1
|
Babar S, Baloch A, Qasim M, Wang J, Wang X, Li Y, Khalid S, Jiang C. Unearthing the soil-bacteria nexus to enhance potassium bioavailability for global sustainable agriculture: A mechanistic preview. Microbiol Res 2024; 288:127885. [PMID: 39236472 DOI: 10.1016/j.micres.2024.127885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
Established as a plant macronutrient, potassium (K) substantially bestows plant growth and thus, global food production. It is absorbed by plants as potassium cation (K+) from soil solution, which is enriched through slow-release from soil minerals or addition of soluble fertilizers. Contribution of bioavailable K+ from soil is usually insignificant (< 2 %), although the earth's crust is rich in K-bearing minerals. However, K is fixed largely in interlayer spaces of K-bearing minerals, which can be released by K-solubilizing bacteria (KSB) such as Bacillus, Pseudomonas, Enterobacter, and Acidithiobacillus. The underlying mechanisms of K dissolution by KSB include acidolysis, ion exchange reactions, chelation, complexolysis, and release of various organic and inorganic acids such as citric, oxalic, acetic, gluconic, and tartaric acids. These acids cause disintegration of K-bearing minerals and bring K+ into soil solution that becomes available to the plants. Current literature review updates the scientific information about microbial species, factors, and mechanisms governing the bio-intrusion of K-bearing minerals. Moreover, it explores the potential of KSB not only for K-solubilization but also to enhance bioavailability of phosphorus, nitrogen, and micronutrients, as well as its other beneficial impact on plant growth. Thus, in the context of sustainable agricultural production and global food security, utilization of KSB may facilitate plant nutrient availability, conserve natural resources, and reduce environmental impacts caused by chemical fertilizers.
Collapse
Affiliation(s)
- Saba Babar
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Amanullah Baloch
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Muhammad Qasim
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Jiyuan Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Sarmand Khalid
- Key Laboratory of Horticulture Plant Biology of Ministry of Education, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
2
|
Whittle MJ, Castillo-Fernandez J, Amos GCA, Watson P. Metagenomic characterisation of canine skin reveals a core healthy skin microbiome. Sci Rep 2024; 14:20104. [PMID: 39209855 PMCID: PMC11362342 DOI: 10.1038/s41598-024-63999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
Furthering our knowledge of the skin microbiome is essential to understand health and disease in canines. To date, studies into the canine skin microbiome have focused on 16S rRNA high throughput sequencing however, these lack the granularity of species and strain level taxonomic characterisation and their associated functions. The aim of this study was to provide a comprehensive assessment of the skin microbiome by analysing the skin microbiome of 72 healthy adult colony dogs, across four distinct skin sites and four breeds, using metagenomic sequencing. Our analysis revealed that breed and skin site are drivers of variation, and a core group of taxa and genes are present within the skin microbiome of healthy dogs, comprising 230 taxa and 1219 gene families. We identified 15 species within the core microbiome that are represented by more than one strain. The biosynthesis of secondary metabolites pathway was enriched in the core microbiome suggesting the skin microbiome may play a role in colonisation resistance and protection from invading pathogens. Additionally, we uncovered the novelty of the canine skin microbiome and show that further investigation is required to increase the suitability of current databases for metagenomic sequencing of canine skin samples.
Collapse
Affiliation(s)
- Michaella J Whittle
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK.
| | - Juan Castillo-Fernandez
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Gregory C A Amos
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| | - Phillip Watson
- Waltham Petcare Science Institute, Freeby Lane, Waltham on the Wolds, Leicestershire, LE14 4RT, UK
| |
Collapse
|
3
|
Lyons NS, Johnson SB, Sobrado P. Methods for biochemical characterization of flavin-dependent N-monooxygenases involved in siderophore biosynthesis. Methods Enzymol 2024; 702:247-280. [PMID: 39155115 DOI: 10.1016/bs.mie.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Siderophores are essential molecules released by some bacteria and fungi in iron-limiting environments to sequester ferric iron, satisfying metabolic needs. Flavin-dependent N-hydroxylating monooxygenases (NMOs) catalyze the hydroxylation of nitrogen atoms to generate important siderophore functional groups such as hydroxamates. It has been demonstrated that the function of NMOs is essential for virulence, implicating these enzymes as potential drug targets. This chapter aims to serve as a resource for the characterization of NMO's enzymatic activities using several biochemical techniques. We describe assays that allow for the determination of steady-state kinetic parameters, detection of hydroxylated amine products, measurement of the rate-limiting step(s), and the application toward drug discovery efforts. While not exhaustive, this chapter will provide a foundation for the characterization of enzymes involved in siderophore biosynthesis, allowing for gaps in knowledge within the field to be addressed.
Collapse
Affiliation(s)
- Noah S Lyons
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Sydney B Johnson
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States; Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States; Department of Chemistry, Missouri University of Science and Technology, Rolla, MO, United States.
| |
Collapse
|
4
|
Sun Y, Liu M, Sun W, Tang X, Zhou Y, Zhang J, Yang B. A Hemoglobin Bionics-Based System for Combating Antibiotic Resistance in Chronic Diabetic Wounds via Iron Homeostasis Regulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405002. [PMID: 38738270 DOI: 10.1002/adma.202405002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Owing to the increased tissue iron accumulation in patients with diabetes, microorganisms may activate high expression of iron-involved metabolic pathways, leading to the exacerbation of bacterial infections and disruption of systemic glucose metabolism. Therefore, an on-demand transdermal dosing approach that utilizes iron homeostasis regulation to combat antimicrobial resistance is a promising strategy to address the challenges associated with low administration bioavailability and high antibiotic resistance in treating infected diabetic wounds. Here, it is aimed to propose an effective therapy based on hemoglobin bionics to induce disturbances in bacterial iron homeostasis. The preferred "iron cargo" is synthesized by protoporphyrin IX chelated with dopamine and gallium (PDGa), and is delivered via a glucose/pH-responsive microneedle bandage (PDGa@GMB). The PDGa@GMB downregulates the expression levels of the iron uptake regulator (Fur) and the peroxide response regulator (perR) in Staphylococcus aureus, leading to iron nutrient starvation and oxidative stress, ultimately suppressing iron-dependent bacterial activities. Consequently, PDGa@GMB demonstrates insusceptibility to genetic resistance while maintaining sustainable antimicrobial effects (>90%) against resistant strains of both S. aureus and E. coli, and accelerates tissue recovery (<20 d). Overall, PDGa@GMB not only counteracts antibiotic resistance but also holds tremendous potential in mediating microbial-host crosstalk, synergistically attenuating pathogen virulence and pathogenicity.
Collapse
Affiliation(s)
- Yihan Sun
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Manxuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Weihong Sun
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoduo Tang
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Junhu Zhang
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bai Yang
- Joint Laboratory of Opto, Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Supramolecular Structure and Material, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
5
|
Yan J, Zhou G, Ren R, Zhang X, Zhang N, Wang Z, Peng L, Yang Y. Siderophore-harboring gut bacteria and fecal siderophore genes for predicting the responsiveness of fecal microbiota transplantation for active ulcerative colitis. J Transl Med 2024; 22:589. [PMID: 38915068 PMCID: PMC11194913 DOI: 10.1186/s12967-024-05419-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Predictive markers for fecal microbiota transplantation (FMT) outcomes in patients with active ulcerative colitis (UC) are poorly defined. We aimed to investigate changes in gut microbiota pre- and post-FMT and to assess the potential value in determining the total copy number of fecal bacterial siderophore genes in predicting FMT responsiveness. METHODS Patients with active UC (Mayo score ≥ 3) who had undergone two FMT procedures were enrolled. Fecal samples were collected before and 8 weeks after each FMT session. Patients were classified into clinical response and non-response groups, based on their Mayo scores. The fecal microbiota profile was accessed using metagenomic sequencing, and the total siderophore genes copy number via quantitative real-time polymerase chain reaction. Additionally, we examined the association between the total siderophore genes copy number and FMT efficacy. RESULTS Seventy patients with UC had undergone FMT. The clinical response and remission rates were 50% and 10% after the first FMT procedure, increasing to 72.41% and 27.59% after the second FMT. The cumulative clinical response and clinical remission rates were 72.86% and 25.71%. Compared with baseline, the response group showed a significant increase in Faecalibacterium, and decrease in Enterobacteriaceae, consisted with the changes of the total bacterial siderophore genes copy number after the second FMT (1889.14 vs. 98.73 copies/ng, P < 0.01). Virulence factor analysis showed an enriched iron uptake system, especially bacterial siderophores, in the pre-FMT response group, with a greater contribution from Escherichia coli. The total baseline copy number was significantly higher in the response group than non-response group (1889.14 vs. 94.86 copies/ng, P < 0.01). A total baseline copy number cutoff value of 755.88 copies/ng showed 94.7% specificity and 72.5% sensitivity in predicting FMT responsiveness. CONCLUSIONS A significant increase in Faecalibacterium, and decrease in Enterobacteriaceae and the total fecal siderophore genes copy number were observed in responders after FMT. The siderophore genes and its encoding bacteria may be of predictive value for the clinical responsiveness of FMT to active ulcerative colitis.
Collapse
Affiliation(s)
- Jingshuang Yan
- School of Medicine, Nankai University, Tianjin, 300071, China
- Microbiota Laboratory and Microbiota Division, Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Guanzhou Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
- Microbiota Laboratory and Microbiota Division, Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Rongrong Ren
- Microbiota Laboratory and Microbiota Division, Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaohan Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Microbiota Laboratory and Microbiota Division, Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Nana Zhang
- Microbiota Laboratory and Microbiota Division, Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zikai Wang
- Microbiota Laboratory and Microbiota Division, Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lihua Peng
- Microbiota Laboratory and Microbiota Division, Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunsheng Yang
- School of Medicine, Nankai University, Tianjin, 300071, China.
- Microbiota Laboratory and Microbiota Division, Department of Gastroenterology and Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024:S0300-9084(24)00142-1. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
7
|
Tan CG, Oberlag NM, McGowan AE, Dawrs SN, Chan YL, Strong M, Hasan NA, Honda JR. Genomic and microbiological analyses of iron acquisition pathways among respiratory and environmental nontuberculous mycobacteria from Hawai'i. Front Microbiol 2023; 14:1268963. [PMID: 38029173 PMCID: PMC10667711 DOI: 10.3389/fmicb.2023.1268963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
As environmental opportunistic pathogens, nontuberculous mycobacteria (NTM) can cause severe and difficult to treat pulmonary disease. In the United States, Hawai'i has the highest prevalence of infection. Rapid growing mycobacteria (RGM) such as Mycobacterium abscessus and M. porcinum and the slow growing mycobacteria (SGM) including M. intracellulare subspecies chimaera are common environmental NTM species and subspecies in Hawai'i. Although iron acquisition is an essential process of many microorganisms, iron acquisition via siderophores among the NTM is not well-characterized. In this study, we apply genomic and microbiological methodologies to better understand iron acquisition via siderophores for environmental and respiratory isolates of M. abscessus, M. porcinum, and M. intracellulare subspecies chimaera from Hawai'i. Siderophore synthesis and transport genes, including mycobactin (mbt), mmpL/S, and esx-3 were compared among 47 reference isolates, 29 respiratory isolates, and 23 environmental Hawai'i isolates. Among all reference isolates examined, respiratory isolates showed significantly more siderophore pertinent genes compared to environmental isolates. Among the Hawai'i isolates, RGM M. abscessus and M. porcinum had significantly less esx-3 and mbt genes compared to SGM M. chimaera when stratified by growth classification. However, no significant differences were observed between the species when grown on low iron culture agar or siderophore production by the chrome azurol S (CAS) assay in vitro. These results indicate the complex mechanisms involved in iron sequestration and siderophore activity among diverse NTM species.
Collapse
Affiliation(s)
| | - Nicole M. Oberlag
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | | | - Stephanie N. Dawrs
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | | | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Nabeeh A. Hasan
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
| | - Jennifer R. Honda
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, United States
- Department of Cellular and Molecular Biology, School of Medicine, The University of Texas Health Science Center at Tyler, Tyler, TX, United States
| |
Collapse
|
8
|
Edison LK, Kudva IT, Kariyawasam S. Comparative Transcriptome Analysis of Shiga Toxin-Producing Escherichia coli O157:H7 on Bovine Rectoanal Junction Cells and Human Colonic Epithelial Cells during Initial Adherence. Microorganisms 2023; 11:2562. [PMID: 37894220 PMCID: PMC10609592 DOI: 10.3390/microorganisms11102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are notorious foodborne pathogens, capable of causing severe diarrhea and life-threatening complications in humans. Cattle, acting as both primary reservoirs and asymptomatic carriers of STEC, predominantly harbor the pathogen in their rectoanal junction (RAJ), facilitating its transmission to humans through contaminated food sources. Despite the central role of cattle in STEC transmission, the molecular mechanisms governing STEC's adaptation in the RAJ of the asymptomatic reservoir host and its subsequent infection of human colonic epithelial cells, resulting in diarrhea, remain largely unexplored. This study aims to uncover these complicated dynamics by focusing on the STEC O157:H7 serotype within two distinct host environments, bovine RAJ cells and human colonic epithelial cells, during initial colonization. We employed comparative transcriptomics analysis to investigate differential gene expression profiles of STEC O157:H7 during interactions with these cell types. STEC O157:H7 was cultured either with bovine RAJ cells or the human colonic epithelial cell line CCD CoN 841 to simulate STEC-epithelial cell interactions within these two host species. High-throughput RNA sequencing revealed 829 and 1939 bacterial genes expressed in RAJ and CCD CoN 841, respectively. After gene filtering, 221 E. coli O157:H7 genes were upregulated during initial adherence to CCD CoN cells and 436 with RAJ cells. Furthermore, 22 genes were uniquely expressed with human cells and 155 genes with bovine cells. Our findings revealed distinct expression patterns of STEC O157:H7 genes involved in virulence, including adherence, metal iron homeostasis, and stress response during its initial adherence (i.e., six hours post-infection) to bovine RAJ cells, as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlighted the potential role of some genes in host adaptation and tissue-specific pathogenicity. These findings shed new light on the potential mechanisms of STEC O157:H7 contributing to colonize the intestinal epithelium during the first six hours of infection, leading to survival and persistence in the bovine reservoir and causing disease in humans.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
9
|
de Oliveira PV, de Santana Lira RL, de Abreu Lima R, Mendes YC, Martins AB, de Melo BDO, Goiano MF, Filho RL, de Farias Nunes FBB, Aliança ASDS, Firmo WDCA, Carvalho RC, Zagminan A, de Sousa EM. Bibliometric Review on New Possibilities of Antimycobacterial Agents: Exploring Siderophore Desferrioxamine's Applications as an Antimicrobial Agent. Pharmaceuticals (Basel) 2023; 16:1335. [PMID: 37765143 PMCID: PMC10536058 DOI: 10.3390/ph16091335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Mycobacteria cause tuberculosis and other serious diseases. Understanding their mechanisms of resistance to our immune system and exploring novel drugs are critical strategies to combat infections. A bibliometric analysis was performed to identify publication trends and critical research areas in the field of the antimicrobial activity of desferrioxamine. A total of twenty-four publications on the topic, from 2012 to 2023, were retrieved from databases including Web of Science, Scopus, PubMed, and Embase, using specific keywords. The quality of the publications was assessed using impact and productivity metrics, with an average annual publication rate of 2.1 articles. The United States emerged as the most productive country, with medicine (23.4%, 11 publications) and biochemistry, genetics, and molecular biology (21.3%, 10 publications) as the top research fields. The five most cited publications accounted for 672 citations, with a relatively low h-index (11:11). In conclusion, there has been a lack of publications on this topic in the last decade. The United States dominates production and publication in this area, and there appears to be limited exchange of knowledge, ideas, and technology within the field. Therefore, fostering international cooperation through funding is essential to facilitate further research and development of desferrioxamine-related studies.
Collapse
Affiliation(s)
- Patrícia Vieira de Oliveira
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
| | - Roseane Lustosa de Santana Lira
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Rafael de Abreu Lima
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Yasmim Costa Mendes
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
| | - Antenor Bezerra Martins
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Bruna de Oliveira de Melo
- Graduate Program in Biodiversity and Biotechnology—BIONORTE Amazonian Network, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
| | | | - Rivaldo Lira Filho
- Graduate Program in Nursing, St. Therese College—CEST, São Luís 65045-180, Brazil;
| | | | - Amanda Silva dos Santos Aliança
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Wellyson da Cunha Araújo Firmo
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
| | - Adrielle Zagminan
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
| | - Eduardo Martins de Sousa
- Graduate Program in Microbial Biology, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil; (P.V.d.O.); (Y.C.M.); (A.S.d.S.A.); (W.d.C.A.F.); (A.Z.)
- Graduate Program in Health Sciences, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil; (R.L.d.S.L.); (R.d.A.L.); (R.C.C.)
- Graduate Program in Health and Services Management, CEUMA University—UNICEUMA, São Luís 65075-120, Brazil;
- Graduate Program in Biodiversity and Biotechnology—BIONORTE Amazonian Network, Federal University of Maranhão—UFMA, São Luís 65080-805, Brazil;
| |
Collapse
|
10
|
Liu Z, Wang L, Gao P, Yu Y, Zhang Y, Fotin A, Wang Q, Xu Z, Wei X, Fotina T, Ma J. Salmonella Pullorum effector SteE regulates Th1/Th2 cytokine expression by triggering the STAT3/SOCS3 pathway that suppresses NF-κB activation. Vet Microbiol 2023; 284:109817. [PMID: 37348209 DOI: 10.1016/j.vetmic.2023.109817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Salmonella enterica serovar Pullorum (S. Pullorum) can regulate host immunity via special effectors that promote persistent infection and its intracellular survival. SteE as an anti-inflammatory effector is involved in the systemic infection of Salmonella in host macrophages. Macrophage activation can indirectly reflect the immune regulatory function of T helper type 1 (Th1)/T helper type 2 (Th2) cytokines. However, information concerning the regulation of Th1/Th2 cytokine expression by steE in S. Pullorum infection is limited. This study evaluates the effects of steE on the Th1/Th2 balance, STAT3/SOCS3 pathway, and NF-κB P65 activation in S. Pullorum-infected HD-11 cells and in chicken models. We demonstrated that steE diminished the expression of Th1-related cytokines (IFN-γ and IL-12) and promoted the expression of Th2-related cytokines (IL-4 and IL-10) in HD-11 cells and chicken models of S. Pullorum infection. SOCS3 silencing suppressed the function of steE in HD-11 cells and led to the imbalance of Th1/Th2-related cytokines. SteE promoted SOCS3 expression by activating STAT3 in HD-11 cells. Moreover, steE inhibited NF-κB P65 expression and blocked its translocation to the nucleus by promoting SOCS3 expression. Our results illustrated that steE regulated the expression of Th1/Th2 cytokines via modulation of the STAT3/SOCS3 and NF-κB axis, which might be associated with Th1/Th2 cell differentiation and could, therefore, be a novel therapeutic strategy against salmonellosis.
Collapse
Affiliation(s)
- Zhike Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Li Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Pei Gao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yanhong Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Anatoliy Fotin
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Qiuxia Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhiyong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaobing Wei
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Tetiana Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, Sumy 40021, Ukraine.
| | - Jinyou Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China.
| |
Collapse
|
11
|
Al KF, Allen L, Bedell S, Burton JP, de Vrijer B. Assessing the impact of pregnancy and birth factors on the maternal and infant microbiota. MICROBIOME RESEARCH REPORTS 2023; 2:29. [PMID: 38045923 PMCID: PMC10688794 DOI: 10.20517/mrr.2023.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 12/05/2023]
Abstract
Background: The microbiota acquired at birth is known to play an intimate role in later life health and disease and has been shown to be affected by the mode of birth. There has been recent interest in microbiota correction by maternal vaginal seeding in Cesarean section-born infants; however, the safety of this practice has been debated. The aim of this study was to assess how other factors, such as timing of sampling, maternal obesity, vaginal Group B Streptococcus colonization (GBS), and antibiotic exposure, affect the maternal and infant microbiota. Methods: Maternal vaginal and saliva samples were collected at three time periods: 35-37 weeks gestation (prenatal), within 24-36 hours after birth (birth), and at ~6 weeks postpartum. Infant saliva and stool samples were collected at ~6 weeks postpartum. 16S rRNA amplicon sequencing was utilized to assess the taxonomic and inferred functional compositions of the bacterial communities from both mothers and infants. Results: Samples from 36 mothers and 32 infants were obtained. Gestational age, breastfeeding, mode of birth, and gravidity were associated with taxonomic alterations in the infant samples, while obesity, antibiotic use, and GBS status were not. Maternal samples were predominantly affected by time, whereby significant alterations including increased microbial diversity were seen at birth and persisted to 6 weeks postpartum. Conclusion: This study provides information on the relationship between health and delivery factors and changes in vaginal and infant microbiota. These results may better direct clinicians and mothers in optimizing the infant microbiota towards health during infancy and later life.
Collapse
Affiliation(s)
- Kait F Al
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario N6A4V2, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario N6A3K7, Canada
| | - Laura Allen
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
| | - Samantha Bedell
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
| | - Jeremy P Burton
- Canadian Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, Ontario N6A4V2, Canada
- Department of Microbiology and Immunology, Western University, London, Ontario N6A3K7, Canada
- Division of Urology, Department of Surgery, Western University, London, Ontario N6A4V2, Canada
| | - Barbra de Vrijer
- London Health Sciences Centre, London, Ontario N6A5W9, Canada
- Department of Obstetrics and Gynaecology, Division of Maternal Fetal Medicine, Western University, London, Ontario N6H5W9, Canada
- Children’s Health Research Institute, London, Ontario N6C 4V3, Canada
| |
Collapse
|
12
|
Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics (Basel) 2023; 12:antibiotics12020234. [PMID: 36830145 PMCID: PMC9952820 DOI: 10.3390/antibiotics12020234] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative opportunistic pathogen responsible for a variety of community and hospital infections. Infections caused by carbapenem-resistant K. pneumoniae (CRKP) constitute a major threat for public health and are strongly associated with high rates of mortality, especially in immunocompromised and critically ill patients. Adhesive fimbriae, capsule, lipopolysaccharide (LPS), and siderophores or iron carriers constitute the main virulence factors which contribute to the pathogenicity of K. pneumoniae. Colistin and tigecycline constitute some of the last resorts for the treatment of CRKP infections. Carbapenemase production, especially K. pneumoniae carbapenemase (KPC) and metallo-β-lactamase (MBL), constitutes the basic molecular mechanism of CRKP emergence. Knowledge of the mechanism of CRKP appearance is crucial, as it can determine the selection of the most suitable antimicrobial agent among those most recently launched. Plazomicin, eravacycline, cefiderocol, temocillin, ceftolozane-tazobactam, imipenem-cilastatin/relebactam, meropenem-vaborbactam, ceftazidime-avibactam and aztreonam-avibactam constitute potent alternatives for treating CRKP infections. The aim of the current review is to highlight the virulence factors and molecular pathogenesis of CRKP and provide recent updates on the molecular epidemiology and antimicrobial treatment options.
Collapse
|
13
|
Aksoyalp ZŞ, Temel A, Erdogan BR. Iron in infectious diseases friend or foe?: The role of gut microbiota. J Trace Elem Med Biol 2023; 75:127093. [PMID: 36240616 DOI: 10.1016/j.jtemb.2022.127093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/13/2022] [Accepted: 10/05/2022] [Indexed: 12/07/2022]
Abstract
Iron is a trace element involved in metabolic functions for all organisms, from microorganisms to mammalians. Iron deficiency is a prevalent health problem that affects billions of people worldwide, and iron overload could have some hazardous effect. The complex microbial community in the human body, also called microbiota, influences the host immune defence against infections. An imbalance in gut microbiota, dysbiosis, changes the host's susceptibility to infections by regulating the immune system. In recent years, the number of studies on the relationship between infectious diseases and microbiota has increased. Gut microbiota is affected by different parameters, including mode of delivery, hygiene habits, diet, drugs, and plasma iron levels during the lifetime. Gut microbiota may influence iron levels in the body, and iron overload and deficiency can also affect gut microbiota composition. Novel researches on microbiota shed light on the fact that the bidirectional interactions between gut microbiota and iron play a role in the pathogenesis of many diseases, especially infections. A better understanding of these interactions may help us to comprehend the pathogenesis of many infectious and metabolic diseases affecting people worldwide and following the development of more effective preventive and/or therapeutic strategies. In this review, we aimed to present the iron-mediated host-gut microbiota interactions, susceptibility to bacterial infections, and iron-targeted therapy approaches for infections.
Collapse
Affiliation(s)
- Zinnet Şevval Aksoyalp
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| | - Aybala Temel
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Izmir, Turkey.
| | - Betul Rabia Erdogan
- Izmir Katip Celebi University, Faculty of Pharmacy, Department of Pharmacology, Izmir, Turkey.
| |
Collapse
|
14
|
Zhu W, Mei J, Zhang X, Zhou J, Xu D, Su Z, Fang S, Wang J, Zhang X, Zhu C. Photothermal Nanozyme-Based Microneedle Patch against Refractory Bacterial Biofilm Infection via Iron-Actuated Janus Ion Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207961. [PMID: 36239263 DOI: 10.1002/adma.202207961] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Owing to high antibiotic resistance and thermotolerance, bacterial biofilm infections (BBIs) are refractory to elimination. Iron is essential for bacterial growth and metabolism, and bacteria can thus accumulate iron from surrounding cells to maintain biofilm formation and survival. Consequently, iron deficiency in the biofilm microenvironment (BME) leads to the functional failure of innate immune cells. Herein, a novel antibiofilm strategy of iron-actuated Janus ion therapy (IJIT) is proposed to regulate iron metabolism in both bacterial biofilm and immune cells. A BME-responsive photothermal microneedle patch (FGO@MN) is synthesized by the growth of Fe3 O4 nanoparticles on graphene oxide nanosheets and then encapsulated in methacrylated hyaluronic acid needle tips. The catalytic product of ·OH by FGO@MN in BME disrupts the bacterial heat-shock proteins, coercing biofilm thermal sensitization. As synergistic mild photothermal treatment triggers iron uptake, the intracellular iron overload further induces ferroptosis-like death. Moreover, iron-nourished neutrophils around BME can be rejuvenated for reactivating the suppressed antibiofilm function. Thus, more than 95% BBIs elimination can be achieved by combining heat stress-triggered iron interference with iron-nutrient immune reactivation. Furthermore, in vivo experiments validate the scavenging of refractory BBI after 15 days, suggesting the promising perspective of IJIT in future clinical application.
Collapse
Affiliation(s)
- Wanbo Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Jiawei Mei
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Xianzuo Zhang
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jun Zhou
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Dongdong Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Zheng Su
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Shiyuan Fang
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Xianlong Zhang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, P. R. China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China
| |
Collapse
|
15
|
Eiamsam-ang T, Tadee P, Pascoe B, Patchanee P. Genome-based analysis of infrequent Salmonella serotypes through the Thai pork production chain. Front Microbiol 2022; 13:968695. [PMID: 36090074 PMCID: PMC9453559 DOI: 10.3389/fmicb.2022.968695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 12/05/2022] Open
Abstract
Salmonella is a prevalent zoonotic foodborne pathogen. Swine and pork are implicated as important sources of salmonellosis in humans. In Chiang Mai and Lamphun Provinces in northern Thailand, there has been a high prevalence of Salmonella persistence for over a decade. Infection is usually with dominant S. enterica serotypes, including serotypes Rissen and 1,4,[5],12:i:-. However, other serotypes also contribute to disease but are less well characterized. The whole genome sequencing data of 43 S. enterica serotypes isolated from pork production chain through 2011-2014, were used to evaluate genetic diversity and ascertain the possible source of Salmonella contamination based on Core Genome Multilocus Sequence Typing (cgMLST) approach. The Salmonella serotypes recovered from farms and slaughterhouses were re-circulating by swine environmental contamination. Conversely, the Salmonella contamination in the retail market represents cross-contamination from multiple sources, including contaminated foodstuffs. Salmonella contamination in the pork production chain has the competency for host cell adhesion, host cell invasion, and intracellular survival, which is enough for the pathogenicity of salmonellosis. In addition, all of these isolates were multi-drug resistant Salmonella, which contained at least 10 antimicrobial resistance genes. This result indicated that these S. enterica serotypes also pose a significant public health risk. Our findings support the need for appropriate surveillance of food-animal products going to market to reduce public exposure to highly pathogenic, multi-drug resistant Salmonella. Acquiring information would motivate all stakeholders to reinforce sanitation standards throughout the pork production chain in order to eradicate Salmonella contamination and reduce the risk of salmonellosis in humans.
Collapse
Affiliation(s)
- Thanaporn Eiamsam-ang
- Graduate Program in Veterinary Science, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pakpoom Tadee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Ben Pascoe
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- The Milner Center for Evolution, University of Bath, Bath, United Kingdom
| | - Prapas Patchanee
- Integrative Research Center for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem 2022; 298:101651. [PMID: 35101443 PMCID: PMC8921320 DOI: 10.1016/j.jbc.2022.101651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Aritri Majumdar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - David A Six
- Department of Biology, Venatorx Pharmaceuticals, Inc, Malvern, Pennsylvania, USA
| | - Naara Marcondes Dos Santos
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Marilis Marques
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas A Russo
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Salete M Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
17
|
Oliveira F, Lima T, Correia A, Silva AM, Soares C, Morais S, Weißelberg S, Vilanova M, Rohde H, Cerca N. Siderophore-Mediated Iron Acquisition Plays a Critical Role in Biofilm Formation and Survival of Staphylococcus epidermidis Within the Host. Front Med (Lausanne) 2021; 8:799227. [PMID: 35004774 PMCID: PMC8738164 DOI: 10.3389/fmed.2021.799227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Iron acquisition through siderophores, a class of small, potent iron-chelating organic molecules, is a widely spread strategy among pathogens to survive in the iron-restricted environment found in the host. Although these molecules have been implicated in the pathogenesis of several species, there is currently no comprehensive study addressing siderophore production in Staphylococcus epidermidis. Staphylococcus epidermidis is an innocuous skin commensal bacterium. The species, though, has emerged as a leading cause of implant-associated infections, significantly supported by an inherent ability to form biofilms. The process of adaptation from skin niche environments to the hostile conditions during invasion is yet not fully understood. Herein, we addressed the possible role of siderophore production in S. epidermidis virulence. We first identified and deleted a siderophore homolog locus, sfaABCD, and provided evidence for its involvement in iron acquisition. Our findings further suggested the involvement of siderophores in the protection against oxidative stress-induced damage and demonstrated the in vivo relevance of a siderophore-mediated iron acquisition during S. epidermidis infections. Conclusively, this study addressed, for the first time in this species, the underlying mechanisms of siderophore production, highlighting the importance of a siderophore-mediated iron acquisition under host relevant conditions and, most importantly, its contribution to survival within the host.
Collapse
Affiliation(s)
- Fernando Oliveira
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Tânia Lima
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alexandra Correia
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Margarida Silva
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristina Soares
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE-LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel Vilanova
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS-UP, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Nuno Cerca
- LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
18
|
Hoffmann A, Haschka D, Valente de Souza L, Tymoszuk P, Seifert M, von Raffay L, Hilbe R, Petzer V, Moser PL, Nairz M, Weiss G. Baseline iron status and presence of anaemia determine the course of systemic Salmonella infection following oral iron supplementation in mice. EBioMedicine 2021; 71:103568. [PMID: 34488018 PMCID: PMC8426537 DOI: 10.1016/j.ebiom.2021.103568] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/29/2021] [Accepted: 08/18/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Iron deficiency anaemia (IDA) is a major health concern. However, preventive iron supplementation in regions with high burden of infectious diseases resulted in an increase of infection related morbidity and mortality. METHODS We fed male C57BL/6N mice with either an iron deficient or an iron adequate diet. Next, they received oral iron supplementation or placebo followed by intraperitoneal infection with Salmonella Typhimurium (S.Tm). FINDINGS We found that mice with IDA had a poorer clinical outcome than mice on an iron adequate diet. Interestingly, iron supplementation of IDA mice resulted in higher bacterial burden in organs and shortened survival. Increased transferrin saturation and non-transferrin bound iron in the circulation together with low expression of ferroportin facilitated the access of the pathogen to iron and promoted bacterial growth. Anaemia, independent of iron supplementation, was correlated with reduced neutrophil counts and cytotoxic T cells. With iron supplementation, anaemia additionally correlated with increased splenic levels of the cytokine IL-10, which is suggestive for a weakened immune control to S.Tm infection. INTERPRETATION Supplementing iron to anaemic mice worsens the clinical course of bacterial infection. This can be traced back to increased iron delivery to bacteria along with an impaired anti-microbial immune response. Our findings may have important implications for iron supplementation strategies in areas with high endemic burden of infections, putting those individuals, who potentially profit most from iron supplementation for anaemia, at the highest risk for infections. FUNDING Financial support by the Christian Doppler Laboratory for Iron Metabolism and Anemia Research.
Collapse
Affiliation(s)
- Alexander Hoffmann
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - David Haschka
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria
| | - Lara Valente de Souza
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Piotr Tymoszuk
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck A-6020, Austria
| | - Laura von Raffay
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria
| | - Verena Petzer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria
| | - Patrizia L Moser
- Institute of Pathology, INNPATH, Anichstraße 35, Innsbruck A-6020, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Anichstraße 35, Innsbruck A-6020, Austria; Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck A-6020, Austria.
| |
Collapse
|
19
|
Ali S, Alam M, Hasan GM, Hassan MI. Potential therapeutic targets of Klebsiella pneumoniae: a multi-omics review perspective. Brief Funct Genomics 2021; 21:63-77. [PMID: 34448478 DOI: 10.1093/bfgp/elab038] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/15/2022] Open
Abstract
The multidrug resistance developed in many organisms due to the prolonged use of antibiotics has been an increasing global health crisis. Klebsiella pneumoniae is a causal organism for various infections, including respiratory, urinary tract and biliary diseases. Initially, immunocompromised individuals are primarily affected by K. pneumoniae. Due to the emergence of hypervirulent strains recently, both healthy and immunocompetent individuals are equally susceptible to K. pneumoniae infections. The infections caused by multidrug-resistant and hypervirulent K. pneumoniae strains are complicated to treat, illustrating an urgent need to develop novel and more practical approaches to combat the pathogen. We focused on the previously performed high-throughput analyses by other groups to discover several novel enzymes that may be considered attractive drug targets of K. pneumoniae. These targets qualify most of the selection criteria for drug targeting, including an absence of its homolog's gene in the host. The capsule, lipopolysaccharide, fimbriae, siderophores and essential virulence factors facilitate the pathogen entry, infection and survival inside the host. This review discusses K. pneumoniae pathophysiology, including its virulence determinants and further the potential drug targets that might facilitate the discovery of novel drugs and effective treatment regimens shortly.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar New Delhi 110025, India
| |
Collapse
|
20
|
Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophores: Importance in bacterial pathogenesis and applications in medicine and industry. Microbiol Res 2021; 250:126790. [PMID: 34098495 DOI: 10.1016/j.micres.2021.126790] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Iron is an essential element for all microorganisms. Siderophores are low-weight, high-affinity iron chelating molecules produced in response to iron deficiency by Gram-positive and Gram-negative bacteria which also known as essential virulence factors of bacteria. Several studies have indicated that defective production and/or function of these molecules as well as iron acquisition systems in pathogens are associated with a reduction in pathogenicity of bacteria. Because of their potential role in various biological pathways, siderophores have been received special attention as secondary metabolites. Siderophores can detect iron levels in a variety of environments with a biosensor function. In medicine, siderophores are used to deliver antibiotics (Trojan horse strategy) to resistant bacteria and to treat diseases such as cancer and malaria. In this review, we discuss the iron acquisition pathways in Gram-positive and -negative bacteria, importance of siderophore production in pathogenesis of bacteria, classification of siderophores, and main applications of siderophores in medicine and industry.
Collapse
Affiliation(s)
- Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Pezhman Mahmoodi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
21
|
Oliveira F, Rohde H, Vilanova M, Cerca N. The Emerging Role of Iron Acquisition in Biofilm-Associated Infections. Trends Microbiol 2021; 29:772-775. [PMID: 33707049 DOI: 10.1016/j.tim.2021.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
A possible association between iron and biofilm formation has been explored for a long time. Here, we focus on major recent advances that shed light on the mechanisms behind this relationship and discuss how siderophore-mediated iron acquisition may impact the virulence of important nosocomial pathogens.
Collapse
Affiliation(s)
- Fernando Oliveira
- Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manuel Vilanova
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal; ICBAS-UP, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
22
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Abokor AA, Wenceslau CF, Shah YM, Joe B, Vijay-Kumar M. Enterobactin induces the chemokine, interleukin-8, from intestinal epithelia by chelating intracellular iron. Gut Microbes 2020; 12:1-18. [PMID: 33171063 PMCID: PMC7671005 DOI: 10.1080/19490976.2020.1841548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Iron is an indispensable nutrient for both mammals and microbes. Bacteria synthesize siderophores to sequester host iron, whereas lipocalin 2 (Lcn2) is the host defense protein that prevent this iron thievery. Enterobactin (Ent) is a catecholate-type siderophore that has one of the strongest known affinities for iron. Intestinal epithelial cells (IECs) are adjacent to large microbial population and are in contact with microbial products, including Ent. We undertook this study to investigate whether a single stimulus of Ent could affect IEC functions. Using three human IEC cell-lines with differential basal levels of Lcn2 (i.e. HT29 < DLD-1 < Caco-2/BBe), we demonstrated that iron-free Ent could induce a dose-dependent secretion of the pro-inflammatory chemokine, interleukin 8 (IL-8), in HT29 and DLD-1 IECs, but not in Caco-2/BBe. Ent-induced IL-8 secretion was dependent on chelation of the labile iron pool and on the levels of intracellular Lcn2. Accordingly, IL-8 secretion by Ent-treated HT29 cells could be substantially inhibited by either saturating Ent with iron or by adding exogenous Lcn2 to the cells. IL-8 production by Ent could be further potentiated when co-stimulated with other microbial products (i.e. flagellin, lipopolysaccharide). Water-soluble microbial siderophores did not induce IL-8 production, which signifies that IECs are specifically responding to the lipid-soluble Ent. Intriguingly, formyl peptide receptor (FPR) antagonists (i.e. Boc2, cyclosporine H) abrogated Ent-induced IL-8, implicating that such IEC response could be, in part, dependent on FPR. Taken together, these results demonstrate that IECs sense Ent as a danger signal, where its recognition results in IL-8 secretion.
Collapse
Affiliation(s)
- Piu Saha
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Beng San Yeoh
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Xia Xiao
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachel M. Golonka
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Ahmed A. Abokor
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Camilla F. Wenceslau
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Yatrik M. Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bina Joe
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Matam Vijay-Kumar
- UT Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA,CONTACT Matam Vijay-Kumar Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH43614, USA
| |
Collapse
|
23
|
Wellawa DH, Allan B, White AP, Köster W. Iron-Uptake Systems of Chicken-Associated Salmonella Serovars and Their Role in Colonizing the Avian Host. Microorganisms 2020; 8:E1203. [PMID: 32784620 PMCID: PMC7465098 DOI: 10.3390/microorganisms8081203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential micronutrient for most bacteria. Salmonella enterica strains, representing human and animal pathogens, have adopted several mechanisms to sequester iron from the environment depending on availability and source. Chickens act as a major reservoir for Salmonella enterica strains which can lead to outbreaks of human salmonellosis. In this review article we summarize the current understanding of the contribution of iron-uptake systems to the virulence of non-typhoidal S. enterica strains in colonizing chickens. We aim to address the gap in knowledge in this field, to help understand and define the interactions between S. enterica and these important hosts, in comparison to mammalian models.
Collapse
Affiliation(s)
- Dinesh H. Wellawa
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Brenda Allan
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
| | - Aaron P. White
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Wolfgang Köster
- Vaccine & Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada; (D.H.W.); (B.A.); (A.P.W.)
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
24
|
Pobeguts OV, Ladygina VG, Evsyutina DV, Eremeev AV, Zubov AI, Matyushkina DS, Scherbakov PL, Rakitina DV, Fisunov GY. Propionate Induces Virulent Properties of Crohn's Disease-Associated Escherichia coli. Front Microbiol 2020; 11:1460. [PMID: 32733408 PMCID: PMC7360682 DOI: 10.3389/fmicb.2020.01460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Crohn's disease (CD) is a severe chronic immune-mediated granulomatous inflammatory disease of the gastrointestinal tract. The mechanisms of CD pathogenesis remain obscure. Metagenomic analysis of samples from CD patients revealed that several of them have the elevated level of Escherichia coli with adhesive-invasive phenotype (AIEC). Previously, we isolated an E. coli strain CD isolate ZvL2 from a patient with CD, which features AIEC phenotype. Here, we demonstrate that prolonged growth on propionate containing medium stimulates virulent properties of CD isolate ZvL2, while prolonged growth on glucose reduces these properties to levels indistinguishable from laboratory strain K-12 MG1655. Propionate presence also boosts the ability of CD isolate ZvL2 to penetrate and colonize macrophages. The effect of propionate is reversible, re-passaging of CD isolate on M9 medium supplemented with glucose leads to the loss of its virulent properties. Proteome analysis of CD isolate ZvL2 growth in medium supplemented with propionate or glucose revealed that propionate induces expression porins OmpA and OmpW, transcription factors PhoP and OmpR, and universal stress protein UspE, which were previously found to be important for macrophage colonization by enteropathogenic bacteria.
Collapse
Affiliation(s)
- Olga V. Pobeguts
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Valentina G. Ladygina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Daria V. Evsyutina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Artem V. Eremeev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Aleksandr I. Zubov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Daria S. Matyushkina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | | | - Daria V. Rakitina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| | - Gleb Y. Fisunov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Centre of Physical and Chemical Medicine, Federal Medical-Biological Agency, Moscow, Russia
| |
Collapse
|
25
|
Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW, McNeil HE, Blair JM. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143-157. [PMID: 32073314 DOI: 10.2217/fmb-2019-0235] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.
Collapse
Affiliation(s)
- Abigail L Colclough
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily E Whittle
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah L Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Helen E McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
26
|
Abstract
Klebsiella pneumoniae is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. The species is naturally resistant to penicillins, and members of the population often carry acquired resistance to multiple antimicrobials. However, knowledge of K. pneumoniae ecology, population structure or pathogenicity is relatively limited. Over the past decade, K. pneumoniae has emerged as a major clinical and public health threat owing to increasing prevalence of healthcare-associated infections caused by multidrug-resistant strains producing extended-spectrum β-lactamases and/or carbapenemases. A parallel phenomenon of severe community-acquired infections caused by 'hypervirulent' K. pneumoniae has also emerged, associated with strains expressing acquired virulence factors. These distinct clinical concerns have stimulated renewed interest in K. pneumoniae research and particularly the application of genomics. In this Review, we discuss how genomics approaches have advanced our understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance. A deeper understanding of K. pneumoniae population structure and diversity will be important for the proper design and interpretation of experimental studies, for interpreting clinical and public health surveillance data and for the design and implementation of novel control strategies against this important pathogen.
Collapse
|
27
|
Saha P, Yeoh BS, Xiao X, Golonka RM, Kumarasamy S, Vijay-Kumar M. Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation. Biochem Pharmacol 2019; 168:71-81. [PMID: 31228465 PMCID: PMC6733644 DOI: 10.1016/j.bcp.2019.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
Iron is essential for many biological functions, including being a cofactor for enzymes involved in cell proliferation. In line, it has been shown that cancer cells can perturb their iron metabolism towards retaining an abundant iron supply for growth and survival. Accordingly, it has been suggested that iron deprivation through the use of iron chelators could attenuate cancer progression. While they have exhibited anti-tumor properties in vitro, the current therapeutic iron chelators are inadequate due to their low efficacy. Therefore, we investigated whether the bacterial catecholate-type siderophore, enterobactin (Ent), could be used as a potent anti-cancer agent given its strong iron chelation property. We demonstrated that iron-free Ent can exert cytotoxic effects specifically towards monocyte-related tumor cell lines (RAW264.7 and J774A.1), but not primary cells, i.e. bone marrow-derived macrophages (BMDMs), through two mechanisms. First, we observed that RAW264.7 and J774A.1 cells preserve a bountiful intracellular labile iron pool (LIP), whose homeostasis can be disrupted by Ent. This may be due, in part, to the lower levels of lipocalin 2 (Lcn2; an Ent-binding protein) in these cell lines, whereas the higher levels of Lcn2 in BMDMs could prevent Ent from hindering their LIP. Secondly, we observed that Ent could dose-dependently impede reactive oxygen species (ROS) generation in the mitochondria. Such disruption in LIP balance and mitochondrial function may in turn promote cancer cell apoptosis. Collectively, our study highlights Ent as an anti-cancer siderophore, which can be exploited as an unique agent for cancer therapy.
Collapse
Affiliation(s)
- Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xia Xiao
- Division of Nephrology, MGH, Harvard Medical School, Boston, MA 02114, USA
| | - Rachel M Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sivarajan Kumarasamy
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| |
Collapse
|