constriction. However, the underlying mechanisms and physiological role of cold-induced dilatation have not been defined. Experiments were performed to assess the role of endothelial-derived mediators in this response. In isolated pressurized cutaneous mouse tail arteries, cooling (28°C) did not affect the magnitude of dilatation to acetylcholine in preconstricted arteries. However, inhibition of nitric oxide (NO) [NG-nitro-l-arginine methyl ester (l-NAME)] and prostacyclin (PGI2) (indomethacin) reduced acetylcholine-induced dilatation at 37°C but not at 28°C, suggesting that cooling increased NO/PGI2-independent dilatation. This NO/PGI2-independent dilatation was reduced by inhibition of endothelial SK (UCL1684) and IK (TRAM34) Ca2+-activated K+-channels (KCa), consistent with endothelium-derived hyperpolarization (EDH). Cooling also increased dilatation to direct activation of KCa channels (SKA31, CyPPA) but did not affect dilatation to exogenous NO (DEA-NONOate). This cooling-induced increase in EDH-type dilatations was associated with divergent effects on potential downstream EDH mechanisms: cooling reduced dilatation to K+, which mimics an intercellular K+ cloud, but increased direct communication between endothelial and smooth muscle cells (myoendothelial coupling), assessed by cellular transfer of biocytin. Indeed, inhibition of gap junctions (carbenoxolone) abolished the EDH-type component of dilatation to acetylcholine during cooling but did affect NO-dominated dilatation at 37°C. Cooling also inhibited U46619 constriction that was prevented by inhibition of IK and SK KCa channels or inhibition of gap junctions. The results suggest that cooling dilates cutaneous arteries by increasing myoendothelial communication and amplifying EDH-type dilatation.NEW & NOTEWORTHY Cold causes cutaneous vasoconstriction to restrict heat loss. Although cold also initiates cutaneous dilatation, the mechanisms and role of this dilatation have not been clearly defined. This study demonstrates that cooling increases myoendothelial coupling between smooth muscle and endothelial cells in cutaneous arteries, which is associated with increased endothelium-derived hyperpolarization (EDH)-type dilatation. Dysfunction in this process may contribute to excessive cold-induced constriction and tissue injury.
Collapse
Affiliation(s)
- Sheila Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nicholas A Flavahan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
20
|
Manfroni G, Ragonese F, Monarca L, Astolfi A, Mancinelli L, Iannitti RG, Bastioli F, Barreca ML, Cecchetti V, Fioretti B. New Insights on KCa3.1 Channel Modulation. Curr Pharm Des 2020; 26:2096-2101. [PMID: 32175839 DOI: 10.2174/1381612826666200316152645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 11/22/2022]
Abstract
The human intermediate conductance calcium-activated potassium channel, KCa3.1, is involved in several pathophysiological conditions playing a critical role in cell secretory machinery and calcium signalling. The recent cryo-EM analysis provides new insights for understanding the modulation by both endogenous and pharmacological agents. A typical feature of this channel is the low open probability in saturating calcium concentrations and its modulation by potassium channel openers (KCOs), such as benzo imidazolone 1-EBIO, without changing calcium-dependent activation. In this paper, we proposed a model of KCOs action in the modulation of channel activity. The KCa3.1 channel has a very rich pharmacological profile with several classes of molecules that selectively interact with different binding sites of the channel. Among them, benzo imidazolones can be openers (positive modulators such as 1-EBIO, DC-EBIO) or blockers (negative modulators such as NS1619). Through computation modelling techniques, we identified the 1,4-benzothiazin-3-one as a promising scaffold to develop new KCa3.1 channel modulators. Further studies are needed to explore the potential use of 1-4 benzothiazine- 3-one in KCa3.1 modulation and its pharmacological application.
Collapse
Affiliation(s)
- Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.,Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.,Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Astolfi
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Loretta Mancinelli
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | | | | - Maria L Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo, 1-06123-Perugia (PG), Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
21
|
Lozano-Gerona J, Oliván-Viguera A, Delgado-Wicke P, Singh V, Brown BM, Tapia-Casellas E, Pueyo E, Valero MS, Garcia-Otín ÁL, Giraldo P, Abarca-Lachen E, Surra JC, Osada J, Hamilton KL, Raychaudhuri SP, Marigil M, Juarranz Á, Wulff H, Miura H, Gilaberte Y, Köhler R. Conditional KCa3.1-transgene induction in murine skin produces pruritic eczematous dermatitis with severe epidermal hyperplasia and hyperkeratosis. PLoS One 2020; 15:e0222619. [PMID: 32150577 PMCID: PMC7062274 DOI: 10.1371/journal.pone.0222619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/13/2020] [Indexed: 11/19/2022] Open
Abstract
Ion channels have recently attracted attention as potential mediators of skin disease. Here, we explored the consequences of genetically encoded induction of the cell volume-regulating Ca2+-activated KCa3.1 channel (Kcnn4) for murine epidermal homeostasis. Doxycycline-treated mice harboring the KCa3.1+-transgene under the control of the reverse tetracycline-sensitive transactivator (rtTA) showed 800-fold channel overexpression above basal levels in the skin and solid KCa3.1-currents in keratinocytes. This overexpression resulted in epidermal spongiosis, progressive epidermal hyperplasia and hyperkeratosis, itch and ulcers. The condition was accompanied by production of the pro-proliferative and pro-inflammatory cytokines, IL-β1 (60-fold), IL-6 (33-fold), and TNFα (26-fold) in the skin. Treatment of mice with the KCa3.1-selective blocker, Senicapoc, significantly suppressed spongiosis and hyperplasia, as well as induction of IL-β1 (-88%) and IL-6 (-90%). In conclusion, KCa3.1-induction in the epidermis caused expression of pro-proliferative cytokines leading to spongiosis, hyperplasia and hyperkeratosis. This skin condition resembles pathological features of eczematous dermatitis and identifies KCa3.1 as a regulator of epidermal homeostasis and spongiosis, and as a potential therapeutic target.
Collapse
Affiliation(s)
- Javier Lozano-Gerona
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Aida Oliván-Viguera
- Biosignal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A), Univ. of Zaragoza, Zaragoza, Spain
| | | | - Vikrant Singh
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Brandon M. Brown
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Elena Tapia-Casellas
- Scientific and Technical Service, Aragónese Center for Biomedical Research, Univ. of Zaragoza, Zaragoza, Spain
| | - Esther Pueyo
- Biosignal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A), Univ. of Zaragoza, Zaragoza, Spain
| | | | - Ángel-Luis Garcia-Otín
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
| | - Pilar Giraldo
- Spanish Foundation for the Study and Treatment of Gaucher Disease and other Lysosomal Disorders (FEETEG), Zaragoza, Spain
| | - Edgar Abarca-Lachen
- Universidad San Jorge, Faculty of Health Sciences, Villanueva de Gállego, Spain
| | - Joaquín C. Surra
- Departamento de Producción Animal y Ciencia de los Alimentos, CIBER-obn, Univ. of Zaragoza, Zaragoza, Spain
| | - Jesús Osada
- Departamento Bioquímica y Biología Molecular y Celular (CIBEROBN), Facultad de Veterinaria, Univ. of Zaragoza, Zaragoza, Spain
| | - Kirk L. Hamilton
- Dept. of Physiology, School of Biomedical Sciences, Univ. of Otago, Dunedin, New Zealand
| | - Siba P. Raychaudhuri
- Department of Medicine and Dermatology, School of Medicine UC Davis and VA Sacramento Medical Center University of California, Mather, California, United States of America
| | | | - Ángeles Juarranz
- Departamento de Biología, Facultad de Ciencias, UAM, Madrid, Spain
- Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Heike Wulff
- Dept. of Pharmacology, University of California, Davis, CA, United States of America
| | - Hiroto Miura
- Dept. of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, United States of America
| | - Yolanda Gilaberte
- Dept. of Dermatology, Univ. Hospital Miguel Servet, IIS Aragón, Zaragoza, Spain
| | - Ralf Köhler
- Instituto Aragonés de Ciencias de la Salud (IACS) y Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, Spain
- Aragón Agency for Research and Development (ARAID), Zaragoza, Spain
| |
Collapse
|
22
|
Pierce ML, French JA, Murray TF. Comparison of the pharmacological profiles of arginine vasopressin and oxytocin analogs at marmoset, macaque, and human vasopressin 1a receptor. Biomed Pharmacother 2020; 126:110060. [PMID: 32145592 DOI: 10.1016/j.biopha.2020.110060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/14/2023] Open
Abstract
Arginine vasopressin (AVP) and oxytocin (OT) are nonapeptides that bind to G-protein coupled receptors and influence social behaviors. Consensus mammalian AVP and OT (Leu8-OT) sequences are highly conserved. In marmosets, an amino acid change in the 8th position of the peptide (Pro8-OT) exhibits unique structural and functional properties. There is ∼85 % structural homology between the OT receptor (OTR) and vasopressin 1a receptor (V1aR) resulting in significant cross-reactivity between the ligands and receptors. Chinese hamster ovary (CHO) cells expressing marmoset (mV1aR), macaque (qV1aR), or human vasopressin receptor 1a (hV1aR) were used to assess AVP, Leu8-OT and Pro8-OT pharmacological profiles. To assess activation of Gq, functional assays were performed using Fluo-3 to measure ligand-induced Ca2+ mobilization. In all three V1aR-expressing cell lines, AVP was more potent than the OT ligands. To assess ligand-induced hyperpolarization, FLIPR Membrane Potential (FMP) assays were performed. In all three V1aR lines, AVP was more potent than the OT analogs. The distinctive U-shaped concentration-response curve displayed by AVP may reflect enhanced desensitization of the mV1aR and hV1aR, which is not observed with qV1aR. Evaluation of Ca2+-activated potassium (K+) channels using the inhibitors apamin, paxilline, and TRAM-34 demonstrated that both intermediate and large conductance Ca2+-activated K+ channels contributed to membrane hyperpolarization, with different pharmacological profiles identified for distinct ligand-receptor combinations. Taken together, these data suggest differences in ligand-receptor signaling that may underlie differences in social behavior. Integrative studies of behavior, genetics and ligand-receptor interaction will help elucidate the connection between receptor pharmacology and social behaviors.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jeffrey A French
- Department of Psychology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE 68182, USA
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
23
|
Roach KM, Bradding P. Ca 2+ signalling in fibroblasts and the therapeutic potential of K Ca3.1 channel blockers in fibrotic diseases. Br J Pharmacol 2020; 177:1003-1024. [PMID: 31758702 DOI: 10.1111/bph.14939] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
The role of Ca2+ signalling in fibroblasts is of great interest in fibrosis-related diseases. Intracellular free Ca2+ ([Ca2+ ]i ) is a ubiquitous secondary messenger, regulating a number of cellular functions such as secretion, metabolism, differentiation, proliferation and contraction. The intermediate conductance Ca2+ -activated K+ channel KCa 3.1 is pivotal in Ca2+ signalling and plays a central role in fibroblast processes including cell activation, migration and proliferation through the regulation of cell membrane potential. Evidence from a number of approaches demonstrates that KCa 3.1 plays an important role in the development of many fibrotic diseases, including idiopathic pulmonary, renal tubulointerstitial fibrosis and cardiovascular disease. The KCa 3.1 selective blocker senicapoc was well tolerated in clinical trials for sickle cell disease, raising the possibility of rapid translation to the clinic for people suffering from pathological fibrosis. This review after analysing all the data, concludes that targeting KCa 3.1 should be a high priority for human fibrotic disease.
Collapse
Affiliation(s)
- Katy M Roach
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Bradding
- Institute for Lung Health, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
24
|
Pierce ML, French JA, Murray TF. Comparison of the pharmacologic profiles of arginine vasopressin and oxytocin analogs at marmoset, titi monkey, macaque, and human oxytocin receptors. Biomed Pharmacother 2020; 125:109832. [PMID: 32018219 PMCID: PMC7196279 DOI: 10.1016/j.biopha.2020.109832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/05/2019] [Accepted: 12/13/2019] [Indexed: 11/27/2022] Open
Abstract
The oxytocin-arginine vasopressin (OT-AVP) ligand-receptor family influences a variety of physiological, behavioral, and social behavioral processes in the brain and periphery. The OT-AVP family is highly conserved in mammals, but recent discoveries have revealed remarkable diversity in OT ligands and receptors in New World Monkeys (NWMs) providing a unique opportunity to assess the effects of genetic variation on pharmacological signatures of peptide ligands. The consensus mammalian OT sequence has leucine in the 8th position (Leu8-OT), whereas a number of NWMs, including the marmoset, have proline in the 8th position (Pro8-OT) resulting in a more rigid tail structure. OT and AVP bind to OT’s cognate G-protein coupled receptor (OTR), which couples to various G-proteins (Gi/o, Gq, Gs) to stimulate diverse signaling pathways. CHO cells expressing marmoset (mOTR), titi monkey (tOTR), macaque (qOTR), or human (hOTR) OT receptors were used to compare AVP and OT analog-induced signaling. Assessment of Gq-mediated increase in intracellular calcium (Ca2+) demonstrated that AVP was less potent than OT analogs at OTRs from species whose endogenous ligand is Leu8-OT (tOTR, qOTR, hOTR), relative to Pro8-OT. Likewise, AVP-induced membrane hyperpolarization was less potent at these same OTRs. Evaluation of (Ca2+)-activated potassium (K+) channels using the inhibitors apamin, paxilline, and TRAM-34 demonstrated that both intermediate and large conductance Ca2+-activated K+ channels contributed to membrane hyperpolarization, with different pharmacological profiles identified for distinct ligand-receptor combinations. Understanding more fully the contributions of structure activity relationships for these peptide ligands at vasopressin and OT receptors will help guide the development of OT-mediated therapeutics.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA; Department of Pharmacology, Midwestern University, 555 31St., Downers Grove, IL, 60515, USA.
| | - Jeffrey A French
- Department of Psychology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE, 68182, USA.
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
25
|
She G, Hou MC, Zhang Y, Zhang Y, Wang Y, Wang HF, Lai BC, Zhao WB, Du XJ, Deng XL. Gal-3 (Galectin-3) and K Ca3.1 Mediate Heterogeneous Cell Coupling and Myocardial Fibrogenesis Driven by βAR (β-Adrenoceptor) Activation. Hypertension 2019; 75:393-404. [PMID: 31838908 DOI: 10.1161/hypertensionaha.119.13696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure is associated with sympatho-βAR (β-adrenoceptor) activation and cardiac fibrosis. Gal-3 (galectin-3) and KCa3.1 channels that are upregulated in diverse cells of diseased heart are implicated in mediating myocardial inflammation and fibrosis. It remains unclear whether Gal-3 interacts with KCa3.1 leading to cardiac fibrosis in the setting of βAR activation. We tested the effect of KCa3.1 blocker TRAM-34 on cardiac fibrosis and inflammation in cardiac-restricted β2-TG (β2AR overexpressed transgenic) mice and determined KCa3.1 expression in β2-TG×Gal-3-/- mouse hearts. Mechanisms of KCa3.1 in mediating Gal-3 induced fibroblast activation were studied ex vivo. Expression of Gal-3 and KCa3.1 was elevated in β2-TG hearts. Gal-3 gene deletion in β2-TG mice decreased KCa3.1 expression in inflammatory cells but not in fibroblasts. Treatment of β2-TG mice with TRAM-34 for 1 or 2 months significantly ameliorated cardiac inflammation and fibrosis and reduced Gal-3 level. In cultured fibroblasts, Gal-3 upregulated KCa3.1 expression and channel currents with enhanced membrane potential and Ca2+ entry through TRPV4 (transient receptor potential V4) and TRPC6 (transient receptor potential C6) channels leading to fibroblast activation. In conclusion, βAR stimulation promotes Gal-3 production that upregulates KCa3.1 channels in noncardiomyocyte cells and activates KCa3.1 channels in fibroblasts leading to hyperpolarization of membrane potential and Ca2+ entry via TRP channels. Gal-3-KCa3.1 signaling mobilizes diverse cells facilitating regional inflammation and fibroblast activation and hence myocardial fibrosis.
Collapse
Affiliation(s)
- Gang She
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Meng-Chen Hou
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Department of Pathology, Xi'an Guangren Hospital (M.-C.H., H.-F.W.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yu Zhang
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yi Zhang
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Yan Wang
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Hui-Fang Wang
- Department of Pathology, Xi'an Guangren Hospital (M.-C.H., H.-F.W.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Bao-Chang Lai
- Cardiovascular Research Centre, School of Basic Medical Sciences (B.-C.L., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wei-Bo Zhao
- Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (W.-B.Z., X.-J.D.)
| | - Xiao-Jun Du
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiu-Ling Deng
- From the Department of Physiology and Pathophysiology (G.S., M.-C.H., Yu Zhang, Yi Zhang, Y.W., X.-J.D., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Cardiovascular Research Centre, School of Basic Medical Sciences (B.-C.L., X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education (X.-L.D.), Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Experimental Cardiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (W.-B.Z., X.-J.D.)
| |
Collapse
|
26
|
Shim H, Brown BM, Singh L, Singh V, Fettinger JC, Yarov-Yarovoy V, Wulff H. The Trials and Tribulations of Structure Assisted Design of K Ca Channel Activators. Front Pharmacol 2019; 10:972. [PMID: 31616290 PMCID: PMC6764326 DOI: 10.3389/fphar.2019.00972] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
Calcium-activated K+ channels constitute attractive targets for the treatment of neurological and cardiovascular diseases. To explain why certain 2-aminobenzothiazole/oxazole-type KCa activators (SKAs) are KCa3.1 selective we previously generated homology models of the C-terminal calmodulin-binding domain (CaM-BD) of KCa3.1 and KCa2.3 in complex with CaM using Rosetta modeling software. We here attempted to employ this atomistic level understanding of KCa activator binding to switch selectivity around and design KCa2.2 selective activators as potential anticonvulsants. In this structure-based drug design approach we used RosettaLigand docking and carefully compared the binding poses of various SKA compounds in the KCa2.2 and KCa3.1 CaM-BD/CaM interface pocket. Based on differences between residues in the KCa2.2 and KCa.3.1 models we virtually designed 168 new SKA compounds. The compounds that were predicted to be both potent and KCa2.2 selective were synthesized, and their activity and selectivity tested by manual or automated electrophysiology. However, we failed to identify any KCa2.2 selective compounds. Based on the full-length KCa3.1 structure it was recently demonstrated that the C-terminal crystal dimer was an artefact and suggested that the "real" binding pocket for the KCa activators is located at the S4-S5 linker. We here confirmed this structural hypothesis through mutagenesis and now offer a new, corrected binding site model for the SKA-type KCa channel activators. SKA-111 (5-methylnaphtho[1,2-d]thiazol-2-amine) is binding in the interface between the CaM N-lobe and the S4-S5 linker where it makes van der Waals contacts with S181 and L185 in the S45A helix of KCa3.1.
Collapse
Affiliation(s)
- Heesung Shim
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States.,Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Brandon M Brown
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Latika Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Vikrant Singh
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - James C Fettinger
- Department of Chemistry, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
27
|
Ong ST, Ng AS, Ng XR, Zhuang Z, Wong BHS, Prasannan P, Kok YJ, Bi X, Shim H, Wulff H, Chandy KG, Verma NK. Extracellular K + Dampens T Cell Functions: Implications for Immune Suppression in the Tumor Microenvironment. Bioelectricity 2019; 1:169-179. [PMID: 34471819 DOI: 10.1089/bioe.2019.0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background: Dying tumor cells release intracellular potassium (K+), raising extracellular K+ ([K+]e) in the tumor microenvironment (TME) to 40-50 mM (high-[K+]e). Here, we investigated the effect of high-[K+]e on T cell functions. Materials and Methods: Functional impacts of high-[K+]e on human T cells were determined by cellular, molecular, and imaging assays. Results: Exposure to high-[K+]e suppressed the proliferation of central memory and effector memory T cells, while T memory stem cells were unaffected. High-[K+]e inhibited T cell cytokine production and dampened antitumor cytotoxicity, by modulating the Akt signaling pathway. High-[K+]e caused significant upregulation of the immune checkpoint protein PD-1 in activated T cells. Although the number of KCa3.1 calcium-activated potassium channels expressed in T cells remained unaffected under high-[K+]e, a novel KCa3.1 activator, SKA-346, rescued T cells from high-[K+]e-mediated suppression. Conclusion: High-[K+]e represents a so far overlooked secondary checkpoint in cancer. KCa3.1 activators could overcome such "ionic-checkpoint"-mediated immunosuppression in the TME, and be administered together with known PD-1 inhibitors and other cancer therapeutics to improve outcomes.
Collapse
Affiliation(s)
- Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aik Seng Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xuan Rui Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Zhong Zhuang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Brandon Han Siang Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Praseetha Prasannan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Xuezhi Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Heesung Shim
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, California.,Department of Chemistry, University of California, Davis, Davis, California
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, California
| | | | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
28
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
29
|
Iolascon A, Andolfo I, Russo R. Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol 2019; 187:13-24. [PMID: 31364155 DOI: 10.1111/bjh.16126] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hereditary erythrocyte membrane disorders are caused by mutations in genes encoding various transmembrane or cytoskeletal proteins of red blood cells. The main consequences of these genetic alterations are decreased cell deformability and shortened erythrocyte survival. Red blood cell membrane defects encompass a heterogeneous group of haemolytic anaemias caused by either (i) altered membrane structural organisation (hereditary spherocytosis, hereditary elliptocytosis, hereditary pyropoikilocytosis and Southeast Asian ovalocytosis) or (ii) altered membrane transport function (overhydrated hereditary stomatocytosis, dehydrated hereditary stomatocytosis or xerocytosis, familial pseudohyperkalaemia and cryohydrocytosis). Herein we provide a comprehensive review of the recent literature on the molecular genetics of erythrocyte membrane defects and their reported clinical consequences. We also describe the effect of low-expression genetic variants on the high inter- and intra-familial phenotype variability of erythrocyte structural defects.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
30
|
Knauer B, Yoshida M. Switching between persistent firing and depolarization block in individual rat CA1 pyramidal neurons. Hippocampus 2019; 29:817-835. [PMID: 30794330 DOI: 10.1002/hipo.23078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/22/2018] [Accepted: 01/15/2019] [Indexed: 11/07/2022]
Abstract
The hippocampal formation plays a role in mnemonic tasks and epileptic discharges in vivo. In vitro, these functions and malfunctions may relate to persistent firing (PF) and depolarization block (DB), respectively. Pyramidal neurons of the CA1 field have previously been reported to engage in either PF or DB during cholinergic stimulation. However, it is unknown whether these cells constitute disparate populations of neurons. Furthermore, it is unclear which cell-specific peculiarities may mediate their diverse response properties. However, it has not been shown whether individual CA1 pyramidal neurons can switch between PF and DB states. Here, we used whole cell patch clamp in the current clamp mode on in vitro CA1 pyramidal neurons from acutely sliced rat tissue to test various intrinsic properties which may provoke individual cells to switch between PF and DB. We found that individual cells could switch from PF to DB, in a cholinergic agonist concentration dependent manner and depending on the parameters of stimulation. We also demonstrate involvement of TRPC and potassium channels in this switching. Finally, we report that the probability for DB was more pronounced in the proximal than in the distal half of CA1. These findings offer a potential mechanism for the stronger spatial modulation in proximal, compared to distal CA1, as place field formation was shown to be affected by DB. Taken together, our results suggest that PF and DB are not mutually exclusive response properties of individual neurons. Rather, a cell's response mode depends on a variety of intrinsic properties, and modulation of these properties enables switching between PF and DB.
Collapse
Affiliation(s)
- Beate Knauer
- International Graduate School of Neuroscience, Ruhr University Bochum, Bochum, Germany
- Faculty of Psychology, Mercator Research Group - Structure of Memory, Ruhr University Bochum, Bochum, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Motoharu Yoshida
- Faculty of Psychology, Mercator Research Group - Structure of Memory, Ruhr University Bochum, Bochum, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
31
|
Pierce ML, Mehrotra S, Mustoe AC, French JA, Murray TF. A Comparison of the Ability of Leu 8- and Pro 8-Oxytocin to Regulate Intracellular Ca 2+ and Ca 2+-Activated K + Channels at Human and Marmoset Oxytocin Receptors. Mol Pharmacol 2019; 95:376-385. [PMID: 30739093 DOI: 10.1124/mol.118.114744] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/30/2019] [Indexed: 02/02/2023] Open
Abstract
The neurohypophyseal hormone oxytocin (OT) regulates biologic functions in both peripheral tissues and the central nervous system. In the central nervous system, OT influences social processes, including peer relationships, maternal-infant bonding, and affiliative social relationships. In mammals, the nonapeptide OT structure is highly conserved with leucine in the eighth position (Leu8-OT). In marmosets (Callithrix), a nonsynonymous nucleotide substitution in the OXT gene codes for proline in the eighth residue position (Pro8-OT). OT binds to its cognate G protein-coupled receptor (OTR) and exerts diverse effects, including stimulation (Gs) or inhibition (Gi/o) of adenylyl cyclase, stimulation of potassium channel currents (Gi), and activation of phospholipase C (Gq). Chinese hamster ovary cells expressing marmoset or human oxytocin receptors (mOTRs or hOTRs, respectively) were used to characterize OT signaling. At the mOTR, Pro8-OT was more efficacious than Leu8-OT in measures of Gq activation, with both peptides displaying subnanomolar potencies. At the hOTR, neither the potency nor efficacy of Pro8-OT and Leu8-OT differed with respect to Gq signaling. In both mOTR- and hOTR-expressing cells, Leu8-OT was more potent and modestly more efficacious than Pro8-OT in inducing hyperpolarization. In mOTR cells, Leu8-OT-induced hyperpolarization was modestly inhibited by pretreatment with pertussis toxin (PTX), consistent with a minor role for Gi/o activation; however, the Pro8-OT response in mOTR and hOTR cells was PTX insensitive. These findings are consistent with membrane hyperpolarization being largely mediated by a Gq signaling mechanism leading to Ca2+-dependent activation of K+ channels. Evaluation of the influence of apamin, charybdotoxin, paxilline, and TRAM-34 demonstrated involvement of both intermediate and large conductance Ca2+-activated K+ channels.
Collapse
Affiliation(s)
- Marsha L Pierce
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Suneet Mehrotra
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Aaryn C Mustoe
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Jeffrey A French
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| | - Thomas F Murray
- Department of Pharmacology, Creighton University School of Medicine, Omaha, Nebraska (M.L.P., S.M., T.F.M.); and Department of Psychology, University of Nebraska, Omaha, Nebraska (A.C.M., J.A.F.)
| |
Collapse
|
32
|
Simó-Vicens R, Bomholtz SH, Sørensen US, Bentzen BH. 2,6-Bis(2-Benzimidazolyl)Pyridine (BBP) Is a Potent and Selective Inhibitor of Small Conductance Calcium-Activated Potassium (SK) Channels. Front Pharmacol 2018; 9:1409. [PMID: 30559671 PMCID: PMC6287599 DOI: 10.3389/fphar.2018.01409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 11/13/2022] Open
Abstract
A variety of polycyclic pyridines have been proposed as inhibitors of the small conductance calcium-activated potassium (SK) channel. To this group belongs 2,6-bis(2-benzimidazolyl)pyridine (BBP), a commercially and readily available small organic compound which has earlier been described in a broad range of chemical and biological uses. Here, we show how BBP can also be used as a potent and specific SK channel blocker in vitro. The potency of BBP was measured using automatic patch clamp on all three SK channel subtypes, resulting in similar IC50 of 0.4 μM. We also assessed the selectivity of BBP on a panel of calcium-activated and voltage-activated potassium channels using two-electrode voltage clamp, automatic and manual patch clamp. BBP did not have any effect on IK, Kir2.1, Kir3.1+Kir3.4, Kv1.5, Kv4.3/KCHIP2 and Kv7.1/KCNE1 currents and was 4.8-fold and 46-fold more potent on all SK channel subtypes vs. BK and hERG channels, respectively. Moreover, we were able to identify H491 as a critical amino acid for the pharmacological effect of BBP on the SK channel. From a medicinal chemistry perspective, BBP could be used as a starting point for the design of new and improved SK inhibitors.
Collapse
Affiliation(s)
- Rafel Simó-Vicens
- Cardiovascular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | - Sofia H Bomholtz
- Cardiovascular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| | | | - Bo H Bentzen
- Cardiovascular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Acesion Pharma, Copenhagen, Denmark
| |
Collapse
|
33
|
Shipston MJ. Control of anterior pituitary cell excitability by calcium-activated potassium channels. Mol Cell Endocrinol 2018; 463:37-48. [PMID: 28596131 DOI: 10.1016/j.mce.2017.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/01/2023]
Abstract
In anterior pituitary endocrine cells, large (BK), small (SK) and intermediate (IK) conductance calcium activated potassium channels are key determinants in shaping cellular excitability in a cell type- and context-specific manner. Indeed, these channels are targeted by multiple signaling pathways that stimulate or inhibit cellular excitability. BK channels can, paradoxically, both promote electrical bursting as well as terminate bursting and spiking dependent upon intrinsic BK channel properties and proximity to voltage gated calcium channels in somatotrophs, lactotrophs and corticotrophs. In contrast, SK channels are predominantly activated by calcium released from intracellular IP3-sensitive calcium stores and mediate membrane hyperpolarization in cells including gonadotrophs and corticotrophs. IK channels are predominantly expressed in corticotrophs where they limit membrane excitability. A major challenge for the future is to determine the cell-type specific molecular composition of calcium-activated potassium channels and how they control anterior pituitary hormone secretion as well as other calcium-dependent processes.
Collapse
Affiliation(s)
- Michael J Shipston
- Centre for Integrative Physiology, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, EH89XD, UK.
| |
Collapse
|
34
|
Mathew John C, Khaddaj Mallat R, George G, Kim T, Mishra RC, Braun AP. Pharmacologic targeting of endothelial Ca 2+-activated K + channels: A strategy to improve cardiovascular function. Channels (Austin) 2018; 12:126-136. [PMID: 29577810 PMCID: PMC5972810 DOI: 10.1080/19336950.2018.1454814] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
Endothelial small and intermediate-conductance, Ca2+-activated K+ channels (KCa2.3 and KCa3.1, respectively) play an important role in the regulation of vascular function and systemic blood pressure. Growing evidence indicates that they are intimately involved in agonist-evoked vasodilation of small resistance arteries throughout the circulation. Small molecule activators of KCa2.x and 3.1 channels, such as SKA-31, can acutely inhibit myogenic tone in isolated resistance arteries, induce effective vasodilation in intact vascular beds, such as the coronary circulation, and acutely decrease systemic blood pressure in vivo. The blood pressure-lowering effect of SKA-31, and early indications of improvement in endothelial dysfunction suggest that endothelial KCa channel activators could eventually be developed into a new class of endothelial targeted agents to combat hypertension or atherosclerosis. This review summarises recent insights into the activation of endothelial Ca2+ activated K+ channels in various vascular beds, and how tools, such as SKA-31, may be beneficial in disease-related conditions.
Collapse
Affiliation(s)
- Cini Mathew John
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rayan Khaddaj Mallat
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Grace George
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Taeyeob Kim
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ramesh C. Mishra
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew P. Braun
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
35
|
Andolfo I, Russo R, Gambale A, Iolascon A. Hereditary stomatocytosis: An underdiagnosed condition. Am J Hematol 2018; 93:107-121. [PMID: 28971506 DOI: 10.1002/ajh.24929] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Hereditary stomatocytoses are a wide class of hemolytic anemias characterized by alterations of ionic flux with increased cation permeability that results in inappropriate shrinkage or swelling of the erythrocytes, and water lost or gained osmotically. The last few years have been crucial for new acquisitions in this field in terms of identifying new causative genes and of studying their pathogenetic mechanisms. This review summarizes the main features of erythrocyte membrane transport diseases, dividing them into forms with either isolated erythroid phenotype (nonsyndromic) or extra-hematological manifestations (syndromic), and focusing particularly on the most recent advances regarding dehydrated forms of hereditary stomatocytosis and familial pseudohyperkalemia.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| |
Collapse
|
36
|
Abstract
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte.
Collapse
|
37
|
Affiliation(s)
- Brandon M Brown
- a Department of Pharmacology , University of California, Davis , Davis , CA , USA
| | - Heesung Shim
- a Department of Pharmacology , University of California, Davis , Davis , CA , USA
| | - Heike Wulff
- a Department of Pharmacology , University of California, Davis , Davis , CA , USA
| |
Collapse
|
38
|
Brown BM, Shim H, Zhang M, Yarov-Yarovoy V, Wulff H. Structural Determinants for the Selectivity of the Positive KCa3.1 Gating Modulator 5-Methylnaphtho[2,1- d]oxazol-2-amine (SKA-121). Mol Pharmacol 2017; 92:469-480. [PMID: 28760780 DOI: 10.1124/mol.117.109421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Intermediate-conductance (KCa3.1) and small-conductance (KCa2) calcium-activated K+ channels are gated by calcium binding to calmodulin (CaM) molecules associated with the calmodulin-binding domain (CaM-BD) of these channels. The existing KCa activators, such as naphtho[1,2-d]thiazol-2-ylamine (SKA-31), 6,7-dichloro-1H-indole-2,3-dione 3-oxime (NS309), and 1-ethylbenzimidazolin-2-one (EBIO), activate both channel types with similar potencies. In a previous chemistry effort, we optimized the benzothiazole pharmacophore of SKA-31 toward KCa3.1 selectivity and identified 5-methylnaphtho[2,1-d]oxazol-2-amine (SKA-121), which exhibits 40-fold selectivity for KCa3.1 over KCa2.3. To understand why introduction of a single CH3 group in five-position of the benzothiazole/oxazole system could achieve such a gain in selectivity for KCa3.1 over KCa2.3, we first localized the binding site of the benzothiazoles/oxazoles to the CaM-BD/CaM interface and then used computational modeling software to generate models of the KCa3.1 and KCa2.3 CaM-BD/CaM complexes with SKA-121. Based on a combination of mutagenesis and structural modeling, we suggest that all benzothiazole/oxazole-type KCa activators bind relatively "deep" in the CaM-BD/CaM interface and hydrogen bond with E54 on CaM. In KCa3.1, SKA-121 forms an additional hydrogen bond network with R362. In contrast, NS309 sits more "forward" and directly hydrogen bonds with R362 in KCa3.1. Mutating R362 to serine, the corresponding residue in KCa2.3 reduces the potency of SKA-121 by 7-fold, suggesting that R362 is responsible for the generally greater potency of KCa activators on KCa3.1. The increase in SKA-121's KCa3.1 selectivity compared with its parent, SKA-31, seems to be due to better overall shape complementarity and hydrophobic interactions with S372 and M368 on KCa3.1 and M72 on CaM at the KCa3.1-CaM-BD/CaM interface.
Collapse
Affiliation(s)
- Brandon M Brown
- Department of Pharmacology (B.M.B., H.S., H.W.), Department of Physiology and Membrane Biology (V.Y.-Y.), School of Medicine, and Department of Chemistry (H.S.), University of California, Davis, California; and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (M.Z.)
| | - Heesung Shim
- Department of Pharmacology (B.M.B., H.S., H.W.), Department of Physiology and Membrane Biology (V.Y.-Y.), School of Medicine, and Department of Chemistry (H.S.), University of California, Davis, California; and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (M.Z.)
| | - Miao Zhang
- Department of Pharmacology (B.M.B., H.S., H.W.), Department of Physiology and Membrane Biology (V.Y.-Y.), School of Medicine, and Department of Chemistry (H.S.), University of California, Davis, California; and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (M.Z.)
| | - Vladimir Yarov-Yarovoy
- Department of Pharmacology (B.M.B., H.S., H.W.), Department of Physiology and Membrane Biology (V.Y.-Y.), School of Medicine, and Department of Chemistry (H.S.), University of California, Davis, California; and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (M.Z.)
| | - Heike Wulff
- Department of Pharmacology (B.M.B., H.S., H.W.), Department of Physiology and Membrane Biology (V.Y.-Y.), School of Medicine, and Department of Chemistry (H.S.), University of California, Davis, California; and Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (M.Z.)
| |
Collapse
|
39
|
Huang CG, Chacron MJ. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Channels (Austin) 2017; 11:281-304. [PMID: 28277938 DOI: 10.1080/19336950.2017.1299835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of neural excitability as they mediate important neuronal response properties such as spike frequency adaptation. However, the functional roles of the different known SK channel subtypes are not well understood. Here we review recent evidence from the electrosensory system of weakly electric fish suggesting that the function of different SK channel subtypes is to optimize the processing of independent but behaviorally relevant stimulus attributes. Indeed, natural sensory stimuli frequently consist of a fast time-varying waveform (i.e., the carrier) whose amplitude (i.e., the envelope) varies slowly and independently. We first review evidence showing how somatic SK2 channels mediate tuning and responses to carrier waveforms. We then review evidence showing how dendritic SK1 channels instead determine tuning and optimize responses to envelope waveforms based on their statistics as found in the organism's natural environment in an independent fashion. The high degree of functional homology between SK channels in electric fish and their mammalian orthologs, as well as the many important parallels between the electrosensory system and the mammalian visual, auditory, and vestibular systems, suggest that these functional roles are conserved across systems and species.
Collapse
Affiliation(s)
- Chengjie G Huang
- a Department of Physiology , McGill University , Montreal , QC , Canada
| | - Maurice J Chacron
- a Department of Physiology , McGill University , Montreal , QC , Canada
| |
Collapse
|
40
|
Oliván-Viguera A, Lozano-Gerona J, López de Frutos L, Cebolla JJ, Irún P, Abarca-Lachen E, García-Malinis AJ, García-Otín ÁL, Gilaberte Y, Giraldo P, Köhler R. Inhibition of Intermediate-Conductance Calcium-Activated K Channel (KCa3.1) and Fibroblast Mitogenesis by α-Linolenic Acid and Alterations of Channel Expression in the Lysosomal Storage Disorders, Fabry Disease, and Niemann Pick C. Front Physiol 2017; 8:39. [PMID: 28197106 PMCID: PMC5281581 DOI: 10.3389/fphys.2017.00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/13/2017] [Indexed: 01/02/2023] Open
Abstract
The calcium/calmodulin-gated KCa3.1 channel regulates normal and abnormal mitogenesis by controlling K+-efflux, cell volume, and membrane hyperpolarization-driven calcium-entry. Recent studies suggest modulation of KCa3.1 by omega-3 fatty acids as negative modulators and impaired KCa3.1 functions in the inherited lysosomal storage disorder (LSD), Fabry disease (FD). In the first part of present study, we characterize KCa3.1 in murine and human fibroblasts and test the impact of omega-3 fatty acids on fibroblast proliferation. In the second, we study whether KCa3.1 is altered in the LSDs, FD, and Niemann-Pick disease type C (NPC). Our patch-clamp and mRNA-expression studies on murine and human fibroblasts show functional expression of KCa3.1. KCa currents display the typical pharmacological fingerprint of KCa3.1: Ca2+-activation, potentiation by the positive-gating modulators, SKA-31 and SKA-121, and inhibition by TRAM-34, Senicapoc (ICA-17043), and the negative-gating modulator, 13b. Considering modulation by omega-3 fatty acids we found that α-linolenic acid (α-LA) and docosahexanenoic acid (DHA) inhibit KCa3.1 currents and strongly reduce fibroblast growth. The α-LA-rich linseed oil and γ-LA-rich borage oil at 0.5% produce channel inhibition while α-LA/γ-LA-low oils has no anti-proliferative effect. Concerning KCa3.1 in LSD, mRNA expression studies, and patch-clamp on primary fibroblasts from FD and NPC patients reveal lower KCa3.1-gene expression and membrane expression than in control fibroblasts. In conclusion, the omega-3 fatty acid, α-LA, and α-LA/γ-LA-rich plant oils, inhibit fibroblast KCa3.1 channels and mitogenesis. Reduced fibroblast KCa3.1 functions are a feature and possible biomarker of cell dysfunction in FD and NPC and supports the concept that biased lipid metabolism is capable of negatively modulating KCa3.1 expression.
Collapse
Affiliation(s)
- Aida Oliván-Viguera
- Biomedical Signal Interpretation and Computational Simulation Group, Aragón Institute for Engineering Research (I3A), University of ZaragozaZaragoza, Spain; Instituto de Investigación Sanitaria AragónZaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and NanomedicineZaragoza, Spain
| | - Javier Lozano-Gerona
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Aragón Institute of Health SciencesZaragoza, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de ZaragozaZaragoza, Spain
| | - Laura López de Frutos
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Spanish Foundation for the Study and Treatment of Gaucher Disease and Other Lysosomal DisordersZaragoza, Spain
| | - Jorge J Cebolla
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de ZaragozaZaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades RarasZaragoza, Spain
| | - Pilar Irún
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades RarasZaragoza, Spain
| | - Edgar Abarca-Lachen
- Faculty of Health Sciences, Universidad San Jorge Villanueva de Gállego, Spain
| | | | - Ángel Luis García-Otín
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Aragón Institute of Health SciencesZaragoza, Spain
| | | | - Pilar Giraldo
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Aragón Institute of Health SciencesZaragoza, Spain; Spanish Foundation for the Study and Treatment of Gaucher Disease and Other Lysosomal DisordersZaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades RarasZaragoza, Spain
| | - Ralf Köhler
- Instituto de Investigación Sanitaria AragónZaragoza, Spain; Aragón Institute of Health SciencesZaragoza, Spain; Centro de Investigación Biomédica en Red de Enfermedades RarasZaragoza, Spain; Aragón Agency for Research and DevelopmentZaragoza, Spain
| |
Collapse
|
41
|
Simonsen U, Wandall-Frostholm C, Oliván-Viguera A, Köhler R. Emerging roles of calcium-activated K channels and TRPV4 channels in lung oedema and pulmonary circulatory collapse. Acta Physiol (Oxf) 2017; 219:176-187. [PMID: 27497091 DOI: 10.1111/apha.12768] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/30/2015] [Accepted: 08/04/2016] [Indexed: 12/12/2022]
Abstract
It has been suggested that the transient receptor potential cation (TRP) channel subfamily V (vanilloid) type 4 (TRPV4) and intermediate conductance calcium-activated potassium (KCa3.1) channels contribute to endothelium-dependent vasodilation. Here, we summarize very recent evidence for a synergistic interplay of TRPV4 and KCa3.1 channels in lung disease. Among the endothelial Ca2+ -permeable TRPs, TRPV4 is best characterized and produces arterial dilation by stimulating Ca2+ -dependent nitric oxide synthesis and endothelium-dependent hyperpolarization. Besides these roles, some TRP channels control endothelial/epithelial barrier functions and vascular integrity, while KCa3.1 channels provide the driving force required for Cl- and water transport in some cells and most secretory epithelia. The three conditions, increased pulmonary venous pressure caused by left heart disease, high inflation pressure and chemically induced lung injury, may lead to activation of TRPV4 channels followed by Ca2+ influx leading to activation of KCa3.1 channels in endothelial cells ultimately leading to acute lung injury. We find that a deficiency in KCa3.1 channels protects against TRPV4-induced pulmonary arterial relaxation, fluid extravasation, haemorrhage, pulmonary circulatory collapse and cardiac arrest in vivo. These data identify KCa3.1 channels as crucial molecular components in downstream TRPV4 signal transduction and as a potential target for the prevention of undesired fluid extravasation, vasodilatation and pulmonary circulatory collapse.
Collapse
Affiliation(s)
- U. Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - C. Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology; Aarhus University; Aarhus C Denmark
| | - A. Oliván-Viguera
- Translational Research Unit; University Hospital Miguel Servet and IACS/IIS; Aragonese Agency for Investigation and Development (ARAID); Zaragoza Spain
| | - R. Köhler
- Translational Research Unit; University Hospital Miguel Servet and IACS/IIS; Aragonese Agency for Investigation and Development (ARAID); Zaragoza Spain
| |
Collapse
|
42
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
43
|
|
44
|
Badens C, Guizouarn H. Advances in understanding the pathogenesis of the red cell volume disorders. Br J Haematol 2016; 174:674-85. [PMID: 27353637 DOI: 10.1111/bjh.14197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies.
Collapse
Affiliation(s)
- Catherine Badens
- APHM Department of Medical Genetics, Hôpital de la Timone, Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Hélène Guizouarn
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| |
Collapse
|
45
|
Köhler R, Oliván-Viguera A, Wulff H. Endothelial Small- and Intermediate-Conductance K Channels and Endothelium-Dependent Hyperpolarization as Drug Targets in Cardiovascular Disease. ADVANCES IN PHARMACOLOGY 2016; 77:65-104. [DOI: 10.1016/bs.apha.2016.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|