1
|
Abdeen A, Elsabagh R, Elbasuni SS, Said AM, Abdelkader A, El-Far AH, Ibrahim SF, Mihaela O, Fericean L, Abdelfattah AM, El-Hewaity M, Elbarbary N, Kadah AY, Ibrahim SS. Microalgae ( Chlorella vulgaris) attenuates aflatoxin-associated renal injury. Front Pharmacol 2023; 14:1291965. [PMID: 38205372 PMCID: PMC10777483 DOI: 10.3389/fphar.2023.1291965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/30/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction: Aflatoxins (AFT) are ubiquitous environmental pollutants that are extremely dangerous for both human beings as well as animals. A safe, effective, and considerate strategy is therefore credited with controlling AFT intoxication. Therefore, our study aimed to evaluate the mitigating properties of Chlorella vulgaris (ChV) against AFT-induced nephrotoxicity and altered egg quality. Methods: Quails were randomized into Control group (receiving a normal diet); ChV group (1 g/kg diet); AFT group (receiving an AFT-containing diet); and the AFT-ChV group were given both treatments. Results and discussion: AFT provoked kidney injury, exhibited by increased renal biochemical parameters and reduced protein levels. Malondialdehyde (MDA) levels dramatically increased as a consequence of AFT exposure, and glutathione (GSH) levels, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities were also decreased. Substantial up-modulation of the mRNA expression of the inflammatory cytokines (TNF-α, IL-1β, and IL-6) was additionally reported. Furthermore, AFT residues were detected in the egg compromising its quality and nutritional value. Contrarily, ChV supplemented diet suppressed the AFT-prompted oxidative stress and inflammation, together with enhancing the nutritional value and quality of eggs and decreasing AFT residues. These beneficial impacts are proposed to be attributed to its antioxidant and nutritional ingredients. The molecular docking dynamics confirmed the inflammatory and apoptotic protein targets for ChV. Our findings recommend that adding ChV supplements to foods might guard against nephrotoxicity brought on by AFT exposure.
Collapse
Affiliation(s)
- Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Rasha Elsabagh
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Sawsan S. Elbasuni
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Alshaimaa M. Said
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ali H. El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ostan Mihaela
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I" from Timișoara, Timișoara, Romania
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I" from Timișoara, Timișoara, Romania
| | - Abdelfattah M. Abdelfattah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Mohamed El-Hewaity
- Department of Pharmacology, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkoum, Egypt
| | - Nady Elbarbary
- Department of Food Hygiene, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Amgad Y. Kadah
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Samar S. Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
2
|
Elbasuni SS, Ibrahim SS, Elsabagh R, Nada MO, Elshemy MA, Ismail AK, Mansour HM, Ghamry HI, Ibrahim SF, Alsaati I, Abdeen A, Said AM. The Preferential Therapeutic Potential of Chlorella vulgaris against Aflatoxin-Induced Hepatic Injury in Quail. Toxins (Basel) 2022; 14:843. [PMID: 36548739 PMCID: PMC9787596 DOI: 10.3390/toxins14120843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
Aflatoxins (AFs) are the most detrimental mycotoxin, potentially hazardous to animals and humans. AFs in food threaten the health of consumers and cause liver cancer. Therefore, a safe, efficient, and friendly approach is attributed to the control of aflatoxicosis. Therefore, this study aimed to evaluate the impacts of Chlorella vulgaris (CLV) on hepatic aflatoxicosis, aflatoxin residues, and meat quality in quails. Quails were allocated into a control group; the CLV group received CLV (1 g/kg diet); the AF group received an AF-contaminated diet (50 ppb); and the AF+CLV group received both treatments. The results revealed that AF decreased the growth performance and caused a hepatic injury, exhibited as an increase in liver enzymes and disrupted lipid metabolism. In addition, AF induced oxidative stress, exhibited by a dramatic increase in the malondialdehyde (MDA) level and decreases in glutathione (GSH) level, superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities. Significant up-regulation in the inflammatory cytokine (TNF-α, IL-1β, and IL-6) mRNA expression was also documented. Moreover, aflatoxin residues were detected in the liver and meat with an elevation of fat% alongside a decrease in meat protein%. On the other hand, CLV supplementation ameliorated AF-induced oxidative stress and inflammatory condition in addition to improving the nutritional value of meat and significantly reducing AF residues. CLV mitigated AF-induced hepatic damage, decreased growth performance, and lowered meat quality via its antioxidant and nutritional constituents.
Collapse
Affiliation(s)
- Sawsan S. Elbasuni
- Department of Avian and Rabbit Diseases, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Samar S. Ibrahim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Rasha Elsabagh
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Mai O. Nada
- Department of Veterinary Pharmacology, Animal Health Research Institute-Benha Branch, Benha 13518, Egypt
| | - Mona A. Elshemy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Ayman K. Ismail
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Heba M. Mansour
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza 3236101, Egypt
| | - Heba I. Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ilhaam Alsaati
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
- Center of Excellence for Screening of Environmental Contaminants (CESEC), Benha University, Toukh 13736, Egypt
| | - Alshaimaa M. Said
- Department of Biochemistry, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| |
Collapse
|
3
|
Ali A, Khatoon A, Almohaimeed HM, Al-Sarraj F, Albiheyri R, Alotibi I, Abidin ZU. Mitigative Potential of Novel <i>Lactobacillus plantarum</i> TISTR 2076 against the Aflatoxins-Associated Oxidative Stress and Histopathological Alterations in Liver and Kidney of Broiler Chicks during the Entire Growth Period. Toxins (Basel) 2022; 14:toxins14100689. [PMID: 36287958 PMCID: PMC9610607 DOI: 10.3390/toxins14100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Aflatoxins are the secondary metabolites produced by <i>Aspergillus flavus</i> and <i>Aspergillus parasiticus</i> and have severe pathological effects on the health of human and animals. The present study was designed to investigate the toxicopathological changes induced by aflatoxins and mitigative potential of <i>Lactobacillus plantarum</i> in broiler birds. One hundred and eighty broiler chicks at one day of age was procured from the local market, and chicks were equally divided into six groups with thirty birds in each group. These birds were treated with aflatoxins (300 and 600 µg/kg) and <i>Lactobacillus plantarum</i> (1 × 10<sup>8</sup> cfu/kg of feed) in different combinations. The first group was kept as the control, and only a basal diet was provided to birds (BD). In the second group (AF1), the first level of aflatoxins (300 µg/kg) was fed to the birds. In the third group (AF2), the second level of aflatoxins (600 µg/kg) was fed to birds. In the fourth group (AF1LP), <i>Lactobacillus plantarum</i> was given with first level of aflatoxins. In the fifth group (AF2LP), <i>Lactobacillus plantarum</i> was given with the second level of aflatoxins, and in the 6th group (BDLP), <i>Lactobacillus plantarum</i> alone was fed to the chicks. This experimental study was continued for 42 days. Birds were slaughtered after 42 days, and different parameters were assessed. Parameters studied were gain in body weight, organ weight along with some histopathological, hematological, biochemical parameters and residues of aflatoxins in liver and kidney. <i>Lactobacillus plantarum</i> improved the body weight gain and restored the relative organ weight. Hepatic and renal biomarkers returned to normal concentrations, serum proteins were restored in combination group AF1LP, and partial amelioration was observed in the AF2LP group. Red blood cells, white blood cells, hemoglobin centration and packed cell volume became normalized in the AF1LP group, while partial amelioration was observed in the AF2LP group. LP also reduced the concentration of aflatoxin residues in liver kidney and improved the TAC concentrations. The results of this study elucidated the mitigative potential of <i>Lactobacillus plantarum</i> against serum biochemical, histopathological, hematological and toxicopathological changes induced by aflatoxins in the chicks.
Collapse
Affiliation(s)
- Ashiq Ali
- Faculty of Agriculture and Veterinary Sciences, Superior University, Lahore 54000, Pakistan
- Correspondence: or (A.A.); (A.K.)
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
- Correspondence: or (A.A.); (A.K.)
| | - Hailah M. Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ibrahim Alotibi
- Health Information Technology Department, Applied College, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Zain Ul Abidin
- Veterinary Research Institute Lahore Cannt, Lahore 54000, Pakistan
| |
Collapse
|
4
|
Hoffmans Y, Schaarschmidt S, Fauhl-Hassek C, van der Fels-Klerx H. Factors during Production of Cereal-Derived Feed That Influence Mycotoxin Contents. Toxins (Basel) 2022; 14:301. [PMID: 35622548 PMCID: PMC9143035 DOI: 10.3390/toxins14050301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins are naturally present in cereal-based feed materials; however, due to adverse effects on animal health, their presence in derived animal feed should be minimized. A systematic literature search was conducted to obtain an overview of all factors from harvest onwards influencing the presence and concentration of mycotoxins in cereal-based feeds. The feed production processes covered included the harvest time, post-harvest practices (drying, cleaning, storage), and processing (milling, mixing with mycotoxin binders, extrusion cooking, ensiling). Delayed harvest supports the production of multiple mycotoxins. The way feed materials are dried after harvest influences the concentration of mycotoxins therein. Applying fungicides on the feed materials after harvest as well as cleaning and sorting can lower the concentration of mycotoxins. During milling, mycotoxins might be redistributed in cereal feed materials and fractions thereof. It is important to know which parts of the cereals are used for feed production and whether or not mycotoxins predominantly accumulate in these fractions. For feed production, mostly the milling fractions with outer parts of cereals, such as bran and shorts, are used, in which mycotoxins concentrate during processing. Wet-milling of grains can lower the mycotoxin content in these parts of the grain. However, this is typically accompanied by translocation of mycotoxins to the liquid fractions, which might be added to by-products used as feed. Mycotoxin binders can be added during mixing of feed materials. Although binders do not remove mycotoxins from the feed, the mycotoxins become less bioavailable to the animal and, in the case of food-producing animals, to the consumer, lowering the adverse effects of mycotoxins. The effect of extruding cereal feed materials is dependent on several factors, but in principle, mycotoxin contents are decreased after extrusion cooking. The results on ensiling are not uniform; however, most of the data show that mycotoxin production is supported during ensiling when oxygen can enter this process. Overall, the results of the literature review suggest that factors preventing mycotoxin production have greater impact than factors lowering the mycotoxin contents already present in feed materials.
Collapse
Affiliation(s)
- Yvette Hoffmans
- Wageningen Food Safety Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands;
| | - Sara Schaarschmidt
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | - Carsten Fauhl-Hassek
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, D-10589 Berlin, Germany; (S.S.); (C.F.-H.)
| | | |
Collapse
|
5
|
Gao S, Zhang L, Zhu D, Huang J, Yang J, Jiang J, Wu H, Lv G. Effects of glucose oxidase and bacillus subtilis on growth performance and serum biochemical indicexs of broilers exposed to aflatoxin B1 and endotoxin. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Abstract
Mycotoxins are defined as secondary metabolites of some species of mold fungi. They are present in many foods consumed by animals. Moreover, they most often contaminate products of plant and animal origin. Fungi of genera Fusarium, Aspergillus, and Penicillum are most often responsible for the production of mycotoxins. They release toxic compounds that, when properly accumulated, can affect many aspects of breeding, such as reproduction and immunity, as well as the overall liver detoxification performance of animals. Mycotoxins, which are chemical compounds, are extremely difficult to remove due to their natural resistance to mechanical, thermal, and chemical factors. Modern methods of analysis allow the detection of the presence of mycotoxins and determine the level of contamination with them, both in raw materials and in foods. Various food processes that can affect mycotoxins include cleaning, grinding, brewing, cooking, baking, frying, flaking, and extrusion. Most feeding processes have a variable effect on mycotoxins, with those that use high temperatures having the greatest influence. Unfortunately, all these processes significantly reduce mycotoxin amounts, but they do not completely eliminate them. This article presents the risks associated with the presence of mycotoxins in foods and the methods of their detection and prevention.
Collapse
|
7
|
Akgönüllü S, Armutcu C, Denizli A. Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03699-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Palade LM, Dore MI, Marin DE, Rotar MC, Taranu I. Assessment of Food By-Products' Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone. Toxins (Basel) 2020; 13:2. [PMID: 33374968 PMCID: PMC7822050 DOI: 10.3390/toxins13010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, eight food by-products were investigated as biosorbent approaches in removing mycotoxin load towards potential dietary inclusion in animal feed. Among these food-derived by-products, grape seed (GSM) and seabuckthorn (SBM) meals showed the most promising binding capacity for Aflatoxin B1 (AFB1) and Zearalenone (ZEA), measured as percent of adsorbed mycotoxin. Furthermore, we explored the mycotoxin sequestering potential by screening the effect of time, concentration, temperature and pH. Comparative binding efficacy was addressed by carrying out adsorption experiments in vitro. The highest mycotoxin adsorption was attained using 30 mg of by-product for both GSM (85.9% AFB1 and 83.7% ZEA) and SBM (68% AFB1 and 84.5% ZEA). Optimal settings for the experimental factors were predicted employing the response surface design. GSM was estimated to adsorb AFB1 optimally at a concentration of 29 mg/mL, pH 5.95 and 33.6 °C, and ZEA using 28 mg/mL at pH 5.76 and 31.7 °C. Favorable adsorption of AFB1 was estimated at 37.5 mg of SBM (pH 8.1; 35.6 °C), and of ZEA at 30.2 mg of SBM (pH 5.6; 29.3 °C). Overall, GSM revealed a higher binding capacity compared with SBM. In addition, the two by-products showed different specificity for the binary-mycotoxin system, with SBM having higher affinity towards ZEA than AFB1 (Kf = 0.418 and 1/n = 0.213 vs. Kf = 0.217 and 1/n = 0.341) and GSM for AFB1 in comparison with ZEA (Kf = 0.367 and 1/n = 0.248 vs. Kf = 0.343 and 1/n = 0.264). In conclusion, this study suggests that GSM and SBM represent viable alternatives to commercial biosorbent products.
Collapse
Affiliation(s)
- Laurentiu Mihai Palade
- National Research Development Institute for Animal Biology and Nutrition, 077015 IBNA Balotesti, Romania; (M.I.D.); (D.E.M.); (M.C.R.); (I.T.)
| | | | | | | | | |
Collapse
|
9
|
Horky P, Venusova E, Aulichova T, Ridoskova A, Skladanka J, Skalickova S. Usability of graphene oxide as a mycotoxin binder: In vitro study. PLoS One 2020; 15:e0239479. [PMID: 32966310 PMCID: PMC7510967 DOI: 10.1371/journal.pone.0239479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Mycotoxin management in agriculture is an essential challenge for maintaining the health of both animals and humans. Choosing the right adsorbent is still a question for many breeders and an important criterion for feed manufacturers. New adsorbents are still being sought. Graphene oxide is a promising material in the field of nanotechnology, which excels in its adsorption properties. Presented in vitro study investigates graphene oxide for the binding of mycotoxins from crushed wheat. The results show that graphene oxide has an adsorption capacity for aflatoxin 0.045 mg/g, zearalenone 0.53 mg/g and deoxynivalenol 1.69 mg/g at 37° C. In vitro simulation of crushed wheat digestion showed rapid adsorption during the gastric phase. Of the minerals, Mg, Cu and Zn were the most adsorbed. The applied dose of graphene oxide of 10 mg/g caused only a slight inhibition of the digestive enzymes α-amylase and trypsin compared to pepsin and gastric lipase. In vitro results indicated the suitability of graphene oxide in the adsorption of the aflatoxin, zearalenone and deoxynivalenol.
Collapse
Affiliation(s)
- Pavel Horky
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Eva Venusova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Tereza Aulichova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Jiri Skladanka
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Faculty of AgriSciences, Mendel University in Brno, Zemedelska, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
10
|
Arak H, Karimi Torshizi MA, Hedayati M, Rahimi S. The efficiency of synthetic polymers to ameliorate the adverse effects of Aflatoxin on plasma biochemistry, immune responses, and hepatic genes expression in ducklings. Toxicon 2020; 187:136-143. [PMID: 32898571 DOI: 10.1016/j.toxicon.2020.08.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 12/27/2022]
Abstract
To evaluate the effect of molecularly imprinted polymers as a synthetic polymer (TMU95) and commercial toxin binder (CTB) on aflatoxins (AFs) toxic effects on hepatic gene expression, and the biochemical and immunological parameters in ducklings, 240 four-day-old ducklings were randomly allocated into six groups with four replicates of 10 ducklings per each. The experimental groups were as follows: Negative control (basal diet without any additive or AFs), Negative control + TMU95 (5 g/kg feed), Negative control + CTB (Zarinbinder, Vivan Group, Mashhad, Iran. 5 g/kg feed), Positive control (0.2 mg AFs/kg feed), Positive control + TMU95 (5 g/kg feed), and Positive control + CTB (5 g/kg feed). On day 14, livers were collected (8 per treatment) to evaluate change in the expression of genes involved in AFs biotransformation (cytochrome P450 1A1 and 2H1) and antioxidant function (glutathione S-transferase). Several biochemical biomarkers and immune responses were also recorded. Compared with the negative control group AFs treatment significantly decreased plasma total cholesterol, triglyceride and increased the aspartate-aminotransferase (AST), alanine-aminotransferase (ALT) and alkaline phosphatase (ALP) activity (P ≤ 0.01). Cellular immune responses to the phytohemagglutinin-and 2, 4-dinitro 1-chlorobenzene skin test were significantly influenced by dietary aflatoxins (P ≤ 0.01) but a humoral immune response to Newcastle disease virus/vaccine was not affected (P ≥ 0.01). Compared with negative control group, the genes associated with AFs biotransformation were downregulated, whereas the gene associated with the antioxidant function was upregulated in birds fed AFs. The CTB supplement in contaminated feed could alleviate AFs adverse effects on cellular immunity, ALT concentration, and cytochrome P450 2H1 gene expression partially, whereas TMU95 could not ameliorate the adverse effects of AFs on the traits studied, except for ALP. The data suggest that TMU95 may alleviate some of the toxic effects of aflatoxins in duckling and it might prove to be beneficial in the reduction of aflatoxicosis adverse effect in poultry when used in combination with other aflatoxin management practices.
Collapse
Affiliation(s)
- Homa Arak
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| | | | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, 14115-336, Iran
| |
Collapse
|
11
|
Liu Y, Galani Yamdeu JH, Gong YY, Orfila C. A review of postharvest approaches to reduce fungal and mycotoxin contamination of foods. Compr Rev Food Sci Food Saf 2020; 19:1521-1560. [DOI: 10.1111/1541-4337.12562] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yue Liu
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Joseph Hubert Galani Yamdeu
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Yun Yun Gong
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| | - Caroline Orfila
- Nutritional Science and Epidemiology Group, School of Food Science and NutritionUniversity of Leeds Leeds UK
| |
Collapse
|
12
|
Xu R, Karrow NA, Shandilya UK, Sun LH, Kitazawa H. In-Vitro Cell Culture for Efficient Assessment of Mycotoxin Exposure, Toxicity and Risk Mitigation. Toxins (Basel) 2020; 12:E146. [PMID: 32120954 PMCID: PMC7150844 DOI: 10.3390/toxins12030146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are toxic secondary fungal metabolites that commonly contaminate crops and food by-products and thus, animal feed. Ingestion of mycotoxins can lead to mycotoxicosis in both animals and humans, and at subclinical concentrations may affect animal production and adulterate feed and animal by-products. Mycotoxicity mechanisms of action (MOA) are largely unknown, and co-contamination, which is often the case, raises the likelihood of mycotoxin interactions. Mitigation strategies for reducing the risk of mycotoxicity are diverse and may not necessarily provide protection against all mycotoxins. These factors, as well as the species-specific risk of toxicity, collectively make an assessment of exposure, toxicity, and risk mitigation very challenging and costly; thus, in-vitro cell culture models provide a useful tool for their initial assessment. Since ingestion is the most common route of mycotoxin exposure, the intestinal epithelial barrier comprised of epithelial cells (IECs) and immune cells such as macrophages, represents ground zero where mycotoxins are absorbed, biotransformed, and elicit toxicity. This article aims to review different in-vitro IEC or co-culture models that can be used for assessing mycotoxin exposure, toxicity, and risk mitigation, and their suitability and limitations for the safety assessment of animal foods and food by-products.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Lv-hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
13
|
The Biodegradation Role of Saccharomyces cerevisiae against Harmful Effects of Mycotoxin Contaminated Diets on Broiler Performance, Immunity Status, and Carcass characteristics. Animals (Basel) 2020; 10:ani10020238. [PMID: 32028628 PMCID: PMC7070355 DOI: 10.3390/ani10020238] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Over the past two decades, the use of agents for the biodegradation of mycotoxins has led to a reduction in their accumulation and toxicity in the digestive tract of animals. Thus, mycotoxin decontaminating agents are very useful in the prevention of aflatoxicosis. The present feeding trial aimed to evaluate the biodegradation role of Saccharomyces cerevisiae in the prevention of the harmful effects of a mycotoxin contaminated diet on broiler performance, immunity, and carcass traits. The obtained results revealed significant improvements in broiler growth performance parameters, carcass traits, and antibody titer against infected diseases as an effect of the dietary inclusion of Saccharomyces cerevisiae up to 3.75 g kg−1. Consequentially, it could be used in broiler contaminated diets without negatively affecting bird health. Abstract A feeding trial (35 days) was carried out to investigate the effect of Saccharomyces cerevisiae cell wall as a mycotoxin biodegradation agent on the performance, feed efficiency, carcass traits, and immunity response against diseases in broilers fed aflatoxin B1 contaminated diets. For this purpose, 200 one day old broilers were randomly allotted into four groups, each with five replicates (10 birds per replicate). Four starter and finisher experimental rations were formulated by using (A) 0, (B) 1.25, (C) 2.5, and (D) 3.75 g kg−1 of Saccharomyces cerevisiae. Experimental diets were contaminated with aflatoxin B1 (100 ppb kg−1 diet). The experimental chicks were kept under standard managerial conditions, and the vaccination program was followed against infectious bursal disease (IBD), infectious bronchitis (IB), and Newcastle disease (ND) diseases. At the end of the feeding trial, carcass, organ weight, and blood samples were collected randomly to determine the carcass traits and antibody titer against ND and IBD viruses. Throughout the experiment, the addition of 3.75 g kg−1 of the Saccharomyces cerevisiae cell wall (Group-D) in feed resulted in the highest weight gain, final weight, feed intake, and the lowest FCR values followed by C group compared with the other groups. All carcass traits were significantly (p > 0.05) improved by increasing the inclusion levels of Saccharomyces cerevisiae in broiler diets. It could be concluded that the broiler diet supplemented with 2.5 or 3.75 g kg−1 of Saccharomyces cerevisiae as a biodegrading agent resulted in improved growth performance, immunity activity and carcass traits, and supplementation with Saccharomyces cerevisiae at these levels can be used effectively in broiler diets without negatively affecting bird health status.
Collapse
|
14
|
Elliott CT, Connolly L, Kolawole O. Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Res 2020; 36:115-126. [PMID: 31515765 PMCID: PMC6971152 DOI: 10.1007/s12550-019-00375-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022]
Abstract
The contamination of feed with mycotoxins is a continuing feed quality and safety issue, leading to significant losses in livestock production and potential human health risks. Consequently, various methods have been developed to reduce the occurrence of mycotoxins in feed; however, feed supplementation with clay minerals or mineral adsorbents is the most prominent approach widely practiced by farmers and the feed industry. Due to a negatively charged and high surface area, pore volume, swelling ability, and high cation exchange capacity, mineral adsorbents including bentonite, zeolite, montmorillonite, and hydrated sodium calcium aluminosilicate can bind or adsorb mycotoxins to their interlayer spaces, external surface, and edges. Several studies have shown these substances to be partly or fully effective in counteracting toxic effects of mycotoxins in farm animals fed contaminated diets and thus are extensively used in livestock production to reduce the risk of mycotoxin exposure. Nevertheless, a considerable number of studies have indicated that these agents may also cause undesirable effects in farm animals. The current work aims to review published reports regarding adverse effects that may arise in farm animals (with a focus on pig and poultry) and potential interaction with veterinary substances and nutrients in feeds, when mineral adsorbents are utilized as a technological feed additive. Furthermore, results of in vitro toxicity studies of both natural and modified mineral adsorbents on different cell lines are reported. Supplementation of mycotoxin-contaminated feed with mineral adsorbents must be carefully considered by farmers and feed industry.
Collapse
Affiliation(s)
- Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK.
| | - Lisa Connolly
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast, UK
| |
Collapse
|
15
|
Peng H, Chang Y, Baker RC, Zhang G. Interference of mycotoxin binders with ELISA, HPLC and LC-MS/MS analysis of aflatoxins in maize and maize gluten. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:496-506. [PMID: 31869282 DOI: 10.1080/19440049.2019.1701717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the impact of mycotoxin binders on the determination of aflatoxins in maize and maize gluten using various analytical methods, including ELISA, HPLC and LC-MS/MS. Three types of commercially available mycotoxin binders, yeast cell wall, mineral, and a mixture of mineral and bacterium, were investigated at inclusion levels of 0.1%, 0.2% and 0.4%. The binders were added to maize and maize gluten contaminated with aflatoxins at concentrations between 6.9 and 26.7 μg kg-1. The samples were analysed and the values were compared with corresponding controls (samples without binders) using ANOVA. The yeast cell wall binder had no significant effect (p=0.05) on the concentration of aflatoxins measured in either maize or maize gluten at any of the three inclusion levels, regardless of which analytical method was used. The mineral binder and the mixed mineral and bacterium binder had no significant effect (p=0.05) on the measured aflatoxin concentrations in either maize or maize gluten at any of the three inclusion levels when analysis was conducted using LC-MS/MS. Inclusion of these binders resulted in significant lower (p<0.01) detection of aflatoxins in both maize and maize gluten when analysis was conducted using ELISA; the effect was dose-dependent. They also resulted in significant lower detection of aflatoxins in maize extracted by methanol/water (70/30 v/v) (p<0.0001) and in maize gluten extracted by acetonitrile/water (80/20 v/v) (p<0.05) when analysis was conducted using HPLC. However, neither the mineral binder nor the mixed mineral and bacterium binder had significant effects (p=0.05) on aflatoxin concentrations measured in maize using HPLC, when extracted by acetonitrile/water (80/20 v/v). The study demonstrated that mycotoxin binders could result in underestimation of the levels of aflatoxin contamination, depending on the nature of the binder, the extraction solvent used in the analytical method, and the composition of tested sample.
Collapse
Affiliation(s)
- Hong Peng
- Mars Global Food Safety Centre, Yanqi Economic Development Zone, Beijing, China
| | - Yuwei Chang
- Mars Global Food Safety Centre, Yanqi Economic Development Zone, Beijing, China
| | - Robert C Baker
- Mars Global Food Safety Centre, Yanqi Economic Development Zone, Beijing, China
| | - Guangtao Zhang
- Mars Global Food Safety Centre, Yanqi Economic Development Zone, Beijing, China
| |
Collapse
|
16
|
Comparative In Vitro Assessment of a Range of Commercial Feed Additives with Multiple Mycotoxin Binding Claims. Toxins (Basel) 2019; 11:toxins11110659. [PMID: 31726774 PMCID: PMC6891808 DOI: 10.3390/toxins11110659] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022] Open
Abstract
Contamination of animal feed with multiple mycotoxins is an ongoing and growing issue, as over 60% of cereal crops worldwide have been shown to be contaminated with mycotoxins. The present study was carried out to assess the efficacy of commercial feed additives sold with multi-mycotoxin binding claims. Ten feed additives were obtained and categorised into three groups based on their main composition. Their capacity to simultaneously adsorb deoxynivalenol (DON), zearalenone (ZEN), fumonisin B1 (FB1), ochratoxin A (OTA), aflatoxin B1 (AFB1) and T-2 toxin was assessed and compared using an in vitro model designed to simulate the gastrointestinal tract of a monogastric animal. Results showed that only one product (a modified yeast cell wall) effectively adsorbed more than 50% of DON, ZEN, FB1, OTA, T-2 and AFB1, in the following order: AFB1 > ZEN > T-2 > DON > OTA > FB1. The remaining products were able to moderately bind AFB1 (44–58%) but had less, or in some cases, no effect on ZEN, FB1, OTA and T-2 binding (<35%). It is important for companies producing mycotoxin binders that their products undergo rigorous trials under the conditions which best mimic the environment that they must be active in. Claims on the binding efficiency should only be made when such data has been generated.
Collapse
|
17
|
Enzyme Degradation Reagents Effectively Remove Mycotoxins Deoxynivalenol and Zearalenone from Pig and Poultry Artificial Digestive Juices. Toxins (Basel) 2019; 11:toxins11100599. [PMID: 31618978 PMCID: PMC6832875 DOI: 10.3390/toxins11100599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin removers include enzymes and adsorbents that may be used in animal feeds to eliminate the toxic effects of mycotoxins. This study aimed to determine the removability of two different types of mycotoxin removers, adsorbents and enzyme degradation reagents (EDRs), in the simulated gastrointestinal conditions of pigs and poultry. Seven commercial mycotoxin removers, including five EDRs and two adsorbents, were tested in vitro. In this study, the supplemented dosages of mycotoxin removers used in pig and poultry feeds were the commercial recommendation ranging from 0.05% to 0.2%. For pigs, the in vitro gastric and small intestinal simulations were performed by immersing the mycotoxin-tainted feed in artificial gastric juice (AGJ) at pH 2.5 for 5 h or in artificial intestinal juice (AIJ) at pH 6.5 for 2 h to mimick in vivo conditions. For poultry, mycotoxin-tainted feeds were immersed in AGJ for 2 h at pH 4.5 and 0.5 h at pH of 2.5, respectively, to simulate crop/glandular stomach and gizzard conditions; the small intestinal simulation was in AIJ for 2 h at pH 6.5. For the pig, EDRs and adsorbents had deoxynivalenol (DON) removability (1 mg/kg) of 56% to 100% and 15% to 19%, respectively. Under the concentration of 0.5 mg/kg, the zearalenone (ZEN) removability by EDRs and adsorbents was 65% to 100% and 0% to 36%, respectively. For the simulation in poultry, the removability of DON by EDRs and adsorbents (5 mg/kg) was 56% to 79% and 1% to 36%, respectively; for the concentration of 0.5 mg/kg, the removability of ZEN by EDRs and adsorbents was 38% to 69% and 7% to 9%, respectively. These results suggest that EDRs are more effective in reducing DON and ZEN contamination compared to the adsorbent methods in the simulated gastrointestinal tracts of pig and poultry. The recoveries of DON and ZEN of pig in vitro gastrointestinal simulations were higher than 86.4% and 84.7%, respectively, with 88.8% and 85.9%, respectively, in poultry. These results demonstrated the stability and accuracy of our mycotoxin extraction process and in vitro simulation efficiency.
Collapse
|
18
|
Lyagin I, Efremenko E. Enzymes for Detoxification of Various Mycotoxins: Origins and Mechanisms of Catalytic Action. Molecules 2019; 24:E2362. [PMID: 31247992 PMCID: PMC6651818 DOI: 10.3390/molecules24132362] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are highly dangerous natural compounds produced by various fungi. Enzymatic transformation seems to be the most promising method for detoxification of mycotoxins. This review summarizes current information on enzymes of different classes to convert various mycotoxins. An in-depth analysis of 11 key enzyme mechanisms towards dozens of major mycotoxins was realized. Additionally, molecular docking of mycotoxins to enzymes' active centers was carried out to clarify some of these catalytic mechanisms. Analyzing protein homologues from various organisms (plants, animals, fungi, and bacteria), the prevalence and availability of natural sources of active biocatalysts with a high practical potential is discussed. The importance of multifunctional enzyme combinations for detoxification of mycotoxins is posed.
Collapse
Affiliation(s)
- Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
- Emanuel Institute of Biochemical Physics, RAS, Moscow 119334, Russia.
| |
Collapse
|
19
|
Arak H, Karimi Torshizi MA, Hedayati M, Rahimi S. The first in vivo application of synthetic polymers based on methacrylic acid as an aflatoxin sorbent in an animal model. Mycotoxin Res 2019; 35:293-307. [PMID: 30949955 DOI: 10.1007/s12550-019-00353-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 03/02/2019] [Accepted: 03/13/2019] [Indexed: 12/31/2022]
Abstract
This study attempts to evaluate the potential aflatoxin binder activity of a molecularly imprinted polymer (TMU95) synthesized to target the aflatoxin B1 (AFB1) analog molecule in comparison to a commercial toxin binder (CTB). Adsorption experiments were carried out to assess the ability to bind to AFB1 at various pH values. The strength of binding was investigated by the chemisorption index. The isothermal analysis was used to determine the maximum adsorption capacity values. The ability of TMU95 and CTB to adsorb essential minerals was evaluated and the obtained data suggested that CTB would significantly reduce availability of them compared to TMU95. The in vivo efficacy of TMU95 as an aflatoxin (AF) binder in duckling exposed to aflatoxin-contaminated feed from 4 to 18 days of age in comparison to the CTB was also assessed. TMU95 and CTB were effective in reducing the adverse effects caused by AFs on feed conversion ratio of duckling (p ≤ 0.01), and also showed a minor reduction of injuries caused by AFs on visceral organs enlargement (p ≤ 0.01). It was concluded that TMU95 could absorb AFB1 in vitro efficiently and had beneficial health effects that could alleviate some of the toxic effects of AFs on growing duckling performance similar to CTB.
Collapse
Affiliation(s)
- Homa Arak
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | - Mehdi Hedayati
- Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, 1985717413, Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
20
|
Mutua F, Lindahl J, Grace D. Availability and use of mycotoxin binders in selected urban and Peri-urban areas of Kenya. Food Secur 2019. [DOI: 10.1007/s12571-019-00911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Alleviation of aflatoxin-related oxidative damage to liver and improvement of growth performance in broiler chickens consumed Lactobacillus plantarum 299v for entire growth period. Toxicon 2018; 158:57-62. [PMID: 30529382 DOI: 10.1016/j.toxicon.2018.11.431] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/27/2018] [Accepted: 11/22/2018] [Indexed: 01/23/2023]
Abstract
Growing broiler chicks on a diet contaminated with aflatoxins (200 or 2000 ppb) for entire growth period resulted in increased oxidative stress and liver damage markers. The toxicity was subsided in broilers received a specific aflatoxin-binding probiotic i.e., Lactobacillus plantarum 299v (Lp299v). There was a substantial (30-90%) increase in antioxidant activity of plasma, which was suppressed due to dietary aflatoxins. Probiotic also reduced serum lactate dehydrogenase and alanine amino transferase together with lipid peroxidation products in liver, which were elevated due to aflatoxin. Because of Lp299v consumption, there was ∼20-55% recovery in body weight gain in broilers intoxicated with aflatoxins. Comparison of the Lp299v effects with that of a commercial aflatoxin binder revealed that, improved antioxidant activity of the chicks was associated with growth performance. These data suggest that aflatoxin-binding probiotics are beneficial with multi-functional effects and can efficiently help reducing aflatoxins in food chain associated with poultry industry.
Collapse
|
22
|
Ayo EM, Matemu A, Laswai GH, Kimanya ME. An In Vitro Evaluation of the Capacity of Local Tanzanian Crude Clay and Ash-Based Materials in Binding Aflatoxins in Solution. Toxins (Basel) 2018; 10:toxins10120510. [PMID: 30513886 PMCID: PMC6316085 DOI: 10.3390/toxins10120510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 01/28/2023] Open
Abstract
Aflatoxins in feeds cause great health hazards to animals, and thus eventually to humans as well. The potential of clays from Arusha (AC), Kilimanjaro (KC), the Coast (CC), and Morogoro (MC), as well as volcanic ash (VA) and rice husk ash (RA), were evaluated for their capacity to adsorb aflatoxins B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁), and G₂ (AFG₂) relative to a commercial binder Mycobind® (R) using in vitro technique. On average, CC, VA, KC, MC, AC, RA, and R adsorbed 39.9%, 51.3%, 61.5%, 62.0%, 72.6%, 84.7%, and 98.1% of the total aflatoxins from solution, respectively. The capacity of AC and RA was statistically (p < 0.05) better in binding aflatoxins next to R. The adsorption capacity seemed to follow the trend of the cation exchange capacity (CEC) of these materials. The CEC (meq/100 g) of CC, MC, KC, VA, AC, RA, and R were 7.0, 15.4, 18.8, 25.4, 27.2, 27.2, and 38.9, respectively. On average 96.3%, 42.7%, 80.8%, and 32.1% of AFB₁, AFB₂, AFG₁, and AFG₂ were adsorbed, respectively. The binding capacity of the clays and ashes relative to Mycobind® was about 100% for AC and RA, 50% for KC, MC, and VA, and 33.3% for CC. The AC and RA seem to be promising resources in binding aflatoxins in solution.
Collapse
Affiliation(s)
- Emmanuel M Ayo
- School of Life Sciences and Bio-engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23000, Tanzania.
- Institute of Rural Development Planning, P.O. Box 138, Dodoma 41000, Tanzania.
| | - Athanasia Matemu
- School of Life Sciences and Bio-engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23000, Tanzania.
| | - Germana H Laswai
- Department of Animal, Aquaculture and Range Sciences, College of Agriculture, Sokoine University of Agriculture, P.O. Box 3004, Morogoro 67000, Tanzania.
| | - Martin E Kimanya
- School of Life Sciences and Bio-engineering, The Nelson Mandela African Institution of Science and Technology, P.O. Box 447, Arusha 23000, Tanzania.
| |
Collapse
|
23
|
Abbasi Pirouz A, Abedi Karjiban R, Abu Bakar F, Selamat J. A Novel Adsorbent Magnetic Graphene Oxide Modified with Chitosan for the Simultaneous Reduction of Mycotoxins. Toxins (Basel) 2018; 10:toxins10090361. [PMID: 30200553 PMCID: PMC6162667 DOI: 10.3390/toxins10090361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/23/2023] Open
Abstract
A novel magnetic graphene oxide modified with chitosan (MGO-CTS) was synthesised as an adsorbent aimed to examine the simultaneous removal of mycotoxins. The composite was characterised by various procedures, namely Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and a scanning electron microscope (SEM). The adsorption evaluation was considered via pH effects, initial mycotoxin concentration, adsorption time and temperature. Adsorption isotherm data and kinetics experiments were acquired at the optimum pH 5 fit Freundlich isotherm as well as pseudo-second-order kinetic models. The thermodynamic results indicated that the adsorption of the mycotoxins was spontaneous, endothermic and favourable.
Collapse
Affiliation(s)
- Atena Abbasi Pirouz
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Roghayeh Abedi Karjiban
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Fatimah Abu Bakar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| | - Jinap Selamat
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, 43400 Selangor, Malaysia.
| |
Collapse
|
24
|
Hamza Z, El-Hashash M, Aly S, Hathout A, Soto E, Sabry B, Ostroff G. Preparation and characterization of yeast cell wall beta-glucan encapsulated humic acid nanoparticles as an enhanced aflatoxin B 1 binder. Carbohydr Polym 2018; 203:185-192. [PMID: 30318202 DOI: 10.1016/j.carbpol.2018.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/12/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
This study aimed to assess the effect of encapsulating humic acid inside yeast cell walls (YCW) to detoxify AFB1 in in vitro gastrointestinal models. Glucan Mannan Lipid Particles (GMLPs) from Saccharomyces cerevisiae cell walls showed the highest AFB1 adsorption in simulated gastric fluid (SGF) after 10 min, and in simulated intestinal fluid (SIF) after 1 h. GMLPs are hollow 3-4 micron porous microspheres that provide an efficient system for the synthesis and encapsulation of AFB1-absorbing nanoparticles (NPs). Humic acid nanoparticles (HA-NPs) were synthesized within the GMLP cavity by complexation with ferric chloride. Encapsulating HA-NPs in GMLPs increased HA-NP stability in SIF. The hybrid GMLP HA-NP formulation synergistically enhanced AFB1 binding compared to individual GMLP and HA components in SGF and in SIF. Cytotoxicity on a murine macrophage cell line demonstrated that GMLP HA-NP-AFB1 complexes were stable in both SGF and SIF, detoxified AFB1 and are suitable for in vivo testing.
Collapse
Affiliation(s)
- Zeinab Hamza
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
| | - Maher El-Hashash
- Chemistry Department, Faculty of Science, Ain Shams University, Egypt
| | - Soher Aly
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
| | - Amal Hathout
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
| | - Ernesto Soto
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA
| | - Bassem Sabry
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
| | - Gary Ostroff
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
25
|
Solís-Cruz B, Hernández-Patlán D, Beyssac E, Latorre JD, Hernandez-Velasco X, Merino-Guzman R, Tellez G, López-Arellano R. Evaluation of Chitosan and Cellulosic Polymers as Binding Adsorbent Materials to Prevent Aflatoxin B1, Fumonisin B1, Ochratoxin, Trichothecene, Deoxynivalenol, and Zearalenone Mycotoxicoses Through an In Vitro Gastrointestinal Model for Poultry. Polymers (Basel) 2017; 9:polym9100529. [PMID: 30965830 PMCID: PMC6418884 DOI: 10.3390/polym9100529] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 11/16/2022] Open
Abstract
Mycotoxins are secondary toxic metabolites that are produced by fungi representing threats to human and animal health. The objective of this study was to evaluate the adsorption capacity of Chitosan (CHI), and three cellulosic polymers (HPMC, CMC, and MCC), on six mycotoxins (AFB1; FUB1; OTA; T-2; DON; and, ZEA) using an in vitro digestive model for poultry. The adsorbent capacity of the materials in the supernatant of each compartment was evaluated by a non-competitive chemiluminescent assay. Control groups with no adsorbent material had an adsorption value of 0.00% against all six mycotoxins that were evaluated. All four materials tested showed significant (p < 0.05) binding activity against all of the mycotoxins when compared with the control non-treated group. However HPMC, CMC, and MCC showed better adsorbent capacity when compared with CHI.
Collapse
Affiliation(s)
- Bruno Solís-Cruz
- Unidad de Investigación Multidisciplinaria. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli, Estado de Mexico 54714, Mexico.
| | - Daniel Hernández-Patlán
- Unidad de Investigación Multidisciplinaria. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli, Estado de Mexico 54714, Mexico.
| | - Eric Beyssac
- Clermont-Université, Université d'Auvergne, EA4678, Conception Ingénierie et Développement de L'aliment et du Médicament, 63001 Clermont-Ferrand, France.
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico.
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico.
| | - Guillermo Tellez
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Raquel López-Arellano
- Unidad de Investigación Multidisciplinaria. Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico, Cuautitlán Izcalli, Estado de Mexico 54714, Mexico.
| |
Collapse
|
26
|
Sulzberger S, Melnichenko S, Cardoso F. Effects of clay after an aflatoxin challenge on aflatoxin clearance, milk production, and metabolism of Holstein cows. J Dairy Sci 2017; 100:1856-1869. [DOI: 10.3168/jds.2016-11612] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022]
|
27
|
Determination of serum aflatoxin B 1-lysine to evaluate the efficacy of an aflatoxin-adsorbing feed additive in pigs fed an aflatoxin B 1-contaminated diet. Mycotoxin Res 2016; 33:93-102. [PMID: 28035652 DOI: 10.1007/s12550-016-0267-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
In this study, serum aflatoxin B1 (AFB1)-lysine was determined in order to evaluate the in vivo efficacy of a hydrated sodium calcium aluminosilicate (HSCAS) in pigs fed AFB1. Twenty-four 49-day-old crossbred barrows were maintained in individual cages and allowed ad libitum access to feed and water. A completely randomized design was used with six animals assigned to each of four dietary treatments for 21 days as follows: (A) basal diet (BD), (B) BD supplemented with 0.5 % HSCAS, (C) BD supplemented with 1.1 mg/kg AFB1, and (D) BD supplemented with 0.5 % HSCAS and 1.1 mg/kg AFB1. HSCAS was able to alleviate the toxic effects of AFB1 on pigs and reduce (P < 0.05) the levels of serum AFB1-lysine. Cumulative reductions of adduct yield values, calculated through the equation [(pg AFB1-lysine/mg albumin) / (μg AFB1/kg body weight)], were 53.0, 62.8, and 72.1 after 7, 14, and 21 days of oral exposure, respectively. AFB1-lysine has potential as an AFB1-specific biomarker for diagnostic purposes and for evaluating the efficacy of chemoprotective interventions in pigs.
Collapse
|
28
|
Temba BA, Sultanbawa Y, Kriticos DJ, Fox GP, Harvey JJW, Fletcher MT. Tools for Defusing a Major Global Food and Feed Safety Risk: Nonbiological Postharvest Procedures To Decontaminate Mycotoxins in Foods and Feeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8959-8972. [PMID: 27933870 DOI: 10.1021/acs.jafc.6b03777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mycotoxin contamination of foods and animal feeds is a worldwide problem for human and animal health. Controlling mycotoxin contamination has drawn the attention of scientists and other food and feed stakeholders all over the world. Despite best efforts targeting field and storage preventive measures, environmental conditions can still lead to mycotoxin contamination. This raises a need for developing decontamination methods to inactivate or remove the toxins from contaminated products. At present, decontamination methods applied include an array of both biological and nonbiological methods. The targeted use of nonbiological methods spans from the latter half of last century, when ammoniation and ozonation were first used to inactivate mycotoxins in animal feeds, to the novel techniques being developed today such as photosensitization. Effectiveness and drawbacks of different nonbiological methods have been reported in the literature, and this review examines the utility of these methods in addressing food safety. Particular consideration is given to the application of such methods in the developing world, where mycotoxin contamination is a serious food safety issue in staple crops such as maize and rice.
Collapse
Affiliation(s)
- Benigni A Temba
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland , Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
- Sokoine University of Agriculture , P.O. Box 3000, Morogoro, Tanzania
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland , Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
| | - Darren J Kriticos
- CSIRO , GPO Box 1700, Canberra, ACT 2601, Australia
- School of Biological Sciences, The University of Queensland , St. Lucia, QLD 4072, Australia
| | - Glen P Fox
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland , Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
| | - Jagger J W Harvey
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland , Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
- Biosciences eastern and central Africa-International Livestock Research Institute (BecA-ILRI) Hub , Nairobi 00100, Kenya
- Feed the Future Innovation Lab for the Reduction of Post-Harvest Loss, Kansas State University , Manhattan, Kansas 66506, United States
| | - Mary T Fletcher
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland , Health and Food Sciences Precinct, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
29
|
Wielogórska E, MacDonald S, Elliott C. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. WORLD MYCOTOXIN J 2016. [DOI: 10.3920/wmj2015.1919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the recent years, mycotoxins have undoubtedly gained a keen interest of the scientific community studying food safety. The main reason is their profound impact on both human and animal health. International surveys reveal a low percentage of feed samples being contaminated above permitted/guideline levels, developed to protect consumers of animal derived products. However, the deleterious impact of feed co-contaminated at low levels with numerous both known and regulated as well as novel mycotoxins on producing animals has been described. Associated effects on agro-economics world-wide include substantial pecuniary losses which are borne by the society as a whole. Even though good agronomic practice is thought to be the most effective way of preventing animal feed contamination, the EC have recognised the need to introduce an additional means of management of feed already contaminated with low-levels of mycotoxins to alleviate detrimental effects on agricultural production efficiency. This review discusses types of feed detoxifying agents described in scientific literature, their reported efficacy in both in vitro and in vivo systems, and comparison with available commercial formulations in the light of increasing knowledge regarding mycotoxin prevalence in the changing global environment.
Collapse
Affiliation(s)
- E. Wielogórska
- Institute for Global Food Security, Queen’s University Belfast, 18-30 Malone Road, Belfast BT9 5BN, United Kingdom
| | - S. MacDonald
- Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - C.T. Elliott
- Institute for Global Food Security, Queen’s University Belfast, 18-30 Malone Road, Belfast BT9 5BN, United Kingdom
| |
Collapse
|
30
|
von Holst C, Robouch P, Bellorini S, González de la Huebra MJ, Ezerskis Z. A review of the work of the EU Reference Laboratory supporting the authorisation process of feed additives in the EU. [corrected]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 33:66-77. [PMID: 26540604 PMCID: PMC4732514 DOI: 10.1080/19440049.2015.1116127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This paper describes the operation of the European Union Reference Laboratory for Feed Additives (EURL) and its role in the authorisation procedure of feed additives in the European Union. Feed additives are authorised according to Regulation (EC) No. 1831/2003, which introduced a completely revised authorisation procedure and also established the EURL. The regulations authorising feed additives contain conditions of use such as legal limits of the feed additives, which require the availability of a suitable method of analysis for official control purposes under real world conditions. It is the task of the EURL to evaluate the suitability of analytical methods as proposed by the industry for this purpose. Moreover, the paper shows that one of the major challenges is the huge variety of the methodology applied in feed additive analysis, thus requiring expertise in quite different analytical areas. In order to cope with this challenge, the EURL is supported by a network of national reference laboratories (NRLs) and only the merged knowledge of all NRLs allows for a scientifically sound assessment of the analytical methods.
Collapse
Affiliation(s)
- Christoph von Holst
- a European Commission, Joint Research Centre , Institute for Reference Materials and Measurements (IRMM) , Geel , Belgium
| | - Piotr Robouch
- a European Commission, Joint Research Centre , Institute for Reference Materials and Measurements (IRMM) , Geel , Belgium
| | - Stefano Bellorini
- a European Commission, Joint Research Centre , Institute for Reference Materials and Measurements (IRMM) , Geel , Belgium
| | | | - Zigmas Ezerskis
- a European Commission, Joint Research Centre , Institute for Reference Materials and Measurements (IRMM) , Geel , Belgium
| |
Collapse
|
31
|
WANG RG, SU XO, FAN X, WANG PL, GAO ZW, ZHANG Y. Liquid Chromatography-Tandem Mass Spectrometry for Determination of Aflatoxin B1, Deoxynivalenol and Zearalenone in Artificial Porcine Gastrointestinal Digestive Juice. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60794-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Yibadatihan S, Jinap S, Mahyudin NA. Simultaneous determination of multi-mycotoxins in palm kernel cake (PKC) using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:2071-9. [DOI: 10.1080/19440049.2014.978396] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Berthiller F, Burdaspal P, Crews C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stroka J, Whitaker T. Developments in mycotoxin analysis: an update for 2012-2013. WORLD MYCOTOXIN J 2014. [DOI: 10.3920/wmj2013.1637] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This review highlights developments in mycotoxin analysis and sampling over a period between mid-2012 and mid-2013. It covers the major mycotoxins: aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone. A wide range of analytical methods for mycotoxin determination in food and feed were developed last year, in particular immunochemical methods and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)-based methods. After a section on sampling and sample preparation, due to the rapid spread and developments in the field of LC-MS/MS multimycotoxin methods, a separate section has been devoted to this area of research. It is followed by a section on mycotoxins in botanicals and spices, before continuing with the format of previous reviews in this series with dedicated sections on method developments for the individual mycotoxins.
Collapse
Affiliation(s)
- F. Berthiller
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - P.A. Burdaspal
- National Centre for Food, Spanish Food Safety and Nutrition Agency, Carretera de Majadahonda a Pozuelo km 5, 228220 Majadahonda, Spain
| | - C. Crews
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - M.H. Iha
- Instituto Adolfo Lutz, Laboratrio I de Ribeiro Preto, Av Dr Arnaldo 355, CEP 14085-410, Ribeiro Preto SP, Brazil
| | - R. Krska
- University of Natural Resources and Life Sciences, Vienna
- Department for Agrobiotechnology (IFA-Tulln), Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - S. MacDonald
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Drive, Washington, MO 63090, USA
| | - C. Maragos
- USDA, ARS National Center for Agricultural Utilization Research, 1815 N. University St., Peoria, IL 61604, USA
| | - M. Solfrizzo
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, Bari 700126, Italy
| | - J. Stroka
- Institute for Reference Materials and Measurements (IRMM), European Commission Joint Research Centre, Retieseweg 111, 2440 Geel, Belgium
| | - T.B. Whitaker
- Biological and Agricultural Engineering Department, N.C. State University, P.O. Box 7625, Raleigh, NC 27695-7625, USA
| |
Collapse
|