1
|
Świerczek A, Batko D, Wyska E. The Role of Pharmacometrics in Advancing the Therapies for Autoimmune Diseases. Pharmaceutics 2024; 16:1559. [PMID: 39771538 PMCID: PMC11676367 DOI: 10.3390/pharmaceutics16121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Autoimmune diseases (AIDs) are a group of disorders in which the immune system attacks the body's own tissues, leading to chronic inflammation and organ damage. These diseases are difficult to treat due to variability in drug PK among individuals, patient responses to treatment, and the side effects of long-term immunosuppressive therapies. In recent years, pharmacometrics has emerged as a critical tool in drug discovery and development (DDD) and precision medicine. The aim of this review is to explore the diverse roles that pharmacometrics has played in addressing the challenges associated with DDD and personalized therapies in the treatment of AIDs. Methods: This review synthesizes research from the past two decades on pharmacometric methodologies, including Physiologically Based Pharmacokinetic (PBPK) modeling, Pharmacokinetic/Pharmacodynamic (PK/PD) modeling, disease progression (DisP) modeling, population modeling, model-based meta-analysis (MBMA), and Quantitative Systems Pharmacology (QSP). The incorporation of artificial intelligence (AI) and machine learning (ML) into pharmacometrics is also discussed. Results: Pharmacometrics has demonstrated significant potential in optimizing dosing regimens, improving drug safety, and predicting patient-specific responses in AIDs. PBPK and PK/PD models have been instrumental in personalizing treatments, while DisP and QSP models provide insights into disease evolution and pathophysiological mechanisms in AIDs. AI/ML implementation has further enhanced the precision of these models. Conclusions: Pharmacometrics plays a crucial role in bridging pre-clinical findings and clinical applications, driving more personalized and effective treatments for AIDs. Its integration into DDD and translational science, in combination with AI and ML algorithms, holds promise for advancing therapeutic strategies and improving autoimmune patients' outcomes.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (D.B.); (E.W.)
| | | | | |
Collapse
|
2
|
Mussa A, Ismail NH, Hamid M, Al-Hatamleh MAI, Bragoli A, Hajissa K, Mokhtar NF, Mohamud R, Uskoković V, Hassan R. Understanding the role of TNFR2 signaling in the tumor microenvironment of breast cancer. J Exp Clin Cancer Res 2024; 43:312. [PMID: 39609700 PMCID: PMC11603874 DOI: 10.1186/s13046-024-03218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy among women. It is characterized by a high level of heterogeneity that emerges from the interaction of several cellular and soluble components in the tumor microenvironment (TME), such as cytokines, tumor cells and tumor-associated immune cells. Tumor necrosis factor (TNF) receptor 2 (TNFR2) appears to play a significant role in microenvironmental regulation, tumor progression, immune evasion, drug resistance, and metastasis of many types of cancer, including BC. However, the significance of TNFR2 in BC biology is not fully understood. This review provides an overview of TNFR2 biology, detailing its activation and its interactions with important signaling pathways in the TME (e.g., NF-κB, MAPK, and PI3K/Akt pathways). We discuss potential therapeutic strategies targeting TNFR2, with the aim of enhancing the antitumor immune response to BC. This review provides insights into role of TNFR2 as a major immune checkpoint for the future treatment of patients with BC.
Collapse
Affiliation(s)
- Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Mahasin Hamid
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan Province, Changsha, 410013, China
- Department of Zoology, Faculty of Sciences and Information Technology, University of Nyala, Nyala, 63311, Sudan
| | - Mohammad A I Al-Hatamleh
- Division of Hematology and Oncology, Department of Medicine, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anthony Bragoli
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Khalid Hajissa
- Department of Zoology, Faculty of Science and Technology, Omdurman Islamic University, P.O. Box 382, Omdurman, Sudan
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (iNFORMM), Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| | - Vuk Uskoković
- TardigradeNano LLC, Irvine, CA, 92604, USA
- Division of Natural Sciences, Fullerton College, Fullerton, CA, 92832, USA
| | - Rosline Hassan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu , Kelantan, 16150, Malaysia.
| |
Collapse
|
3
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
4
|
Liu Z, Song L, Yang J, Liu H, Zhang Y, Pi X, Yan Y, Chen H, Yu D, Yin C, Liu T, Li X, Zhang C, Li D, Wang Z, Xiao W. Discovery and preclinical evaluation of KYS202004A, a novel bispecific fusion protein targeting TNF-α and IL-17A, in autoimmune disease models. Int Immunopharmacol 2024; 136:112383. [PMID: 38843642 DOI: 10.1016/j.intimp.2024.112383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/17/2024]
Abstract
The treatment of autoimmune and inflammatory diseases often requires targeting multiple pathogenic pathways. KYS202004A is a novel bispecific fusion protein designed to antagonize TNF-α and IL-17A, pivotal in the pathophysiology of autoimmune and inflammatory diseases. Our initial efforts focused on screening for optimal structure by analyzing expression levels, purity, and binding capabilities. The binding affinity of KYS202004A to TNF-α and IL-17A was evaluated using SPR. In vitro, we assessed the inhibitory capacity of KYS202004A on cytokine-induced CXCL1 expression in HT29 cells. In vivo, its efficacy was tested using a Collagen-Induced Arthritis (CIA) model in transgenic human-IL-17A mice and an imiquimod-induced psoriasis model in cynomolgus monkeys. KYS202004A demonstrated significant inhibition of IL-17A and TNF-α signaling pathways, outperforming the efficacy of monotherapeutic agents ixekizumab and etanercept in reducing CXCL1 expression in vitro and ameliorating disease markers in vivo. In the CIA model, KYS202004A significantly reduced clinical symptoms, joint destruction, and serum IL-6 concentrations. The psoriasis model revealed that KYS202004A, particularly at a 2 mg/kg dose, was as effective as the combination of ixekizumab and etanercept. This discovery represents a significant advancement in treating autoimmune and inflammatory diseases, offering a dual-targeted therapeutic approach with enhanced efficacy over current monotherapies.
Collapse
Affiliation(s)
- Zhihang Liu
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Liying Song
- Department of Oncology, The First People's Hospital of Lianyungang, No. 182, Tongguan Road, Lianyungang City 222002, Jiangsu Province, China
| | - Jiarui Yang
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Han Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen City 361102, Fujian Province, China
| | - Yating Zhang
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Xuelei Pi
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Yuanyuan Yan
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Hongna Chen
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Dan Yu
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Chengkai Yin
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Tianyan Liu
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Xu Li
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Chenfeng Zhang
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Deshan Li
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China
| | - Zhenzhong Wang
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co.,Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang City 222001, Jiangsu Province, China.
| |
Collapse
|
5
|
Venetsanopoulou AI, Voulgari PV, Drosos AA. Investigational bispecific antibodies for the treatment of rheumatoid arthritis. Expert Opin Investig Drugs 2024; 33:661-670. [PMID: 38698301 DOI: 10.1080/13543784.2024.2351507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/01/2024] [Indexed: 05/05/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disorder with a characteristic chronic inflammation of the synovium that may lead to the destruction of the joints in untreated patients. Interestingly, despite the availability of several effective treatments, many patients do not achieve remission or low disease activity or may experience disease relapse.Following the above unmet needs, bispecific antibodies (BsAbs) have emerged as a new approach to improve the disease's treatment. BsAbs are designed to simultaneously target two different proteins involved in RA pathogenesis, leading to enhanced efficacy and reduced side effects compared to traditional monoclonal antibodies (mAbs). AREAS COVERED In this review, we discuss the development of BsAbs for RA treatment, including their mechanism of action, efficacy, and safety profile. We also deal with the challenges and future directions in this field. EXPERT OPINION BsAbs show promise in preclinical and clinical evaluations for treating RA. Further research is needed to optimize design and dosage and identify ideal patient groups. BsAbs can benefit disease management and improve outcomes of RA patients.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/adverse effects
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Animals
- Drug Development
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/adverse effects
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/therapeutic use
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Drugs, Investigational/pharmacology
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/adverse effects
Collapse
Affiliation(s)
- Aliki I Venetsanopoulou
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Paraskevi V Voulgari
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Alexandros A Drosos
- Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
6
|
Niu J, Wang W, Ouellet D. Mechanism-based pharmacokinetic and pharmacodynamic modeling for bispecific antibodies: challenges and opportunities. Expert Rev Clin Pharmacol 2023; 16:977-990. [PMID: 37743720 DOI: 10.1080/17512433.2023.2257136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Unlike conventional antibodies, bispecific antibodies (bsAbs) are engineered antibody- or antibody fragment-based molecules that can simultaneously recognize two different epitopes or antigens. Over the past decade, there has been an explosion of bsAbs being developed across therapeutic areas. Development of bsAbs presents unique challenges and mechanism-based pharmacokinetic/pharmacodynamic (PK/PD) modeling has served as a powerful tool to optimize their development and realize their clinical utility. AREAS COVERED In this review, the guiding principles and case examples of how fit-for-purpose, mechanism-based PK/PD models have been applied to answer questions commonly encountered in bsAb development are presented. Such models characterize the key pharmacological elements of bsAbs, and they can be utilized for model-informed drug development. We also include the discussion of challenges, knowledge gaps and future direction for such models. EXPERT OPINION Mechanistic PK/PD modeling is a powerful tool to support the development of bsAbs. These models can be extrapolated to predict treatment outcomes based on mechanisms of action (MoA) and clinical observations to form positive learn-and-confirm cycles during drug development, due to their abilities to differentiate system- and drug-specific parameters. Meanwhile, the models should keep being adapted according to novel drug design and MoA, providing continuous opportunities for model-informed drug development.
Collapse
Affiliation(s)
- Jin Niu
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Weirong Wang
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| | - Daniele Ouellet
- Clinical Pharmacology and Pharmacometrics, Janssen Research & Development, Spring House, PA, USA
| |
Collapse
|
7
|
Davé E, Durrant O, Dhami N, Compson J, Broadbridge J, Archer S, Maroof A, Whale K, Menochet K, Bonnaillie P, Barry E, Wild G, Peerboom C, Bhatta P, Ellis M, Hinchliffe M, Humphreys DP, Heywood SP. TRYBE®: an Fc-free antibody format with three monovalent targeting arms engineered for long in vivo half-life. MAbs 2023; 15:2160229. [PMID: 36788124 PMCID: PMC9937000 DOI: 10.1080/19420862.2022.2160229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
TrYbe® is an Fc-free therapeutic antibody format, capable of engaging up to three targets simultaneously, with long in vivo half-life conferred by albumin binding. This format is shown by small-angle X-ray scattering to be conformationally flexible with favorable 'reach' properties. We demonstrate the format's broad functionality by co-targeting of soluble and cell surface antigens. The benefit of monovalent target binding is illustrated by the lack of formation of large immune complexes when co-targeting multivalent antigens. TrYbes® are manufactured using standard mammalian cell culture and protein A affinity capture processes. TrYbes® have been formulated at high concentrations and have favorable drug-like properties, including stability, solubility, and low viscosity. The unique functionality and inherent developability of the TrYbe® makes it a promising multi-specific antibody fragment format for antibody therapy.
Collapse
Affiliation(s)
- Emma Davé
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | - Neha Dhami
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | | | | | - Kevin Whale
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | - Emily Barry
- Early Solutions, UCB Biopharma UK, Slough, UK
| | - Gavin Wild
- PV Supply and Technology Solutions, UCB Biopharma UK, Slough, UK
| | - Claude Peerboom
- PV Supply and Technology Solutions, UCB Biopharma SRL, Braine-l'Alleud, Belgium, EU
| | | | - Mark Ellis
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | - Sam P. Heywood
- Early Solutions, UCB Biopharma UK, Slough, UK,CONTACT Sam P. Heywood Early Solutions, UCB Biopharma UK, 208 Bath Road, Slough, SL1 3XE, Slough, UK
| |
Collapse
|
8
|
Utility of in silico prediction of target suppression for antibodies against soluble targets: static versus dynamic models. Eur J Clin Pharmacol 2023; 79:137-147. [PMID: 36416938 DOI: 10.1007/s00228-022-03425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Antibodies that bind soluble targets such as cytokines belong to an important class of immunotherapies. Target levels can significantly accumulate after antibody administration due to formation of antibody-target complex, accompanied with suppression in free target which is often difficult to measure. Being a surrogate for pharmacodynamic activity, free target suppression is often predicted using in silico tools. The objective of this work is to illustrate the utility of modelling and to compare static versus dynamic models in the prediction of free target suppression. METHODS Using binding principles, we have derived a static equation to predict free target suppression at steady state (FTSS). This equation operates with five input parameters and accounts for target accumulation over time. Its predictivity was compared to a dynamic model and to other existing metrics in literature via simulations and assumptions were illustrated. RESULTS We demonstrated the utility of in silico tools in prediction of free target suppression using static and dynamic models and clarified the assumptions in key input parameters and their limitations. Predicted values using the FTSS equation correlate very well with those from the dynamic model at level > 20% target suppression, relevant for antagonistic antibodies. CONCLUSION In silico tools are needed to predict target suppression by antibody drugs. Static or dynamic models can be used dependant on the scope, available data and undertaken assumptions. These tools can be used to guide discovery and development of antibodies and has the potential to reduce clinical failure.
Collapse
|
9
|
Evangelatos G, Bamias G, Kitas GD, Kollias G, Sfikakis PP. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol Int 2022; 42:1493-1511. [PMID: 35503130 PMCID: PMC9063259 DOI: 10.1007/s00296-022-05136-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Since the late 1990s, tumor necrosis factor alpha (TNF-α) inhibitors (anti-TNFs) have revolutionized the therapy of immune-mediated inflammatory diseases (IMIDs) affecting the gut, joints, skin and eyes. Although the therapeutic armamentarium in IMIDs is being constantly expanded, anti-TNFs remain the cornerstone of their treatment. During the second decade of their application in clinical practice, a large body of additional knowledge has accumulated regarding various aspects of anti-TNF-α therapy, whereas new indications have been added. Recent experimental studies have shown that anti-TNFs exert their beneficial effects not only by restoring aberrant TNF-mediated immune mechanisms, but also by de-activating pathogenic fibroblast-like mesenchymal cells. Real-world data on millions of patients further confirmed the remarkable efficacy of anti-TNFs. It is now clear that anti-TNFs alter the physical course of inflammatory arthritis and inflammatory bowel disease, leading to inhibition of local and systemic bone loss and to a decline in the number of surgeries for disease-related complications, while anti-TNFs improve morbidity and mortality, acting beneficially also on cardiovascular comorbidities. On the other hand, no new safety signals emerged, whereas anti-TNF-α safety in pregnancy and amid the COVID-19 pandemic was confirmed. The use of biosimilars was associated with cost reductions making anti-TNFs more widely available. Moreover, the current implementation of the "treat-to-target" approach and treatment de-escalation strategies of IMIDs were based on anti-TNFs. An intensive search to discover biomarkers to optimize response to anti-TNF-α treatment is currently ongoing. Finally, selective targeting of TNF-α receptors, new forms of anti-TNFs and combinations with other agents, are being tested in clinical trials and will probably expand the spectrum of TNF-α inhibition as a therapeutic strategy for IMIDs.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Giorgos Bamias
- Gastrointestinal Unit, Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK
- Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
| | - George Kollias
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Ayyar VS, Lee JB, Wang W, Pryor M, Zhuang Y, Wilde T, Vermeulen A. Minimal Physiologically-Based Pharmacokinetic (mPBPK) Metamodeling of Target Engagement in Skin Informs Anti-IL17A Drug Development in Psoriasis. Front Pharmacol 2022; 13:862291. [PMID: 35548359 PMCID: PMC9083543 DOI: 10.3389/fphar.2022.862291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022] Open
Abstract
The pharmacologic effect(s) of biotherapeutics directed against soluble targets are driven by the magnitude and duration of free target suppression at the tissue site(s) of action. Interleukin (IL)-17A is an inflammatory cytokine that plays a key role in the pathogenesis of psoriasis. In this work, clinical trial data from two monoclonal antibodies (mAbs) targeting IL-17A for treatment of psoriasis (secukinumab and ixekizumab) were analyzed simultaneously to quantitatively predict their target engagement (TE) profiles in psoriatic skin. First, a model-based meta-analysis (MBMA) for clinical responses was conducted separately for each drug based on dose. Next, a minimal physiologically-based pharmacokinetic (mPBPK) model was built to assess skin site IL-17A target engagement for ixekizumab and secukinumab simultaneously. The mPBPK model captured the observed drug PK, serum total IL-17A, and skin drug concentration-time profiles reasonably well across the different dosage regimens investigated. The developed mPBPK model was then used to predict the average TE (i.e., free IL-17A suppression) in skin achieved over a 12-weeks treatment period for each drug following their respective regimens and subsequently assess the TE-efficacy response relationship. It was predicted that secukinumab achieved 98.6% average TE in the skin at 300 mg q4w SC while ixekizumab achieved 99.9% average TE under 160 mg (loading) followed by 80 mg q2w SC. While direct quantification of free IL-17A levels at the site of action is technically challenging, integrated mPBPK-MBMA approaches offer quantitative predictions of free IL-17A levels at the site of action to facilitate future drug development via IL-17A suppression in psoriasis.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Jong Bong Lee
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Weirong Wang
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Meghan Pryor
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Yanli Zhuang
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - Thomas Wilde
- Janssen Research & Development, LLC, Spring House, PA, United States
| | - An Vermeulen
- Janssen Research & Development, LLC, Spring House, PA, United States.,Janssen R & D, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| |
Collapse
|
11
|
Haraya K, Tsutsui H, Komori Y, Tachibana T. Recent Advances in Translational Pharmacokinetics and Pharmacodynamics Prediction of Therapeutic Antibodies Using Modeling and Simulation. Pharmaceuticals (Basel) 2022; 15:ph15050508. [PMID: 35631335 PMCID: PMC9145563 DOI: 10.3390/ph15050508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) have been a promising therapeutic approach for several diseases and a wide variety of mAbs are being evaluated in clinical trials. To accelerate clinical development and improve the probability of success, pharmacokinetics and pharmacodynamics (PKPD) in humans must be predicted before clinical trials can begin. Traditionally, empirical-approach-based PKPD prediction has been applied for a long time. Recently, modeling and simulation (M&S) methods have also become valuable for quantitatively predicting PKPD in humans. Although several models (e.g., the compartment model, Michaelis–Menten model, target-mediated drug disposition model, and physiologically based pharmacokinetic model) have been established and used to predict the PKPD of mAbs in humans, more complex mechanistic models, such as the quantitative systemics pharmacology model, have been recently developed. This review summarizes the recent advances and future direction of M&S-based approaches to the quantitative prediction of human PKPD for mAbs.
Collapse
Affiliation(s)
- Kenta Haraya
- Discovery Biologics Department, Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba 412-8513, Japan;
- Correspondence:
| | - Haruka Tsutsui
- Discovery Biologics Department, Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba 412-8513, Japan;
| | - Yasunori Komori
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba 412-8513, Japan; (Y.K.); (T.T.)
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Division, Chugai Pharmaceutical Co., Ltd., 1-135 Komakado, Gotemba 412-8513, Japan; (Y.K.); (T.T.)
| |
Collapse
|
12
|
Kroenke MA, Milton MN, Kumar S, Bame E, White JT. Immunogenicity Risk Assessment for Multi-specific Therapeutics. AAPS JOURNAL 2021; 23:115. [PMID: 34741215 PMCID: PMC8571146 DOI: 10.1208/s12248-021-00642-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/23/2021] [Indexed: 01/12/2023]
Abstract
The objective of this manuscript is to provide the reader with a hypothetical case study to present an immunogenicity risk assessment for a multi-specific therapeutic as part of Investigational New Drug (IND) application. In order to provide context for the bioanalytical strategies used to support the multi-specific therapeutic presented herein, the introduction focuses on known immunogenicity risk factors. The subsequent hypothetical case study applies these principles to a specific example HC-12, based loosely on anti-TNFα and anti-IL-17A bispecific molecules previously in development, structured as an example immunogenicity risk assessment for submission to health authorities. The risk of higher incidence and safety impact of anti-drug antibodies (ADA) due to large protein complexes is explored in the context of multi-specificity and multi-valency of the therapeutic in combination with the oligomeric forms of the targets.
Collapse
Affiliation(s)
| | - Mark N Milton
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Seema Kumar
- EMD Serono Research & Development Institute, Inc, Billerica, Massachusetts, USA
| | - Eris Bame
- Biogen, Cambridge, Massachusetts, USA
| | - Joleen T White
- Bill & Melinda Gates Medical Research Institute, One Kendall Square, Building 600, Suite 6-301, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
13
|
Liang GC, Duan WG, Chen SY, Fang JK. Analysis of the Composition and Anti-Rheumatoid Arthritis Mechanism of Qintengtongbi Decoction Based on Network Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211041421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Qintengtongbi Decoction (QTTBD) is a traditional prescription for rheumatoid arthritis (RA) treatment in Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, southern China's Guangxi Zhuang Autonomous Region. However, there is not yet any analysis on its active compounds or action mechanism for treating RA. Moreover, the prescription has not been investigated from the perspective of network pharmacology. Therefore, this study aimed to analyze the compounds QTTBD and their potential pharmacological effects and the mechanism by which they treat RA via an integrated network pharmacology approach. With the aid of the relevant database tools and research indices, 188 compounds and 272 related drug targets genes/proteins were collected from QTTBD through the compound-target network, and 175 common gene targets between the QTTBD and RA were obtained by Venn 2.1. Finally, the top 10 gene targets and pathways were identified through the protein–protein interaction network, gene ontology, and KEGG pathway analysis: the gene targets include AKT1, IL6, TP53, VEGFA, MAPK3, TNF, CASP3, JUN, EGF, and EGFR; the pathways include oxytocin signaling pathway, amphetamine addiction, graft-versus-host disease, ovarian steroidogenesis, cGMP-PKG signaling pathway, Rap1 signaling pathway, allograft rejection, cytokine–cytokine receptor interaction, regulation of lipolysis in adipocytes and inflammatory mediator regulation of transient receptor potential channels. Therefore, it is concluded that a network pharmacology-based approach can help reveal and clarify the anti-RA role of QTTBD, and provide a scientific basis for further research into the mechanism.
Collapse
Affiliation(s)
- Guo-Cheng Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Wen-Gui Duan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Shu-Yin Chen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jian-Kang Fang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|