1
|
Kibugu J, Munga L, Mburu D, Maloba F, Auma JE, Grace D, Lindahl JF. Dietary Mycotoxins: An Overview on Toxicokinetics, Toxicodynamics, Toxicity, Epidemiology, Detection, and Their Mitigation with Special Emphasis on Aflatoxicosis in Humans and Animals. Toxins (Basel) 2024; 16:483. [PMID: 39591238 PMCID: PMC11598113 DOI: 10.3390/toxins16110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and ubiquitous dietary contaminants. Aflatoxins, a group of mycotoxins with high prevalence and toxicity, have raised a high level of public health concern, the most prevalent and toxic being aflatoxin B1 (AFB1). Many aspects appertaining to AFB1 poisoning are not well understood. Yet this information is necessary to devise appropriate surveillance and mitigation strategies against human and animal aflatoxicosis. This review provides an in-depth update of work carried out on mycotoxin poisoning, particularly aflatoxicosis in humans and animals, to identify gaps in knowledge. Hypotheses explaining the functional significance of mycotoxins in fungal biology and their dietary epidemiological data are presented and briefly discussed. The toxicology of aflatoxins and the challenges of their mitigation are discussed in depth. It was concluded that the identification of potential mycotoxin-hazard-prone food items and quantification of the associated risk of cancer ailments in humans is a prime priority. There is a dearth of reliable sampling methodologies for estimating AFB1 in animal feed. Data update on AFB1 in animal feed and its implication in animal production, mitigation strategies, and elucidation of risk factors to this hazard is required. To reduce the burden of aflatoxins, surveillance employing predictive technology, and biocontrol strategies seem promising approaches.
Collapse
Affiliation(s)
- James Kibugu
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Leonard Munga
- Department of Animal Science, School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - David Mburu
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Fredrick Maloba
- Department of Zoological Sciences, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Joanna E. Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
| | - Delia Grace
- Department of Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya;
- Natural Resources Institute, University of Greenwich, UK, Central Avenue, Chatham ME4 4TB, UK
| | - Johanna F. Lindahl
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, 75189 Uppsala, Sweden;
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
2
|
Han B, Yue F, Zhang X, Xu K, Zhang Z, Sun Z, Mu L, Li X. Genetically engineering of Saccharomyces cerevisiae for enhanced oral delivery vaccine vehicle. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109425. [PMID: 38316348 DOI: 10.1016/j.fsi.2024.109425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/24/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
As a series of our previous studies reported, recombinant yeast can be the oral vaccines to deliver designed protein and DNA, as well as functional shRNA, into dendritic cells (DCs) in mice for specific immune regulation. Here, we report the further optimization of oral yeast-based vaccine from two aspects (yeast characteristics and recombinant DNA constitution) to improve the effect of immune regulation. After screening four genes in negative regulation of glucan synthesis in yeast (MNN9, GUP1, PBS2 and EXG1), this research combined HDR-based genome editing technology with Cre-loxP technology to acquire 15 gene-knockout strains without drug resistance-gene to exclude biosafety risks; afterward, oral feeding experiments were performed on the mice using 15 oral recombinant yeast-based vaccines constructed by the gene-knockout strains harboring pCMV-MSTN plasmid to screen the target strain with more effective inducing mstn-specific antibody which in turn increasing weight gain effect. And subsequently based on the selected gene-knockout strain, the recombinant DNA in the oral recombinant yeast-based vaccine is optimized via a combination of protein fusion expression (OVA-MSTN) and interfering RNA technology (shRNA-IL21), comparison in terms of both weight gain effect and antibody titer revealed that the selected gene-knockout strain (GUP1ΔEXG1Δ) combined with specific recombinant DNA (pCMV-OVA-MSTN-shIL2) had a better effect of the vaccine. This study provides a useful reference to the subsequent construction of a more efficient oral recombinant yeast-based vaccine in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Baoquan Han
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China; College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Yue
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Kun Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Zhongyi Sun
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518055, China.
| | - Lu Mu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
3
|
Can Red Yeast ( Sporidiobolus pararoseus) Be Used as a Novel Feed Additive for Mycotoxin Binders in Broiler Chickens? Toxins (Basel) 2022; 14:toxins14100678. [PMID: 36287947 PMCID: PMC9608597 DOI: 10.3390/toxins14100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Mycotoxin-contaminated feeds may negatively affect broiler chickens’ health; hence, a sustainable approach to achieve mycotoxin elimination is necessary. This study aimed to evaluate the efficacy of red yeast (Sporidiobolus pararoseus; RY) as a novel mycotoxin binder in broilers. A total of 1440 one-week-old male broiler chicks were randomly assigned to 12 treatments in a 3 × 4 factorial design. The dietary treatments included three levels of mycotoxin-contaminated diets (0 µg kg−1 (0% of mycotoxin; MT), 50 µg kg−1 (50% MT), and 100 µg kg−1 (100% MT)) and four levels of mycotoxin binders (0.0 and 0.5 g kg−1 commercial binder, and 0.5 and 1.0 g kg−1 RY). Experimental diets were contaminated with aflatoxin B1, zearalenone, ochratoxin A, T-2 toxin, and deoxynivalenol in the basal diet. Furthermore, the parameters including feed intake, body weight, and mortality rate were recorded on a weekly basis. After feeding for 28 days, blood and organ samples were collected randomly to determine the blood biochemistry, relative organ weights, and gut health. The results indicated that mycotoxin-contaminated diets reduced the average daily weight gain (ADG), villus height (VH), and villus height per the crypt depth ratio (VH:CD) of the intestine, as well as the population of Lactobacillus sp. and Bifidobacterium sp. in the cecal (p < 0.05), whereas they increased the mycotoxins concentration in the blood samples and the apoptosis cells (TUNEL positive) in the liver tissue (p < 0.01) of broiler chicken. In contrast, RY-supplemented diets had better ADG values and lower chicken mortality rates (p < 0.05). Moreover, these combinations positively impacted the relative organ weights, blood parameters, bacteria population, intestinal morphology, and pathological changes in the hepatocytes (p < 0.05). In conclusion, RY supplementation effectively alleviated the toxicity that is induced by AFB1 and OTA, mainly, and could potentially be applied as a novel feed additive in the broiler industry.
Collapse
|
4
|
Detoxification of ochratoxin A and zearalenone by Pleurotus ostreatus during in vitro gastrointestinal digestion. Food Chem 2022; 384:132525. [DOI: 10.1016/j.foodchem.2022.132525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/28/2022] [Accepted: 02/18/2022] [Indexed: 11/24/2022]
|
5
|
García-Béjar B, Owens RA, Briones A, Arévalo-Villena M. Proteomic profiling and glycomic analysis of the yeast cell wall in strains with Aflatoxin B 1 elimination ability. Environ Microbiol 2021; 23:5305-5319. [PMID: 34029450 DOI: 10.1111/1462-2920.15606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/18/2021] [Indexed: 11/27/2022]
Abstract
The use of microorganisms for Aflatoxin B1 elimination has been studied as a new alternative tool and it is known that cell wall carried out a critical role. For that reason, cell wall and soluble intracellular fraction of eight yeasts with AFB1 detoxification capability were analysed. The quantitative and qualitative comparative label-free proteomic allowed the identification of diverse common constituent proteins, which revealed that putative cell wall proteins entailed less than 10% of the total proteome. It was possible to characterize different enzymes linked to cell wall polysaccharides biosynthesis as well as other proteins related with the cell wall organization and regulation. Additionally, the concentration of the principal polysaccharides was determined which permitted us to observe that β-glucans concentration was higher than mannans in most of the samples. In order to better understand the biosorption role of the cell wall against the AFB1 , an antimycotic (Caspofungin) was used to damage the cell wall structure. This assay allowed the observation of an effect on the normal growth of those yeasts with damaged cell walls that were exposed to AFB1 . This effect was not observed in yeast with intact cell walls, which may reveal a protective role of this structure against mycotoxins.
Collapse
Affiliation(s)
- Beatriz García-Béjar
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Ana Briones
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| | - María Arévalo-Villena
- Department of Analytical Chemistry and Food Technology, University of Castilla-La Mancha, Ciudad Real, 13071, Spain
| |
Collapse
|
6
|
Antigenotoxic Effects and Possible Mechanism of Red Yeast ( Sporidiobolus pararoseus) on Aflatoxin B 1-Induced Mutagenesis. Biomolecules 2021; 11:biom11050734. [PMID: 34069188 PMCID: PMC8156261 DOI: 10.3390/biom11050734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 11/23/2022] Open
Abstract
Red yeast (Sporidiobolus pararoseus), obtained from glycerol waste in the biodiesel process, has been used as a mycotoxin sorbent in some agricultural products. This study focused on the antigenotoxic effects of red yeast on aflatoxin B1 (AFB1)-induced mutagenesis, using a Salmonella mutation assay and a rat liver micronucleus test. Red yeast was sequentially extracted to obtain hexane, acetone, hot water, and residue fractions. Carbohydrates were mainly found in hot water extract (HWE), while proteins were observed in the residue fraction. The amount of lycopene in hexane extract (HE) was higher than the amount of β-carotene in HE. All red yeast extracts were not mutagenic in the Salmonella typhimurium strains TA98 and TA100 under the presence and absence of metabolic activation. Among the extracts obtained from red yeast, HE presented the strongest antimutagenicity against AFB1-induced mutagenesis in both strains, but HWE did not show any antimutagenicity. The oral administration of red yeast, HE, and HWE for 28 days was further investigated in rats. These extracts did not induce micronucleated hepatocytes. Furthermore, they modulated the activities of some detoxifying enzymes but did not alter the activities of various cytochrome P450 isozymes. Notably, they significantly decreased hepatic micronucleus formation in AFB1-initiated rats. HE altered the activity of hepatic glutathione-S-transferase but did not affect its protein expression. Taken together, the antigenotoxicity of red yeast against AFB1-induced mutagenesis might be partly due to the modulation of some detoxifying enzymes in AFB1 metabolism. β-Carotene and lycopene might be promising antigenotoxic compounds in red yeast.
Collapse
|
7
|
Raj J, Vasiljević M, Tassis P, Farkaš H, Männer K. Efficacy of a multicomponent mycotoxin detoxifying agent on concurrent exposure to zearalenone and T-2 mycotoxin in weaned pigs. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Campagnollo FB, Mousavi Khaneghah A, Borges LL, Bonato MA, Fakhri Y, Barbalho CB, Barbalho RLC, Corassin CH, Oliveira CAF. In vitro and in vivo capacity of yeast-based products to bind to aflatoxins B 1 and M 1 in media and foodstuffs: A systematic review and meta-analysis. Food Res Int 2020; 137:109505. [PMID: 33233146 DOI: 10.1016/j.foodres.2020.109505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
The aflatoxins are hepatotoxic and carcinogenic metabolites produced by Aspergillus species during growth on crop products. In this regard, a systematic review to collect the quantitative data regarding the in vitro capacity of yeasts-based products to bind to aflatoxin B1 (AFB1) and/or aflatoxin M1 (AFM1) was performed. After screening, 31 articles which met the inclusion criteria was included and then the pooled decontamination of aflatoxins in the defined subgroups (the type of foods, pH, contact time, temperature, yeast species, and aflatoxin type) was calculated by the random effect model (REM). The overall binding capacity (BC) of aflatoxins by yeast was 52.05% (95%CI: 49.01-55.10), while the lowest and highest aflatoxins' BC were associated with Yeast Extract Peptone (2.79%) and ruminal fluid + artificial saliva (96.21%), respectively. Regarding the contact time, temperature, pH and type of aflatoxins subgroups, the binding percentages varied from 50.83% (>300 min) to 52.66% (1-300 min), 50.71% (0-40 °C) to 88.39% (>40 °C), 43.03% (pH: 3.1-6) to 44.56% (pH: 1-3) and 59.35% (pH > 6), and 48.47% (AFB1) to 69.03% AFM1, respectively. The lowest and highest aflatoxins' BC was related to C. fabianii (18.45%) and Z. rouxii (86.40%), respectively. The results of this study showed that variables such as temperature, yeast, pH and aflatoxin type can be considered as the effective factors in aflatoxin decontamination.
Collapse
Affiliation(s)
- Fernanda B Campagnollo
- Department of Food Science, Faculty of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas, Campinas, SP, Brazil
| | - Liliana L Borges
- ICC Industrial Comércio Exportação e Importação LTDA São Paulo, SP, Brazil
| | - Melina A Bonato
- ICC Industrial Comércio Exportação e Importação LTDA São Paulo, SP, Brazil
| | - Yadolah Fakhri
- Environmental Health Engineering, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Caio B Barbalho
- ICC Industrial Comércio Exportação e Importação LTDA São Paulo, SP, Brazil
| | | | - Carlos H Corassin
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil
| | - Carlos A F Oliveira
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, CEP 13635-900 Pirassununga, SP, Brazil.
| |
Collapse
|
9
|
Rao ZX, Tokach MD, Dritz SS, Woodworth JC, DeRouchey JM, Goodband RD, Calderon HI. Efficacy of commercial products on nursery pig growth performance fed diets with fumonisin contaminated corn. Transl Anim Sci 2020; 4:txaa217. [PMID: 33409469 PMCID: PMC7771004 DOI: 10.1093/tas/txaa217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Two experiments were conducted to determine the efficacy of various commercial products on growth performance of nursery pigs fed diets high in fumonisin. In experiment 1, 350 pigs (241 × 600; DNA, Columbus, NE; initially 9.9 kg) were used with five pigs per pen and 14 replicates per treatment. After weaning, pigs were fed common diets for 21 d before the experiment started. The five dietary treatments consisted of a positive control (low fumonisin), a negative control (60 mg/kg of fumonisin B1 + B2 in complete diet), and the negative control with one of three products (0.3% of Kallsil Dry, Kemin Industries Inc., Des Moines, IA; 0.3% of Feed Aid Wide Spectrum, NutriQuest, Mason City, IA; 0.17% of Biofix Select Pro, Biomin America Inc., Overland Park, KS). Diets were fed in mash form for 14 d and followed with a low fumonisin diet for 13 d. For the 14-d treatment period, pigs fed the positive control diet and Biofix Select Pro had greater (P < 0.05) average daily gain (ADG), average daily feed intake (ADFI), and gain:feed (G:F) compared to those fed the high fumonisin negative control, or high fumonisin diets with Kallsil Dry or Feed Aid Wide Spectrum. Serum sphinganine to sphingosine ratios (SA:SO) were greater (P < 0.05) in all pigs fed high fumonisin diets compared to the positive control. In experiment 2, 300 pigs (241 × 600; DNA; initially 10.4 kg) were used. Procedures were similar to experiment 1 except there were 12 replicate pens per treatment, high fumonisin diets contained 30 mg/kg fumonisin, and experimental diets were fed for 28 d. Similar to experiment 1, pigs fed the positive control diet and treatment with Biofix Select Pro had greater (P < 0.05) ADG and G:F, and lower (P < 0.05) serum SA:SO compared to pigs fed the high fumonisin negative control, or high fumonisin diets with Kallsil Dry or Feed Aid Wide Spectrum. In summary, pigs fed diets containing 60 mg/kg of fumonisin for 14 d or 30 mg/kg of fumonisin for 28 d had poorer ADG and G:F and greater serum SA:SO compared to pigs fed a diet with less than 5 mg/kg of fumonisin. Adding Biofix Select Pro to diets appeared to mitigate the negative effects of high fumonisin concentrations, while Kallsil Dry and Feed Aid Wide Spectrum did not.
Collapse
Affiliation(s)
- Zhong-Xing Rao
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Mike D Tokach
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Steve S Dritz
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Jason C Woodworth
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Joel M DeRouchey
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Robert D Goodband
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS
| | - Hilda I Calderon
- Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, KS
| |
Collapse
|
10
|
Wang X, Han Y, Zhang L, Ge Z, Liu M, Zhao G, Zong W. Removal of Alternaria mycotoxins from aqueous solution by inactivated yeast powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5182-5190. [PMID: 32519761 DOI: 10.1002/jsfa.10567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Alternariol (AOH) and alternariol monomethyl ether (AME), produced by Alternaria spp., are the two mycotoxins with the highest outbreak rates in food systems. The purpose of this study was to investigate the removal of AOH and AME from aqueous solutions by inactivated yeast cells. The effects of strains, yeast powder amount, temperature, and pH were evaluated. The kinetics of AOH and AME adsorption on inactivated yeast cells was fitted with four models and a release assay was carried out. RESULTS All three tested yeasts could remove AOH and AME. GIM 2.119 was the most effective strain. The reduction rate of both AOH and AME could be as much as 100% with 40 g‧L-1 of yeast powder. For both mycotoxins, pH = 9 was the best environment for toxin removal. The pseudo-second-order kinetic model was the best model, with R2 ranging from 0.989 to 0.999. However, the R2 of the pseudo-first-order and Elovich models was also relatively high. Alternariol and AME could be partially eluted by methanol and acetonitrile. CONCLUSION The inactivated yeast cells could effectively remove AOH and AME. This was best fitted by the pseudo-second-order model. The release assay suggested that the adsorption of Alternaria mycotoxins was partially reversible. The results of this study provide a theoretical basis for the removal of Alternaria mycotoxins from food systems and are useful for the investigation of the mechanisms involved in mycotoxin adsorption by inactivated yeast cells. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Yike Han
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
| | - Lihua Zhang
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Zhenzhen Ge
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Mengpei Liu
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Guangyuan Zhao
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| | - Wei Zong
- Zhengzhou University of Light Industry, School of Food and Bioengineering, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Henan, China
| |
Collapse
|
11
|
Alasmar R, Ul-Hassan Z, Zeidan R, Al-Thani R, Al-Shamary N, Alnaimi H, Migheli Q, Jaoua S. Isolation of a Novel Kluyveromyces marxianus Strain QKM-4 and Evidence of Its Volatilome Production and Binding Potentialities in the Biocontrol of Toxigenic Fungi and Their Mycotoxins. ACS OMEGA 2020; 5:17637-17645. [PMID: 32715249 PMCID: PMC7377640 DOI: 10.1021/acsomega.0c02124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
To overcome the economic losses associated with fungi and their toxic metabolites, environmentally safe and efficient approaches are needed. To this end, biological control using yeasts and safe bacterial strains and their products are being explored to replace synthetic fungicides. In the present study, the biocontrol effect of a yeast strain of Kluyveromyces marxianus, QKM-4, against the growth and mycotoxin synthesis potential of key toxigenic fungi was evaluated. In vitro assays were performed to find the application of yeast volatile organic compounds (VOCs) against fungal contamination on important agricultural commodities. The removal of ochratoxin A (OTA) and deoxynivalenol (DON) by living and heat-inactivated yeast cells was also explored. VOCs produced by strain QKM-4 were able to significantly limit the fungal growth of 17 fungal species belonging to genera Aspergillus, Penicillium, and Fusarium. Yeast VOCs were able to reduce OTA biosynthesis potential of Penicillium verrucosum and Aspergillus carbonarius by 99.6 and 98.7%, respectively. In vivo application of QKM-4 VOCs against Fusarium oxysporum and A. carbonarius infection on tomatoes and grapes, respectively, determined a complete inhibition of fungal spore germination. GC/MS-based analysis of yeast VOCs identified long-chain alkanes, including nonadecane, eicosane, docosane, heptacosane, hexatriacontane, and tetracosane. In vitro testing of the mycotoxin-binding potential of the living and heat-inactivated QKM-4 cells showed a reduction of OTA and DON up to 58 and 49%, respectively, from artificially contaminated buffers. Our findings clearly demonstrate the strong antifungal potential of K. marxianus QKM-4 and propose this strain as a strong candidate for application in agriculture to safeguard food and feed products.
Collapse
Affiliation(s)
- Reem Alasmar
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul-Hassan
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Randa Zeidan
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Noora Al-Shamary
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Hajer Alnaimi
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Quirico Migheli
- Dipartimento
di Agraria, Università degli Studi
di Sassari, Viale Italia 39, I-07100 Sassari, Italy
| | - Samir Jaoua
- Department
of Biological and Environmental Sciences, College of Arts
and Science and Environmental Science Center, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
12
|
Zearalenone Removal from Corn Oil by an Enzymatic Strategy. Toxins (Basel) 2020; 12:toxins12020117. [PMID: 32069863 PMCID: PMC7076758 DOI: 10.3390/toxins12020117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/01/2023] Open
Abstract
The estrogen-like mycotoxin zearalenone (ZEN) is one of the most widely distributed contaminants especially in maize and its commodities, such as corn oil. ZEN degrading enzymes possess the potential for counteracting the negative effect of ZEN and its associated high safety risk in corn oil. Herein, we targeted enhancing the secretion of ZEN degrading enzyme by Pichia pastoris through constructing an expression plasmid containing three optimized expression cassettes of zlhy-6 codon and signal peptides. Further, we explored various parameters of enzymatic detoxification in neutralized oil and analyzed tocopherols and sterols losses in the corn oil. In addition, the distribution of degraded products was demonstrated as well by Agilent 6510 Quadrupole Time-of-Flight mass spectrometry. P. pastoris GSZ with the glucoamylase signal was observed with the highest ZLHY-6 secretion yield of 0.39 mg/mL. During the refining of corn oil, ZEN in the crude oil was reduced from 1257.3 to 13 µg/kg (3.69% residual) after neutralization and enzymatic detoxification. Compared with the neutralized oil, no significant difference in the total tocopherols and sterols contents was detected after enzymatic detoxification. Finally, the degraded products were found to be entirely eliminated by washing. This study presents an enzymatic strategy for efficient and safe ZEN removal with relatively low nutrient loss, which provides an important basis for further application of enzymatic ZEN elimination in the industrial process of corn oil production.
Collapse
|
13
|
The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals (Basel) 2020; 10:ani10020238. [PMID: 32028628 PMCID: PMC7070355 DOI: 10.3390/ani10020238] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Over the past two decades, the use of agents for the biodegradation of mycotoxins has led to a reduction in their accumulation and toxicity in the digestive tract of animals. Thus, mycotoxin decontaminating agents are very useful in the prevention of aflatoxicosis. The present feeding trial aimed to evaluate the biodegradation role of Saccharomyces cerevisiae in the prevention of the harmful effects of a mycotoxin contaminated diet on broiler performance, immunity, and carcass traits. The obtained results revealed significant improvements in broiler growth performance parameters, carcass traits, and antibody titer against infected diseases as an effect of the dietary inclusion of Saccharomyces cerevisiae up to 3.75 g kg−1. Consequentially, it could be used in broiler contaminated diets without negatively affecting bird health. Abstract A feeding trial (35 days) was carried out to investigate the effect of Saccharomyces cerevisiae cell wall as a mycotoxin biodegradation agent on the performance, feed efficiency, carcass traits, and immunity response against diseases in broilers fed aflatoxin B1 contaminated diets. For this purpose, 200 one day old broilers were randomly allotted into four groups, each with five replicates (10 birds per replicate). Four starter and finisher experimental rations were formulated by using (A) 0, (B) 1.25, (C) 2.5, and (D) 3.75 g kg−1 of Saccharomyces cerevisiae. Experimental diets were contaminated with aflatoxin B1 (100 ppb kg−1 diet). The experimental chicks were kept under standard managerial conditions, and the vaccination program was followed against infectious bursal disease (IBD), infectious bronchitis (IB), and Newcastle disease (ND) diseases. At the end of the feeding trial, carcass, organ weight, and blood samples were collected randomly to determine the carcass traits and antibody titer against ND and IBD viruses. Throughout the experiment, the addition of 3.75 g kg−1 of the Saccharomyces cerevisiae cell wall (Group-D) in feed resulted in the highest weight gain, final weight, feed intake, and the lowest FCR values followed by C group compared with the other groups. All carcass traits were significantly (p > 0.05) improved by increasing the inclusion levels of Saccharomyces cerevisiae in broiler diets. It could be concluded that the broiler diet supplemented with 2.5 or 3.75 g kg−1 of Saccharomyces cerevisiae as a biodegrading agent resulted in improved growth performance, immunity activity and carcass traits, and supplementation with Saccharomyces cerevisiae at these levels can be used effectively in broiler diets without negatively affecting bird health status.
Collapse
|
14
|
Peng H, Chang Y, Baker RC, Zhang G. Interference of mycotoxin binders with ELISA, HPLC and LC-MS/MS analysis of aflatoxins in maize and maize gluten. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:496-506. [PMID: 31869282 DOI: 10.1080/19440049.2019.1701717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the impact of mycotoxin binders on the determination of aflatoxins in maize and maize gluten using various analytical methods, including ELISA, HPLC and LC-MS/MS. Three types of commercially available mycotoxin binders, yeast cell wall, mineral, and a mixture of mineral and bacterium, were investigated at inclusion levels of 0.1%, 0.2% and 0.4%. The binders were added to maize and maize gluten contaminated with aflatoxins at concentrations between 6.9 and 26.7 μg kg-1. The samples were analysed and the values were compared with corresponding controls (samples without binders) using ANOVA. The yeast cell wall binder had no significant effect (p=0.05) on the concentration of aflatoxins measured in either maize or maize gluten at any of the three inclusion levels, regardless of which analytical method was used. The mineral binder and the mixed mineral and bacterium binder had no significant effect (p=0.05) on the measured aflatoxin concentrations in either maize or maize gluten at any of the three inclusion levels when analysis was conducted using LC-MS/MS. Inclusion of these binders resulted in significant lower (p<0.01) detection of aflatoxins in both maize and maize gluten when analysis was conducted using ELISA; the effect was dose-dependent. They also resulted in significant lower detection of aflatoxins in maize extracted by methanol/water (70/30 v/v) (p<0.0001) and in maize gluten extracted by acetonitrile/water (80/20 v/v) (p<0.05) when analysis was conducted using HPLC. However, neither the mineral binder nor the mixed mineral and bacterium binder had significant effects (p=0.05) on aflatoxin concentrations measured in maize using HPLC, when extracted by acetonitrile/water (80/20 v/v). The study demonstrated that mycotoxin binders could result in underestimation of the levels of aflatoxin contamination, depending on the nature of the binder, the extraction solvent used in the analytical method, and the composition of tested sample.
Collapse
Affiliation(s)
- Hong Peng
- Mars Global Food Safety Centre, Yanqi Economic Development Zone, Beijing, China
| | - Yuwei Chang
- Mars Global Food Safety Centre, Yanqi Economic Development Zone, Beijing, China
| | - Robert C Baker
- Mars Global Food Safety Centre, Yanqi Economic Development Zone, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Centre, Yanqi Economic Development Zone, Beijing, China
| |
Collapse
|
15
|
Ballou MA, Davis EM, Kasl BA. Nutraceuticals: An Alternative Strategy for the Use of Antimicrobials. Vet Clin North Am Food Anim Pract 2019; 35:507-534. [PMID: 31590900 PMCID: PMC7127241 DOI: 10.1016/j.cvfa.2019.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Livestock industries strive to improve the health of their animals and, in the future, they are going to be required to do this with a continued reduction in antimicrobial use. Nutraceuticals represent a group of compounds that may help fill that void because they exert some health benefits when supplemented to livestock. This review is focused on the mechanisms of action, specifically related to the immune responses and health of ruminants. The nutraceutical classes discussed include probiotics, prebiotics, phytonutrients (essential oils and spices), and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Michael A Ballou
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| | - Emily M Davis
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Benjamin A Kasl
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
16
|
Fruhauf S, Novak B, Nagl V, Hackl M, Hartinger D, Rainer V, Labudová S, Adam G, Aleschko M, Moll WD, Thamhesl M, Grenier B. Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo. Toxins (Basel) 2019; 11:toxins11080481. [PMID: 31434326 PMCID: PMC6722729 DOI: 10.3390/toxins11080481] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Abstract
Zearalenone (ZEN)-degrading enzymes are a promising strategy to counteract the negative effects of this mycotoxin in livestock. The reaction products of such enzymes need to be thoroughly characterized before technological application as a feed additive can be envisaged. Here, we evaluated the estrogenic activity of the metabolites hydrolyzed zearalenone (HZEN) and decarboxylated hydrolyzed zearalenone (DHZEN) formed by hydrolysis of ZEN by the zearalenone-lactonase Zhd101p. ZEN, HZEN, and DHZEN were tested in two in vitro models, the MCF-7 cell proliferation assay (0.01–500 nM) and an estrogen-sensitive yeast bioassay (1–10,000 nM). In addition, we compared the impact of dietary ZEN (4.58 mg/kg) and equimolar dietary concentrations of HZEN and DHZEN on reproductive tract morphology as well as uterine mRNA and microRNA expression in female piglets (n = 6, four weeks exposure). While ZEN increased cell proliferation and reporter gene transcription, neither HZEN nor DHZEN elicited an estrogenic response, suggesting that these metabolites are at least 50–10,000 times less estrogenic than ZEN in vitro. In piglets, HZEN and DHZEN did not increase vulva size or uterus weight. Moreover, RNA transcripts altered upon ZEN treatment (EBAG9, miR-135a-5p, miR-187-3p and miR-204-5p) were unaffected by HZEN and DHZEN. Our study shows that both metabolites exhibit markedly reduced estrogenicity in vitro and in vivo, and thus provides an important basis for further evaluation of ZEN-degrading enzymes.
Collapse
Affiliation(s)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | | | | | | | | | - Gerhard Adam
- Institute of Applied Genetics and Cell Biology (IAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
17
|
Arak H, Karimi Torshizi MA, Hedayati M, Rahimi S. The first in vivo application of synthetic polymers based on methacrylic acid as an aflatoxin sorbent in an animal model. Mycotoxin Res 2019; 35:293-307. [PMID: 30949955 DOI: 10.1007/s12550-019-00353-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 03/02/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
This study attempts to evaluate the potential aflatoxin binder activity of a molecularly imprinted polymer (TMU95) synthesized to target the aflatoxin B1 (AFB1) analog molecule in comparison to a commercial toxin binder (CTB). Adsorption experiments were carried out to assess the ability to bind to AFB1 at various pH values. The strength of binding was investigated by the chemisorption index. The isothermal analysis was used to determine the maximum adsorption capacity values. The ability of TMU95 and CTB to adsorb essential minerals was evaluated and the obtained data suggested that CTB would significantly reduce availability of them compared to TMU95. The in vivo efficacy of TMU95 as an aflatoxin (AF) binder in duckling exposed to aflatoxin-contaminated feed from 4 to 18 days of age in comparison to the CTB was also assessed. TMU95 and CTB were effective in reducing the adverse effects caused by AFs on feed conversion ratio of duckling (p ≤ 0.01), and also showed a minor reduction of injuries caused by AFs on visceral organs enlargement (p ≤ 0.01). It was concluded that TMU95 could absorb AFB1 in vitro efficiently and had beneficial health effects that could alleviate some of the toxic effects of AFs on growing duckling performance similar to CTB.
Collapse
Affiliation(s)
- Homa Arak
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Hedayati
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Bzducha-Wróbel A, Bryła M, Gientka I, Błażejak S, Janowicz M. Candida utilis ATCC 9950 Cell Walls and β(1,3)/(1,6)-Glucan Preparations Produced Using Agro-Waste as a Mycotoxins Trap. Toxins (Basel) 2019; 11:E192. [PMID: 30935045 PMCID: PMC6521628 DOI: 10.3390/toxins11040192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins are harmful contaminants of food and feed worldwide. Feed additives with the abilities to trap mycotoxins are considered substances which regulate toxin transfer from feed to tissue, reducing its absorption in animal digestive tract. Market analysis emphasizes growing interest of feed producers in mycotoxins binders obtained from yeast biomass. The aim of the study was to prescreen cell walls (CW) and β(1,3)/(1,6)-glucan (β-G) preparations isolated from Candida utilis ATCC 9950 cultivated on waste potato juice water with glycerol as adsorbents for aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T-2) and fumonisin B1 (FB1). The adsorption was studied in single concentration tests at pH 3.0 and 6.0 in the presence of 1% of the adsorbent and 500 ng/mL of individual toxin. Evaluated CW and β-G preparations had the potential to bind ZEN, OTA and AFB1 rather than DON, NIV, T-2 toxin and FB1. The highest percentage of adsorption (about 83%), adsorption capacity (approx. 41 µg/ g preparation) and distribution coefficient (458.7mL/g) was found for zearalenone when CW preparation was used under acidic conditions. Higher protein content in CW and smaller particles sizes of the formulation could influence more efficient binding of ZEN, OTA, DON and T-2 toxin at appropriate pH compared to purified β-G. Obtained results show the possibility to transform the waste potato juice water into valuable Candida utilis ATCC 9950 preparation with mycotoxins adsorption properties. Further research is important to improve the binding capacity of studied preparations by increasing the active surface of adsorption.
Collapse
Affiliation(s)
- Anna Bzducha-Wróbel
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland.
| | - Marcin Bryła
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, Department of Food Analysis, Rakowiecka Str. 36, 02-532 Warsaw, Poland.
| | - Iwona Gientka
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland.
| | - Stanisław Błażejak
- Faculty of Food Science, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland.
| | - Monika Janowicz
- Faculty of Food Science, Department of Food Engineering and Process Management, Warsaw University of Life Sciences-SGGW, Nowoursynowska Str. 159c, 02-776 Warsaw, Poland.
| |
Collapse
|
19
|
Foroughi M, Sarabi Jamab M, Keramat J, Najaf Najafi M. The use ofSaccharomyces cerevisiaeimmobilized on activated alumina, and alumina silicate beads for the reduction of Aflatoxin M1in vitro. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marjan Foroughi
- Department of Food Biotechnology; Research Institute of Food Science and Technology; Mashhad Iran
| | - Mahboobe Sarabi Jamab
- Department of Food Biotechnology; Research Institute of Food Science and Technology; Mashhad Iran
| | - Javad Keramat
- Department of Food Science and Technology; College of Agricultural; Isfahan Iran
| | - Masoud Najaf Najafi
- Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO; Mashhad Iran
| |
Collapse
|
20
|
Ogunade IM, Martinez-Tuppia C, Queiroz OCM, Jiang Y, Drouin P, Wu F, Vyas D, Adesogan AT. Silage review: Mycotoxins in silage: Occurrence, effects, prevention, and mitigation. J Dairy Sci 2018; 101:4034-4059. [PMID: 29685276 DOI: 10.3168/jds.2017-13788] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/28/2017] [Indexed: 01/03/2023]
Abstract
Ensiled forage, particularly corn silage, is an important component of dairy cow diets worldwide. Forages can be contaminated with several mycotoxins in the field pre-harvest, during storage, or after ensiling during feed-out. Exposure to dietary mycotoxins adversely affects the performance and health of livestock and can compromise human health. Several studies and surveys indicate that ruminants are often exposed to mycotoxins such as aflatoxins, trichothecenes, ochratoxin A, fumonisins, zearalenone, and many other fungal secondary metabolites, via the silage they ingest. Problems associated with mycotoxins in silage can be minimized by preventing fungal growth before and after ensiling. Proper silage management is essential to reduce mycotoxin contamination of dairy cow feeds, and certain mold-inhibiting chemical additives or microbial inoculants can also reduce the contamination levels. Several sequestering agents also can be added to diets to reduce mycotoxin levels, but their efficacy varies with the type and level of mycotoxin contamination. This article gives an overview of the types, prevalence, and levels of mycotoxin contamination in ensiled forages in different countries, and describes their adverse effects on health of ruminants, and effective prevention and mitigation strategies for dairy cow diets. Future research priorities discussed include research efforts to develop silage additives or rumen microbial innocula that degrade mycotoxins.
Collapse
Affiliation(s)
- I M Ogunade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - C Martinez-Tuppia
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - O C M Queiroz
- Chr Hansen, Animal Health and Nutrition, Chr. Hansen, Buenos Aires 1107, Argentina
| | - Y Jiang
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - P Drouin
- Lallemand Animal Nutrition, Lallemand SAS, 19 rue des Briquetiers, B.P. 59, F-31702 Blagnac, France
| | - F Wu
- Department of Food Science and Human Nutrition, Department of Agricultural, Food, and Resource Economics, Michigan State University, East Lansing 48824
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32608.
| |
Collapse
|
21
|
Foroughi M, Sarabi Jamab M, Keramat J, Foroughi M. Immobilization of Saccharomyces cerevisiae on Perlite Beads for the Decontamination of Aflatoxin M1 in Milk. J Food Sci 2018; 83:2008-2013. [PMID: 29802731 DOI: 10.1111/1750-3841.14100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 01/20/2018] [Accepted: 02/07/2018] [Indexed: 11/29/2022]
Abstract
Aflatoxin M1 (AFM1) contamination presents one of the most serious concerns in milk safety. In this study, the immobilization of Saccharomyces cerevisiae was used to detoxify AFM1-contaminated milk. The yeasts were immobilized on perlite for 24 and 48 hr, and the best immobilization time was achieved at 48 hr. Microscopic examination confirmed successful immobilization. The milk samples with 0.08, 0.13, 0.18, and 0.23 ppb AFM1 contamination were passed through the biofilter for 20, 40, and 80 min. The results showed a significant reduction in AFM1 concentration for all the milk samples with various initial AFM1 contents. The contaminated milk with 0.08 ppb AFM1 was completely cleared after 40 min of circulation while for the milk solution with 0.23 ppb, the highest AFM1 reduction was obtained at about 81.3% after 80 min circulation. In addition, the biofilter was saturated after the third step of milk circulation, containing 0.23 ppb AF, in which each step duration was 20 min. This study showed the excellent capability of the immobilized cells on the perlite beads to detoxify the AFM1-contaminated milk without any side effects on its physicochemical properties. PRACTICAL APPLICATION The immobilization of Saccharomyces cerevisiae cells on perlite beads can be used to detoxify AFM1-contaminated milk. The perlite can provide a perfect support for immobilization. With respect to qualitative properties, 20 min, was suggested as the optimum time for milk decontamination. This study indicated that the detoxification of contaminated milk using immobilized S. cerevisiae cells on the perlite support did not affect the different properties of detoxified milk. This method can lead to a practical solution to address aflatoxin contamination in dairy products considered high-risk foods.
Collapse
Affiliation(s)
- Marjan Foroughi
- Dept. of Food Biotechnology, Research Inst. of Food Science and Technology, Mashhad, Iran
| | - Mahboobe Sarabi Jamab
- Dept. of Food Biotechnology, Research Inst. of Food Science and Technology, Mashhad, Iran
| | - Javad Keramat
- Dept. of Food Science and Technology, College of Agricultural, Isfahan, Iran
| | - Mahsa Foroughi
- Infectious Diseases Research Center, Kashan Univ. of Medical Sciences, Kashan, IR, Iran
| |
Collapse
|
22
|
Aazami MH, Nasri MHF, Mojtahedi M, Mohammadi SR. In Vitro Aflatoxin B 1 Binding by the Cell Wall and (1→3)-β-d-Glucan of Baker's Yeast. J Food Prot 2018; 81:670-676. [PMID: 29543529 DOI: 10.4315/0362-028x.jfp-17-412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate the ability of heat-killed baker's yeast (HKBY), the cell wall of baker's yeast (CWBY), and cell wall (1→3)-β-d-glucan of baker's yeast (BGBY) to bind aflatoxin B1 (AFB1) in phosphate-buffered saline (PBS) spiked with 0.5 μg/mL AFB1. Baker's yeast ( Saccharomyces cerevisiae) was heat killed by autoclaving at 121°C for 10 min. The cell wall was physically extracted, and (1→3)-β-d-glucan was extracted by a modified method. The concentration of AFB1 was determined by high-performance liquid chromatography after exposure to binders for three contact times, 30 min, 5 h, and 24 h, at room temperature. AFB1 binding by HKBY, CWBY, and BGBY was 6.30 to 46.34%. The lowest binding capacity was found for HKBY with a contact time of 30 min, and the highest binding capacity was found for BGBY with a contact time of 24 h. Among binders, CWBY had the highest binder-AFB1 complex stability during washing with PBS, and the lowest stability was found for HKBY complexes. Results of this study indicated that BGBY was the most effective binder, and more exposure to BGBY removes more AFB1 from PBS.
Collapse
Affiliation(s)
- Mohammad Hadi Aazami
- 1 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 9719113944, Iran (ORCID: http://orcid.org/0000-0002-0159-7836 [M.H.A.])
| | - Mohammad Hasan Fathi Nasri
- 1 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 9719113944, Iran (ORCID: http://orcid.org/0000-0002-0159-7836 [M.H.A.])
| | - Mohsen Mojtahedi
- 1 Department of Animal Science, Faculty of Agriculture, University of Birjand, Birjand 9719113944, Iran (ORCID: http://orcid.org/0000-0002-0159-7836 [M.H.A.])
| | - Shahla Roudbar Mohammadi
- 2 Department of Medical Mycology, Faculty of Medical Science, Tarbiat Modares University, Tehran 14115116, Iran
| |
Collapse
|
23
|
A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food Chem Toxicol 2018; 114:246-259. [PMID: 29476792 DOI: 10.1016/j.fct.2018.02.044] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/01/2018] [Accepted: 02/19/2018] [Indexed: 01/24/2023]
Abstract
Contamination of animal feed with mycotoxins still occurs very often, despite great efforts in preventing it. Animal feeds are contaminated, at low levels, with several mycotoxins, particularly with those produced by Aspergillus and Fusarium genera (Aflatoxin B1, Ochratoxin A, Zearalenone, Deoxynivalenol and Fumonisina B1). In animal feed, to date, only Aflatoxin B1 is limited through EU regulation. Consequently, mycotoxins cause serious disorders and diseases in farm animals. In 2009, the European Union (386/2009/EC) approved the use of mycotoxin-detoxifying agents, as feed additives, to prevent mycotoxicoses in farm animals. The present review gives an overview of the problem of multi-mycotoxin contamination of feed, and aims to classify mycotoxin adsorbing agents (minerals, organic, and synthetic) for feed decontamination, focusing on adsorbents with the ability to bind to multiple mycotoxins, which should have a more effective application in farms but they are still little studied in scientific literature.
Collapse
|
24
|
Taran F, Silva V, Abrunhosa L, Rosa C, Venâncio A, Almeida F. Evaluation of Saccharomyces cerevisiae as an anti-fumonisin B1 additive in a horse digestion model. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, the capacity of Saccharomyces cerevisiae to adsorb fumonisin B1 (FB1) was evaluated in in vitro assays. The digestion of nutrients from maize contaminated with FB1 was assessed as well as the influence of digestive enzymes and pH on the bioavailability of FB1 in solution. Adsorption assays in buffers containing 5 µg/ml of FB1 were conducted to determine the strain to be used in the in vitro digestion assays. Four different yeast strains (1, 2, 3 and 4) along with five different cell concentrations of each one were studied under pH 2 and 6.8 at 39 °C. Strain 4 showed higher adsorption values at 1×109 cfu/ml, adsorbing 39.4% of the mycotoxin at pH 2 and 37.5% at pH 6.8. After that, the in vitro enzymatic digestion was conducted in two separated experiments. First, maize artificially contaminated with FB1 (5 µg/g) was used in five different treatments. Then, assays with maize naturally contaminated with FB1 (Maize A: 3.2 µg/g and Maize B: 29.0 µg/g) were conducted. In all samples, FB1 was quantified by HPLC-FL in liquid fraction and in solid residue. Samples of maize in natura and solid residues were subjected to chemical analysis of dry matter, organic matter, crude protein, neutral detergent fibre and starch to estimate the digestion of nutrients. The presences of FB1 and S. cerevisiae (Strain 4) in these assays had no influence on the digestion of the maize nutrients. The adsorption capacity of yeast was observed more clearly in treatments with higher concentrations of FB1 in the maize grain. S. cerevisiae strain 4 removed between 8 to 18% of FB1 in solution, showing a limited capacity to adsorb FB1 under in vitro conditions of horse enzymatic digestion.
Collapse
Affiliation(s)
- F.M.P. Taran
- Universidade Federal Rural do Rio de Janeiro, BR 465 – km 7, 23851-970, Seropédica, Rio de Janeiro, Brazil
| | - V.P. Silva
- Universidade Federal Rural do Rio de Janeiro, BR 465 – km 7, 23851-970, Seropédica, Rio de Janeiro, Brazil
| | - L. Abrunhosa
- CEB – Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - C.A.R. Rosa
- Universidade Federal Rural do Rio de Janeiro, BR 465 – km 7, 23851-970, Seropédica, Rio de Janeiro, Brazil
| | - A. Venâncio
- CEB – Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - F.Q. Almeida
- Universidade Federal Rural do Rio de Janeiro, BR 465 – km 7, 23851-970, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Park SH, Kim J, Kim D, Moon Y. Mycotoxin detoxifiers attenuate deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction. Toxicol In Vitro 2017; 38:108-116. [DOI: 10.1016/j.tiv.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 08/23/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
26
|
Wielogórska E, MacDonald S, Elliott C. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1919] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the recent years, mycotoxins have undoubtedly gained a keen interest of the scientific community studying food safety. The main reason is their profound impact on both human and animal health. International surveys reveal a low percentage of feed samples being contaminated above permitted/guideline levels, developed to protect consumers of animal derived products. However, the deleterious impact of feed co-contaminated at low levels with numerous both known and regulated as well as novel mycotoxins on producing animals has been described. Associated effects on agro-economics world-wide include substantial pecuniary losses which are borne by the society as a whole. Even though good agronomic practice is thought to be the most effective way of preventing animal feed contamination, the EC have recognised the need to introduce an additional means of management of feed already contaminated with low-levels of mycotoxins to alleviate detrimental effects on agricultural production efficiency. This review discusses types of feed detoxifying agents described in scientific literature, their reported efficacy in both in vitro and in vivo systems, and comparison with available commercial formulations in the light of increasing knowledge regarding mycotoxin prevalence in the changing global environment.
Collapse
Affiliation(s)
- E. Wielogórska
- Institute for Global Food Security, Queen’s University Belfast, 18-30 Malone Road, Belfast BT9 5BN, United Kingdom
| | - S. MacDonald
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - C.T. Elliott
- Institute for Global Food Security, Queen’s University Belfast, 18-30 Malone Road, Belfast BT9 5BN, United Kingdom
| |
Collapse
|
27
|
Oh SY, Quinton VM, Boermans HJ, Swamy HVLN, Karrow NA. In vitro exposure of Penicillium mycotoxins with or without a modified yeast cell wall extract (mYCW) on bovine macrophages (BoMacs). Mycotoxin Res 2015; 31:167-75. [PMID: 26358170 DOI: 10.1007/s12550-015-0227-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 11/30/2022]
Abstract
Penicillium mycotoxins (PMs) are contaminants that are frequently found in grain or crop-based silage for animal feed. Previously, we have characterized the potential immunotoxicity of the following PMs: citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophenolic acid (MPA), and penicillic acid (PA) by using a bovine macrophage cell line (BoMacs). In the present study, cell proliferation was used as a bioassay endpoint to evaluate the efficacy of a modified yeast cell wall extract (mYCW), for preventing PM toxicity under various in vitro conditions such as the following: pH (3, 5, 7), incubation time (1, 2, 4, 6 h), percentage of mYCW (0.05, 0.1, 0.2, 0.5, 1.0 %), and PM concentration. mYCW was most effective in preventing the toxicity of 12.88 and 25.8 μM OTA at pH 3.0 (p < 0.0001), regardless of incubation time (p < 0.0001) and the percentage of mYCW (p < 0.0001). An incubation time of 6 h (p < 0.05) or 0.5 and 1.0 % mYCW (p < 0.0001) significantly improved the efficacy of mYCW for preventing CIT toxicity. In contrast, 0.5 and 1.0 % of mYCW appeared to exacerbate the PAT toxicity (p < 0. 0001). This effect on PAT toxicity was constantly observed with higher PAT concentrations, and it reached significance at a concentration of 0.70 μM (p < 0.0001). mYCW had no effect on PA toxicity. These results suggest that mYCW may reduce OTA toxicity and, to some extent, CIT toxicity at pH 3.0. Although PAT toxicity was increased by mYCW treatment, PAT is readily degraded during heat treatment and may therefore be dealt with using other preventative measures.
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Centre for Genetic Improvement of Livestock (CGIL), Department of Animal and Poultry Science, Department of Toxicology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - V Margaret Quinton
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Herman J Boermans
- Department of Biomedical Science, Ontario Veterinary College (OVC), University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - H V L N Swamy
- Devenish Nutrition Ltd, Bengaluru, Karnataka, 560024, India
| | - Niel A Karrow
- Department of Animal & Poultry Science (APS), Ontario Agriculture College (OAC), University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Centre for Genetic Improvement of Livestock (CGIL), Department of Animal and Poultry Science, Department of Toxicology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
28
|
Bovo F, Franco LT, Rosim RE, Barbalho R, de Oliveira CAF. In vitro ability of beer fermentation residue and yeast-based products to bind aflatoxin B1. Braz J Microbiol 2015; 46:577-81. [PMID: 26273277 PMCID: PMC4507554 DOI: 10.1590/s1517-838246220130400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/05/2014] [Indexed: 12/02/2022] Open
Abstract
This study aimed to verify the in vitro ability of beer
fermentation residue (BFR) containing Saccharomyces cerevisiae
cells and five commercial products that differed in the viability and integrity
of S. cerevisiae cells to remove aflatoxin B1
(AFB1) from a citrate-phosphate buffer solution (CPBS). BFR was
collected at a microbrewery and prepared by drying and milling. The commercial
yeast-based products were as follows: inactive intact yeast cells from beer
alcoholic fermentation, inactive intact yeast cells from sugarcane alcoholic
fermentation, hydrolyzed yeast cells, yeast cell walls and active yeast cells.
Adsorption assays were performed in CPBS spiked with 1.0 μg AFB1/mL
at pH 3.0 and 6.0 for a contact time of 60 min at room temperature. Analysis of
AFB1 in the samples was performed by high performance liquid
chromatography. AFB1 adsorption by the products ranged from 45.5% to
69.4% at pH 3.0 and from 24.0% to 63.8% at pH 6.0. The higher percentages (p
< 0.05) of AFB1 binding at both pH values were achieved with
products containing hydrolyzed yeast cells or yeast cell walls rather than
intact cells. The AFB1 binding percentages of BFR were 55.0 ± 5.0% at
pH 3.0 and 49.2 ± 4.5% at pH 6.0, which was not significantly different (p >
0.05) from commercial products containing inactive intact yeast cells. The
results of this trial indicate that the yeast-based products tested, especially
the BFR, have potential applications in animal feeds as a suitable biological
method for reducing the adverse effects of aflatoxins.
Collapse
Affiliation(s)
- Fernanda Bovo
- Universidade de São Paulo, Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil, Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Larissa Tuanny Franco
- Universidade de São Paulo, Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil, Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Roice Eliana Rosim
- Universidade de São Paulo, Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil, Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Ricardo Barbalho
- ICC Brazil, São Paulo, SP, Brasil, ICC Brazil, São Paulo, SP, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- Universidade de São Paulo, Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil, Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
29
|
Murugesan GR, Ledoux DR, Naehrer K, Berthiller F, Applegate TJ, Grenier B, Phillips TD, Schatzmayr G. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poult Sci 2015; 94:1298-315. [PMID: 25840963 PMCID: PMC4988553 DOI: 10.3382/ps/pev075] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/31/2014] [Accepted: 02/01/2015] [Indexed: 11/20/2022] Open
Abstract
Extensive research over the last couple of decades has made it obvious that mycotoxins are commonly prevalent in majority of feed ingredients. A worldwide mycotoxin survey in 2013 revealed 81% of around 3,000 grain and feed samples analyzed had at least 1 mycotoxin, which was higher than the 10-year average (from 2004 to 2013) of 76% in a total of 25,944 samples. The considerable increase in the number of positive samples in 2013 may be due to the improvements in detection methods and their sensitivity. The recently developed liquid chromatography coupled to (tandem) mass spectrometry allows the inclusion of a high number of analytes and is the most selective, sensitive, and accurate of all the mycotoxin analytical methods. Mycotoxins can affect the animals either individually or additively in the presence of more than 1 mycotoxin, and may affect various organs such as gastrointestinal tract, liver, and immune system, essentially resulting in reduced productivity of the birds and mortality in extreme cases. While the use of mycotoxin binding agents has been a commonly used counteracting strategy, considering the great diversity in the chemical structures of mycotoxins, it is very obvious that there is no single method that can be used to deactivate mycotoxins in feed. Therefore, different strategies have to be combined in order to specifically target individual mycotoxins without impacting the quality of feed. Enzymatic or microbial detoxification, referred to as "biotransformation" or "biodetoxification," utilizes microorganisms or purified enzymes thereof to catabolize the entire mycotoxin or transform or cleave it to less or non-toxic compounds. However, the awareness on the prevalence of mycotoxins, available modern techniques to analyze them, the effects of mycotoxicoses, and the recent developments in the ways to safely eliminate the mycotoxins from the feed are very minimal among the producers. This symposium review paper comprehensively discusses the above mentioned aspects.
Collapse
Affiliation(s)
| | - D R Ledoux
- Department of Animal Sciences, University of Missouri-Columbia, MO, USA
| | - K Naehrer
- BIOMIN Research Center, Tulln, Austria
| | - F Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
| | - T J Applegate
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | - B Grenier
- Department of Animal Sciences, Purdue University West Lafayette, IN, USA
| | | | | |
Collapse
|
30
|
Poloni V, Dogi C, Pereyra CM, Fernández Juri MG, Köhler P, Rosa CAR, Dalcero AM, Cavaglieri LR. Potentiation of the effect of a commercial animal feed additive mixed with different probiotic yeast strains on the adsorption of aflatoxin B1. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:970-6. [DOI: 10.1080/19440049.2015.1024761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Hahn I, Kunz-Vekiru E, Twarużek M, Grajewski J, Krska R, Berthiller F. Aerobic and anaerobicin vitrotesting of feed additives claiming to detoxify deoxynivalenol and zearalenone. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:922-33. [DOI: 10.1080/19440049.2015.1023741] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Pfliegler WP, Pusztahelyi T, Pócsi I. Mycotoxins - prevention and decontamination by yeasts. J Basic Microbiol 2015; 55:805-18. [DOI: 10.1002/jobm.201400833] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/12/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Walter P. Pfliegler
- Department of Genetics and Applied Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
- Department of Biotechnology and Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
- Postdoctoral Fellowship Programme of the Hungarian Academy of Sciences (MTA); Hungary
| | - Tünde Pusztahelyi
- Faculty of Agricultural and Food Sciences and Environmental Management; Central Laboratory; University of Debrecen; Debrecen Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology; Faculty of Science and Technology; University of Debrecen; Debrecen Hungary
| |
Collapse
|
33
|
|
34
|
Brodehl A, Möller A, Kunte HJ, Koch M, Maul R. Biotransformation of the mycotoxin zearalenone by fungi of the generaRhizopusandAspergillus. FEMS Microbiol Lett 2014; 359:124-30. [DOI: 10.1111/1574-6968.12586] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/31/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022] Open
Affiliation(s)
- Antje Brodehl
- Department of Analytical Chemistry, Reference Materials; BAM Federal Institute for Materials Research and Testing; Berlin Germany
- Department of Materials and Environment; BAM Federal Institute for Materials Research and Testing; Berlin Germany
| | - Anne Möller
- Department of Analytical Chemistry, Reference Materials; BAM Federal Institute for Materials Research and Testing; Berlin Germany
| | - Hans-Jörg Kunte
- Department of Materials and Environment; BAM Federal Institute for Materials Research and Testing; Berlin Germany
| | - Matthias Koch
- Department of Analytical Chemistry, Reference Materials; BAM Federal Institute for Materials Research and Testing; Berlin Germany
| | - Ronald Maul
- Department of Analytical Chemistry, Reference Materials; BAM Federal Institute for Materials Research and Testing; Berlin Germany
- Department of Quality; Leibniz-Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V.; Großbeeren Germany
| |
Collapse
|
35
|
Development of an in vitro method for the prediction of mycotoxin binding on yeast-based products: case of aflatoxin B₁, zearalenone and ochratoxin A. Appl Microbiol Biotechnol 2014; 98:7583-96. [PMID: 25016345 DOI: 10.1007/s00253-014-5917-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/08/2023]
Abstract
To date, no official method is available to accurately define the binding capacity of binders. The goal is to define general in vitro parameters (equilibrium time, pH, mycotoxin/binder ratio) for the determination of binding efficacy, which can be used to calculate the relevant equilibrium adsorption constants. For this purpose, aflatoxin B1 (AFB1), zearalenone (ZEA) or ochratoxin A (OTA) were incubated with one yeast cell wall in pH 3, pH 5 or pH 7 buffers. The percentage of adsorption was recorded by quantitation of remaining mycotoxins in the supernatant and amount of mycotoxin adsorbed on the residue. The incubation of yeast cell wall in the presence of mycotoxins solved in buffer, lead to unexpected high adsorption percentage when the analysis was based only on remaining mycotoxins in the supernatant. The decrease of mycotoxins in the supernatant was not correlated to the amount of mycotoxins found in the residue. For this reason we modified the conditions of incubation. Yeast cell wall (5 mg) was pre-incubated in buffer (990 μl) at 37 °C during 5 min and then 10 μl of an alcoholic solution of mycotoxin (concentration 100 times higher than the final concentration required in the test tube) were added. After incubation, the solution was centrifuged, and the amount of mycotoxins were analysed both in the supernatant and in the residue. A plateau of binding was reached after 15 min of incubation whatever the mycotoxins and the concentrations tested. The adsorption of ZEA was better at pH 5 (75 %), versus 60 % at pH 3 and 7. OTA was only significantly adsorbed at pH 3 (50 %). Depending on the pH, the adsorptions of OTA or ZEA were increased or decreased when they were together, indicative of a cooperative effect.
Collapse
|
36
|
Miller J, Schaafsma A, Bhatnagar D, Bondy G, Carbone I, Harris L, Harrison G, Munkvold G, Oswald I, Pestka J, Sharpe L, Sumarah M, Tittlemier S, Zhou T. Mycotoxins that affect the North American agri-food sector: state of the art and directions for the future. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1624] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper summarises workshop discussions at the 5th international MYCORED meeting in Ottawa, Canada (June 2012) with over 200 participants representing academics, government and industry scientists, government officials and farming organisations (present in roughly equal proportions) from 27 countries. Workshops centred on how mycotoxins in food and feed affect value chains and trade in the region covered by the North American Free Trade Agreement. Crops are contaminated by one or more of five important mycotoxins in parts of Canada and the United States every year, and when contaminated food and feed are consumed in amounts above tolerable limits, human and animal health are at risk. Economic loss from such contamination includes reduced crop yield, grain quality, animal productivity and loss of domestic and export markets. A systematic effort by grain producers, primary, transfer, and terminal elevators, millers and food and feed processers is required to manage these contaminants along the value chain. Workshops discussed lessons learned from investments in plant genetics, fungal genomics, toxicology, analytical and sampling science, management strategies along the food and feed value chains and methods to ameliorate the effects of toxins in grain on animal production and on reducing the impact of mycotoxins on population health in developing countries. These discussions were used to develop a set of priorities and recommendations.
Collapse
Affiliation(s)
- J.D. Miller
- Department of Chemistry, Carleton University, 228 Steacie Building, Ottawa, ON K1S 5B6, Canada
| | - A.W. Schaafsma
- Ridgetown Campus, University of Guelph, 120 Main Street East, Ridgetown, ON N0P 2C0, Canada
| | - D. Bhatnagar
- Southern Regional Research Center, USDA, ARS, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124, USA
| | - G. Bondy
- Health Canada, Food Directorate, Bureau of Chemical Safety, 251 Sir Frederick Banting Driveway, 2202C Ottawa, ON K1A 0K9, Canada
| | - I. Carbone
- Department of Plant Pathology, North Carolina State University, 851 Main Campus Drive, Suite 233, Partners III, Raleigh, NC 27606, USA
| | - L.J. Harris
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - G. Harrison
- Canadian National Millers' Association, 236 Metcalfe Street, Ottawa, ON K2P 1R3, Canada
| | - G.P. Munkvold
- Department of Plant Pathology and Microbiology, Iowa State University, 160 Seed Science Building, Ames, IA 50011, USA
| | - I.P. Oswald
- Toxalim, Research Centre in Food Toxicology, INRA, UMR1331, 180 Chemin de Tournefeuille, 31027 Toulouse, France
| | - J.J. Pestka
- Department of Microbiology and Molecular Genetics, Michigan State University, 234 GM Trout Building, East Lansing, MI 48824-1224, USA
| | - L. Sharpe
- DuPont Pioneer Hi-Bred, 7398 Queen's Line, Chatham, ON N7M 5L1, Canada
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - S.A. Tittlemier
- Grain Research Laboratory, Canadian Grain Commission, 1404-303 Main Street, Winnipeg, MB R3C 3G8, Canada
| | - T. Zhou
- Agriculture and Agri-Food Canada, Guelph Food Research Center, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| |
Collapse
|
37
|
Johnston CI, Singleterry R, Reid C, Sparks D, Brown A, Baldwin B, Ward SH, Williams WP. The Fate of Aflatoxin in Corn Fermentation. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nr.2012.33017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|