1
|
Bush X, Fratz-Berilla EJ, Kohnhorst CL, King R, Agarabi C, Powers DN, Trunfio N. Defining Golden Batches in Biomanufacturing Processes From Internal Metabolic Activity to Detect Process Changes That May Affect Product Quality. Biotechnol Bioeng 2024. [PMID: 39462977 DOI: 10.1002/bit.28873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Cellular metabolism plays a role in the observed variability of a drug substance's Critical Quality Attributes (CQAs) made by biomanufacturing processes. Therefore, here we describe a new approach for monitoring biomanufacturing processes that measures a set of metabolic reaction rates (named Critical Metabolic Parameters (CMP) in addition to the macroscopic process conditions currently being used as Critical Process Parameters (CPP) for biomanufacturing. Constraint-based systems biology models like Flux Balance Analysis (FBA) are used to estimate metabolic reaction rates, and metabolic rates are used as inputs for multivariate Batch Evolution Models (BEM). Metabolic activity was reproducible among batches and could be monitored to detect a deliberately induced macroscopic process shift (i.e., temperature change). The CMP approach has the potential to enable "golden batches" in biomanufacturing processes to be defined from the internal metabolic activity and to aid in detecting process changes that may impact the quality of the product. Overall, the data suggested that monitoring of metabolic activity has promise for biomanufacturing process control.
Collapse
Affiliation(s)
- Xin Bush
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VI, Silver Spring, Maryland, USA
| | - Erica J Fratz-Berilla
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VI, Silver Spring, Maryland, USA
| | - Casey L Kohnhorst
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research III, Silver Spring, Maryland, USA
| | - Roberta King
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Cyrus Agarabi
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality Research, Immediate Office, Silver Spring, Maryland, USA
| | - David N Powers
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VI, Silver Spring, Maryland, USA
| | - Nicholas Trunfio
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Pharmaceutical Quality Research, Division Pharmaceutical Quality Research VI, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Niazi SK, Omarsdottir S. Lectin-Based Fluorescent Comparison of Glycan Profile-FDA Validation to Expedite Approval of Biosimilars. Int J Mol Sci 2024; 25:9240. [PMID: 39273189 PMCID: PMC11395676 DOI: 10.3390/ijms25179240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glycan profile comparisons are one of the most tedious analytical exercises for establishing compliance with recombinant therapeutic protein batches. Based on its intensive research, the FDA has confirmed that lectin array binding with fluorescent monitoring is the fastest and most reliable method for profile comparisons. Using a database of over 150 biological products expressed in nine diverse mammalian cell systems, the FDA immobilized 74 lectins to study their binding using fluorescently labeled glycoproteins. The FDA identified nine distinct lectins from a custom-designed lectin microarray: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHALs, which detect core fucose, terminal GlcNAc, terminal β-galactose, high mannose, α-2,3-linked sialic acids, α-2,6-linked sialic acids, bisecting GlcNAc, terminal α-galactose, and triantennary structures, respectively. This method can be used for screening and routine testing and to monitor batch-to-batch variability of therapeutic proteins, including establishing analytical similarity as a crucial part of biosimilar development.
Collapse
Affiliation(s)
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland;
| |
Collapse
|
3
|
Magazine N, Zhang T, Bungwon AD, McGee MC, Wu Y, Veggiani G, Huang W. Immune Epitopes of SARS-CoV-2 Spike Protein and Considerations for Universal Vaccine Development. Immunohorizons 2024; 8:214-226. [PMID: 38427047 PMCID: PMC10985062 DOI: 10.4049/immunohorizons.2400003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Despite the success of global vaccination programs in slowing the spread of COVID-19, these efforts have been hindered by the emergence of new SARS-CoV-2 strains capable of evading prior immunity. The mutation and evolution of SARS-CoV-2 have created a demand for persistent efforts in vaccine development. SARS-CoV-2 Spike protein has been the primary target for COVID-19 vaccine development, but it is also the hotspot of mutations directly involved in host susceptibility and virus immune evasion. Our ability to predict emerging mutants and select conserved epitopes is critical for the development of a broadly neutralizing therapy or a universal vaccine. In this article, we review the general paradigm of immune responses to COVID-19 vaccines, highlighting the immunological epitopes of Spike protein that are likely associated with eliciting protective immunity resulting from vaccination in humans. Specifically, we analyze the structural and evolutionary characteristics of the SARS-CoV-2 Spike protein related to immune activation and function via the TLRs, B cells, and T cells. We aim to provide a comprehensive analysis of immune epitopes of Spike protein, thereby contributing to the development of new strategies for broad neutralization or universal vaccination.
Collapse
Affiliation(s)
- Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Anang D. Bungwon
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Yingying Wu
- Department of Mathematics, University of Houston, Houston, TX
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
4
|
Khorshed AA, Savchenko O, Liu J, Shoute L, Zeng J, Ren S, Gu J, Jha N, Yang Z, Wang J, Jin L, Chen J. Development of an impedance-based biosensor for determination of IgG galactosylation levels. Biosens Bioelectron 2024; 245:115793. [PMID: 37984315 DOI: 10.1016/j.bios.2023.115793] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
The glycan profile of immunoglobulin G (IgG) molecule and its changes are associated with a number of different diseases. Galactosylation of IgG was recently suggested as a potential biomarker for rheumatoid arthritis, inflammatory bowel disease and many cancers. In this paper, we propose a portable impedance-based biosensor that utilizes lectin array technology to detect glycans in IgG. Biotinylated Griffonia simplicifolia (GSL II) and Ricinus communis agglutinin I (RCA I) lectins were used in our biosensor design for determination of the ratio of N-acetyl glucosamine (GlcNAc) to galactose (Gal) respectively, which is termed agalactosylation factor (AF). Streptavidin gold nanoparticles (GNP) were conjugated to biotinylated lectin bonded to the carbohydrate in the glycoprotein to magnify the change in impedance signal and enhance detection sensitivity. The method was successfully applied to differentiation of the galactosylation levels in human and rat IgG. In addition, we present proof of concept use of our biosensor for differentiation of COVID-19 positive patient samples from negative patients. Consequently, the sensor can be useful in future applications to distinguish between glycan profiles of IgG from healthy and patient samples in disease studies. Our biosensor permits analysis of human serum without conventional time-consuming IgG purification steps or pretreatment using enzyme digestion to cut the sugars from the glycoprotein molecule. The results suggest that the proposed point of care (POC) biosensor can be used for evaluating disease progression and treatment efficacy via monitoring changes in the galactosylation profiles of IgG in patients.
Collapse
Affiliation(s)
- Ahmed A Khorshed
- Department of Biomedical Engineering, University of Alberta, Canada; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Oleksandra Savchenko
- Department of Biomedical Engineering, University of Alberta, Canada; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jing Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Lian Shoute
- Department of Biomedical Engineering, University of Alberta, Canada
| | - Jie Zeng
- Department of Biomedical Engineering, University of Alberta, Canada
| | - Shifang Ren
- Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianxing Gu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Glycoconjugate Research Ministry of Public Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Naresh Jha
- Cross-cancer Institute, Edmonton, Alberta, Canada
| | - Zhong Yang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Shanghai, China
| | - Jie Chen
- Department of Biomedical Engineering, University of Alberta, Canada; Department of Electrical and Computer Engineering, University of Alberta, Canada.
| |
Collapse
|
5
|
Luo S, Zhang B. A tailored lectin microarray for rapid glycan profiling of therapeutic monoclonal antibodies. MAbs 2024; 16:2304268. [PMID: 38252526 PMCID: PMC10807468 DOI: 10.1080/19420862.2024.2304268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glycosylation plays a crucial role in determining the quality and efficacy of therapeutic antibodies. This necessitates a thorough analysis and monitoring process to ensure consistent product quality during manufacturing. In this study, we introduce a custom-designed lectin microarray featuring nine distinct lectins: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHAL. These lectins have been specifically tailored to selectively bind to common N-glycan epitopes found in therapeutic IgG antibodies. By utilizing intact glycoprotein samples, our nine-lectin microarray provides a high-throughput platform for rapid glycan profiling, enabling comparative analysis of glycosylation patterns. Our results demonstrate the practical utility of this microarray in assessing glycosylation across various manufacturing batches or between biosimilar and innovator products. This capacity empowers informed decision-making in the development and production of therapeutic antibodies.
Collapse
Affiliation(s)
- Shen Luo
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Baolin Zhang
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
6
|
Magazine N, Zhang T, Bungwon AD, McGee MC, Wu Y, Veggiani G, Huang W. Immune Epitopes of SARS-CoV-2 Spike Protein and Considerations for Universal Vaccine Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564184. [PMID: 37961687 PMCID: PMC10634854 DOI: 10.1101/2023.10.26.564184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Despite the success of global vaccination programs in slowing the spread of COVID-19, these efforts have been hindered by the emergence of new SARS-CoV-2 strains capable of evading prior immunity. The mutation and evolution of SARS-CoV-2 have created a demand for persistent efforts in vaccine development. SARS-CoV-2 Spike protein has been the primary target for COVID-19 vaccine development, but it is also the hotspot of mutations directly involved in host susceptibility and immune evasion. Our ability to predict emerging mutants and select conserved epitopes is critical for the development of a broadly neutralizing therapy or a universal vaccine. In this article, we review the general paradigm of immune responses to COVID-19 vaccines, highlighting the immunological epitopes of Spike protein that are likely associated with eliciting protective immunity resulting from vaccination. Specifically, we analyze the structural and evolutionary characteristics of the SARS-CoV-2 Spike protein related to immune activation and function via the toll-like receptors (TLRs), B cells, and T cells. We aim to provide a comprehensive analysis of immune epitopes of Spike protein, thereby contributing to the development of new strategies for broad neutralization or universal vaccination.
Collapse
Affiliation(s)
- Nicholas Magazine
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tianyi Zhang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anang D. Bungwon
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C. McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yingying Wu
- Department of Mathematics, University of Houston, Houston, TX 77204, USA
| | - Gianluca Veggiani
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Shimazaki H, Nakamura K, Ono A, Segawa O, Sawakami K, Koizuka M, Hirayama M, Hori K, Tajima H, Kuno A. Auto-Lectin Dotcoding by Two Octopuses: Rapid Analysis of Fluorescence-Labeled Glycoproteins by an 8-channel Fully-Automatic Bead Array Scanner with a Rolling-Circle Detector. Anal Chem 2023; 95:11868-11873. [PMID: 37535807 DOI: 10.1021/acs.analchem.3c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Protein glycosylation is a crucial factor that must be evaluated in biological pharmaceuticals. The glycoform profile of a protein can vary depending on the conditions of the cultivation, purification process, and the selection of a host cell. Lectin microarrays are reliable bioanalytical methods used in the early phases of bioprocesses for the detection of glycosylation. The concept of a fully automated glycan detection with a bead array has been previously reported; however, no simple system has been constructed on fluorescence-based detection using a microarray. Here, we present a fully automated detection system equipped with a novel fluorescence detector for a 13-lectin bead array with a single tip. The lattice-like arrangement of a set of fibers proximate to the tip of the light emitting diode and photomultiplier tube detector minimized the noise caused by the reflection of incident light on the plastic capillary tip and bead. A unique rolling-circle fiber unit with quadruple lattices stacked in two layers realizes the 8-parallel automeasurement with a drastic reduction in scanning time and machine size. The 8-glycan profiles obtained automatically within 25 min were identical with those obtained with the conventional lectin microarray after overnight incubation. The signals obtained were represented as lectin dotcodes. Therefore, autolectin dotcoding assisted by the twin 8 legs named as "detection and irradiation octopuses" may be a rapid glyco-evaluation system during the production and development of biopharmaceuticals.
Collapse
Affiliation(s)
- Hiroko Shimazaki
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiro Nakamura
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Ayaka Ono
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| | - Osamu Segawa
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Kazumi Sawakami
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Michinori Koizuka
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Makoto Hirayama
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-7528, Japan
| | - Kanji Hori
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-7528, Japan
| | - Hideji Tajima
- Precision System Science, Kamihongou, Matsudo, Chiba 271-0064, Japan
| | - Atsushi Kuno
- Molecular & Cellular Glycoproteomics Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science & Technology, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
8
|
Yue Z, Yu Y, Gao B, Wang D, Sun H, Feng Y, Ma Z, Xie X. Advances in protein glycosylation and its role in tissue repair and regeneration. Glycoconj J 2023; 40:355-373. [PMID: 37097318 DOI: 10.1007/s10719-023-10117-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/10/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
After tissue damage, a series of molecular and cellular events are initiated to promote tissue repair and regeneration to restore its original structure and function. These events include inter-cell communication, cell proliferation, cell migration, extracellular matrix differentiation, and other critical biological processes. Glycosylation is the crucial conservative and universal post-translational modification in all eukaryotic cells [1], with influential roles in intercellular recognition, regulation, signaling, immune response, cellular transformation, and disease development. Studies have shown that abnormally glycosylation of proteins is a well-recognized feature of cancer cells, and specific glycan structures are considered markers of tumor development. There are many studies on gene expression and regulation during tissue repair and regeneration. Still, there needs to be more knowledge of complex carbohydrates' effects on tissue repair and regeneration, such as glycosylation. Here, we present a review of studies investigating protein glycosylation in the tissue repair and regeneration process.
Collapse
Affiliation(s)
- Zhongyu Yue
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yajie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Boyuan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Du Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Hongxiao Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Yue Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Zihan Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, China.
- GeWu Medical Research Institute (GMRI), Xi'an, China.
| |
Collapse
|
9
|
Liu X, Yang Z, Liu C, Xu B, Wang X, Li Y, Xia J, Li D, Zhang C, Sun H, Yang Q. Identification of a type II LacNAc specific binding lectin CMRBL from Cordyceps militaris. Int J Biol Macromol 2023; 230:123207. [PMID: 36632960 DOI: 10.1016/j.ijbiomac.2023.123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
The Cordyceps militaris gene CCM_03832 encodes a ricin-B like lectin. The gene was cloned and expressed in Escherichia coli, and its protein product, named CMRBL (C. militaris ricin-B like lectin), was purified by galactose affinity chromatography. Of nine different sources of erythrocytes, CMRBL showed only specific hemagglutinating activity against rat and rabbit erythrocytes with titers of 22 and 28, respectively. Glycan array analyses by the Consortium for Functional Glycomics showed that CMRBL possesses very high specific binding activity of glycans terminated with type II LacNAc (non-reducing Galβ1-4GlcNAc). Compared with other well-known Gal-terminated binding lectins such as Erythrina cristagalli agglutinin, Ricinus communis agglutinin, and Jacalin, CMRBL showed better binding specificity to type II LacNAc compared the other lectins. CMRBL showed lowest binding activity to ZR-75-30 and MDA-MB-468 cell lines among five tested cell lines (H22, THP-1, MDA-MB-231, ZR-75-30, and MDA-MB-468 cells). Transfection of type II LacNAc main galactosyltransferase B4GALT3 to ZR-75-30 significantly improved CMRBL binding activity compared with control. CMRBL was also applied for testing the type II LacNAc modification of Etanercept successfully. Our data suggest that CMRBL would be a useful tool to recognize type II LacNAc, especially distinguish type II from other galactose-terminated glycans in glycan biology research.
Collapse
Affiliation(s)
- Xiaomei Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zelan Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chenglong Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Xu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xueqing Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Xia
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Danni Li
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Can Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hui Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Province key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China; Wuhan Huayang Animal Pharmaceutical Co., Ltd, China.
| | - Qing Yang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
10
|
Mao L, Schneider JW, Robinson AS. Progress toward rapid, at-line N-glycosylation detection and control for recombinant protein expression. Curr Opin Biotechnol 2022; 78:102788. [PMID: 36126382 DOI: 10.1016/j.copbio.2022.102788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/14/2022]
Abstract
Proteins continue to represent a large fraction of the therapeutics market, reaching over a hundred billion dollars in market size globally. One key feature of protein modification that can affect both structure and function is the addition of glycosylation following protein folding, leading to regulatory requirements for the accurate assessment of protein attributes, including glycan structures. The non-template-driven, innately heterogeneous N-glycosylation process thus requires accurate detection to robustly generate protein therapies. A challenge exists in the timely detection of protein glycosylation without labor-intensive manipulation. In this article, we discuss progress toward N-glycoprotein control, focusing on novel control strategies and the advancement of rapid, high-throughput analysis methods.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - James W Schneider
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Jiang M, Chattopadhyay AN, Li CH, Geng Y, Luther DC, Huang R, Rotello VM. Direct discrimination of cell surface glycosylation signatures using a single pH-responsive boronic acid-functionalized polymer. Chem Sci 2022; 13:12899-12905. [PMID: 36519060 PMCID: PMC9645398 DOI: 10.1039/d2sc02116a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/05/2022] [Indexed: 08/05/2023] Open
Abstract
Cell surface glycans serve fundamental roles in many biological processes, including cell-cell interaction, pathogen infection, and cancer metastasis. Cancer cell surface have alternative glycosylation to healthy cells, making these changes useful hallmarks of cancer. However, the diversity of glycan structures makes glycosylation profiling very challenging, with glycan 'fingerprints' providing an important tool for assessing cell state. In this work, we utilized the pH-responsive differential binding of boronic acid (BA) moieties with cell surface glycans to generate a high-content six-channel BA-based sensor array that uses a single polymer to distinguish mammalian cell types. This sensing platform provided efficient discrimination of cancer cells and readily discriminated between Chinese hamster ovary (CHO) glycomutants, providing evidence that discrimination is glycan-driven. The BA-functionalized polymer sensor array is readily scalable, providing access to new diagnostic and therapeutic strategies for cell surface glycosylation-associated diseases.
Collapse
Affiliation(s)
- Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Cheng Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst 710 N. Pleasant St. Amherst MA 01003 USA
| |
Collapse
|
12
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
13
|
Versloot RA, Lucas FL, Yakovlieva L, Tadema MJ, Zhang Y, Wood TM, Martin NI, Marrink SJ, Walvoort MTC, Maglia G. Quantification of Protein Glycosylation Using Nanopores. NANO LETTERS 2022; 22:5357-5364. [PMID: 35766994 PMCID: PMC9284675 DOI: 10.1021/acs.nanolett.2c01338] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Although nanopores can be used for single-molecule sequencing of nucleic acids using low-cost portable devices, the characterization of proteins and their modifications has yet to be established. Here, we show that hydrophilic or glycosylated peptides translocate too quickly across FraC nanopores to be recognized. However, high ionic strengths (i.e., 3 M LiCl) and low pH (i.e., pH 3) together with using a nanopore with a phenylalanine at its constriction allows the recognition of hydrophilic peptides, and to distinguish between mono- and diglycosylated peptides. Using these conditions, we devise a nanopore method to detect, characterize, and quantify post-translational modifications in generic proteins, which is one of the pressing challenges in proteomic analysis.
Collapse
Affiliation(s)
| | | | - Liubov Yakovlieva
- Chemical
Biology Division, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Matthijs Jonathan Tadema
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Yurui Zhang
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Thomas M. Wood
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, 2333 BE Leiden, The Netherlands
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| | - Marthe T. C. Walvoort
- Chemical
Biology Division, Stratingh Institute for Chemistry, University of Groningen, 9747AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
14
|
Wolf B, Piksa M, Beley I, Patoux A, Besson T, Cordier V, Voedisch B, Schindler P, Stöllner D, Perrot L, von Gunten S, Brees D, Kammüller M. Therapeutic antibody glycosylation impacts antigen recognition and immunogenicity. Immunology 2022; 166:380-407. [PMID: 35416297 DOI: 10.1111/imm.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
In this study we show that glycosylation is relevant for immune recognition of therapeutic antibodies, and that defined glycan structures can modulate immunogenicity. Concerns regarding immunogenicity arise from the high heterogeneity in glycosylation that is difficult to control and can deviate from human glycosylation if produced in non-human cell lines. While non-human glycosylation is thought to cause hypersensitivity reactions and immunogenicity, less is known about effects of Fc-associated glycan structures on immune cell responses. We postulated that glycosylation influences antigen recognition and subsequently humoral responses to therapeutic antibodies by modulating 1) recognition and uptake by dendritic cells (DCs), and 2) antigen routing, processing and presentation. Here, we compared different glycosylation variants of the antibody rituximab (RTX) in in vitro assays using human DCs and T cells as well as in in vivo studies. We found that human DCs bind and internalize unmodified RTX stronger compared to its aglycosylated form suggesting that glycosylation mediates uptake after recognition by glycan-specific receptors. Furthermore, we show that DC-uptake of RTX increases or decreases if glycosylation is selectively modified to recognize activating (by mannosylation) or inhibitory lectin receptors (by sialylation). Moreover, glycosylation seems to influence antigen presentation by DCs because specific glycovariants tend to induce either stronger or weaker T cell activation. Finally, we demonstrate that antibody glycosylation impacts anti-drug antibody (ADA) responses to RTX in vivo. Hence, defined glycan structures can modulate immune recognition and alter ADA responses. Glyco-engineering may help to decrease clinical immunogenicity and ADA-associated adverse events such as hypersensitivity reactions.
Collapse
Affiliation(s)
- Babette Wolf
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Mateusz Piksa
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Isabelle Beley
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Agnes Patoux
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thierry Besson
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Valerie Cordier
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Bernd Voedisch
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | - Ludovic Perrot
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Dominique Brees
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | |
Collapse
|
15
|
Ahmed MN, Jahan R, Nissapatorn V, Wilairatana P, Rahmatullah M. Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed Pharmacother 2022; 146:112507. [PMID: 34891122 PMCID: PMC8648558 DOI: 10.1016/j.biopha.2021.112507] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lectins or clusters of carbohydrate-binding proteins of non-immune origin are distributed chiefly in the Plantae. Lectins have potent anti-infectivity properties for several RNA viruses including SARS-CoV-2. The primary purpose of this review is to review the ability of lectins mediated potential biotherapeutic and bioprophylactic strategy against coronavirus causing COVID-19. Lectins have binding affinity to the glycans of SARS-COV-2 Spike glycoprotein that has N-glycosylation sites. Apart from this, the complement lectin pathway is a "first line host defense" against the viral infection that is activated by mannose-binding lectins. Mannose-binding lectins deficiency in serum influences innate immunity of the host and facilitates infectious diseases including COVID-19. Our accumulated evidence obtained from scientific databases particularly PubMed and Google Scholar databases indicate that mannose-specific/mannose-binding lectins (MBL) have potent efficacies like anti-infectivity, complement cascade induction, immunoadjuvants, DC-SIGN antagonists, or glycomimetic approach, which can prove useful in the strategy of COVID-19 combat along with the glycobiological aspects of SARS-CoV-2 infections and antiviral immunity. For example, plant-derived mannose-specific lectins BanLac, FRIL, Lentil, and GRFT from red algae can inhibit and neutralize SARS-CoV-2 infectivity, as confirmed with in-vitro, in-vivo, and in-silico assessments. Furthermore, Bangladesh has a noteworthy resource of antiviral medicinal plants as well as plant lectins. Intensifying research on the antiviral plant lectins, adopting a glyco-biotechnological approach, and with deeper insights into the "glycovirological" aspects may result in the designing of alternative and potent blueprints against the 21st century's biological pandemic of SARS-CoV-2 causing COVID-19.
Collapse
Affiliation(s)
- Md Nasir Ahmed
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhaka, Bangladesh.
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh.
| |
Collapse
|
16
|
Van Damme EJM. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconj J 2022; 39:83-97. [PMID: 34427812 PMCID: PMC8383723 DOI: 10.1007/s10719-021-10015-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/30/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Plants contain an extended group of lectins differing from each other in their molecular structures, biochemical properties and carbohydrate-binding specificities. The heterogeneous group of plant lectins can be classified in several families based on the primary structure of the lectin domain. All proteins composed of one or more lectin domains, or having a domain architecture including one or more lectin domains in combination with other protein domains can be defined as lectins. Plant lectins reside in different cell compartments, and depending on their location will encounter a large variety carbohydrate structures, allowing them to be involved in multiple biological functions. Over the years lectins have been studied intensively for their carbohydrate-binding properties and biological activities, which also resulted in diverse applications. The present overview on plant lectins especially focuses on the structural and functional characteristics of plant lectins and their applications for crop improvement, glycobiology and biomedical research.
Collapse
Affiliation(s)
- Els J. M. Van Damme
- Laboratory of Glycobiology and Biochemistry, Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Luo Y, Kurian V, Ogunnaike BA. Bioprocess systems analysis, modeling, estimation, and control. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Khairol Mokhtar NHI, Hussin A, Hamid AA, Zainal Ariffin SH, Shahidan MA. Systematic Optimisation of Microtiter Plate Lectin Assay to Improve Sialic Acid Linkage Detection. Comb Chem High Throughput Screen 2021; 25:1507-1517. [PMID: 34342257 DOI: 10.2174/1386207324666210802122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 11/22/2022]
Abstract
AIMS We aimed to develop a high-throughput lectin assay with minimized background signals to investigate the interactions of lectins and sialic acid glycans, focusing on prostate-specific antigen (PSA). BACKGROUND High background signals resulting from nonspecific binding are a significant concern for microtiter plate-based enzyme-linked lectin sorbent assays (ELLSAs), as they can mask specific binding signals and cause false-positive results. METHODS In this study, we constructed an ELLSA based on different washing step parameters, including the number of washing cycles, NaCl and Tween-20 concentrations, and the type of blocking agent and evaluated the effects on both specific and nonspecific binding signals. Furthermore, we performed a PSA binding assay using the optimized ELLSA. RESULTS The optimal washing parameters based on the highest specific binding signal proposed four cycles of washing steps using a washing buffer containing a high salt concentration (0.5 M NaCl) and mild detergent (0.05% Tween-20). The utilization of the optimized washing parameters in this assay was shown to be sufficient to obtain the optimal binding signals without the use of any blocking agent. Binding assays performed using the optimized ELLSA revealed that the glycan of the PSA sample used in this study mainly consists of terminal α2,6-linked sialic acid, as strongly recognized by Sambucus nigra agglutinin (SNA) with a KD value of 12.38 nM. CONCLUSION The ELLSA reported in this study provides a simple yet sensitive assay for sialic acid linkage recognition.
Collapse
Affiliation(s)
- Nur Hanina Izzati Khairol Mokhtar
- School of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor. Malaysia
| | - Ainulkhir Hussin
- Department of Pathology, Queen Elizabeth Hospital, Ministry of Health, Kota Kinabalu, Sabah. Malaysia
| | - Aidil Abdul Hamid
- School of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor. Malaysia
| | - Shahrul Hisham Zainal Ariffin
- School of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor. Malaysia
| | - Muhammad Ashraf Shahidan
- School of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor. Malaysia
| |
Collapse
|
19
|
Morticelli L, Magdei M, Tschalaki N, Petersen B, Haverich A, Hilfiker A. Generation of glycans depleted decellularized porcine pericardium, using digestive enzymatic supplements and enzymatic mixtures for food industry. Xenotransplantation 2021; 28:e12705. [PMID: 34227157 DOI: 10.1111/xen.12705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Xenogeneic pericardium has been used largely for various applications in cardiovascular surgery. Nevertheless, xenogeneic pericardial patches fail mainly due to their antigenic components. The xenoantigens identified as playing a major role in recipient immune response are the Galα1-3Gal (α-Gal) epitope, the non-human sialic acid N-glycolylneuraminic acid (Neu5Gc), and the porcine SDa antigen, associated with both proteins and lipids. The reduction in glycans from porcine pericardium might hinder or reduce the immunogenicity of xenogeneic scaffolds. METHODS Decellularized porcine pericardia were further treated at different time points and dilutions with digestive enzymatic supplements and enzymatic mixtures applied for food industry, for the removal of potentially immunogenic carbohydrates. Carbohydrates removal was investigated using up to 8 different lectin stains for the identification of N- and O-glycosylations, as well as glycolipids. Histoarchitectural changes in the ECM were assessed using Elastica van Gieson stain, whereas changes in mechanical properties were investigated via uniaxial tensile test and burst pressure test. RESULTS Tissues after enzymatic treatments showed a dramatic decrease in lectin stainings in comparison to tissues which were only decellularized. Histological assessment revealed cell-nuclei removal after decellularization. Some of the enzymatic treatments induced elastic lamellae disruption. Tissue strength decreased after enzymatic treatment; however, treated tissues showed values of burst pressure higher than physiological transvalvular pressures. CONCLUSIONS The application of these enzymatic treatments for tissue deglycosylation is totally novel, low cost, and appears to be very efficient for glycan removal. The immunogenic potential of treated tissues will be further investigated in subsequent studies, in vitro and in vivo.
Collapse
Affiliation(s)
- Lucrezia Morticelli
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Mikhail Magdei
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Negin Tschalaki
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute, Mariensee, Neustadt, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Paton B, Suarez M, Herrero P, Canela N. Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. Int J Mol Sci 2021; 22:5788. [PMID: 34071388 PMCID: PMC8198018 DOI: 10.3390/ijms22115788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Ageing is a complex process which implies the accumulation of molecular, cellular and organ damage, leading to an increased vulnerability to disease. In Western societies, the increase in the elderly population, which is accompanied by ageing-associated pathologies such as cardiovascular and mental diseases, is becoming an increasing economic and social burden for governments. In order to prevent, treat and determine which subjects are more likely to develop these age-related diseases, predictive biomarkers are required. In this sense, some studies suggest that glycans have a potential role as disease biomarkers, as they modify the functions of proteins and take part in intra- and intercellular biological processes. As the glycome reflects the real-time status of these interactions, its characterisation can provide potential diagnostic and prognostic biomarkers for multifactorial diseases. This review gathers the alterations in protein glycosylation profiles that are associated with ageing and age-related diseases, such as cancer, type 2 diabetes mellitus, metabolic syndrome and several chronic inflammatory diseases. Furthermore, the review includes the available techniques for the determination and characterisation of glycans, such as liquid chromatography, electrophoresis, nuclear magnetic resonance and mass spectrometry.
Collapse
Affiliation(s)
- Beatrix Paton
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| |
Collapse
|
21
|
Stantič M, Gunčar G, Kuzman D, Mravljak R, Cvijić T, Podgornik A. Application of lectin immobilized on polyHIPE monoliths for bioprocess monitoring of glycosylated proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1174:122731. [PMID: 33971517 DOI: 10.1016/j.jchromb.2021.122731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
In-process monitoring of glycosylated protein concentration becomes very important with the introduction of perfusion bioprocesses. Affinity chromatography based on lectins allows selective monitoring when carbohydrates are accessible on the protein surface. In this work, we immobilized lectin on polyHIPE type of monoliths and implemented it for bioprocess monitoring. A spacer was introduced to lectin, which increased binding kinetics toward Fc-fusion protein, demonstrated by bio-layer interferometry. Furthermore, complete desorption using 0.25 M galactose was shown. Affinity column exhibited linearity in the range between 0.5 and 8 mg/ml and flow-unaffected binding for the flow-rates between 0.5 and 8 ml/min. Long-term stability over at least four months period was demonstrated. No unspecific binding of culture media components, including host cell proteins and DNA, was detected. Results obtained by affinity column matched concentration values obtained by a reference method.
Collapse
Affiliation(s)
- Metka Stantič
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Gregor Gunčar
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Drago Kuzman
- Technical development biosimilars, Global drug development, Novartis, Kolodvorska 27, 1234 Mengeš, Slovenia
| | - Rok Mravljak
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Tamara Cvijić
- Technical development biosimilars, Global drug development, Novartis, Kolodvorska 27, 1234 Mengeš, Slovenia
| | - Aleš Podgornik
- Faculty for Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; COBIK, Tovarniška 26, 5270 Ajdovščina, Slovenia.
| |
Collapse
|
22
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Strittmatter T, Egli S, Bertschi A, Plieninger R, Bojar D, Xie M, Fussenegger M. Gene switch for l-glucose-induced biopharmaceutical production in mammalian cells. Biotechnol Bioeng 2021; 118:2220-2233. [PMID: 33629358 DOI: 10.1002/bit.27730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/23/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022]
Abstract
In this study, we designed and built a gene switch that employs metabolically inert l-glucose to regulate transgene expression in mammalian cells via d-idonate-mediated control of the bacterial regulator LgnR. To this end, we engineered a metabolic cascade in mammalian cells to produce the inducer molecule d-idonate from its precursor l-glucose by ectopically expressing the Paracoccus species 43P-derived catabolic enzymes LgdA, LgnH, and LgnI. To obtain ON- and OFF-switches, we fused LgnR to the human transcriptional silencer domain Krüppel associated box (KRAB) and the viral trans-activator domain VP16, respectively. Thus, these artificial transcription factors KRAB-LgnR or VP16-LgnR modulated cognate promoters containing LgnR-specific binding sites in a d-idonate-dependent manner as a direct result of l-glucose metabolism. In a proof-of-concept experiment, we show that the switches can control production of the model biopharmaceutical rituximab in both transiently and stably transfected HEK-293T cells, as well as CHO-K1 cells. Rituximab production reached 5.9 µg/ml in stably transfected HEK-293T cells and 3.3 µg/ml in stably transfected CHO-K1 cells.
Collapse
Affiliation(s)
- Tobias Strittmatter
- Department of Biosystems, Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Sabina Egli
- Department of Biosystems, Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Adrian Bertschi
- Department of Biosystems, Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Richard Plieninger
- Department of Biosystems, Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Daniel Bojar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Martin Fussenegger
- Department of Biosystems, Science and Engineering, ETH Zurich, Basel, Switzerland.,Faculty of Science, University of Basel, Mattenstrasse, Basel, Switzerland
| |
Collapse
|
24
|
Zhang J, Ten Dijke P, Wuhrer M, Zhang T. Role of glycosylation in TGF-β signaling and epithelial-to-mesenchymal transition in cancer. Protein Cell 2021; 12:89-106. [PMID: 32583064 PMCID: PMC7862465 DOI: 10.1007/s13238-020-00741-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glycosylation is a common posttranslational modification on membrane-associated and secreted proteins that is of pivotal importance for regulating cell functions. Aberrant glycosylation can lead to uncontrolled cell proliferation, cell-matrix interactions, migration and differentiation, and has been shown to be involved in cancer and other diseases. The epithelial-to-mesenchymal transition is a key step in the metastatic process by which cancer cells gain the ability to invade tissues and extravasate into the bloodstream. This cellular transformation process, which is associated by morphological change, loss of epithelial traits and gain of mesenchymal markers, is triggered by the secreted cytokine transforming growth factor-β (TGF-β). TGF-β bioactivity is carefully regulated, and its effects on cells are mediated by its receptors on the cell surface. In this review, we first provide a brief overview of major types of glycans, namely, N-glycans, O-glycans, glycosphingolipids and glycosaminoglycans that are involved in cancer progression. Thereafter, we summarize studies on how the glycosylation of TGF-β signaling components regulates TGF-β secretion, bioavailability and TGF-β receptor function. Then, we review glycosylation changes associated with TGF-β-induced epithelial-to-mesenchymal transition in cancer. Identifying and understanding the mechanisms by which glycosylation affects TGF-β signaling and downstream biological responses will facilitate the identification of glycans as biomarkers and enable novel therapeutic approaches.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Koike G, Katz ISS, Fernandes ER, Guedes F, Silva SR. Glycosylation is required for the neutralizing activity of human IgG1 antibodies against human rabies induced by pre-exposure prophylaxis. Immunobiology 2021; 226:152058. [PMID: 33609912 DOI: 10.1016/j.imbio.2021.152058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 11/17/2022]
Abstract
Rabies lyssavirus (RABV) neutralizing IgG antibodies confer protection after rabies vaccination, although how the RABV-specific antibodies neutralize the virus is still unknown. As changes in the antibody's carbohydrate chain can interfere with its effector functions, we compared the glycosylation patterns of both neutralizing and non-neutralizing IgG1 induced by pre-exposure prophylaxis to human rabies and analyzed their influence on in vitro antibody neutralizing activities. Specific IgG1 were purified from human serum using affinity chromatography. Purity and avidity were analyzed by SDS-PAGE and indirect ELISA using NH4SCN respectively. The N-linked oligosaccharide chain of the purified IgG antibody was evaluated using a lectin-based ELISA assay with a panel of seven lectins. The activity of purified IgG1 and neutralizing IgG1 deglycosylated by PNGase F enzyme were analyzed using the rapid fluorescent focus inhibition test. The purified IgG1 showed an electrophoretic pattern compatible with human IgG. All of the antibodies recognized RABV, although neutralizing IgG1 had a higher avidity (RAI = 80%) than non-neutralizing IgG1 (RAI = 30%). The neutralizing IgG1 also showed higher binding to WFA, ECA, WGA, and ConA lectins, indicating possible different N-acetylgalactosamine, galactose, N-acetylglucosamine, and mannose contents. Non-neutralizing IgG1, on the other hand, showed strong binding at UEA-1 and SNA, which bind to fucose and sialic acid residues respectively. Different glycosylation profiles were also observed in Fab and Fc fragments from neutralizing and non-neutralizing IgG1, although the deglycosylated IgG1 lost its neutralizing activity. Our results suggest that antibody glycosylation is important for neutralizing RABV in vitro, since neutralizing IgG1 has a different glycosylation profile than non-neutralizing IgG1. Further research will be needed to better evaluate the differential glycosylation patterns between IgG1 antibodies following vaccination.
Collapse
|
26
|
Sugar Matters: Improving In Vivo Clearance Rate of Highly Glycosylated Recombinant Plasma Proteins for Therapeutic Use. Pharmaceuticals (Basel) 2021; 14:ph14010054. [PMID: 33440845 PMCID: PMC7826800 DOI: 10.3390/ph14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/17/2022] Open
Abstract
Correct glycosylation of proteins is essential for production of therapeutic proteins as glycosylation is important for protein solubility, stability, half-life and immunogenicity. The heavily glycosylated plasma protein C1-inhibitor (C1-INH) is used in treatment of hereditary angioedema attacks. In this study, we used C1-INH as a model protein to propose an approach to develop recombinant glycoproteins with the desired glycosylation. We produced fully functional recombinant C1-INH in Chinese hamster ovary (CHO) cells. In vivo we observed a biphasic clearance, indicating different glycosylation forms. N-glycan analysis with mass spectrometry indeed demonstrated heterogeneous glycosylation for recombinant C1-INH containing terminal galactose and terminal sialic acid. Using a Ricinus Communis Agglutinin I (RCA120) column, we could reduce the relative abundance of terminal galactose and increase the relative abundance of terminal sialic acid. This resulted in a fully active protein with a similar in vivo clearance rate to plasmaderived C1-INH. In summary, we describe the development of a recombinant human glycoprotein using simple screening tools to obtain a product that is similar in function and in vivo clearance rate to its plasma-derived counterpart. The approach used here is of potential use in the development of other therapeutic recombinant human glycoproteins.
Collapse
|
27
|
Petrović T, Trbojević-Akmačić I. Lectin and Liquid Chromatography-Based Methods for Immunoglobulin (G) Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:29-72. [PMID: 34687007 DOI: 10.1007/978-3-030-76912-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunoglobulin (Ig) glycosylation has been shown to dramatically affect its structure and effector functions. Ig glycosylation changes have been associated with different diseases and show a promising biomarker potential for diagnosis and prognosis of disease advancement. On the other hand, therapeutic biomolecules based on structural and functional features of Igs demand stringent quality control during the production process to ensure their safety and efficacy. Liquid chromatography (LC) and lectin-based methods are routinely used in Ig glycosylation analysis complementary to other analytical methods, e.g., mass spectrometry and capillary electrophoresis. This chapter covers analytical approaches based on LC and lectins used in low- and high-throughput N- and O-glycosylation analysis of Igs, with the focus on immunoglobulin G (IgG) applications. General principles and practical examples of the most often used LC methods for Ig purification are described, together with typical workflows for N- and O-glycan analysis on the level of free glycans, glycopeptides, subunits, or intact Igs. Lectin chromatography is a historical approach for the analysis of lectin-carbohydrate interactions and glycoprotein purification but is still being used as a valuable tool in Igs purification and glycan analysis. On the other hand, lectin microarrays have found their application in the rapid screening of glycan profiles on intact proteins.
Collapse
Affiliation(s)
- Tea Petrović
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | |
Collapse
|
28
|
Abstract
The importance of post-translational glycosylation in protein structure and function has gained significant clinical relevance recently. The latest developments in glycobiology, glycochemistry, and glycoproteomics have made the field more manageable and relevant to disease progression and immune-response signaling. Here, we summarize the current progress in glycoscience, including the new methodologies that have led to the introduction of programmable and automatic as well as large-scale enzymatic synthesis, and the development of glycan array, glycosylation probes, and inhibitors of carbohydrate-associated enzymes or receptors. These novel methodologies and tools have facilitated our understanding of the significance of glycosylation and development of carbohydrate-derived medicines that bring the field to the next level of scientific and medical significance.
Collapse
Affiliation(s)
- Sachin S Shivatare
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
29
|
de Haan N, Falck D, Wuhrer M. Monitoring of immunoglobulin N- and O-glycosylation in health and disease. Glycobiology 2020; 30:226-240. [PMID: 31281930 PMCID: PMC7225405 DOI: 10.1093/glycob/cwz048] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.
Collapse
Affiliation(s)
- Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - David Falck
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden, The Netherlands
| |
Collapse
|
30
|
Zhou XX, Bracken CJ, Zhang K, Zhou J, Mou Y, Wang L, Cheng Y, Leung KK, Wells JA. Targeting Phosphotyrosine in Native Proteins with Conditional, Bispecific Antibody Traps. J Am Chem Soc 2020; 142:17703-17713. [PMID: 32924468 DOI: 10.1021/jacs.0c08458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engineering sequence-specific antibodies (Abs) against phosphotyrosine (pY) motifs embedded in folded polypeptides remains highly challenging because of the stringent requirement for simultaneous recognition of the pY motif and the surrounding folded protein epitope. Here, we present a method named phosphotyrosine Targeting by Recombinant Ab Pair, or pY-TRAP, for in vitro engineering of binders for native pY proteins. Specifically, we create the pY protein by unnatural amino acid misincorporation, mutagenize a universal pY-binding Ab to create a first binder B1 for the pY motif on the pY protein, and then select against the B1-pY protein complex for a second binder B2 that recognizes the composite epitope of B1 and the pY-containing protein complex. We applied pY-TRAP to create highly specific binders to folded Ub-pY59, a rarely studied Ub phosphoform exclusively observed in cancerous tissues, and ZAP70-pY248, a kinase phosphoform regulated in feedback signaling pathways in T cells. The pY-TRAPs do not have detectable binding to wild-type proteins or to other pY peptides or proteins tested. This pY-TRAP approach serves as a generalizable method for engineering sequence-specific Ab binders to native pY proteins.
Collapse
Affiliation(s)
- Xin X Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Colton J Bracken
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Kaihua Zhang
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
| | - Jie Zhou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yun Mou
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States.,Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Kevin K Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Chan Zuckerberg Biohub, San Francisco, California 94158, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
31
|
Park D, Park S, Song J, Kang M, Lee S, Horak M, Suh YH. N‐linked glycosylation of the mGlu7 receptor regulates the forward trafficking and transsynaptic interaction with Elfn1. FASEB J 2020; 34:14977-14996. [DOI: 10.1096/fj.202001544r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Da‐ha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sunha Park
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Jae‐man Song
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Minji Kang
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Sanghyeon Lee
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| | - Martin Horak
- Institute of Physiology of the Czech Academy of Sciences Institute of Experimental Medicine of the Czech Academy of Sciences Prague 4 Czech Republic
| | - Young Ho Suh
- Department of Biomedical Sciences Neuroscience Research Institute Transplantation Research Institute Seoul National University College of Medicine Seoul South Korea
| |
Collapse
|
32
|
Affiliation(s)
- Hayden Wilkinson
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing, Research and Training, Blackrock, Dublin, Ireland
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
33
|
Tsaneva M, Van Damme EJM. 130 years of Plant Lectin Research. Glycoconj J 2020; 37:533-551. [PMID: 32860551 PMCID: PMC7455784 DOI: 10.1007/s10719-020-09942-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
Abstract
Lectins are proteins with diverse molecular structures that share the ability to recognize and bind specifically and reversibly to carbohydrate structures without changing the carbohydrate moiety. The history of lectins started with the discovery of ricin about 130 years ago but since then our understanding of lectins has dramatically changed. Over the years the research focus was shifted from 'the characterization of carbohydrate-binding proteins' to 'understanding the biological function of lectins'. Nowadays plant lectins attract a lot of attention especially because of their potential for crop improvement and biomedical research, as well as their application as tools in glycobiology. The present review aims to give an overview of plant lectins and their applications, and how the field evolved in the last decades.
Collapse
Affiliation(s)
- Mariya Tsaneva
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
34
|
Findeisen K, Morticelli L, Goecke T, Kolbeck L, Ramm R, Höffler HK, Brandes G, Korossis S, Haverich A, Hilfiker A. Toward acellular xenogeneic heart valve prostheses: Histological and biomechanical characterization of decellularized and enzymatically deglycosylated porcine pulmonary heart valve matrices. Xenotransplantation 2020; 27:e12617. [PMID: 32557876 DOI: 10.1111/xen.12617] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
The use of decellularized xenogeneic heart valves might offer a solution to overcome the issue of human valve shortage. The aim of this study was to revise decellularization protocols in combination with enzymatic deglycosylation, in order to reduce the immunogenicity of porcine pulmonary heart valves, in means of cells, carbohydrates, and, primarily, Galα1-3Gal (α-Gal) epitope removal. In particular, the valves were decellularized with sodium dodecylsulfate/sodium deoxycholate (SDS/SD), Triton X-100 + SDS (Tx + SDS), or Trypsin + Triton X-100 (Tryp + Tx) followed by enzymatic digestion with PNGaseF, Endoglycosidase H, or O-glycosidase combined with Neuraminidase. Results showed that decellularization alone reduced carbohydrate structures only to a limited extent, and it did not result in an α-Gal free scaffold. Nevertheless, decellularization with Tryp + Tx represented the most effective decellularization protocol in means of carbohydrates reduction. Overall, carbohydrates and α-Gal removal could strongly be improved by applying PNGaseF, in particular in combination with Tryp + Tx treatment, contrary to Endoglycosidase H and O-glycosidase treatments. Furthermore, decellularization with PNGaseF did not affect biomechanical stability, in comparison with decellularization alone, as shown by burst pressure and uniaxial tensile tests. In conclusion, valves decellularized with Tryp + Tx and PNGaseF resulted in prostheses with potentially reduced immunogenicity and maintained mechanical stability.
Collapse
Affiliation(s)
- Katja Findeisen
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Lucrezia Morticelli
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Louisa Kolbeck
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Hans-Klaus Höffler
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Gudrun Brandes
- Institute for Cell Biology and Neuroanatomy, Hannover Medical School, Hannover, Germany
| | - Sotirios Korossis
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
35
|
Li L, Guan W, Zhang G, Wu Z, Yu H, Chen X, Wang PG. Microarray analyses of closely related glycoforms reveal different accessibilities of glycan determinants on N-glycan branches. Glycobiology 2020; 30:334-345. [PMID: 32026940 PMCID: PMC7175966 DOI: 10.1093/glycob/cwz100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/03/2023] Open
Abstract
Glycans mediate a wide variety of biological roles via recognition by glycan-binding proteins (GBPs). Comprehensive knowledge of such interaction is thus fundamental to glycobiology. While the primary binding feature of GBPs can be easily uncovered by using a simple glycan microarray harboring limited numbers of glycan motifs, their fine specificities are harder to interpret. In this study, we prepared 98 closely related N-glycoforms that contain 5 common glycan epitopes which allowed the determination of the fine binding specificities of several plant lectins and anti-glycan antibodies. These N-glycoforms differ from each other at the monosaccharide level and were presented in an identical format to ensure comparability. With the analysis platform we used, it was found that most tested GBPs have preferences toward only one branch of the complex N-glycans, and their binding toward the epitope-presenting branch can be significantly affected by structures on the other branch. Fine specificities described here are valuable for a comprehensive understanding and applications of GBPs.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Wanyi Guan
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Gaolan Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Zhigang Wu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Hai Yu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
36
|
Pažitná L, Nemčovič M, Pakanová Z, Baráth P, Aliev T, Dolgikh D, Argentova V, Katrlík J. Influence of media composition on recombinant monoclonal IgA1 glycosylation analysed by lectin-based protein microarray and MALDI-MS. J Biotechnol 2020; 314-315:34-40. [PMID: 32298669 PMCID: PMC7194684 DOI: 10.1016/j.jbiotec.2020.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Glycosylation of therapeutic glycoproteins significantly affects their physico-chemical properties, bioactivity and immunogenicity. The determination of glycan composition is highly important regarding their development and production. Therefore, there is a demand for analytical techniques enabling rapid and reliable glycoprofiling of therapeutic proteins. For the investigation of changes in glycan structures, we have employed two platforms: lectin-based protein microarray, and MALDI-MS. In lectin-based microarray analysis, the samples of IgA were printed on the microarray slide, incubated with the set of lectins with various specificity and evaluation of changes in glycosylation was based on differences in reactivity of samples with lectins. MALDI-MS was used for N-glycan analysis of IgA1 samples. IgAs are effective as therapeutic agents in defense against viruses that use sialic acid as a receptor. Dimeric IgA1 antibodies were produced by stable cell line IgA1/2G9 on the basal medium at different conditions (different supplementation and feeding) and we also evaluated the effect of different conditions on lactate production, which correlates with IgA productivity. Decrease of lactate levels was observed during supplementation with succinic acid, asparagine, or with mannose feeding. We found by lectin-based microarray analysis that the metabolic shift from glutamine to asparagine or feeding with glucose caused increase of high mannose type glycans what was confirmed also by MALDI-MS. Among other changes in IgA glycosylation determined by lectin-based protein microarray were, for example, reduced galactosylation after supplementation with succinic acid and increase of both sialylation and galactosylation after supplementation with glutamine and feeding with mannose. The elucidation of mechanism of determined changes requires further investigation, but the described analytical approach represent effective platform for determination, screening and evaluation of glycosylation of therapeutic proteins.
Collapse
Affiliation(s)
- Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Nemčovič
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Pakanová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Teimur Aliev
- Department of Chemical Enzymology, School of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Dolgikh
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victoria Argentova
- Department of Bioengineering, School of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
37
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
38
|
Tada K, Ohta M, Hidano S, Watanabe K, Hirashita T, Oshima Y, Fujnaga A, Nakanuma H, Masuda T, Endo Y, Takeuchi Y, Iwashita Y, Kobayashi T, Inomata M. Fucosyltransferase 8 plays a crucial role in the invasion and metastasis of pancreatic ductal adenocarcinoma. Surg Today 2020; 50:767-777. [PMID: 31950256 DOI: 10.1007/s00595-019-01953-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is an aggressive malignancy associated with poor prognosis because of recurrence, metastasis, and treatment resistance. Aberrant glycosylation of cancer cells triggers their migration and invasion and is considered one of the most important prognostic cancer biomarkers. The current study aimed to identify glycan alterations and their relationship with the malignant potential of PDAC. METHODS Using a lectin microarray, we evaluated glycan expression in 62 PDAC samples. Expression of fucosyltransferase 8 (FUT8), the only enzyme catalyzing core fucosylation, was investigated by immunohistochemistry. The role of FUT8 in PDAC invasion and metastasis was confirmed using an in vitro assay and a xenograft peritoneal metastasis mouse model. RESULTS The microarray data demonstrated that core fucose-binding lectins were significantly higher in carcinoma than in normal pancreatic duct tissues. Similarly, FUT8 protein expression was significantly higher in carcinoma than in normal pancreatic duct tissues. High FUT8 protein expression was significantly associated with lymph-node metastases and relapse-free survival. FUT8 knockdown significantly reduced the invasion in PDAC cell lines and impaired peritoneal metastasis in the xenograft model. CONCLUSIONS The findings of this study provide evidence that FUT8 plays a pivotal role in PDAC invasion and metastasis and might be a therapeutic target for this disease.
Collapse
Affiliation(s)
- Kazuhiro Tada
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan.
| | - Masayuki Ohta
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan.,Global Oita Medical Advanced Research Center for Health, Oita University, Oita, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Kiminori Watanabe
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Yusuke Oshima
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan.,Biomedical Optics Laboratory, Graduate School of Biomedical Engineering Tohoku University, Miyagi, Japan.,Oral-Maxillofacial Surgery and Orthodontics, University of Tokyo Hospital, Tokyo, Japan
| | - Atsuro Fujnaga
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Hiroaki Nakanuma
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Takashi Masuda
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Yuichi Endo
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Yu Takeuchi
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Yukio Iwashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita, 879-5593, Japan
| |
Collapse
|
39
|
Antibody glycosylation: impact on antibody drug characteristics and quality control. Appl Microbiol Biotechnol 2020; 104:1905-1914. [DOI: 10.1007/s00253-020-10368-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
|
40
|
Duivelshof BL, Jiskoot W, Beck A, Veuthey JL, Guillarme D, D’Atri V. Glycosylation of biosimilars: Recent advances in analytical characterization and clinical implications. Anal Chim Acta 2019; 1089:1-18. [DOI: 10.1016/j.aca.2019.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/14/2022]
|
41
|
Tommasone S, Allabush F, Tagger YK, Norman J, Köpf M, Tucker JHR, Mendes PM. The challenges of glycan recognition with natural and artificial receptors. Chem Soc Rev 2019; 48:5488-5505. [PMID: 31552920 DOI: 10.1039/c8cs00768c] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans - simple or complex carbohydrates - play key roles as recognition determinants and modulators of numerous physiological and pathological processes. Thus, many biotechnological, diagnostic and therapeutic opportunities abound for molecular recognition entities that can bind glycans with high selectivity and affinity. This review begins with an overview of the current biologically and synthetically derived glycan-binding scaffolds that include antibodies, lectins, aptamers and boronic acid-based entities. It is followed by a more detailed discussion on various aspects of their generation, structure and recognition properties. It serves as the basis for highlighting recent key developments and technical challenges that must be overcome in order to fully deal with the specific recognition of a highly diverse and complex range of glycan structures.
Collapse
Affiliation(s)
- Stefano Tommasone
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | | | | | |
Collapse
|
42
|
Lectin-Based Method for Deciphering Human Milk IgG Sialylation. Molecules 2019; 24:molecules24203797. [PMID: 31652515 PMCID: PMC6832633 DOI: 10.3390/molecules24203797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023] Open
Abstract
In light of the immunoprotective function of human milk and the incontestable impact of IgG glycosylation on its immune functions, characterization of the sialylation profile of human milk IgG is needed. Lectins as a molecular probe were applied in lectin-IgG-ELISA to analyze the sialylation and galactosylation pattern of skim milk IgG of mothers who delivered at term and prematurely. Well-defined biotinylated lectins were used: Maackia amurensis II (MAA II), Sambucus nigra (SNA), Ricinus communis I (RCA I), and Griffonia simplicifolia II (GSL II) specific to α2,3-Neu5Ac, α2,6-Neu5Ac, Gal(β1,4)GlcNAc, and agalactosylated glycans, respectively. The sialylation pattern of milk IgG differs qualitatively and quantitatively from maternal plasma IgG and is related to lactation stage and perinatal risk factors. Expression of MAA-, SNA-, and GSL-reactive glycotopes on term milk IgG showed a positive correlation with milk maturation from days 1 to 55. Preterm birth was associated with an increase of MAA-reactive and a decrease of RCA-reactive IgG glycotopes. Moreover, higher SNA- and GSL-reactive and lower RCA-reactive glycoform levels of milk IgG were associated with infection of lactating mothers. Application of a specific and simple method, lectin-IgG-ELISA, reveals the sialylation pattern of milk IgG over milk maturation. However, further investigations are needed in this area.
Collapse
|
43
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
44
|
Li Q, Xie Y, Wong M, Lebrilla CB. Characterization of Cell Glycocalyx with Mass Spectrometry Methods. Cells 2019; 8:E882. [PMID: 31412618 PMCID: PMC6721671 DOI: 10.3390/cells8080882] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
The cell membrane plays an important role in protecting the cell from its extracellular environment. As such, extensive work has been devoted to studying its structure and function. Crucial intercellular processes, such as signal transduction and immune protection, are mediated by cell surface glycosylation, which is comprised of large biomolecules, including glycoproteins and glycosphingolipids. Because perturbations in glycosylation could result in dysfunction of cells and are related to diseases, the analysis of surface glycosylation is critical for understanding pathogenic mechanisms and can further lead to biomarker discovery. Different mass spectrometry-based techniques have been developed for glycan analysis, ranging from highly specific, targeted approaches to more comprehensive profiling studies. In this review, we summarized the work conducted for extensive analysis of cell membrane glycosylation, particularly those employing liquid chromatography with mass spectrometry (LC-MS) in combination with various sample preparation techniques.
Collapse
Affiliation(s)
- Qiongyu Li
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Yixuan Xie
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Maurice Wong
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, CA 95616, USA.
- Department of Biochemistry, University of California, Davis, CA 95616, USA.
| |
Collapse
|
45
|
Amann T, Schmieder V, Faustrup Kildegaard H, Borth N, Andersen MR. Genetic engineering approaches to improve posttranslational modification of biopharmaceuticals in different production platforms. Biotechnol Bioeng 2019; 116:2778-2796. [PMID: 31237682 DOI: 10.1002/bit.27101] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
The number of approved biopharmaceuticals, where product quality attributes remain of major importance, is increasing steadily. Within the available variety of expression hosts, the production of biopharmaceuticals faces diverse limitations with respect to posttranslational modifications (PTM), while different biopharmaceuticals demand different forms and specifications of PTMs for proper functionality. With the growing toolbox of genetic engineering technologies, it is now possible to address general as well as host- or biopharmaceutical-specific product quality obstacles. In this review, we present diverse expression systems derived from mammalians, bacteria, yeast, plants, and insects as well as available genetic engineering tools. We focus on genes for knockout/knockdown and overexpression for meaningful approaches to improve biopharmaceutical PTMs and discuss their applicability as well as future trends in the field.
Collapse
Affiliation(s)
- Thomas Amann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valerie Schmieder
- acib GmbH-Austrian Centre of Industrial Biotechnology, Graz, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
46
|
Wallner J, Sissolak B, Sommeregger W, Lingg N, Striedner G, Vorauer-Uhl K. Lectin bio-layer interferometry for assessing product quality of Fc- glycosylated immunoglobulin G. Biotechnol Prog 2019; 35:e2864. [PMID: 31180180 PMCID: PMC6852021 DOI: 10.1002/btpr.2864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 11/26/2022]
Abstract
Glycosylation, as the most prominent posttranslational modification, is recognized as an important quality attribute of monoclonal antibodies affected by various bioprocess parameters and cellular physiology. A method of lectin‐based bio‐layer interferometry (LBLI) to relatively rank galactosylation and fucosylation levels was developed. For this purpose, Fc‐glycosylated immunoglobulin G (IgG) was recombinantly produced with varying bioprocess conditions in 15 L bioreactor and accumulated IgG was harvested. The reliability, the robustness and the applicability of LBLI to different samples has been proven. Data obtained from LC–MS analysis served as reference and were compared to the LBLI results. The introduced method is based on non‐fluidic bio‐layer interferometry (BLI), which becomes recently a standard tool for determining biomolecular interactions in a label‐free, real‐time and high‐throughput manner. For the intended purpose, biotinylated lectins were immobilized on disposable optical fiber streptavidin (SA) biosensor tips. Aleuria aurantia lectin (AAL) was used to detect the core fucose and Ricinus communis agglutinin 120 (RCA120) to determine galactosylation levels. In our case study it could be shown that fucosylation was not affected by variations in glucose feed concentration and cultivation temperature. However, the galactosylation could be correlated with the ratio of mean specific productivity (qP) and ammonium (qNH4+) but was unrelated to the ratio of mean qP and the specific glucose consumption (qgluc). This presented method strengthens the applicability of the BLI platform, which already enables measurement of several product related characteristics, such as product quantity as well as kinetic rates (kd,kon) and affinity constants (kD) analysis.
Collapse
Affiliation(s)
- Jakob Wallner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bernhard Sissolak
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
| | - Wolfgang Sommeregger
- Research and Development, Bilfinger Industrietechnik Salzburg GmbH, Salzburg, Austria
| | - Nico Lingg
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
47
|
Mitchell P, Tommasone S, Angioletti-Uberti S, Bowen J, Mendes PM. Precise Generation of Selective Surface-Confined Glycoprotein Recognition Sites. ACS APPLIED BIO MATERIALS 2019; 2:2617-2623. [PMID: 31259319 PMCID: PMC6591769 DOI: 10.1021/acsabm.9b00289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/12/2019] [Indexed: 12/31/2022]
Abstract
Since glycoproteins have become increasingly recognized as key players in a wide variety of disease processes, there is an increasing need for advanced affinity materials for highly selective glycoprotein binding. Herein, for the first time, a surface-initiated controlled radical polymerization is integrated with supramolecular templating and molecular imprinting to yield highly reproducible synthetic recognition sites on surfaces with dissociation constants (K D) in the low micromolar range for target glycoproteins and minimal binding to nontarget glycoproteins. Importantly, it is shown that the synthetic strategy has a remarkable ability to distinguish the glycosylated and nonglycosylated forms of the same glycoprotein, with a >5-fold difference in binding affinity. The precise control over the polymer film thickness and positioning of multiple carbohydrate receptors plays a crucial role in achieving an enhanced affinity and selectivity. The generated functional materials of unprecedented glycoprotein recognition performance open up a wealth of opportunities in the biotechnological and biomedical fields.
Collapse
Affiliation(s)
- Philippa Mitchell
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Stefano Tommasone
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| | - Stefano Angioletti-Uberti
- Faculty
of Engineering, Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - James Bowen
- Faculty
of
Science, Technology, Engineering & Mathematics, The Open University, Milton
Keynes MK7 6AA, United
Kingdom
| | - Paula M. Mendes
- School
of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United
Kingdom
| |
Collapse
|
48
|
Penezić A, Križakova M, Miljuš G, Katrlik J, Nedić O. Diagnostic Potential of Transferrin Glycoforms-A Lectin-Based Protein Microarray Approach. Proteomics Clin Appl 2019; 13:e1800185. [PMID: 31050875 DOI: 10.1002/prca.201800185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Disease or a specific condition may cause alteration of human transferrin (hTf) glycosylation pattern. A specific analytical platform, lectin-based protein microarray, is designed and optimized for the investigation of hTf glycans, attached to the protein core in their native form. EXPERIMENTAL DESIGN hTf molecules isolated from healthy persons of different age, diabetes mellitus type 2 (T2DM) or colorectal carcinoma (CRC) patients are used for method validation. Reliability of the results is ensured by three criteria for the evaluation of hTf-lectin interactions: i) signal-to-noise ratio above 3, ii) signal intensity above 250 arbitrary units, and iii) hTf concentration ensuring high sensitivity of the assay. RESULTS Six lectins, out of fourteen tested, satisfy the criteria. hTf is spotted at concentration of 50 µg mL-L . When physiological samples (isolated hTf) are analyzed, the highest potential to differentiate between population groups expresses Aleuria aurantia (AAL), Triticum vulgaris (WGA) and Phaseolus vulgaris (PHA-E) lectins. The initial amount of hTf which can be analyzed is very low (75 pg). CONCLUSION AND CLINICAL RELEVANCE Results confirm that a very sensitive, high-throughput lectin-based protein microarray platform can be formulated to detect changes in hTf glycan structures which can be considered as biomarkers of ageing or a disease.
Collapse
Affiliation(s)
- Ana Penezić
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| | - Martina Križakova
- Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Goran Miljuš
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| | - Jaroslav Katrlik
- Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| |
Collapse
|
49
|
Gao HF, Wang QY, Zhang K, Chen LY, Cheng CS, Chen H, Meng ZQ, Zhou SM, Chen Z. Overexpressed N-fucosylation on the cell surface driven by FUT3, 5, and 6 promotes cell motilities in metastatic pancreatic cancer cell lines. Biochem Biophys Res Commun 2019; 511:482-489. [DOI: 10.1016/j.bbrc.2019.02.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 01/14/2023]
|
50
|
Guerra A, von Stosch M, Glassey J. Toward biotherapeutic product real-time quality monitoring. Crit Rev Biotechnol 2019; 39:289-305. [DOI: 10.1080/07388551.2018.1524362] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- André Guerra
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Moritz von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jarka Glassey
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|