1
|
Nguyen NM, Nakao K, Kobayashi R, Taniguchi H, Yokoyama F, Horiuchi JI, Kumada Y. Generation of rabbit single-chain variable fragments with different physicochemical and biological properties by complementary determining region-grafting technology. J Biosci Bioeng 2024; 138:439-444. [PMID: 39198103 DOI: 10.1016/j.jbiosc.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 09/01/2024]
Abstract
In this study, we have demonstrated a complementary-determining region (CDR) grafting technology for the generation of rabbit scFvs with different antigen recognition and physicochemical properties. The antigen-binding affinity of the CDR-grafted anti-CRP scFv, C1R/B1R (V1), which was generated by the CDR/framework region (CDR/FR) definition based on the traditional numbering rule, was insufficient when compared to that of the original clone, C1R, suggesting that the amino acid residues outside the original CDRs might significantly contribute to antigen recognition in rabbit scFvs. We redefined new CDRs and FRs to maintain antigen-binding affinities through the extension of multiple amino acid residues for CDRH1 and CDRH2, based on the amino acid sequence alignments of rabbit scFvs isolated from phage libraries. The new version successfully maintained the antigen binding affinity. CDR-grafted scFvs possessing a common CDR sequence and different FR sequences were successfully generated based on this new CDR/FR definition, and their physicochemical properties were further investigated. The antigen-binding activities of rabbit scFvs on Maxisorp varied between the tested clones in sandwich ELISA, supporting the idea that the combination of CDR with different FRs might change the physicochemical properties of scFvs on a solid material. The CDR-grafted scFvs possessing a frame sequence of anti-CRP scFv C2R maintained the ability to bind to protein L and were successfully purified. Expression titers showed improved solubility by diminishing the amount of insoluble scFvs. Thus, the method developed in this study is promising for generating alternatives with strict antigen binding recognition and different physicochemical properties.
Collapse
Affiliation(s)
- Ngoc Minh Nguyen
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kiichi Nakao
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryo Kobayashi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Haruka Taniguchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Fuki Yokoyama
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Jun-Ichi Horiuchi
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yoichi Kumada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
2
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2024:10.1007/s11010-024-05120-y. [PMID: 39340593 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
3
|
Gordon GL, Raybould MIJ, Wong A, Deane CM. Prospects for the computational humanization of antibodies and nanobodies. Front Immunol 2024; 15:1399438. [PMID: 38812514 PMCID: PMC11133524 DOI: 10.3389/fimmu.2024.1399438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/02/2024] [Indexed: 05/31/2024] Open
Abstract
To be viable therapeutics, antibodies must be tolerated by the human immune system. Rational approaches to reduce the risk of unwanted immunogenicity involve maximizing the 'humanness' of the candidate drug. However, despite the emergence of new discovery technologies, many of which start from entirely human gene fragments, most antibody therapeutics continue to be derived from non-human sources with concomitant humanization to increase their human compatibility. Early experimental humanization strategies that focus on CDR loop grafting onto human frameworks have been critical to the dominance of this discovery route but do not consider the context of each antibody sequence, impacting their success rate. Other challenges include the simultaneous optimization of other drug-like properties alongside humanness and the humanization of fundamentally non-human modalities such as nanobodies. Significant efforts have been made to develop in silico methodologies able to address these issues, most recently incorporating machine learning techniques. Here, we outline these recent advancements in antibody and nanobody humanization, focusing on computational strategies that make use of the increasing volume of sequence and structural data available and the validation of these tools. We highlight that structural distinctions between antibodies and nanobodies make the application of antibody-focused in silico tools to nanobody humanization non-trivial. Furthermore, we discuss the effects of humanizing mutations on other essential drug-like properties such as binding affinity and developability, and methods that aim to tackle this multi-parameter optimization problem.
Collapse
Affiliation(s)
| | | | | | - Charlotte M. Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Gallo E. The rise of big data: deep sequencing-driven computational methods are transforming the landscape of synthetic antibody design. J Biomed Sci 2024; 31:29. [PMID: 38491519 PMCID: PMC10943851 DOI: 10.1186/s12929-024-01018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Synthetic antibodies (Abs) represent a category of artificial proteins capable of closely emulating the functions of natural Abs. Their in vitro production eliminates the need for an immunological response, streamlining the process of Ab discovery, engineering, and development. These artificially engineered Abs offer novel approaches to antigen recognition, paratope site manipulation, and biochemical/biophysical enhancements. As a result, synthetic Abs are fundamentally reshaping conventional methods of Ab production. This mirrors the revolution observed in molecular biology and genomics as a result of deep sequencing, which allows for the swift and cost-effective sequencing of DNA and RNA molecules at scale. Within this framework, deep sequencing has enabled the exploration of whole genomes and transcriptomes, including particular gene segments of interest. Notably, the fusion of synthetic Ab discovery with advanced deep sequencing technologies is redefining the current approaches to Ab design and development. Such combination offers opportunity to exhaustively explore Ab repertoires, fast-tracking the Ab discovery process, and enhancing synthetic Ab engineering. Moreover, advanced computational algorithms have the capacity to effectively mine big data, helping to identify Ab sequence patterns/features hidden within deep sequencing Ab datasets. In this context, these methods can be utilized to predict novel sequence features thereby enabling the successful generation of de novo Ab molecules. Hence, the merging of synthetic Ab design, deep sequencing technologies, and advanced computational models heralds a new chapter in Ab discovery, broadening our comprehension of immunology and streamlining the advancement of biological therapeutics.
Collapse
Affiliation(s)
- Eugenio Gallo
- Department of Medicinal Chemistry, Avance Biologicals, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- Department of Protein Engineering, RevivAb, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
5
|
Tennenhouse A, Khmelnitsky L, Khalaila R, Yeshaya N, Noronha A, Lindzen M, Makowski EK, Zaretsky I, Sirkis YF, Galon-Wolfenson Y, Tessier PM, Abramson J, Yarden Y, Fass D, Fleishman SJ. Computational optimization of antibody humanness and stability by systematic energy-based ranking. Nat Biomed Eng 2024; 8:30-44. [PMID: 37550425 PMCID: PMC10842793 DOI: 10.1038/s41551-023-01079-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 07/13/2023] [Indexed: 08/09/2023]
Abstract
Conventional methods for humanizing animal-derived antibodies involve grafting their complementarity-determining regions onto homologous human framework regions. However, this process can substantially lower antibody stability and antigen-binding affinity, and requires iterative mutational fine-tuning to recover the original antibody properties. Here we report a computational method for the systematic grafting of animal complementarity-determining regions onto thousands of human frameworks. The method, which we named CUMAb (for computational human antibody design; available at http://CUMAb.weizmann.ac.il ), starts from an experimental or model antibody structure and uses Rosetta atomistic simulations to select designs by energy and structural integrity. CUMAb-designed humanized versions of five antibodies exhibited similar affinities to those of the parental animal antibodies, with some designs showing marked improvement in stability. We also show that (1) non-homologous frameworks are often preferred to highest-homology frameworks, and (2) several CUMAb designs that differ by dozens of mutations and that use different human frameworks are functionally equivalent.
Collapse
Affiliation(s)
- Ariel Tennenhouse
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lev Khmelnitsky
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Razi Khalaila
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Yeshaya
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Moshit Lindzen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emily K Makowski
- Biointerfaces Institute and Departments of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ira Zaretsky
- Antibody Engineering Unit, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Peter M Tessier
- Biointerfaces Institute and Departments of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jakub Abramson
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah Fass
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Nagy-Fazekas D, Fazekas Z, Taricska N, Stráner P, Karancsiné Menyhárd D, Perczel A. Inhibitor Design Strategy for Myostatin: Dynamics and Interaction Networks Define the Affinity and Release Mechanisms of the Inhibited Complexes. Molecules 2023; 28:5655. [PMID: 37570625 PMCID: PMC10420283 DOI: 10.3390/molecules28155655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Myostatin, an important negative regulator of muscle mass, is a therapeutic target for muscle atrophic disorders such as muscular dystrophy. Thus, the inhibition of myostatin presents a strategy to treat these disorders. It has long been established that the myostatin prodomain is a strong inhibitor of the mature myostatin, and the minimum peptide of the prodomain-corresponding to the α1-helix of its lasso-region-responsible for the inhibitory efficiency was defined and characterized as well. Here we show that the minimum peptide segment based on the growth differentiation factor 11 (GDF11), which we found to be more helical in its stand-alone solvated stfate than the similar segment of myostatin, is a promising new base scaffold for inhibitor design. The proposed inhibitory peptides in their solvated state and in complex with the mature myostatin were analyzed by in silico molecule modeling supplemented with the electronic circular dichroism spectroscopy measurements. We defined the Gaussian-Mahalanobis mean score to measure the fraction of dihedral angle-pairs close to the desired helical region of the Ramachandran-plot, carried out RING analysis of the peptide-protein interaction networks and characterized the internal motions of the complexes using our rigid-body segmentation protocol. We identified a variant-11m2-that is sufficiently ordered both in solvent and within the inhibitory complex, forms a high number of contacts with the binding-pocket and induces such changes in its internal dynamics that lead to a rigidified, permanently locked conformation that traps this peptide in the binding site. We also showed that the naturally evolved α1-helix has been optimized to simultaneously fulfill two very different roles: to function as a strong binder as well as a good leaving group. It forms an outstanding number of non-covalent interactions with the mature core of myostatin and maintains the most ordered conformation within the complex, while it induces independent movement of the gate-keeper β-hairpin segment assisting the dissociation and also results in the least-ordered solvated form which provides extra stability for the dissociated state and discourages rebinding.
Collapse
Affiliation(s)
- Dóra Nagy-Fazekas
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (D.N.-F.)
- Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Zsolt Fazekas
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (D.N.-F.)
- Hevesy György PhD School of Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Nóra Taricska
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (D.N.-F.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Pál Stráner
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (D.N.-F.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Dóra Karancsiné Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (D.N.-F.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; (D.N.-F.)
- ELKH-ELTE Protein Modeling Research Group, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Abstract
Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA;
| |
Collapse
|
8
|
Fernández-Quintero ML, Fischer ALM, Kokot J, Waibl F, Seidler CA, Liedl KR. The influence of antibody humanization on shark variable domain (VNAR) binding site ensembles. Front Immunol 2022; 13:953917. [PMID: 36177031 PMCID: PMC9514858 DOI: 10.3389/fimmu.2022.953917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
|
9
|
Vachher M, Bansal S, Kumar B, Yadav S, Arora T, Wali NM, Burman A. Contribution of organokines in the development of NAFLD/NASH associated hepatocellular carcinoma. J Cell Biochem 2022; 123:1553-1584. [PMID: 35818831 DOI: 10.1002/jcb.30252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
Abstract
Globally the incidence of hepatocellular carcinoma (HCC) is on an upsurge. Evidence is accumulating that liver disorders like nonalcoholic fatty liver disease (NAFLD) and its more progressive form nonalcoholic steatohepatitis (NASH) are associated with increased risk of developing HCC. NAFLD has a prevalence of about 25% and 50%-90% in obese population. With the growing burden of obesity epidemic worldwide, HCC presents a major healthcare burden. While cirrhosis is one of the major risk factors of HCC, available literature suggests that NAFLD/NASH associated HCC also develops in minimum or noncirrhotic livers. Therefore, there is an urgent need to understand the pathogenesis and risk factors associated with NAFLD and NASH related HCC that would help in early diagnosis and favorable prognosis of HCC secondary to NAFLD. Adipokines, hepatokines and myokines are factors secreted by adipocytes, hepatocytes and myocytes, respectively, playing essential roles in cellular homeostasis, energy balance and metabolism with autocrine, paracrine and endocrine effects. In this review, we endeavor to focus on the role of these organokines in the pathogenesis of NAFLD/NASH and its progression to HCC to augment the understanding of the factors stimulating hepatocytes to acquire a malignant phenotype. This shall aid in the development of novel therapeutic strategies and tools for early diagnosis of NAFLD/NASH and HCC.
Collapse
Affiliation(s)
- Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Savita Bansal
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Taruna Arora
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Nalini Moza Wali
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| | - Archana Burman
- Department of Biochemistry, Institute of Home Economics, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Joshi SR, Liu J, Bloom T, Karaca Atabay E, Kuo TH, Lee M, Belcheva E, Spaits M, Grenha R, Maguire MC, Frost JL, Wang K, Briscoe SD, Alexander MJ, Herrin BR, Castonguay R, Pearsall RS, Andre P, Yu PB, Kumar R, Li G. Sotatercept analog suppresses inflammation to reverse experimental pulmonary arterial hypertension. Sci Rep 2022; 12:7803. [PMID: 35551212 PMCID: PMC9098455 DOI: 10.1038/s41598-022-11435-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Sotatercept is an activin receptor type IIA-Fc (ActRIIA-Fc) fusion protein that improves cardiopulmonary function in patients with pulmonary arterial hypertension (PAH) by selectively trapping activins and growth differentiation factors. However, the cellular and molecular mechanisms of ActRIIA-Fc action are incompletely understood. Here, we determined through genome-wide expression profiling that inflammatory and immune responses are prominently upregulated in the lungs of a Sugen-hypoxia rat model of severe angio-obliterative PAH, concordant with profiles observed in PAH patients. Therapeutic treatment with ActRIIA-Fc-but not with a vasodilator-strikingly reversed proinflammatory and proliferative gene expression profiles and normalized macrophage infiltration in diseased rodent lungs. Furthermore, ActRIIA-Fc normalized pulmonary macrophage infiltration and corrected cardiopulmonary structure and function in Bmpr2 haploinsufficient mice subjected to hypoxia, a model of heritable PAH. Three high-affinity ligands of ActRIIA-Fc each induced macrophage activation in vitro, and their combined immunoneutralization in PAH rats produced cardiopulmonary benefits comparable to those elicited by ActRIIA-Fc. Our results in complementary experimental and genetic models of PAH reveal therapeutic anti-inflammatory activities of ActRIIA-Fc that, together with its known anti-proliferative effects on vascular cell types, could underlie clinical activity of sotatercept as either monotherapy or add-on to current PAH therapies.
Collapse
Affiliation(s)
- Sachindra R Joshi
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jun Liu
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Troy Bloom
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
- Ultivue, Cambridge, MA, USA
| | - Elif Karaca Atabay
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Tzu-Hsing Kuo
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Michael Lee
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Elitza Belcheva
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Matthew Spaits
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Rosa Grenha
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Michelle C Maguire
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Jeffrey L Frost
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Kathryn Wang
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Steven D Briscoe
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Mark J Alexander
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Brantley R Herrin
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Roselyne Castonguay
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - R Scott Pearsall
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
- Cellarity, Cambridge, MA, USA
| | - Patrick Andre
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ravindra Kumar
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA
| | - Gang Li
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Kenilworth, NJ, USA.
| |
Collapse
|
11
|
Li J, Fredericks M, Cannell M, Wang K, Sako D, Maguire MC, Grenha R, Liharska K, Krishnan L, Bloom T, Belcheva EP, Martinez PA, Castonguay R, Keates S, Alexander MJ, Choi H, Grinberg AV, Pearsall RS, Oh P, Kumar R, Suragani RN. ActRIIB:ALK4-Fc alleviates muscle dysfunction and comorbidities in murine models of neuromuscular disorders. J Clin Invest 2021; 131:138634. [PMID: 33586684 DOI: 10.1172/jci138634] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023] Open
Abstract
Patients with neuromuscular disorders suffer from a lack of treatment options for skeletal muscle weakness and disease comorbidities. Here, we introduce as a potential therapeutic agent a heterodimeric ligand-trapping fusion protein, ActRIIB:ALK4-Fc, which comprises extracellular domains of activin-like kinase 4 (ALK4) and activin receptor type IIB (ActRIIB), a naturally occurring pair of type I and II receptors belonging to the TGF-β superfamily. By surface plasmon resonance (SPR), ActRIIB:ALK4-Fc exhibited a ligand binding profile distinctly different from that of its homodimeric variant ActRIIB-Fc, sequestering ActRIIB ligands known to inhibit muscle growth but not trapping the vascular regulatory ligand bone morphogenetic protein 9 (BMP9). ActRIIB:ALK4-Fc and ActRIIB-Fc administered to mice exerted differential effects - concordant with SPR results - on vessel outgrowth in a retinal explant assay. ActRIIB:ALK4-Fc induced a systemic increase in muscle mass and function in wild-type mice and in murine models of Duchenne muscular dystrophy (DMD), amyotrophic lateral sclerosis (ALS), and disuse atrophy. Importantly, ActRIIB:ALK4-Fc improved neuromuscular junction abnormalities in murine models of DMD and presymptomatic ALS and alleviated acute muscle fibrosis in a DMD model. Furthermore, in combination therapy ActRIIB:ALK4-Fc increased the efficacy of antisense oligonucleotide M12-PMO on dystrophin expression and skeletal muscle endurance in an aged DMD model. ActRIIB:ALK4-Fc shows promise as a therapeutic agent, alone or in combination with dystrophin rescue therapy, to alleviate muscle weakness and comorbidities of neuromuscular disorders.
Collapse
Affiliation(s)
- Jia Li
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Kathryn Wang
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | - Dianne Sako
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Rosa Grenha
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | - Troy Bloom
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | | | | | - Sarah Keates
- Acceleron Pharma Inc., Cambridge, Massachusetts, USA
| | | | - Hyunwoo Choi
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | | - Paul Oh
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
12
|
Leung DG, Bocchieri AE, Ahlawat S, Jacobs MA, Parekh VS, Braverman V, Summerton K, Mansour J, Stinson N, Bibat G, Morris C, Marraffino S, Wagner KR. A phase Ib/IIa, open-label, multiple ascending-dose trial of domagrozumab in fukutin-related protein limb-girdle muscular dystrophy. Muscle Nerve 2021; 64:172-179. [PMID: 33961310 DOI: 10.1002/mus.27259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/06/2022]
Abstract
INTRODUCTION/AIMS In this study we report the results of a phase Ib/IIa, open-label, multiple ascending-dose trial of domagrozumab, a myostatin inhibitor, in patients with fukutin-related protein (FKRP)-associated limb-girdle muscular dystrophy. METHODS Nineteen patients were enrolled and assigned to one of three dosing arms (5, 20, or 40 mg/kg every 4 weeks). After 32 weeks of treatment, participants receiving the lowest dose were switched to the highest dose (40 mg/kg) for an additional 32 weeks. An extension study was also conducted. The primary endpoints were safety and tolerability. Secondary endpoints included muscle strength, timed function testing, pulmonary function, lean body mass, pharmacokinetics, and pharmacodynamics. As an exploratory outcome, muscle fat fractions were derived from whole-body magnetic resonance images. RESULTS Serum concentrations of domagrozumab increased in a dose-dependent manner and modest levels of myostatin inhibition were observed in both serum and muscle tissue. The most frequently occurring adverse events were injuries secondary to falls. There were no significant between-group differences in the strength, functional, or imaging outcomes studied. DISCUSSION We conclude that, although domagrozumab was safe in patients in limb-girdle muscular dystrophy type 2I/R9, there was no clear evidence supporting its efficacy in improving muscle strength or function.
Collapse
Affiliation(s)
- Doris G Leung
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alex E Bocchieri
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivani Ahlawat
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Jacobs
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vishwa S Parekh
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vladimir Braverman
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Katherine Summerton
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Jennifer Mansour
- Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Nikia Stinson
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Genila Bibat
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Carl Morris
- Solid Biosciences, Cambridge, Massachusetts, USA
| | | | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Recent terminations of clinical trials of myostatin inhibitors in muscular dystrophy have raised questions about the predictiveness of mouse models for this therapeutic strategy. RECENT FINDINGS A variety of myostatin inhibitors have been developed for preclinical and clinical studies. These inhibitors have ameliorated the phenotype of many but not all mouse models of muscular dystrophy. However, randomized double-blinded placebo controlled trials in both pediatric and adult muscular dystrophies have, as of yet, not demonstrated functional improvement. SUMMARY The present article will review the preclinical promise of myostatin inhibitors, the clinical trial experience to date of these inhibitors in muscular dystrophy, and the potential reasons for the lack of observed translation.
Collapse
|
14
|
Lee SJ. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J Clin Invest 2021; 131:148372. [PMID: 33938454 DOI: 10.1172/jci148372] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the discovery of myostatin (MSTN; also known as GDF-8) as a critical regulator of skeletal muscle mass in 1997, there has been an extensive effort directed at understanding the cellular and physiological mechanisms underlying MSTN activity, with the long-term goal of developing strategies and agents capable of blocking MSTN signaling to treat patients with muscle loss. Considerable progress has been made in elucidating key components of this regulatory system, and in parallel with this effort has been the development of numerous biologics that have been tested in clinical trials for a wide range of indications, including muscular dystrophy, sporadic inclusion body myositis, spinal muscular atrophy, cachexia, muscle loss due to aging or following falls, obesity, and type 2 diabetes. Here, I review what is known about the MSTN regulatory system and the current state of efforts to target this pathway for clinical applications.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, Connecticut, USA
| |
Collapse
|
15
|
Peplau E, De Rose F, Eichinger A, Reder S, Mittelhäuser M, Scafetta G, Schwaiger M, Weber WA, Bartolazzi A, D'Alessandria C, Skerra A. Effective rational humanization of a PASylated anti-galectin-3 Fab for the sensitive PET imaging of thyroid cancer in vivo. Sci Rep 2021; 11:7358. [PMID: 33795750 PMCID: PMC8016950 DOI: 10.1038/s41598-021-86641-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/17/2021] [Indexed: 02/01/2023] Open
Abstract
The lack of a non-invasive test for malignant thyroid nodules makes the diagnosis of thyroid cancer (TC) challenging. Human galectin-3 (hGal3) has emerged as a promising target for medical TC imaging and diagnosis because of its exclusive overexpression in malignant thyroid tissues. We previously developed a human-chimeric αhGal3 Fab fragment derived from the rat monoclonal antibody (mAb) M3/38 with optimized clearance characteristics using PASylation technology. Here, we describe the elucidation of the hGal3 epitope recognized by mAb M3/38, X-ray crystallographic analysis of its complex with the chimeric Fab and, based on the three-dimensional structure, the rational humanization of the Fab by CDR grafting. Four CDR-grafted versions were designed using structurally most closely related fully human immunoglobulin VH/VL regions of which one-employing the acceptor framework regions of the HIV-1 neutralizing human antibody m66-showed the highest antigen affinity. By introducing two additional back-mutations to the rodent donor sequence, an affinity toward hGal3 indistinguishable from the chimeric Fab was achieved (KD = 0.34 ± 0.02 nM in SPR). The PASylated humanized Fab was site-specifically labelled with the fluorescent dye Cy7 and applied for the immuno-histochemical staining of human tissue sections representative for different TCs. The same protein was conjugated with the metal chelator Dfo, followed by radiolabelling with 89Zr(IV). The resulting protein tracer allowed the highly sensitive and specific PET/CT imaging of orthotopic tumors in mice, which was confirmed by quantitative analysis of radiotracer accumulation. Thus, the PASylated humanized αhGal3 Fab offers clinical potential for the diagnostic imaging of TC.
Collapse
Affiliation(s)
- Emanuel Peplau
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany
| | - Francesco De Rose
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andreas Eichinger
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany
| | - Sybille Reder
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Mittelhäuser
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Giorgia Scafetta
- Pathology Research Laboratory, Sant'Andrea Hospital, University Sapienza, via di Grottarossa 1035, 00189, Rome, Italy
| | - Markus Schwaiger
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Wolfgang A Weber
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Armando Bartolazzi
- Pathology Research Laboratory, Cancer Center Karolinska, Karolinska Hospital, 17176, Stockholm, Sweden
- Pathology Research Laboratory, Sant'Andrea Hospital, University Sapienza, via di Grottarossa 1035, 00189, Rome, Italy
| | - Calogero D'Alessandria
- Klinikum rechts der Isar, Nuclear Medicine Department, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85354, Freising (Weihenstephan), Germany.
| |
Collapse
|
16
|
Root AR, Guntas G, Katragadda M, Apgar JR, Narula J, Chang CS, Hanscom S, McKenna M, Wade J, Meade C, Ma W, Guo Y, Liu Y, Duan W, Hendershot C, King AC, Zhang Y, Sousa E, Tam A, Benard S, Yang H, Kelleher K, Jin F, Piche-Nicholas N, Keating SE, Narciandi F, Lawrence-Henderson R, Arai M, Stochaj WR, Svenson K, Mosyak L, Lam K, Francis C, Marquette K, Wroblewska L, Zhu HL, Sheehan AD, LaVallie ER, D’Antona AM, Betts A, King L, Rosfjord E, Cunningham O, Lin L, Sapra P, Tchistiakova L, Mathur D, Bloom L. Discovery and optimization of a novel anti-GUCY2c x CD3 bispecific antibody for the treatment of solid tumors. MAbs 2021; 13:1850395. [PMID: 33459147 PMCID: PMC7833764 DOI: 10.1080/19420862.2020.1850395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.
Collapse
Affiliation(s)
- Adam R. Root
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | - Jatin Narula
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Sara Hanscom
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Jason Wade
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Caryl Meade
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Weijun Ma
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yongjing Guo
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yan Liu
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Weili Duan
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Amy C. King
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yan Zhang
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Eric Sousa
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Amy Tam
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Susan Benard
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Han Yang
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Fang Jin
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - Maya Arai
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Lidia Mosyak
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - H. Lily Zhu
- BioMedicine Design, Pfizer Inc., Andover, MA, USA
| | | | | | | | - Alison Betts
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Lindsay King
- BioMedicine Design, Pfizer Inc., Andover, MA, USA
| | - Edward Rosfjord
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Laura Lin
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Puja Sapra
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Divya Mathur
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | - Laird Bloom
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
17
|
See K, Kadonosono T, Ota Y, Miyamoto K, Yimchuen W, Kizaka-Kondoh S. Reconstitution of an Anti-HER2 Antibody Paratope by Grafting Dual CDR-Derived Peptides onto a Small Protein Scaffold. Biotechnol J 2020; 15:e2000078. [PMID: 32975036 DOI: 10.1002/biot.202000078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Target-binding small proteins are promising alternatives to conventional monoclonal antibodies (mAbs), offering advantages in terms of tissue penetration and manufacturing costs. Recently, a design strategy to create small proteins called fluctuation-regulated affinity proteins (FLAPs) consisting of a structurally immobilized peptide from the complementarity-determining region (CDR) loops of mAbs (CDR-derived peptide) and a protein scaffold was developed. Because mAb paratopes are usually composed of multiple CDRs, FLAPs with multiple binding peptides may have an enhanced target-binding capability. Here, a strategy to create FLAPs bearing dual CDR-derived peptides (D-FLAPs) using the anti-human epithelial growth factor receptor type 2 (HER2) mAb trastuzumab as a basis is developed. Computationally selected CDR-derived peptides are first grafted onto two adjacent loops of the fibronectin type III domain (FN3) scaffold, yielding 80 D-FLAP candidates. After computational screening based on their similarity to the parental mAb with regard to the conformation of paratope residues, two candidates are selected. After further evaluation with ELISA, one D-FLAP with HYTTPP and GDGFYA peptides from CDR-L3 and CDR-H3 of the parental mAb, respectively, is found to bind HER2 with a dissociation constant of 58 nm. This method applies to various mAb drugs and allows the rational design of small protein alternatives.
Collapse
Affiliation(s)
- Kyra See
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Tetsuya Kadonosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yumi Ota
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kotaro Miyamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Wanaporn Yimchuen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Shinae Kizaka-Kondoh
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| |
Collapse
|
18
|
Macromolecules and Antibody-Based Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32185723 DOI: 10.1007/978-981-15-3266-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Macromolecule drugs particularly antibody drugs are very powerful therapies developing rapidly in the recent 20 years, providing hopes for many patients diagnosed with "incurable" diseases in the past. They also provide more effective and less side effects for many afflicting diseases, and greatly improve the survival rate and life quality of patients. In the last two decades, the proportion of US Food and Drug Administration (FDA) approved macromolecules and antibody drugs are increasing quickly, especially after the discovery of immune checkpoints. To crown all, the 2017 Nobel prize in physiology or medicine was given to immunotherapy. In this chapter, we would like to summarize the current situation of macromolecule and antibody drugs, and what effort scientists and pharmaceutical industry have made to discover and manufacture better antibody drugs.
Collapse
|
19
|
Stimple SD, Smith MD, Tessier PM. Directed evolution methods for overcoming trade-offs between protein activity and stability. AIChE J 2020; 66. [PMID: 32719568 DOI: 10.1002/aic.16814] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineered proteins are being widely developed and employed in applications ranging from enzyme catalysts to therapeutic antibodies. Directed evolution, an iterative experimental process composed of mutagenesis and library screening, is a powerful technique for enhancing existing protein activities and generating entirely new ones not observed in nature. However, the process of accumulating mutations for enhanced protein activity requires chemical and structural changes that are often destabilizing, and low protein stability is a significant barrier to achieving large enhancements in activity during multiple rounds of directed evolution. Here we highlight advances in understanding the origins of protein activity/stability trade-offs for two important classes of proteins (enzymes and antibodies) as well as innovative experimental and computational methods for overcoming such trade-offs. These advances hold great potential for improving the generation of highly active and stable proteins that are needed to address key challenges related to human health, energy and the environment.
Collapse
Affiliation(s)
- Samuel D. Stimple
- Department of Pharmaceutical Sciences Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| | - Matthew D. Smith
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Chemical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
- Department of Biomedical Engineering Biointerfaces Institute, University of Michigan Ann Arbor Michigan
| |
Collapse
|
20
|
Fernández-Quintero ML, Heiss MC, Liedl KR. Antibody humanization-the Influence of the antibody framework on the CDR-H3 loop ensemble in solution. Protein Eng Des Sel 2019; 32:411-422. [PMID: 32129452 PMCID: PMC7098879 DOI: 10.1093/protein/gzaa004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 01/11/2023] Open
Abstract
Antibody engineering of non-human antibodies has focused on reducing immunogenicity by humanization, being a major limitation in developing monoclonal antibodies. We analyzed four series of antibody binding fragments (Fabs) and a variable fragment (Fv) with structural information in different stages of humanization to investigate the influence of the framework, point mutations and specificity on the complementarity determining region (CDR)-H3 loop dynamics. We also studied a Fv without structural information of the anti-idiotypic antibody Ab2/3H6, because it completely lost its binding affinity upon superhumanization, as an example of a failed humanization. Enhanced sampling techniques in combination with molecular dynamics simulations allow to access micro- to milli-second timescales of the CDR-H3 loop dynamics and reveal kinetic and thermodynamic changes involved in the process of humanization. In most cases, we observe a reduced conformational diversity of the CDR-H3 loop when grafted on a human framework and find a conformational shift of the dominant CDR-H3 loop conformation in solution. A shallow side minimum of the conformational CDR-H3 loop ensemble attached to the murine framework becomes the dominant conformation in solution influenced by the human framework. Additionally, we observe in the case of the failed humanization that the potentially binding competent murine CDR-H3 loop ensemble in solution shows nearly no kinetical or structural overlap with the superhumanized variant, thus explaining the loss of binding.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Martin C Heiss
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
Goebel EJ, Hart KN, McCoy JC, Thompson TB. Structural biology of the TGFβ family. Exp Biol Med (Maywood) 2019; 244:1530-1546. [PMID: 31594405 DOI: 10.1177/1535370219880894] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The transforming growth factor beta (TGFβ) signaling pathway orchestrates a wide breadth of biological processes, ranging from bone development to reproduction. Given this, there has been a surge of interest from the drug development industry to modulate the pathway – at several points. This review discusses and provides additional context for several layers of the TGFβ signaling pathway from a structural biology viewpoint. The combination of structural techniques coupled with biophysical studies has provided a foundational knowledge of the molecular mechanisms governing this high impact, ubiquitous pathway, underlying many of the current therapeutic pursuits. This work seeks to consolidate TGFβ-related structural knowledge and educate other researchers of the apparent gaps that still prove elusive. We aim to highlight the importance of these structures and provide the contextual information to understand the contribution to the field, with the hope of advancing the discussion and exploration of the TGFβ signaling pathway. Impact statement The transforming growth factor beta (TGFβ) signaling pathway is a multifacetted and highly regulated pathway, forming the underpinnings of a large range of biological processes. Here, we review and consolidate the key steps in TGFβ signaling using literature rooted in structural and biophysical techniques, with a focus on molecular mechanisms and gaps in knowledge. From extracellular regulation to ligand–receptor interactions and intracellular activation cascades, we hope to provide an introductory base for understanding the TGFβ pathway as a whole.
Collapse
Affiliation(s)
- Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Kaitlin N Hart
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
22
|
Tinklenberg JA, Siebers EM, Beatka MJ, Meng H, Yang L, Zhang Z, Ross JA, Ochala J, Morris C, Owens JM, Laing NG, Nowak KJ, Lawlor MW. Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and TgACTA1D286G nemaline myopathy mice. Hum Mol Genet 2019; 27:638-648. [PMID: 29293963 DOI: 10.1093/hmg/ddx431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous congenital skeletal muscle disease with cytoplasmic rod-like structures (nemaline bodies) in muscle tissue. While weakness in NM is related to contractile abnormalities, myofiber smallness is an additional abnormality in NM that may be treatable. We evaluated the effects of mRK35 (a myostatin inhibitor developed by Pfizer) treatment in the TgACTA1D286G mouse model of NM. mRK35 induced skeletal muscle growth that led to significant increases in animal bodyweight, forelimb grip strength and muscle fiber force, although it should be noted that animal weight and forelimb grip strength in untreated TgACTA1D286G mice was not different from controls. Treatment was also associated with an increase in the number of tubular aggregates found in skeletal muscle. These findings suggest that myostatin inhibition may be useful in promoting muscle growth and strength in Acta1-mutant muscle, while also further establishing the relationship between low levels of myostatin and tubular aggregate formation.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Zizhao Zhang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| |
Collapse
|
23
|
Computational design of antibodies. Curr Opin Struct Biol 2018; 51:156-162. [DOI: 10.1016/j.sbi.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
|
24
|
Wang M, Zhu D, Zhu J, Nussinov R, Ma B. Local and global anatomy of antibody-protein antigen recognition. J Mol Recognit 2018; 31:e2693. [PMID: 29218757 PMCID: PMC5903993 DOI: 10.1002/jmr.2693] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/13/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022]
Abstract
Deciphering antibody-protein antigen recognition is of fundamental and practical significance. We constructed an antibody structural dataset, partitioned it into human and murine subgroups, and compared it with nonantibody protein-protein complexes. We investigated the physicochemical properties of regions on and away from the antibody-antigen interfaces, including net charge, overall antibody charge distributions, and their potential role in antigen interaction. We observed that amino acid preference in antibody-protein antigen recognition is entropy driven, with residues having low side-chain entropy appearing to compensate for the high backbone entropy in interaction with protein antigens. Antibodies prefer charged and polar antigen residues and bridging water molecules. They also prefer positive net charge, presumably to promote interaction with negatively charged protein antigens, which are common in proteomes. Antibody-antigen interfaces have large percentages of Tyr, Ser, and Asp, but little Lys. Electrostatic and hydrophobic interactions in the Ag binding sites might be coupled with Fab domains through organized charge and residue distributions away from the binding interfaces. Here we describe some features of antibody-antigen interfaces and of Fab domains as compared with nonantibody protein-protein interactions. The distributions of interface residues in human and murine antibodies do not differ significantly. Overall, our results provide not only a local but also a global anatomy of antibody structures.
Collapse
Affiliation(s)
- Meryl Wang
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| | - David Zhu
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| | - Jianwei Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 DongChuan Road, Shanghai 200240, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702
| |
Collapse
|
25
|
Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Sci Rep 2018; 8:2292. [PMID: 29396542 PMCID: PMC5797207 DOI: 10.1038/s41598-018-20524-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
Many growth factors are intimately bound to the extracellular matrix, with regulated processing and release leading to cellular stimulation. Myostatin and GDF11 are closely related members of the TGFβ family whose activation requires two proteolytic cleavages to release the growth factor from the prodomain. Specific modulation of myostatin and GDF11 activity by targeting growth factor-receptor interactions has traditionally been challenging. Here we demonstrate that a novel strategy for blocking myostatin and GDF11, inhibition of growth factor release, specifically and potently inhibits signaling both in vitro and in vivo. We developed human monoclonal antibodies that selectively bind the myostatin and GDF11 precursor forms, including a subset that inhibit myostatin proteolytic activation and prevent muscle atrophy in vivo. The most potent myostatin activation-blocking antibodies promoted robust muscle growth and resulted in significant gains in muscle performance in healthy mice. Altogether, we show that blocking the extracellular activation of growth factors is a potent method for preventing signaling, serving as proof of concept for a novel therapeutic strategy that can be applied to other members of the TGFβ family of growth factors.
Collapse
|
26
|
Le VQ, Iacob RE, Tian Y, McConaughy W, Jackson J, Su Y, Zhao B, Engen JR, Pirruccello-Straub M, Springer TA. Tolloid cleavage activates latent GDF8 by priming the pro-complex for dissociation. EMBO J 2018; 37:384-397. [PMID: 29343545 DOI: 10.15252/embj.201797931] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 12/17/2022] Open
Abstract
Growth differentiation factor 8 (GDF8)/myostatin is a latent TGF-β family member that potently inhibits skeletal muscle growth. Here, we compared the conformation and dynamics of precursor, latent, and Tolloid-cleaved GDF8 pro-complexes to understand structural mechanisms underlying latency and activation of GDF8. Negative stain electron microscopy (EM) of precursor and latent pro-complexes reveals a V-shaped conformation that is unaltered by furin cleavage and sharply contrasts with the ring-like, cross-armed conformation of latent TGF-β1. Surprisingly, Tolloid-cleaved GDF8 does not immediately dissociate, but in EM exhibits structural heterogeneity consistent with partial dissociation. Hydrogen-deuterium exchange was not affected by furin cleavage. In contrast, Tolloid cleavage, in the absence of prodomain-growth factor dissociation, increased exchange in regions that correspond in pro-TGF-β1 to the α1-helix, latency lasso, and β1-strand in the prodomain and to the β6'- and β7'-strands in the growth factor. Thus, these regions are important in maintaining GDF8 latency. Our results show that Tolloid cleavage activates latent GDF8 by destabilizing specific prodomain-growth factor interfaces and primes the growth factor for release from the prodomain.
Collapse
Affiliation(s)
- Viet Q Le
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roxana E Iacob
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | - Yuan Tian
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Yang Su
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bo Zhao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, MA, USA
| | | | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Almagro JC, Daniels-Wells TR, Perez-Tapia SM, Penichet ML. Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Front Immunol 2018; 8:1751. [PMID: 29379493 PMCID: PMC5770808 DOI: 10.3389/fimmu.2017.01751] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/24/2017] [Indexed: 11/14/2022] Open
Abstract
The remarkable progress in engineering and clinical development of therapeutic antibodies in the last 40 years, after the seminal work by Köhler and Milstein, has led to the approval by the United States Food and Drug Administration (FDA) of 21 antibodies for cancer immunotherapy. We review here these approved antibodies, with emphasis on the methods used for their discovery, engineering, and optimization for therapeutic settings. These methods include antibody engineering via chimerization and humanization of non-human antibodies, as well as selection and further optimization of fully human antibodies isolated from human antibody phage-displayed libraries and immunization of transgenic mice capable of generating human antibodies. These technology platforms have progressively led to the development of therapeutic antibodies with higher human content and, thus, less immunogenicity. We also discuss the genetic engineering approaches that have allowed isotype switching and Fc modifications to modulate effector functions and bioavailability (half-life), which together with the technologies for engineering the Fv fragment, have been pivotal in generating more efficacious and better tolerated therapeutic antibodies to treat cancer.
Collapse
Affiliation(s)
| | - Tracy R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | | | - Manuel L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States.,The Molecular Biology Institute, University of California, Los Angeles, CA, United States.,UCLA AIDS Institute, Los Angeles, CA, United States
| |
Collapse
|
28
|
Abstract
Antibody humanization process converts any nonhuman antibody sequence into humanized antibodies. This can be achieved using different methods of antibody design and engineering. This chapter will primarily focus on antibody design using a homology model followed by framework shuffling of murine to human germline sequence for humanization. Historically, mouse antibodies have been humanized using sequence-based approaches, in which all the murine frameworks are replaced with most homologous human germline sequence or related scaffold. Most often this humanized antibody design, when tested, has a significantly reduced binding or no binding to the cognate antigen. This is due to noncompatibility of mouse CDRs being supported by non-native human framework scaffold. This mismatch between mouse, human structural fold, and elimination of key conformational residues often leads to antibody humanization failures. Recently, there has been advent of homology modelor structure-guided antibody humanization. Instead of humanization based on linear sequence, this approach takes into account the tertiary structure and fold of the mouse antibody. A mouse homology model of the fragment variable is created, and based on sequence alignment with human germline, residues that are different in mouse are replaced with humanized sequence in the model. Energy minimization is applied to this humanized model that also delineates residues which might have steric clashes due to change in the overall tertiary conformation of the humanized antibody. Therefore, a homology model-guided with rational mutations, and reintroduction of key conformational residues from mouse antibody not only eliminates steric clashes but might also restore function in relation to binding affinity to its antigen.
Collapse
Affiliation(s)
- Vinodh B Kurella
- Protein Engineering, Immuno-Oncology Division, Intrexon Corporation, Germantown, MD, USA
- Merrimack Pharmaceuticals, Protein Engineering, Cambridge, MA, USA
| | - Reddy Gali
- The Harvard Clinical and Translational Science Center and Countway Library of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
St Andre M, Johnson M, Bansal PN, Wellen J, Robertson A, Opsahl A, Burch PM, Bialek P, Morris C, Owens J. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys. Skelet Muscle 2017; 7:25. [PMID: 29121992 PMCID: PMC5679155 DOI: 10.1186/s13395-017-0141-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients’ functional decline. Methods A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody’s effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Results Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. Conclusions We demonstrated that the potent anti-myostatin antibody mRK35 and its clinical analog, domagrozumab, were able to induce muscle anabolic activity in both rodents, including the mdx mouse model of DMD, and non-human primates. A Phase 2, potentially registrational, clinical study with domagrozumab in DMD patients is currently underway.
Collapse
Affiliation(s)
- Michael St Andre
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA. .,NIGMS Training Program in Biomolecular Pharmacology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Mark Johnson
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| | - Prashant N Bansal
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA.,Present Address: PAREXEL Informatics, Billerica, MA, USA
| | - Jeremy Wellen
- Early Clinical Development, Pfizer Inc., Cambridge, MA, USA
| | | | - Alan Opsahl
- Investigative Pathology, Pfizer Inc., Groton, CT, USA
| | - Peter M Burch
- Research and Development Drug Safety, Pfizer Inc., Groton, CT, USA.,Present Address: Summit Therapeutics, Cambridge, MA, USA
| | - Peter Bialek
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA.,Present Address: Proteostasis Therapeutics, Cambridge, MA, USA
| | - Carl Morris
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA.,Present Address: Solid Biosciences, Cambridge, MA, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., 610 Main Street, Cambridge, MA, 02139, USA
| |
Collapse
|
30
|
Bhattacharya I, Pawlak S, Marraffino S, Christensen J, Sherlock SP, Alvey C, Morris C, Arkin S, Binks M. Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Domagrozumab (PF-06252616), an Antimyostatin Monoclonal Antibody, in Healthy Subjects. Clin Pharmacol Drug Dev 2017; 7:484-497. [PMID: 28881472 DOI: 10.1002/cpdd.386] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/28/2017] [Indexed: 11/11/2022]
Abstract
Safety, tolerability, anabolic effects, pharmacokinetics, and pharmacodynamics of single ascending and multiple doses of domagrozumab, an antimyostatin monoclonal antibody, were assessed following intravenous (IV) and subcutaneous (SC) administration in healthy subjects. A range of single ascending dose levels between 1 and 40 mg/kg IV and multiple doses (3 doses) of 10 mg/kg IV were tested (n = 8 per cohort). Additionally, a 3 mg/kg SC (n = 8) cohort also received domagrozumab. Magnetic resonance imaging and whole-body dual-energy x-ray absorptiometry imaging were conducted to investigate the anabolic effects of domagrozumab. Domagrozumab was well tolerated with no severe and 1 non-treatment-related serious adverse event. The most commonly reported adverse events were headache (21 subjects) and fatigue, upper respiratory tract infections, and muscle spasms (10 subjects each). Domagrozumab demonstrated typical IgG1 pharmacokinetics, with slow SC absorption and slow clearance, low volume of distribution, and a long half-life. Target engagement was observed with an increase in extent of myostatin modulation, plateauing at the 20 mg/kg IV dose. Downstream pharmacology following myostatin binding by domagrozumab was only observed in the 10 mg/kg single IV cohort (increase in whole-body lean mass of 5.38% using dual-energy x-ray absorptiometry) and the 10 mg/kg repeat-dose cohort (muscle volume increase of 4.49% using magnetic resonance imaging).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Steven Arkin
- Global Product Development, Pfizer Inc., New Haven, CT, USA
| | - Michael Binks
- Global Product Development, Pfizer Inc., New Haven, CT, USA
| |
Collapse
|
31
|
Hu T, Sprague ER, Fodor M, Stams T, Clark KL, Cowan-Jacob SW. The impact of structural biology in medicine illustrated with four case studies. J Mol Med (Berl) 2017; 96:9-19. [PMID: 28669027 DOI: 10.1007/s00109-017-1565-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/12/2017] [Accepted: 06/15/2017] [Indexed: 12/18/2022]
Abstract
The contributions of structural biology to drug discovery have expanded over the last 20 years from structure-based ligand optimization to a broad range of clinically relevant topics including the understanding of disease, target discovery, screening for new types of ligands, discovery of new modes of action, addressing clinical challenges such as side effects or resistance, and providing data to support drug registration. This expansion of scope is due to breakthroughs in the technology, which allow structural information to be obtained rapidly and for more complex molecular systems, but also due to the combination of different technologies such as X-ray, NMR, and other biophysical methods, which allows one to get a more complete molecular understanding of disease and ways to treat it. In this review, we provide examples of the types of impact molecular structure information can have in the clinic for both low molecular weight and biologic drug discovery and describe several case studies from our own work to illustrate some of these contributions.
Collapse
Affiliation(s)
- Tiancen Hu
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | | | - Michelle Fodor
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Travis Stams
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | - Kirk L Clark
- Novartis Institutes for Biomedical Research, Cambridge, MA, 02139, USA
| | | |
Collapse
|
32
|
Walker RG, Czepnik M, Goebel EJ, McCoy JC, Vujic A, Cho M, Oh J, Aykul S, Walton KL, Schang G, Bernard DJ, Hinck AP, Harrison CA, Martinez-Hackert E, Wagers AJ, Lee RT, Thompson TB. Structural basis for potency differences between GDF8 and GDF11. BMC Biol 2017; 15:19. [PMID: 28257634 PMCID: PMC5336696 DOI: 10.1186/s12915-017-0350-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/18/2017] [Indexed: 01/11/2023] Open
Abstract
Background Growth/differentiation factor 8 (GDF8) and GDF11 are two highly similar members of the transforming growth factor β (TGFβ) family. While GDF8 has been recognized as a negative regulator of muscle growth and differentiation, there are conflicting studies on the function of GDF11 and whether GDF11 has beneficial effects on age-related dysfunction. To address whether GDF8 and GDF11 are functionally identical, we compared their signaling and structural properties. Results Here we show that, despite their high similarity, GDF11 is a more potent activator of SMAD2/3 and signals more effectively through the type I activin-like receptor kinase receptors ALK4/5/7 than GDF8. Resolution of the GDF11:FS288 complex, apo-GDF8, and apo-GDF11 crystal structures reveals unique properties of both ligands, specifically in the type I receptor binding site. Lastly, substitution of GDF11 residues into GDF8 confers enhanced activity to GDF8. Conclusions These studies identify distinctive structural features of GDF11 that enhance its potency, relative to GDF8; however, the biological consequences of these differences remain to be determined. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0350-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan G Walker
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Magdalena Czepnik
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Erich J Goebel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jason C McCoy
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Ana Vujic
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Miook Cho
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Juhyun Oh
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Senem Aykul
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Kelly L Walton
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Gauthier Schang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Craig A Harrison
- Hudson Institute of Medical Research, Clayton, Australia.,Department of Physiology, Monash University, Clayton, Australia
| | - Erik Martinez-Hackert
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amy J Wagers
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA, 02115, USA
| | - Richard T Lee
- Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Thomas B Thompson
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, 45267, USA. .,University of Cincinnati, 231 Albert Sabin Way ML 0524, Cincinnati, OH, 45267, USA.
| |
Collapse
|
33
|
Important amino acid residues involved in folding and binding of protein–protein complexes. Int J Biol Macromol 2017; 94:438-444. [DOI: 10.1016/j.ijbiomac.2016.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 01/12/2023]
|