1
|
Martinez V, Yen IH, Alvarez C, Williams AD, Ha S. Exposure to Environmental Chemicals and Infertility Among US Reproductive-Aged Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1541. [PMID: 39767383 PMCID: PMC11675402 DOI: 10.3390/ijerph21121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Environmental chemical exposure has been rising over the past few decades but its impact on fertility remains uncertain. We assessed exposures to 23 common chemicals across a range of sociodemographic characteristics and their relationship with self-reported infertility. The analytic sample was non-pregnant women aged 18-49 years without a history of hysterectomy or oophorectomy (n = 2579) from the National Health and Nutrition Examination Survey (2013-2016). Environmental chemical exposure was assessed with biospecimens and dichotomized as high and low levels of exposure based on the median. Logistic regression models estimated the adjusted odds ratio (aOR) and 95% confidence intervals (CIs) for the association between high levels of exposure and infertility, adjusted for age, race, education level, family income, and smoking status. We observed associations between infertility and cadmium [aOR: 1.88; 95% CI: 1.02-3.47] and arsenic [aOR: 1.88 (1.05-3.36)]. Two pesticides hexachlorobenzene [OR: 2.04 (1.05-3.98)] and oxychlordane [OR: 2.04 (1.12-3.69)] were also associated with infertility in unadjusted analyses. There were negative associations with two Per- and polyfluoroalkyl substances with n-perfluorooctanoic acid [aOR: 0.51: (0.30-0.86)] and n-perfluorooctane sulfonic acid [aOR: 0.51: (0.26-0.97). Specific chemicals may contribute to infertility risk, highlighting the need for targeted public health strategies to mitigate exposure.
Collapse
Affiliation(s)
- Valerie Martinez
- Public Health Department, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, CA 95343, USA; (V.M.); (I.H.Y.)
| | - Irene H. Yen
- Public Health Department, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, CA 95343, USA; (V.M.); (I.H.Y.)
| | - Camila Alvarez
- Department of Sociology, University of California, San Diego, CA 92122, USA;
| | - Andrew D. Williams
- Public Health Program, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Sandie Ha
- Public Health Department, School of Social Sciences, Humanities and Arts, Health Science Research Institute, University of California, Merced, CA 95343, USA; (V.M.); (I.H.Y.)
| |
Collapse
|
2
|
Barat S, Hood RB, Terrell ML, Howards PP, Spencer JB, Wainstock T, Barton H, Pearson M, Kesner JS, Meadows JW, Marcus M, Gaskins AJ. In-utero exposure to polybrominated biphenyl (PBB) and menstrual cycle function in adulthood. Int J Hyg Environ Health 2024; 256:114297. [PMID: 38039561 PMCID: PMC10872753 DOI: 10.1016/j.ijheh.2023.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/12/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND There is evidence that in-utero exposure to PBBs, and similar chemicals, are associated with several adverse reproductive health outcomes including altered pubertal timing. However, less is known about the effects of in-utero exposure to PBBs on menstrual cycle function and reproductive hormone levels in adulthood. METHODS For this menstrual cycle study, we recruited reproductive-aged women in the Michigan PBB Registry who were not pregnant, lactating, or taking hormonal medications (2004-2014). A total of 41 women who were born after the PBB contamination incident (1973-1974) and were prenatally exposed to PBBs, were included in this analysis. We estimated in-utero PBB exposure using maternal serum PBB measurements taken after exposure and extrapolated to time of pregnancy using a PBB elimination model. Women were followed for up to 6 months during which they provided daily urine samples and completed daily diaries. The urine samples were assayed for estrone 3-glucuronide (E13G), pregnanediol 3-glucuronide (Pd3G), and follicle stimulating hormone (FSH). RESULTS Women in our study were, on average, 27.5 (SD:5.3) years old and contributed 4.9 (SD:1.9) menstrual cycles of follow-up. Compared to women with low in-utero PBB exposure (≤1 ppb), women with medium (>1.0-3.0 ppb) and high (>3.0 ppb) exposure had higher maximum 3-day mean Pd3G levels during the luteal phase. Specifically, the age- and creatinine-adjusted maximum 3-day mean luteal phase Pd3G levels (95% CI) in increasing categories of in-utero PBB exposure were 9.2 (4.6,13.9), 14.8 (11.6,18.0), and 16.1 (12.9,19.3) μg/mg creatinine. There were no meaningful differences in average cycle length, follicular or luteal phase cycle length, bleed length, or creatinine-adjusted E13G or FSH levels by category of in-utero PBB exposure. CONCLUSION Higher exposure to PBB in-utero was associated with increased progesterone levels across the luteal phase, however, most other menstrual cycle characteristics were largely unassociated with in-utero PBB exposure. Given our modest sample size, our results require cautious interpretation.
Collapse
Affiliation(s)
- Suman Barat
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Robert B Hood
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Metrecia L Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Penelope P Howards
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jessica B Spencer
- Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tamar Wainstock
- Department of Public Health, Faculty of Health Sciences, Ben-Gurion University, Be'er Sheva, Israel
| | - Hillary Barton
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melanie Pearson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - James S Kesner
- Division of Applied Research and Technology, National Institute for Occupational Safety & Health, Cincinnati, OH, USA
| | - Juliana W Meadows
- Health Effects Laboratory Division, National Institute for Occupational Safety & Health, Cincinnati, OH, USA
| | - Michele Marcus
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Audrey J Gaskins
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
3
|
Greeson KW, Crow KMS, Edenfield RC, Easley CA. Inheritance of paternal lifestyles and exposures through sperm DNA methylation. Nat Rev Urol 2023:10.1038/s41585-022-00708-9. [PMID: 36653672 DOI: 10.1038/s41585-022-00708-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Many different lifestyle factors and chemicals present in the environment are a threat to the reproductive tracts of humans. The potential for parental preconception exposure to alter gametes and for these alterations to be passed on to offspring and negatively affect embryo growth and development is of concern. The connection between maternal exposures and offspring health is a frequent focus in epidemiological studies, but paternal preconception exposures are much less frequently considered and are also very important determinants of offspring health. Several environmental and lifestyle factors in men have been found to alter sperm epigenetics, which can regulate gene expression during early embryonic development. Epigenetic information is thought to be a mechanism that evolved for organisms to pass on information about their lived experiences to offspring. DNA methylation is a well-studied epigenetic regulator that is sensitive to environmental exposures in somatic cells and sperm. The continuous production of sperm from spermatogonial stem cells throughout a man's adult life and the presence of spermatogonial stem cells outside of the blood-testis barrier makes them susceptible to environmental insults. Furthermore, altered sperm DNA methylation patterns can be maintained throughout development and ultimately result in impairments, which could predispose offspring to disease. Innovations in human stem cell-based spermatogenic models can be used to elucidate the paternal origins of health and disease.
Collapse
Affiliation(s)
- Katherine W Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M S Crow
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA. .,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Lebow-Skelley E, Fremion BB, Quinn M, Makled M, Keon NB, Jelenek J, Crowley JA, Pearson MA, Schulz AJ. "They Kept Going for Answers": Knowledge, Capacity, and Environmental Health Literacy in Michigan's PBB Contamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16686. [PMID: 36554573 PMCID: PMC9779199 DOI: 10.3390/ijerph192416686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The Michigan PBB Oral History Project documented community residents' descriptions of a large-scale chemical contamination-the PBB contamination-that occurred in Michigan in 1973. These oral histories document residents' and others' experiences during and after the contamination. We conducted a grounded theory qualitative analysis of 31 oral histories to examine the experiences of community members, researchers, lawyers, and others who actively sought out and contributed essential information about the contamination and its impacts. Our findings highlight several challenges encountered in the development of this knowledge including four central themes-contested knowledge, community skills, inaction, and uncertainty. Integrating environmental health literacy, community capacity, and contested illness frameworks, we examine the contributions of community residents, scientists (from inside and outside the community), and others to the development of knowledge to inform decisions and sustain action regarding this large-scale contamination. We close with a discussion of lessons learned regarding efforts to build environmental health knowledge within uncertain and often contested contexts and for promoting environmental health and action related to large-scale chemical contaminations. Our findings suggest the importance of integrated frameworks for examining and promoting the critical role of community skills, leadership, participation, sense of community, and community power in promoting environmental health.
Collapse
Affiliation(s)
- Erin Lebow-Skelley
- HERCULES Exposome Research Center, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Brittany B. Fremion
- Department of History, World Languages and Cultures, Central Michigan University, 1200 S. Franklin St., Mt. Pleasant, MI 48859, USA
| | - Martha Quinn
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Melissa Makled
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| | - Norman B. Keon
- Mid-Michigan District Health Department, 151 Commerce Dr, Ithaca, MI 48847, USA
- PBB Leadership Team, Alma, MI 48801, USA
| | - Jane Jelenek
- PBB Leadership Team, Alma, MI 48801, USA
- Pine River Superfund Citizen Task Force, P.O. Box 172, St. Louis, MI 48880, USA
| | - Jane-Ann Crowley
- PBB Leadership Team, Alma, MI 48801, USA
- Pine River Superfund Citizen Task Force, P.O. Box 172, St. Louis, MI 48880, USA
- PBB Citizens Advisory Board, Alma, MI 48801, USA
| | - Melanie A. Pearson
- HERCULES Exposome Research Center, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Amy J. Schulz
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Redmond LS, Kaufman JA, Terrell ML, Pearson MA, Barton H, Tomlinson MS, Marcus M. Birth outcomes associated with paternal polybrominated and polychlorinated biphenyl exposure. ENVIRONMENTAL RESEARCH 2022; 214:114215. [PMID: 36041536 PMCID: PMC9930206 DOI: 10.1016/j.envres.2022.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In 1973-74, a polybrominated biphenyl (PBB) flame retardant mixture was shipped to Michigan livestock feed mills in place of a nutritional supplement and contaminated the food supply. Following the accident, the Michigan PBB Registry was established to study the long-term health effects of halogenated compounds and is now led by a community-academic partnership. PBB exposure is associated with altered DNA methylation in sperm, which may lead to adverse birth outcomes in children whose fathers have increased levels of serum PBB or polychlorinated biphenyl (PCB). Paternal PBB and PCB levels of men enrolled in the Michigan PBB Registry (n = 155) were analyzed against matched offspring birthweight and gestational age (n = 336). Birthweight and gestational age were dichotomized at the 25th percentile and 37 weeks, respectively, and paternal PBB and PCB levels were examined as continuous measures and divided into tertiles. Associations of offspring birthweight and gestational age with paternal PBB and PCB serum concentrations were modeled using multivariable linear spline and log-risk regression, adjusting for family clustering, paternal health and lifestyle factors, maternal PBB, and PCB serum concentrations, sex, and offspring gestational age (for birthweight). Fathers in the middle and upper PBB and PCB tertiles had increased risks for lowest quartile birthweight compared to the first tertile, with adjusted risk ratios (aRR) = 1.67 (95% CI: 0.93, 2.99) and aRR = 2.06 (95% CI: 1.12, 3.79) for PBB, and aRR = 1.47 (95% CI: 0.79, 2.75) and aRR = 1.34 (95% CI: 0.70, 2.54) for PCB, respectively. Elevated paternal PBB levels were not associated with an increased risk for preterm birth, while PCB levels were associated with a small, but not significant, decrease in gestational age, β = -0.37 (95% CI: -0.76, 0.03) weeks per log unit increase PCB. The findings suggest that increased paternal PBB and PCB levels negatively impact offspring birthweight, and paternal PCB levels may negatively impact gestational age.
Collapse
Affiliation(s)
- Lawrence S Redmond
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA.
| | - John A Kaufman
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Metrecia L Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Melanie A Pearson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Hillary Barton
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Martha Scott Tomlinson
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| |
Collapse
|
6
|
Yang L, Sun P, Zhao W, Liu M. Human developmental toxicity mechanism of polybrominated biphenyl exposure and health risk regulation strategy for special populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113543. [PMID: 35487171 DOI: 10.1016/j.ecoenv.2022.113543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated biphenyls (PBBs) can bioaccumulate in nature and are toxic to humans. Long-time exposure to PBBs in pregnant women can lead to the birth of an infant with abnormal conditions. Hence, in this study, we used molecular docking, molecular dynamics, Taguchi experimental design, and fractional factorial experimental design to identify the developmental toxicity characteristics of 10 typical developmental toxic pollutants such as PBBs to which humans are frequently exposed. Furthermore, the correlation and sensitivity analyses of molecular developmental toxicity and structural parameters were performed. The molecular key structural parameters of the pollutants affecting human development were screened. Moreover, the supplementary food factors that could alleviate the developmental toxicity of pollutants were screened to develop supplementary food schemes to prevent or alleviate human developmental toxicity in the special population (e.g., pregnant women, infants) exposed to the pollutants. The results showed that the developmental toxicity was controlled by the main effects of the 10 pollutants. Among the 10 pollutants with developmental toxicity, the most significant pollutant with the main effects was PBB-153 (37.06%). In addition, the correlation and sensitivity analyses of the molecular developmental toxicity of the pollutants and structural parameters showed that the total energy value and infrared C-H vibration frequency of the pollutants were significantly correlated with human developmental toxicity. Accordingly, 15 supplementary food cofactors were selected for the Taguchi experiment design, among which the top seven cofactors were designed by fractional factorial analysis. The most significant cofactor that alleviated the developmental toxicity of PBB-153 exposure was the combination of carotene and docosahexaenoic acid (DHA), with an improvement of 17.28%. The combination of carotene and DHA significantly alleviated the effects of toxicity caused by most of the other pollutants, indicating that the selected supplementary food has certain universality. In this study, we developed a method to identify the characteristics of the developmental toxicity of pollutant exposure and developmental toxicity alleviation. Our study provided theoretical support for the regulation strategy of developmental toxicity caused by pollutants such as PBBs.
Collapse
Affiliation(s)
- Luze Yang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Miao Liu
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Wattigney WA, Irvin-Barnwell E, Li Z, Ragin-Wilson A. Biomonitoring of toxic metals, organochlorine pesticides, and polybrominated biphenyl 153 in Michigan urban anglers. ENVIRONMENTAL RESEARCH 2022; 203:111851. [PMID: 34384752 PMCID: PMC8711253 DOI: 10.1016/j.envres.2021.111851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
The 32-mile Detroit River and surrounding tributaries have been designated as a Great Lakes Area of Concern due to pollution from decades of municipal and industrial discharges, sewer overflows and urban development. The Agency for Toxic Substances and Disease Registry and the Michigan Department of Health and Human Services conducted a biomonitoring study to assess exposures to persistent toxic substances in Detroit urban shoreline anglers who may be at high exposure risk due to consumption of locally caught fish. Using a modified venue-based sampling approach, 287 adult shoreline anglers along the Detroit River were recruited and participated in the program. Study participants provided blood and urine specimens and completed a questionnaire interview. In this report, we examine percentile estimates for blood lead, blood manganese, urine arsenic, urine mercury, urine cadmium, organochlorine pesticides in serum (mirex, hexachlorobenzene, chlordane), and serum polybrominated biphenyl 153 (PBB 153) concentrations among study participants. Multiple linear regression was used to identify predictors of contaminant concentrations. The Detroit urban anglers' blood lead concentrations were 2 times higher than the general adult U.S. population (median (95% CI): 2.9 μg/dL (1.8-2.3) vs. 0.94 μg/dL (0.90-0.98)). PBB 153 levels were 1.8 times higher than the general adult U.S. population at the 95th percentile (95th percentile, 95% CI: 62.7 ng/g of lipid, 53.2-75.2 vs. 34.6 ng/g of lipid, 12.8-66.8). Percentile estimates of the other study pollutants were similar to background levels found in the general U.S. population. Eating more locally caught fish was not associated with increased body burdens for any of the contaminants examined in this report. Higher blood lead was associated with increased age, male sex, current smoking, residing in a home built before 1960, an annual income less than $25,000, and a work history of lead paint removal. Evidence of PBB exposure in our study cohort likely reflects the continued effect of a widespread contamination of livestock feed in 1973 among Michigan's lower peninsula population. These study results help determine if the pollutants examined warrant further consideration in subsequent population-based biomonitoring of frequent consumers of fish from the Detroit River and surrounding waterways. The biomonitoring data from this study also served to inform public health officials regarding the potential need for environmental public health actions to reduce harmful exposures.
Collapse
Affiliation(s)
- Wendy A Wattigney
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, Atlanta, GA, 30341, United States.
| | - Elizabeth Irvin-Barnwell
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, Atlanta, GA, 30341, United States
| | - Zheng Li
- Office of Community Health and Hazard Assessment, Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, Atlanta, GA, 30341, United States
| | - Angela Ragin-Wilson
- Office of Associate Director, Agency for Toxic Substances and Disease Registry, 4770 Buford Highway, Atlanta, GA, 30341, United States
| |
Collapse
|
8
|
Kahn LG, Harley KG, Siegel EL, Zhu Y, Factor-Litvak P, Porucznik CA, Klein-Fedyshin M, Hipwell AE. Persistent organic pollutants and couple fecundability: a systematic review. Hum Reprod Update 2021; 27:339-366. [PMID: 33147335 PMCID: PMC7903116 DOI: 10.1093/humupd/dmaa037] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite increasing regulation, exposure to persistent organic pollutants (POPs) remains a serious public health concern due to their accumulation in the environment and ability to biomagnify up the food chain. POPs are associated with endocrine-disrupting effects including adverse reproductive outcomes that could affect fecundability, i.e. the capacity to conceive a pregnancy, quantified as time to pregnancy (TTP). OBJECTIVE AND RATIONALE Results of epidemiologic studies that examine the impact of various chemical classes of POPs on TTP have not been synthesised. We undertook a systematic review to summarise the strength of evidence for associations of four common groups of POPs with couple fecundability and to identify gaps and limitations in the literature in order to inform policy decisions and future research. SEARCH METHODS We performed an electronic search of literature published between 1 January 2007 and 6 August 2019 in MEDLINE, EMBASE.com, Global Health, DART/TOXLINE and POPLINE. We included empirical research papers that examined human exposure to organochlorine (OC) pesticides, brominated flame retardants, polychlorinated organic compounds and/or per- and polyfluoroalkyl substances (PFAS) and considered TTP or fecundability as an outcome. Standardised forms for screening, data extraction and study quality were developed using DistillerSR software, and all reviews were completed in duplicate. We used the Newcastle-Ottawa Scale to assess risk of bias and devised additional quality metrics based on specific methodological features of fecundability studies. OUTCOMES The search returned 4573 articles, and 28 papers from 19 different studies met inclusion criteria. Among them, four studies measured TTP prospectively, three had data on participants' prenatal exposure, three examined associations in both male and female partners and one focused exclusively on males. Analyses varied widely in terms of exposure characterisation, precluding a meta-analytic approach. Evidence was strongest for adverse associations of female exposure to polychlorinated biphenyls with TTP, with some additional support for associations of female exposure to polybrominated diphenyl ethers and PFAS with longer TTP. Our review provided little or no support for associations between female exposure to OC pesticides or male exposure to any of the POP groups and TTP. WIDER IMPLICATIONS Evidence suggests that female exposure to at least some POPs may reduce fecundability. Although many of these chemicals are no longer in production, they are still detectable in human biosamples because of their persistence in the environment. Replacement chemicals that are being introduced as older ones are restricted may have similar reproductive consequences. Future studies should examine these newer POPs, assess interactions between POPs and other chemical and non-chemical exposures, investigate how POPs are distributed in and metabolised by the human body and focus on populations that may be disproportionately exposed.
Collapse
Affiliation(s)
- Linda G Kahn
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016 USA
| | - Kim G Harley
- Center for Environmental Research and Children’s Health, University of California Berkeley, Berkley, CA 94720, USA
| | - Eva L Siegel
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Yeyi Zhu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Christina A Porucznik
- Department of Family and Preventive Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA
| | | | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
9
|
Jakšić K, Matek Sarić M, Čulin J. Nursing students' knowledge and attitudes regarding brominated flame retardants from three Croatian universities. JOURNAL OF HEALTH RESEARCH 2020. [DOI: 10.1108/jhr-02-2020-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PurposeThis study explored Croatian nursing students' knowledge and attitudes regarding brominated flame retardants (BFRs) as indicators of their predisposition to educate future patients. The purpose of the study was to identify knowledge gaps and barriers and to propose possible remedies.Design/methodology/approachThe cross-sectional survey was conducted on a convenience sample of 114 nursing students at undergraduate and graduate levels from three Croatian universities during the winter semester in the academic year 2018–2019. Descriptive and inferential statistical analyses were performed using STATISTICA 13 software.FindingsSlightly over half of the students (58.49%) were knowledgeable of BFR health effects and 45.28% showed knowledge about its presence in the environment. Only 33.02% of students identified prenatal exposure effects and 24.53% answered correctly about legislative actions. Participants expressed modest interest in the topic (M = 3.15, SD = 1.35). Although informing the public on the health consequences of BFRs was important to them (M = 4.18, SD = 1.03), they did not perceive health-care providers as primarily responsible for communicating that information.Originality/valueThere is a need to enhance related content in the curriculum to improve students' knowledge. Raising students' awareness regarding the role of nurses in clinical and policy arenas is proposed to facilitate active participation in improving environmental health.
Collapse
|
10
|
Greeson KW, Fowler KL, Estave PM, Kate Thompson S, Wagner C, Clayton Edenfield R, Symosko KM, Steves AN, Marder EM, Terrell ML, Barton H, Koval M, Marcus M, Easley CA. Detrimental effects of flame retardant, PBB153, exposure on sperm and future generations. Sci Rep 2020; 10:8567. [PMID: 32444626 PMCID: PMC7244482 DOI: 10.1038/s41598-020-65593-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
In 1973, the Velsicol Chemical Company, which manufactured FireMaster, a brominated flame retardant, and NutriMaster, a nutritional supplement, mistakenly shipped hundreds of pounds of FireMaster to grain mills around Michigan where it was incorporated into animal feed and then into the food chain across the state. An estimated 6.5 million Michigan residents consumed polybrominated biphenyl (PBB)-laced animal products leading to one of the largest agricultural accidents in U.S. history. To date, there have been no studies investigating the effects of PBB on epigenetic regulation in sperm, which could explain some of the endocrine-related health effects observed among children of PBB-exposed parents. Fusing epidemiological approaches with a novel in vitro model of human spermatogenesis, we demonstrate that exposure to PBB153, the primary component of FireMaster, alters the epigenome in human spermatogenic cells. Using our novel stem cell-based spermatogenesis model, we show that PBB153 exposure decreases DNA methylation at regulatory elements controlling imprinted genes. Furthermore, PBB153 affects DNA methylation by reducing de novo DNA methyltransferase activity at increasing PBB153 concentrations as well as reducing maintenance DNA methyltransferase activity at the lowest tested PBB153 concentration. Additionally, PBB153 exposure alters the expression of genes critical to proper human development. Taken together, these results suggest that PBB153 exposure alters the epigenome by disrupting methyltransferase activity leading to defects in imprint establishment causing altered gene expression, which could contribute to health concerns in the children of men exposed to PBB153. While this chemical is toxic to those directly exposed, the results from this study indicate that the epigenetic repercussions may be detrimental to future generations. Above all, this model may be expanded to model a multitude of environmental exposures to elucidate the effect of various chemicals on germline epigenetics and how paternal exposure may impact the health of future generations.
Collapse
Affiliation(s)
- Katherine Watkins Greeson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kristen L Fowler
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Paige M Estave
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - S Kate Thompson
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Chelsea Wagner
- Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - R Clayton Edenfield
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Krista M Symosko
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Alyse N Steves
- Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Elizabeth M Marder
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Metrecia L Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Hillary Barton
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.
| |
Collapse
|
11
|
Chang CJ, Terrell ML, Marcus M, Marder ME, Panuwet P, Ryan PB, Pearson M, Barton H, Barr DB. Serum concentrations of polybrominated biphenyls (PBBs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the Michigan PBB Registry 40 years after the PBB contamination incident. ENVIRONMENT INTERNATIONAL 2020; 137:105526. [PMID: 32062441 PMCID: PMC7201813 DOI: 10.1016/j.envint.2020.105526] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/15/2019] [Accepted: 01/24/2020] [Indexed: 05/10/2023]
Abstract
Widespread polybrominated biphenyls (PBBs) contamination occurred in Michigan from 1973 to 1974, when PBBs were accidentally substituted for a nutritional supplement in livestock feed. People who lived in the state were exposed to PBBs via several routes including ingestion, inhalation and skin absorption. PBBs sequestered in lipid-rich matrices such as adipose tissue, are slowly eliminated after entering the human body, and can also be transferred from a mother to her offspring through the placenta and breastfeeding. Due to the long biological half-lives of PBBs, as well as concerns from the exposed community, biomonitoring measurements were conducted from 2012 to 2015. Because of their similar structures, serum PBBs, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were all measured 40 years after the PBB contamination incident (N = 862). The serum PBB-153 levels among the original highly-exposed groups (i.e., chemical workers, the family of chemical workers, and individuals who lived on or received food from the contaminated farms) remains significantly higher than other Michigan residents. Several predictors such as sampling age, sex, and smoking status were significantly associated with the serum levels of some persistent organic pollutants (POPs). Higher average values and also wider ranges of serum POP levels were found in this study compared to the National Health and Nutrition Examination Survey (NHANES), with the most substantial difference in serum PBB-153. This was true for all groups of Michigan residents including those who were not part of the above-described highly-exposed groups. Moreover, the people born after the contamination incident began also have higher serum PBB-153 levels when compared with more recent NHANES data (2010-2014), which suggests potential intergenerational exposure and/or continued environmental exposure following the contamination period.
Collapse
Affiliation(s)
- Che-Jung Chang
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA.
| | - Metrecia L Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, USA
| | - M Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - Parinya Panuwet
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - P Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - Melanie Pearson
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - Hillary Barton
- Department of Epidemiology, Rollins School of Public Health, Emory University, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| |
Collapse
|
12
|
Neblett MF, Curtis SW, Gerkowicz SA, Spencer JB, Terrell ML, Jiang VS, Marder ME, Barr DB, Marcus M, Smith AK. Examining Reproductive Health Outcomes in Females Exposed to Polychlorinated Biphenyl and Polybrominated Biphenyl. Sci Rep 2020; 10:3314. [PMID: 32094419 PMCID: PMC7039953 DOI: 10.1038/s41598-020-60234-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/25/2019] [Indexed: 12/02/2022] Open
Abstract
In 1973, accidental contamination of Michigan livestock with polybrominated biphenyls (PBBs) led to the establishment of a registry of exposed individuals that have been followed for > 40 years. Besides being exposed to PBBs, this cohort has also been exposed to polychlorinated biphenyls (PCBs), a structurally similar class of environmental pollutants, at levels similar to average US exposure. In this study, we examined the association between current serum PCB and PBB levels and various female reproductive health outcomes to build upon previous work and inconsistencies. Participation in this cross-sectional study required a blood draw and completion of a detailed health questionnaire. Analysis included only female participants who had participated between 2012 and 2015 (N = 254). Multivariate linear and logistic regression models were used to identify associations between serum PCB and PBB levels with each gynecological and infertility outcome. Additionally, a generalized estimating equation (GEE) model was used to evaluate each pregnancy and birth outcome in order to account for multiple pregnancies per woman. We controlled for age, body mass index, and total lipid levels in all analyses. A p-value of <0.05 was used for statistical significance. Among the women who reported ever being pregnant, there was a significant negative association with higher total PCB levels associating with fewer lifetime pregnancies ( β = -0.11, 95% CI = -0.21 to -0.005, p = 0.04). There were no correlations between serum PCB levels and the self-reported gynecological outcomes (pelvic inflammatory disease, endometriosis, polycystic ovarian syndrome, or uterine fibroids). No associations were identified between serum PCB levels and the prevalence of female infertility in women reporting ever having sexual intercourse with a male partner. There were no associations identified between serum PCB levels and pregnancy outcomes (singleton live births or miscarriages) or birth outcomes (preterm birth, birth weight, birth defects, hypertensive disorders of pregnancy, or gestational diabetes). PBB was not associated with any outcome. Further research is needed to determine if and how PCB may reduce pregnancy number.
Collapse
Affiliation(s)
- Michael F Neblett
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4300, Atlanta, GA, 30322, Georgia.
| | - Sarah W Curtis
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, Georgia
| | - Sabrina A Gerkowicz
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4300, Atlanta, GA, 30322, Georgia
| | - Jessica B Spencer
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4300, Atlanta, GA, 30322, Georgia
| | - Metrecia L Terrell
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, Georgia
| | - Victoria S Jiang
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4300, Atlanta, GA, 30322, Georgia
| | - M Elizabeth Marder
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, Georgia
| | - Dana Boyd Barr
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, Georgia
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health; Department of Environmental Health, Rollins School of Public Health; Department of Pediatrics, Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA, 30322, Georgia
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA, 30322, Georgia
| |
Collapse
|
13
|
Gerkowicz SA, Curtis SW, Knight AK, Cobb DO, Spencer JB, Conneely KN, Terrell ML, Marcus M, Smith AK. Endometriosis, endocrine disrupters, and epigenetics: an investigation into the complex interplay in women with polybrominated biphenyl exposure and endometriosis. J Assist Reprod Genet 2020; 37:427-436. [PMID: 32026200 PMCID: PMC7056781 DOI: 10.1007/s10815-020-01695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/10/2020] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Endocrine disrupting compounds (EDCs) have been shown to affect multiple biologic processes especially steroid-hormone processes. We sought to determine differences in DNA methylation exists between women with and without endometriosis following exposure to polybrominated biphenyl (PBB). METHODS Cross-sectional study of 305 females in the Michigan PBB Registry. DNA was extracted, and DNA methylation was interrogated using the MethylationEPIC BeadChip (Illumina, San Diego, California). Demographic data was analyzed using Chi-squared and T tests. Linear regressions were performed for each cytosine-guanine dinucleotide (CpG) site, modeling the logit transformation of the β value as a linear function of the presence of endometriosis. Sensitivity analyses were conducted controlling for estradiol levels and menopausal status. Replication study performed evaluating for any association between CpGs reported in the literature and our findings. RESULTS In total, 39,877 CpGs nominally associated with endometriosis (p < 0.05) after adjusting for age and cellular heterogeneity, although none remained significant after correction for multiple comparisons (FDR < 0.05). Pathway analysis of these CpGs showed enrichment in 68 biologic pathways involved in various endocrine, immunologic, oncologic, and cell regulation processes as well as embryologic reproductive tract development and function (FoxO, Wnt, and Hedgehog signaling). We identified 42,261 CpG sites in the literature reported to be associated with endometriosis; 2012 of these CpG sites were also significant in our cohort. CONCLUSION We found 39,877 CpG sites that nominally associated with endometriosis (p < 0.05) after adjusting for age and cellular heterogeneity; however, none remained significant after correction for multiple comparisons (FDR < 0.05).
Collapse
Affiliation(s)
- Sabrina A Gerkowicz
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Emory University, Atlanta, GA, USA
| | - Sarah W Curtis
- Genetics and Molecular Biology Program, Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Anna K Knight
- Department of Gynecology and Obstetrics, Emory University, 101 Woodruff Circle NE, Suite 4217, Atlanta, GA, 30322, USA
| | - Dawayland O Cobb
- Department of Gynecology and Obstetrics, Emory University, 101 Woodruff Circle NE, Suite 4217, Atlanta, GA, 30322, USA
| | - Jessica B Spencer
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Emory University, Atlanta, GA, USA
| | - Karen N Conneely
- Genetics and Molecular Biology Program, Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Metrecia L Terrell
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Michele Marcus
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alica K Smith
- Department of Gynecology and Obstetrics, Emory University, 101 Woodruff Circle NE, Suite 4217, Atlanta, GA, 30322, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 101 Woodruff Circle NE, Suite 4217, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Zhang X, Cui S, Pan L, Dong W, Ma M, Liu W, Zhuang S. The molecular mechanism of the antagonistic activity of hydroxylated polybrominated biphenyl (OH-BB80) toward thyroid receptor β. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134040. [PMID: 31476509 DOI: 10.1016/j.scitotenv.2019.134040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Polybrominated biphenyls (PBBs) were widely used as additive brominated flame retardants. Their hydroxylated products (OH-PBBs) have been detected frequently in various marine mammals, causing an increased health risk. Till now, there lacks information on the potential disruption of OH-PBBs toward thyroid hormone receptor (TR) and the molecular characteristics of their interactions remain largely unknown. We herein in vitro and in silico evaluated the disrupting effect of 3,3',5,5'-tetrabromobiphenyl (BB80) and its metabolite 2,2'-dihydroxy- 3,3',5,5'-tetrabromobiphenyl (OH-BB80) toward human TR. The recombinant human TRβ two-hybrid yeast assay reveals the moderate antagonistic activity of OH-BB80 with IC20 at 2 μmol/L, while BB80 shows no agonistic or antagonistic activity. OH-BB80 binds at the binding cavity of TRβ ligand binding domain (LBD) and forms one hydrogen bond with Phe272. Electrostatic interactions and hydrophobic interactions contribute much to their interactions. The binding of OH-BB80 quenches the intrinsic fluorescence of TRβ LBD at static quenching mode. Our study extends knowledge on the endocrine disrupting effect of OH-PBBs and suggests the full consideration of the biotransformation for further health risk assessment of PBBs and related structurally similar emerging contaminants.
Collapse
Affiliation(s)
- Xiaofang Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liumeng Pan
- Hubei Province Environmental Monitoring Center, Wuhan 430072, China
| | - Wenhua Dong
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100085, China
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Curtis SW, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Exposure to polybrominated biphenyl and stochastic epigenetic mutations: application of a novel epigenetic approach to environmental exposure in the Michigan polybrominated biphenyl registry. Epigenetics 2019; 14:1003-1018. [PMID: 31200609 PMCID: PMC6691996 DOI: 10.1080/15592294.2019.1629232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
Endocrine-disrupting compounds are associated with altered epigenetic regulation and adverse health outcomes, although inconsistent results suggest that people have varied responses to the same exposure. Interpersonal variation in response to environmental exposures is not identified using standard, population-based methods. However, methods that capture an individual's response, such as analyzing stochastic epigenetic mutations (SEMs), may capture currently missed effects of environmental exposure. To test whether polybrominated biphenyl (PBB) was associated with SEMs, DNA methylation was measured using Illumina's MethylationEPIC array in PBB-exposed individuals, and SEMs were identified. Association was tested using a linear regression with robust sandwich variance estimators, controlling for age, sex, lipids, and cell types. The number of SEMs was variable (range: 119-18,309), and positively associated with age (p = 1.23e-17), but not with sex (p = 0.97). PBBs and SEMs were only positively associated in people who were older when they were exposed (p = 0.02 vs. p = 0.91). Many subjects had SEMs enriched in biological pathways, particularly in pathways involved with xenobiotic metabolism and endocrine function. Higher number of SEMs was also associated with higher age acceleration (intrinsic: p = 1.70e-3; extrinsic: p = 3.59e-11), indicating that SEMs may be associated with age-related health problems. Finding an association between environmental contaminants and higher SEMs may provide insight into individual differences in response to environmental contaminants, as well as into the biological mechanism behind SEM formation. Furthermore, these results suggest that people may be particularly vulnerable to epigenetic dysregulation from environmental exposures as they age.
Collapse
Affiliation(s)
- Sarah W Curtis
- a Genetics and Molecular Biology Program, Laney Graduate School, Emory University School of Medicine , Atlanta , GA , USA
| | - Dawayland O Cobb
- b Department of Gynecology and Obstetrics, Emory University School of Medicine , Atlanta , GA , USA
| | - Varun Kilaru
- b Department of Gynecology and Obstetrics, Emory University School of Medicine , Atlanta , GA , USA
| | - Metrecia L Terrell
- c Department of Epidemiology, Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - M Elizabeth Marder
- d Department of Environmental Health, Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Dana Boyd Barr
- d Department of Environmental Health, Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Carmen J Marsit
- d Department of Environmental Health, Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Michele Marcus
- e Departments of Epidemiology, Environmental Health, Emory University Rollins School of Public Health, and Department of Pediatrics Emory University School of Medicine , Atlanta , GA , USA
| | - Karen N Conneely
- f Department of Human Genetics, Emory University School of Medicine , Atlanta , GA , USA
| | - Alicia K Smith
- g Departments of Gynecology and Obstetrics & Psychiatry and Behavioral Science, Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
16
|
Curtis SW, Terrell ML, Jacobson MH, Cobb DO, Jiang VS, Neblett MF, Gerkowicz SA, Spencer JB, Marder ME, Barr DB, Conneely KN, Smith AK, Marcus M. Thyroid hormone levels associate with exposure to polychlorinated biphenyls and polybrominated biphenyls in adults exposed as children. Environ Health 2019; 18:75. [PMID: 31443693 PMCID: PMC6708149 DOI: 10.1186/s12940-019-0509-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 07/30/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Michigan residents were directly exposed to endocrine-disrupting compounds, polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB). A growing body of evidence suggests that exposure to certain endocrine-disrupting compounds may affect thyroid function, especially in people exposed as children, but there are conflicting observations. In this study, we extend previous work by examining age of exposure's effect on the relationship between PBB exposure and thyroid function in a large group of individuals exposed to PBB. METHODS Linear regression models were used to test the association between serum measures of thyroid function (total thyroxine (T4), total triiodothyronine (T3), free T4, free T3, thyroid stimulating hormone (TSH), and free T3: free T4 ratio) and serum PBB and PCB levels in a cross-sectional analysis of 715 participants in the Michigan PBB Registry. RESULTS Higher PBB levels were associated with many thyroid hormones measures, including higher free T3 (p = 0.002), lower free T4 (p = 0.01), and higher free T3: free T4 ratio (p = 0.0001). Higher PCB levels were associated with higher free T4 (p = 0.0002), and higher free T3: free T4 ratio (p = 0.002). Importantly, the association between PBB and thyroid hormones was dependent on age at exposure. Among people exposed before age 16 (N = 446), higher PBB exposure was associated with higher total T3 (p = 0.01) and free T3 (p = 0.0003), lower free T4 (p = 0.04), and higher free T3: free T4 ratio (p = 0.0001). No significant associations were found among participants who were exposed after age 16. No significant associations were found between TSH and PBB or PCB in any of the analyses conducted. CONCLUSIONS This suggests that both PBB and PCB are associated with thyroid function, particularly among those who were exposed as children or prenatally.
Collapse
Affiliation(s)
- Sarah W Curtis
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Metrecia L Terrell
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Melanie H Jacobson
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Dawayland O Cobb
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Victoria S Jiang
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Michael F Neblett
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Sabrina A Gerkowicz
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - Jessica B Spencer
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA
| | - M Elizabeth Marder
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Dana Boyd Barr
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Karen N Conneely
- Emory University School of Medicine, 615 Michael St, Atlanta, GA, 30322, USA
| | - Alicia K Smith
- Emory University School of Medicine, 101 Woodruff Circle NE, Ste 2205A, Atlanta, GA, 30322, USA.
| | - Michele Marcus
- Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| |
Collapse
|
17
|
Curtis SW, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Environmental exposure to polybrominated biphenyl (PBB) associates with an increased rate of biological aging. Aging (Albany NY) 2019; 11:5498-5517. [PMID: 31375641 PMCID: PMC6710070 DOI: 10.18632/aging.102134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Advanced age increases risk for cancer, cardiovascular disease, and all-cause mortality. However, people do not age at the same rate, and biological age (frequently measured through DNA methylation) can be older than chronological age. Environmental factors have been associated with the rate of biological aging, but it is not known whether persistent endocrine-disrupting compounds (EDCs) like polybrominated biphenyl (PBB) would associate with age acceleration. Three different epigenetic age acceleration measures (intrinsic, extrinsic, and phenotypic) were calculated from existing epigenetic data in whole blood from a population highly exposed to PBB (N=658). Association between serum PBB concentration and these measures was tested, controlling for sex, lipid levels, and estimated cell type proportions. Higher PBB levels associated with increased age acceleration (intrinsic: β=0.24, 95%CI=0.01-0.46, p = 0.03; extrinsic: β=0.39, 95%CI=0.12-0.65, p = 0.004; and phenotypic: β=0.30, 95%CI=0.05-0.54, p = 0.01). Neither age when exposed to PBB nor sex statistically interacted with PBB to predict age acceleration, but, in stratified analyses, the association between PBB and age acceleration was only in people exposed before finishing puberty and in men. This suggests that EDCs can associate with the biological aging process, and further studies are warranted to investigate other environmental pollutants' effect on aging.
Collapse
Affiliation(s)
- Sarah W. Curtis
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Dawayland O. Cobb
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Varun Kilaru
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Metrecia L. Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - M. Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karen N. Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Walker DI, Marder ME, Yano Y, Terrell M, Liang Y, Barr DB, Miller GW, Jones DP, Marcus M, Pennell KD. Multigenerational metabolic profiling in the Michigan PBB registry. ENVIRONMENTAL RESEARCH 2019; 172:182-193. [PMID: 30782538 PMCID: PMC6534816 DOI: 10.1016/j.envres.2019.02.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 05/17/2023]
Abstract
Although polychlorinated biphenyls and polybrominated biphenyls are no longer manufactured the United States, biomonitoring in human populations show that exposure to these pollutants persist in human tissues. The objective of this study was to identify metabolic variations associated with exposure to 2,2'4,4',5,5'-hexabromobiphenyl (PBB-153) and 2,2'4,4',5,5'-hexachlorobiphenyl (PCB-153) in two generations of participants enrolled in the Michigan PBB Registry (http://pbbregistry.emory.edu/). Untargeted, high-resolution metabolomic profiling of plasma collected from 156 individuals was completed using liquid chromatography with high-resolution mass spectrometry. PBB-153 and PCB-153 levels were measured in the same individuals using targeted gas chromatography-tandem mass spectrometry and tested for dose-dependent correlation with the metabolome. Biological response to these exposures were evaluated using identified endogenous metabolites and pathway enrichment. When compared to lipid-adjusted concentrations for adults in the National Health and Nutrition Examination Survey (NHANES) for years 2003-2004, PCB-153 levels were consistent with similarly aged individuals, whereas PBB-153 concentrations were elevated (p<0.0001) in participants enrolled in the Michigan PBB Registry. Metabolic alterations were correlated with PBB-153 and PCB-153 in both generations of participants, and included changes in pathways related to catecholamine metabolism, cellular respiration, essential fatty acids, lipids and polyamine metabolism. These pathways were consistent with pathophysiological changes observed in neurodegenerative disease and included previously identified metabolomic markers of Parkinson's disease. To determine if the metabolic alterations detected in this study are replicated other cohorts, we evaluated correlation of PBB-153 and PCB-153 with plasma fatty acids measured in NHANES. Both pollutants showed similar associations with fatty acids previously linked to PCB exposure. Thus, the results from this study show metabolic alterations correlated with PBB-153 and PCB-153 exposure can be detected in human populations and are consistent with health outcomes previously reported in epidemiological and mechanistic studies.
Collapse
Affiliation(s)
- Douglas I Walker
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford MA 02155, United States; Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - M Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Yukiko Yano
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Ave Hall #7360, Berkeley CA 94720, United States.
| | - Metrecia Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Yongliang Liang
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Gary W Miller
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Dean P Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University School of Medicine, 615 Michael St, Atlanta GA 30322, United States.
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Rd, Atlanta GA 30322, United States.
| | - Kurt D Pennell
- Department of Civil and Environmental Engineering, Tufts University, 200 College Ave, Medford MA 02155, United States.
| |
Collapse
|
19
|
Curtis SW, Cobb DO, Kilaru V, Terrell ML, Kennedy EM, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Exposure to polybrominated biphenyl (PBB) associates with genome-wide DNA methylation differences in peripheral blood. Epigenetics 2019; 14:52-66. [PMID: 30676242 DOI: 10.1080/15592294.2019.1565590] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In 1973, Michigan residents were exposed to polybrominated biphenyl (PBB) when it was accidentally added to farm animal feed. Highly exposed individuals and their children have experienced endocrine-related health problems, though the underlying mechanism behind these remains unknown. We investigated whether PBB exposure is associated with variation in DNA methylation in peripheral blood samples from 658 participants of the Michigan PBB registry using the MethylationEPIC BeadChip, as well as investigated what the potential function of the affected regions are and whether these epigenetic marks are known to associate with endocrine system pathways. After multiple test correction (FDR <0.05), 1890 CpG sites associated with total PBB levels. These CpGs were not enriched in any particular biological pathway, but were enriched in enhancer and insulator regions, and depleted in regions near the transcription start site or in CpG islands (p < 0.05). They were also more likely to be in ARNT and ESR2 transcription factor binding sites (p = 3.27e-23 and p = 1.62e-6, respectively), and there was significant overlap between CpGs associated with PBB and CpGs associated with estrogen (p < 2.2e-16). PBB-associated CpGs were also enriched for CpGs known to be associated with gene expression in blood (eQTMs) (p < 0.05). These eQTMs were enriched for pathways related to immune function and endocrine-related autoimmune disease (FDR <0.05). These results indicate that exposure to PBB is associated with differences in epigenetic marks that suggest that it is acting similarly to estrogen and is associated with dysregulated immune system pathways.
Collapse
Affiliation(s)
- Sarah W Curtis
- a Genetics and Molecular Biology Program, Laney Graduate SchoolLaney Graduate School , Emory University School of Medicine , Atlanta , GA , USA
| | - Dawayland O Cobb
- b Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Varun Kilaru
- b Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Metrecia L Terrell
- c Department of Epidemiology , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Elizabeth M Kennedy
- d Department of Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - M Elizabeth Marder
- d Department of Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Dana Boyd Barr
- d Department of Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Carmen J Marsit
- d Department of Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Michele Marcus
- e Departments of Epidemiology, Environmental Health , Emory University Rollins School of Public Health , Atlanta , GA , USA.,f Department of Pediatrics , Emory University School of Medicine , Atlanta , GA , USA
| | - Karen N Conneely
- g Department of Human Genetics , Emory University School of Medicine , Atlanta , GA , USA
| | - Alicia K Smith
- a Genetics and Molecular Biology Program, Laney Graduate SchoolLaney Graduate School , Emory University School of Medicine , Atlanta , GA , USA.,b Department of Gynecology and Obstetrics , Emory University School of Medicine , Atlanta , GA , USA.,h Department of Psychiatry and Behavioral Science , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
20
|
Curtis SW, Conneely KN, Marder ME, Terrell ML, Marcus M, Smith AK. Intergenerational effects of endocrine-disrupting compounds: a review of the Michigan polybrominated biphenyl registry. Epigenomics 2018; 10:845-858. [PMID: 29888951 PMCID: PMC6275560 DOI: 10.2217/epi-2017-0174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/16/2018] [Indexed: 01/12/2023] Open
Abstract
Endocrine-disrupting compounds (EDCs) are a broad class of chemicals present in many residential products that can disrupt hormone signaling and cause health problems in humans. Multigenerational cohorts, like the Michigan polybrominated biphenyl registry, are ideal for studying the effects of intergenerational exposure. Registry participants report hormone-related health problems, particularly in those exposed before puberty or those in the second generation exposed through placental transfer or breastfeeding. However, more research is needed to determine how EDCs cause health problems and the mechanisms underlying intergenerational exposure. Utilizing existing data in this registry, along with genetic and epigenetic approaches, could provide insight to how EDCs cause human disease and help to determine the risk to exposed populations and future generations.
Collapse
Affiliation(s)
- Sarah W Curtis
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322, USA
| | - Karen N Conneely
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322, USA
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Mary E Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Metrecia L Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
| | - Michele Marcus
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Alicia K Smith
- Genetics and Molecular Biology Program, Emory University, Atlanta, GA 30322, USA
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
21
|
Jacobson MH, Darrow LA, Barr DB, Howards PP, Lyles RH, Terrell ML, Smith AK, Conneely KN, Marder ME, Marcus M. Serum Polybrominated Biphenyls (PBBs) and Polychlorinated Biphenyls (PCBs) and Thyroid Function among Michigan Adults Several Decades after the 1973-1974 PBB Contamination of Livestock Feed. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:097020. [PMID: 28953452 PMCID: PMC5915188 DOI: 10.1289/ehp1302] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND In 1973-1974, Michigan residents were exposed to polybrominated biphenyls (PBBs) through an accidental contamination of the food supply. Residents were enrolled in a registry assembled after the incident, and they and their children participated in follow-up studies to assess subsequent health outcomes. OBJECTIVES We evaluated associations between serum PBBs and polychlorinated biphenyls (PCBs) and markers of thyroid function among Michigan adults. METHODS Serum concentrations of four PBB and four PCB congeners were measured at least once in 753 adults, including 79 women who participated in a 2004-2006 study and 683 women and men with follow-up during 2012-2015. Participants completed questionnaires on health conditions (including physician-diagnosed thyroid disease), behaviors, and demographics. Thyroid hormones were measured in a subset without thyroid disease (n=551). In multivariable linear regression models, PBB and PCB congener concentrations, on both the volume (nanogram/milliliter) and lipid (nanogram/gram lipid) basis, were assessed in relation to thyroid hormones. Logistic regression models were used to estimate associations between serum PBBs and PCBs and thyroid disease. RESULTS Thyroid disease was common (18% overall; 25% among women). Among women, all odds ratios (ORs) for PBB-153 and thyroid disease were positive for quintiles above the reference level, but estimates were imprecise and were without a monotonic increase. For an interquartile range (IQR) increase in PBB-153 (0.43 ng/mL), the OR (any thyroid disease)=1.12; (95% CI: 0.83, 1.52) (n=105 cases); for hypothyroidism, OR=1.35 (95% CI: 0.86, 2.13) (n=49 cases). There were 21 cases of thyroid disease in men [OR=0.69 (95% CI: 0.33); 1.44 for an IQR increase (0.75 ng/mL) in serum PBB-153]. PCB congeners were statistically significantly associated with greater total and free thyroxine and total triiodothyronine among women and with total and free triiodothyronine among men in lipid-standardized models. CONCLUSIONS We found some evidence to support associations of PBBs and PCBs with thyroid disease and thyroid hormone levels. https://doi.org/10.1289/EHP1302.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Department of Epidemiology, Rollins School of Public Health and Laney Graduate School, Emory University , Atlanta, Georgia, USA
| | - Lyndsey A Darrow
- Department of Epidemiology, Rollins School of Public Health and Laney Graduate School, Emory University , Atlanta, Georgia, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University , Atlanta, Georgia, USA
- School of Community Health Sciences, University of Nevada , Reno, Nevada, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University , Atlanta, Georgia, USA
| | - Penelope P Howards
- Department of Epidemiology, Rollins School of Public Health and Laney Graduate School, Emory University , Atlanta, Georgia, USA
| | - Robert H Lyles
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University , Atlanta, Georgia, USA
| | - Metrecia L Terrell
- Department of Epidemiology, Rollins School of Public Health and Laney Graduate School, Emory University , Atlanta, Georgia, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine , Atlanta, Georgia, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine , Atlanta, Georgia, USA
| | - M Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University , Atlanta, Georgia, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health and Laney Graduate School, Emory University , Atlanta, Georgia, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University , Atlanta, Georgia, USA
| |
Collapse
|
22
|
Lyall K, Croen LA, Weiss LA, Kharrazi M, Traglia M, Delorenze GN, Windham GC. Prenatal Serum Concentrations of Brominated Flame Retardants and Autism Spectrum Disorder and Intellectual Disability in the Early Markers of Autism Study: A Population-Based Case-Control Study in California. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:087023. [PMID: 28895873 PMCID: PMC5783661 DOI: 10.1289/ehp1079] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Prior studies suggest neurodevelopmental impacts of polybrominated diphenyl ethers (PBDEs), but few have examined diagnosed developmental disorders. OBJECTIVES Our aim was to determine whether prenatal exposure to brominated flame retardants (BFRs) is associated with autism spectrum disorder (ASD) or intellectual disability without autism (ID). METHODS We conducted a population-based case-control study including children with ASD (n=545) and ID (n=181) identified from the California Department of Developmental Services and general population (GP) controls (n=418) from state birth certificates. ASD cases were matched to controls by sex, birth month, and birth year. Concentrations of 10 BFRs were measured in maternal second trimester serum samples stored from routine screening. Logistic regression was used to calculate crude and adjusted odds ratios (AOR) for associations with ASD, and separately for ID, compared with GP controls, by quartiles of analyte concentrations in primary analyses. RESULTS Geometric mean concentrations of five of the six congeners with ≥55% of samples above the limit of detection were lower in mothers of children with ASD or ID than in controls. In adjusted analyses, inverse associations with several congeners were found for ASD relative to GP (e.g., quartile 4 vs. 1, BDE-153: AOR=0.56, 95% CI: 0.38, 0.84). When stratified by child sex (including 99 females with ASD, 77 with ID, and 73 with GP), estimates were consistent with overall analyses in boys, but in the opposite direction among girls, particularly for BDE-28 and -47 (AOR=2.58, 95% CI: 0.86, 7.79 and AOR=2.64, 95% CI: 0.97, 7.19, respectively). Similar patterns overall and by sex were observed for ID. CONCLUSIONS Contrary to expectation, higher PBDE concentrations were associated with decreased odds of ASD and ID, though not in girls. These findings require confirmation but suggest potential sexual dimorphism in associations with prenatal exposure to BFRs. https://doi.org/10.1289/EHP1079.
Collapse
Affiliation(s)
- Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University , Philadelphia, Pennsylvania, USA
| | - Lisa A Croen
- Autism Research Program, Division of Research, Kaiser Permanente , Oakland, California, USA
| | - Lauren A Weiss
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco , San Francisco, California, USA
| | - Martin Kharrazi
- Division of Environmental and Occupational Disease Control, California Department of Public Health, Richmond, California, USA
| | - Michela Traglia
- Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco , San Francisco, California, USA
| | - Gerald N Delorenze
- Autism Research Program, Division of Research, Kaiser Permanente , Oakland, California, USA
| | - Gayle C Windham
- Division of Environmental and Occupational Disease Control, California Department of Public Health, Richmond, California, USA
| |
Collapse
|
23
|
Wada K, de Vrijer B, Hales BF, Nisker J. Implications of Applying Minimal Risk Standards in Clinical Research to Information Provision in Prenatal and Pre-conception Care. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2016; 38:965-974. [PMID: 27720097 DOI: 10.1016/j.jogc.2016.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/30/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND There have long been minimal risk thresholds beneath which risks may not need to be discussed in clinical research. This threshold concept may be applied to clinical practice. Our research explored application of minimal risk standards in research regulations to providing information in prenatal and pre-conception care. METHODS A case study approach applied minimal risk standards in research regulations to prenatal and pre-conception care with respect to the risks of excess alcohol consumption, folic acid insufficiency, exposure to phthalate plasticizers, and exposure to brominated flame retardants (BFRs). RESULTS Excess alcohol consumption and folic acid insufficiency were found to be above the minimal risk standards as outlined in research regulations, while exposure to phthalates and BFRs requires more evidence to determine whether they are above minimal risk. However, applying the minimal risk standard based on the daily life of a healthy adult or a fetus in a healthy pregnant woman, phthalates and BFRs are at the minimal risk threshold regardless of their potential harm since all pregnant women may be exposed to these chemicals in their daily life. Nevertheless, if there is demonstration of sufficient evidence of harm, they may be above minimal risk if such harm can be reduced by individual choice to avoid exposure. CONCLUSION The minimal risk concept in research regulations as applied to clinical practice may be useful to help clinicians and professional organizations determine what risks need be discussed in prenatal and pre-conception care.
Collapse
Affiliation(s)
- Kyoko Wada
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, Western University, London ON
| | - Barbra de Vrijer
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, Western University, London ON
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal QC
| | - Jeff Nisker
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, Western University, London ON
| |
Collapse
|
24
|
Marder ME, Panuwet P, Hunter RE, Ryan PB, Marcus M, Barr DB. Quantification of Polybrominated and Polychlorinated Biphenyls in Human Matrices by Isotope-Dilution Gas Chromatography-Tandem Mass Spectrometry. J Anal Toxicol 2016; 40:511-8. [PMID: 27445313 PMCID: PMC4986627 DOI: 10.1093/jat/bkw041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a highly sensitive and selective analytical method capable of quantifying a total of 15 polybrominated and polychlorinated biphenyls (11 PBBs and 4 PCBs) in human serum. Samples were subjected to liquid-liquid extraction followed by solid-phase extraction prior to measurement using gas chromatography-tandem mass spectrometry in multiple reaction monitoring mode. Quantification was performed using isotope-dilution calibration covering a concentration range of 0.005-12.5 ng/mL. Limits of detection for all target compounds were in the low range (0.7-6.5 pg/mL). The method was validated using in-house pooled human serum fortified at two concentrations (0.5 ng/mL and 1.0 ng/mL), whole semen fortified at one concentration (0.25 ng/mL), and NIST Standard Reference Material (SRM) 1958, which includes five of the target compounds. Method accuracies for all target compounds ranged from 84 to 119% with relative standard deviations (RSDs) of <19%. The measured values for the five target compounds present in the SRM agreed with the certified reference values (89-119% accuracy with RSDs <9%). As this method was developed to support ongoing epidemiologic investigations, we evaluated its suitability by analyzing subsets of serum and whole semen samples from the Michigan PBB Registry cohort. PBB-153, PCB-118, PCB-138, PCB-153 and PCB-180 were detected in all serum samples analyzed, with PBB-77 and PBB-101 detected less frequently in serum. PBB-153, PCB-118, PCB-138, PCB-153 and PCB-180 were detected in at least one whole semen sample.
Collapse
Affiliation(s)
- M Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Ronald E Hunter
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - P Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Ceko MJ, O'Leary S, Harris HH, Hummitzsch K, Rodgers RJ. Trace Elements in Ovaries: Measurement and Physiology1. Biol Reprod 2016; 94:86. [DOI: 10.1095/biolreprod.115.137240] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
|
26
|
Terrell ML, Hartnett KP, Lim H, Wirth J, Marcus M. Maternal exposure to brominated flame retardants and infant Apgar scores. CHEMOSPHERE 2015; 118:178-86. [PMID: 25203650 PMCID: PMC4249940 DOI: 10.1016/j.chemosphere.2014.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 05/19/2023]
Abstract
Brominated flame retardants (BFRs) and other persistent organic pollutants have been associated with adverse health outcomes in humans and may be particularly toxic to the developing fetus. We investigated the association between in utero polybrominated biphenyl (PBB) and polychlorinated biphenyl (PCB) exposures and infant Apgar scores in a cohort of Michigan residents exposed to PBB through contaminated food after an industrial accident. PBB and PCB concentrations were measured in serum at the time the women were enrolled in the cohort. PBB concentrations were also estimated at the time of conception for each pregnancy using a validated elimination model. Apgar scores, a universal measure of infant health at birth, measured at 1 and 5min, were taken from birth certificates for 613 offspring born to 330 women. Maternal PCB concentrations at enrollment were not associated with below-median Apgar scores in this cohort. However, maternal PBB exposure was associated with a dose-related increase in the odds of a below-median Apgar score at 1min and 5min. Among infants whose mothers had an estimated PBB at conception above the limit of detection of 1 part per billion (ppb) to <2.5ppb, the odds ratio=2.32 (95% CI: 1.22-4.40); for those with PBB⩾2.5ppb the OR=2.62 (95% CI: 1.38-4.96; test for trend p<0.01). Likewise, the odds of a below-median 5min Apgar score increased with higher maternal PBB at conception. It remains critical that future studies examine possible relationships between in utero exposures to brominated compounds and adverse health outcomes.
Collapse
Affiliation(s)
- Metrecia L Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States.
| | - Kathleen P Hartnett
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Hyeyeun Lim
- Departments of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas, Houston, TX, United States
| | - Julie Wirth
- Departments of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States; Division of Environmental Health, Bureau of Epidemiology, Michigan Department of Community Health, Lansing, MI, United States
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, United States; Department of Pediatrics, Emory University, Atlanta, GA, United States; Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
27
|
Slama R, Cordier S. Impact des facteurs environnementaux physiques et chimiques sur le déroulement et les issues de grossesse. ACTA ACUST UNITED AC 2013; 42:413-44. [DOI: 10.1016/j.jgyn.2013.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/06/2013] [Accepted: 02/28/2013] [Indexed: 11/29/2022]
|