1
|
Gao Y, Zhang H, Zhu D, Guo L. Different artificial feeding strategies shape the diverse gut microbial communities and functions with the potential risk of pathogen transmission to captive Asian small-clawed otters ( Aonyx cinereus). mSystems 2024; 9:e0095424. [PMID: 39601555 DOI: 10.1128/msystems.00954-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Captive otters raised in zoos are fed different artificial diets, which may shape gut microbiota. The objective is to evaluate the impacts of two different artificial diets on microbial communities and function capabilities and short-chain fatty acid (SCFA) profiles in healthy otters' feces. A total of 16 Asian small-clawed otters in two groups (n = 8) were selected. Group A otters were fed raw loaches supplemented with commercial cat food (LSCF) diet, and group B otters were fed raw crucian diet. The communities and functional capabilities of microbiota in feces were assessed with metagenomic sequencing. Captive otters fed two kinds of diets possessed different gut microbial communities and functional capabilities. Various pathogenic bacteria, like Escherichia coli and Clostridium perfringens, were enriched in the samples from the two groups, respectively. Most of the differential pathways of nutrient metabolism were significantly enriched in group A, and the distributions of carbohydrate enzymes in the two groups significantly differed from each other. Multiple resistance genes markedly accumulated in fecal samples of the group A otters with LSCF diet. Higher concentrations of SCFAs were also observed in group A otters. Two feeding strategies were both likely to facilitate the colonization and expansion of various pathogenic bacteria and the accumulation of resistance genes in the intestines of captive otters, suggesting that risk of pathogen transmission existed in the current feeding process. Commercial cat food could supplement various nutrients and provide a substrate for the production of SCFAs, which might be beneficial for the otters' intestinal fermentation and metabolism. IMPORTANCE Captive otters fed with different diets possessed distinct gut microbial communities and functions, with the enrichment of several pathogens and multiple resistance genes in their gut microbiota. The current artificial feeding strategies had the possibility to accelerate the colonization and proliferation of various pathogenic bacteria in the intestines of otters and the spread of resistance genes, increasing the risk of diseases. In addition, supplementation with commercial cat food had benefits for otters' intestinal fermentation and the metabolism of gut microbiota.
Collapse
Affiliation(s)
- Yuanda Gao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hangyu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Dapeng Zhu
- Foping National Nature Reserve, Hanzhong, China
| | - Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Yilmaz G, Chan M, Lau CHF, Capitani S, Kang M, Charron P, Hoover E, Topp E, Guan J. How Gut Microbiome Perturbation Caused by Antibiotic Pre-Treatments Affected the Conjugative Transfer of Antimicrobial Resistance Genes. Microorganisms 2024; 12:2148. [PMID: 39597538 PMCID: PMC11596856 DOI: 10.3390/microorganisms12112148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The global spread of antimicrobial resistance genes (ARGs) poses a significant threat to public health. While antibiotics effectively treat bacterial infections, they can also induce gut dysbiosis, the severity of which varies depending on the specific antibiotic treatment used. However, it remains unclear how gut dysbiosis affects the mobility and dynamics of ARGs. To address this, mice were pre-treated with streptomycin, ampicillin, or sulfamethazine, and then orally inoculated with Salmonella enterica serovar Typhimurium and S. Heidelberg carrying a multi-drug resistance IncA/C plasmid. The streptomycin pre-treatment caused severe microbiome perturbation, promoting the high-density colonization of S. Heidelberg and S. Typhimurium, and enabling an IncA/C transfer from S. Heidelberg to S. Typhimurium and a commensal Escherichia coli. The ampicillin pre-treatment induced moderate microbiome perturbation, supporting only S. Heidelberg colonization and the IncA/C transfer to commensal E. coli. The sulfamethazine pre-treatment led to mild microbiome perturbation, favoring neither Salmonella spp. colonization nor a conjugative plasmid transfer. The degree of gut dysbiosis also influenced the enrichment or depletion of the ARGs associated with mobile plasmids or core commensal bacteria, respectively. These findings underscore the significance of pre-existing gut dysbiosis induced by various antibiotic treatments on ARG dissemination and may inform prudent antibiotic use practices.
Collapse
Affiliation(s)
- Gokhan Yilmaz
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Maria Chan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Calvin Ho-Fung Lau
- Ottawa Laboratory-Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0Z, Canada; (C.H.-F.L.)
| | - Sabrina Capitani
- Ottawa Laboratory-Carling, Canadian Food Inspection Agency, Ottawa, ON K1A 0Z, Canada; (C.H.-F.L.)
| | - Mingsong Kang
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Philippe Charron
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Emily Hoover
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| | - Edward Topp
- Agroecology Research Unit, INRAE, University of Burgundy, 21065 Dijon, France;
| | - Jiewen Guan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON K2J 4S1, Canada (M.K.); (E.H.)
| |
Collapse
|
3
|
Jia Y, Zhang T, He M, Yang B, Wang Z, Liu Y. Melatonin Protects Against Colistin-Induced Intestinal Inflammation and Microbiota Dysbiosis. J Pineal Res 2024; 76:e12989. [PMID: 38978438 DOI: 10.1111/jpi.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Colistin is renowned as a last-resort antibiotic due to the emergence of multidrug-resistant pathogens. However, its potential toxicity significantly hampers its clinical utilization. Melatonin, chemically known as N-acetyl-5-hydroxytryptamine, is an endogenous hormone produced by the pineal gland and possesses diverse biological functions. However, the protective role of melatonin in alleviating antibiotic-induced intestinal inflammation remains unknown. Herein, we reveal that colistin stimulation markedly elevates intestinal inflammatory levels and compromises the gut barrier. In contrast, pretreatment with melatonin safeguards mice against intestinal inflammation and mucosal damage. Microbial diversity analysis indicates that melatonin supplementation prevents a reduction in the abundance of Erysipelotrichales and Bifidobacteriales, as well as an increase in Desulfovibrionales abundance, following colistin exposure. Remarkably, short-chain fatty acids (SCFAs) analysis shows that propanoic acid contributes to the protective effect of melatonin on colistin-induced intestinal inflammation. Furthermore, the protection effects of melatonin and propanoic acid on LPS-induced cellular inflammation in RAW 264.7 cells are confirmed. Mechanistic investigations suggest that intervention with melatonin and propanoic acid can repress the activation of the TLR4 signal and its downstream NF-κB and MAPK signaling pathways, thereby mitigating the toxic effects of colistin. Our work highlights the unappreciated role of melatonin in preventing the potential detrimental effects of colistin on intestinal health and suggests a combined therapeutic strategy to effectively manage intestinal infectious diseases.
Collapse
Affiliation(s)
- Yuqian Jia
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tingting Zhang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Mengping He
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Fu Y, Jia F, Su J, Xu X, Zhang Y, Li X, Jiang X, Schäffer A, Virta M, Tiedje JM, Wang F. Co-occurrence patterns of gut microbiome, antibiotic resistome and the perturbation of dietary uptake in captive giant pandas. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134252. [PMID: 38657507 DOI: 10.1016/j.jhazmat.2024.134252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
The microbiome is a key source of antibiotic resistance genes (ARGs), significantly influenced by diet, which highlights the interconnectedness between diet, gut microbiome, and ARGs. Currently, our understanding is limited on the co-occurrence among gut microbiome, antibiotic resistome in the captive giant panda and the perturbation of dietary uptake, especially for the composition and forms in dietary nutrition. Here, a qPCR array with 384 primer sets and 16 S rRNA gene amplicon sequencing were used to characterize the antibiotic resistome and microbiomes in panda feces, dietary bamboo, and soil around the habitat. Diet nutrients containing organic and mineral substances in soluble and insoluble forms were also quantified. Organic and mineral components in water-unextractable fractions were 7.5 to 139 and 637 to 8695 times higher than those in water-extractable portions in bamboo and feces, respectively, while the latter contributed more to the variation (67.5 %) of gut microbiota. Streptococcus, Prevotellaceae, and Bacteroides were the dominant genera in giant pandas. The ARG patterns in panda guts showed higher diversity in old individuals but higher abundance in young ones, driven directly by the bacterial community change and mobile genetic element mediation and indirectly by dietary intervention. Our results suggest that dietary nutrition mainly accounts for the shift of gut microbiota, while bacterial community and mobile genetic elements influenced the variation of gut antibiotic resistome.
Collapse
Affiliation(s)
- Yuhao Fu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feiran Jia
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Jingfang Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinyao Xu
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Yuqin Zhang
- University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Xiangzhen Li
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany
| | - Marko Virta
- Department of Microbiology, University of Helsinki, Helsinki 00014, Finland
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Environmental Research, RWTH Aachen University, Aachen 52074, Germany.
| |
Collapse
|
6
|
Liu Y, Chang J, Bai LD. Intestinal flora: New perspective of type 2 diabetes. World J Clin Cases 2024; 12:1996-1999. [PMID: 38660554 PMCID: PMC11036511 DOI: 10.12998/wjcc.v12.i11.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Diabetes comprises a group of metabolic diseases characterized by hyperglycemia stemming from various factors. Current diabetes management primarily focuses on blood glucose control, yet it is inherently progressive, necessitating increased reliance on exogenous blood glucose control methods over time. Therefore, there is an urgent need to explore novel intervention strategies addressing both diabetes and its complications. The human intestinal microbiota, often referred to as the "second genome", exhibits significant diversity and plays a pivotal role in insulin resistance, glucose and lipid metabolism, and inflammatory response. Notably, Li and Guo have elucidated the involvement of intestinal flora in the pathogenesis of type 2 diabetes mellitus (T2DM) and proposed a novel therapeutic approach targeting intestinal microbes. This advancement enhances our comprehension of the multifaceted and multi-target regulation of T2DM by intestinal microflora, thereby offering fresh avenues for understanding its pathogenesis and clinical management. This letter briefly summarizes the role of intestinal flora in T2DM based on findings from animal experiments and clinical studies. Additionally, it discusses the potential clinical applications and challenges associated with targeting intestinal flora as therapeutic interventions.
Collapse
Affiliation(s)
- Yan Liu
- Department of Gastroenterology, Hospital of Integrated Chinese and Western Medicine, Tianjin, Tianjin 300100, China
| | - Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Li-Ding Bai
- Academy of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
7
|
Lu Y, Zhou X, Wu Y, Cui Q, Tian X, Yi H, Gong P, Zhang L. Metabolites 13,14-Dihydro-15-keto-PGE2 Participates in Bifidobacterium animalis F1-7 to Alleviate Opioid-Induced Constipation by 5-HT Pathway. Mol Nutr Food Res 2024; 68:e2200846. [PMID: 38054625 DOI: 10.1002/mnfr.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 07/13/2023] [Indexed: 12/07/2023]
Abstract
SCOPE People suffer from constipation caused by many factors, including constipation (Opioid-Induced Constipation, OIC) during analgesic treatment. Microorganisms may be a potent solution to this problem, but the mechanism is still unclear. METHODS AND RESULTS Based on models in vivo and in vitro, the potential mechanism involving Bifidobacterium animalis F1-7 (B. animalis F1-7), screened in the previous studies, is explored through non-targeted metabonomics, electrophysiological experiment and molecular level docking. The results showed that B. animalis F1-7 effectively alleviates OIC and promotes the expression of chromogranin A (CGA) and 5-hydroxytryptamine (5-HT). The metabolite 13,14-dihydro-15-keto-PGE2 related to B. animalis F1-7 is found, which has a potential improvement effect on OIC at 20 mg kg BW-1 in vivo. At 30 ng mL-1 it effectively stimulates secretion of CGA/5-HT (408.95 ± 1.18 ng mL-1 ) by PC-12 cells and changes the membrane potential potassium ion current without affecting the sodium ion current in vitro. It upregulates the target of free fatty acid receptor-4 protein(FFAR4/β-actin, 0.81 ± 0.02). CONCLUSION The results demonstrate that metabolite 13,14-dihydro-15-keto-PGE2 participated in B. animalis F1-7 to alleviate OIC via the 5-HT pathway.
Collapse
Affiliation(s)
- Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education (Huazhong Agricultural University), China
| | | | - Yeting Wu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyu Cui
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266000, China
| |
Collapse
|
8
|
Ding Y, Jiang X, Wu J, Wang Y, Zhao L, Pan Y, Xi Y, Zhao G, Li Z, Zhang L. Synergistic horizontal transfer of antibiotic resistance genes and transposons in the infant gut microbial genome. mSphere 2024; 9:e0060823. [PMID: 38112433 PMCID: PMC10826358 DOI: 10.1128/msphere.00608-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023] Open
Abstract
Transposons, plasmids, bacteriophages, and other mobile genetic elements facilitate horizontal gene transfer in the gut microbiota, allowing some pathogenic bacteria to acquire antibiotic resistance genes (ARGs). Currently, the relationship between specific ARGs and specific transposons in the comprehensive infant gut microbiome has not been elucidated. In this study, ARGs and transposons were annotated from the Unified Human Gastrointestinal Genome (UHGG) and the Early-Life Gut Genomes (ELGG). Association rules mining was used to explore the association between specific ARGs and specific transposons in UHGG, and the robustness of the association rules was validated using the external database in ELGG. Our results suggested that ARGs and transposons were more likely to be relevant in infant gut microbiota compared to adult gut microbiota, and nine robust association rules were identified, among which Klebsiella pneumoniae, Enterobacter hormaechei_A, and Escherichia coli_D played important roles in this association phenomenon. The emphasis of this study is to investigate the synergistic transfer of specific ARGs and specific transposons in the infant gut microbiota, which can contribute to the study of microbial pathogenesis and the ARG dissemination dynamics.IMPORTANCEThe transfer of transposons carrying antibiotic resistance genes (ARGs) among microorganisms accelerates antibiotic resistance dissemination among infant gut microbiota. Nonetheless, it is unclear what the relationship between specific ARGs and specific transposons within the infant gut microbiota. K. pneumoniae, E. hormaechei_A, and E. coli_D were identified as key players in the nine robust association rules we discovered. Meanwhile, we found that infant gut microorganisms were more susceptible to horizontal gene transfer events about specific ARGs and specific transposons than adult gut microorganisms. These discoveries could enhance the understanding of microbial pathogenesis and the ARG dissemination dynamics within the infant gut microbiota.
Collapse
Affiliation(s)
- Yanwen Ding
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Jiang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiacheng Wu
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yihui Wang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lanlan Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingmiao Pan
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaxuan Xi
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guoping Zhao
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University, State Key Laboratory of Microbial Technology, Qingdao, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, China National Institute of Health, Shanghai, China
| | - Ziyun Li
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Zhang
- Microbiome-X, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong University, State Key Laboratory of Microbial Technology, Qingdao, China
| |
Collapse
|
9
|
Zhang T, Mu Y, Gao Y, Tang Y, Mao S, Liu J. Fecal microbial gene transfer contributes to the high-grain diet-induced augmentation of aminoglycoside resistance in dairy cattle. mSystems 2024; 9:e0081023. [PMID: 38085089 PMCID: PMC10805029 DOI: 10.1128/msystems.00810-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 01/24/2024] Open
Abstract
A high-grain (HG) diet can rapidly lower the rumen pH and thus modify the gastrointestinal microbiome in dairy cattle. Although the prevalence of antibiotic resistance is strongly linked with the gut microbiome, the influences of HG diet on animals' gut resistome remain largely unexplored. Here, we examined the impact and mechanism of an HG diet on the fecal resistome in dairy cattle by metagenomically characterizing the gut microbiome. Eight lactating Holstein cattle were randomly allocated into two groups and fed either a conventional (CON) or HG diet for 3 weeks. The fecal microbiome and resistome were significantly altered in dairy cattle from HG, demonstrating an adaptive response that peaks at day 14 after the dietary transition. Importantly, we determined that feeding an HG diet specifically elevated the prevalence of resistance to aminoglycosides (0.11 vs 0.24 RPKG, P < 0.05). This diet-induced resistance increase is interrelated with the disproportional propagation of microbes in Lachnospiraceae, indicating a potential reservoir of aminoglycosides resistance. We further showed that the prevalence of acquired resistance genes was also modified by introducing a different diet, likely due to the augmented frequency of lateral gene transfer (LGT) in microbes (CON vs HG: 254 vs 287 taxa) such as Lachnospiraceae. Consequently, we present that diet transition is associated with fecal resistome modification in dairy cattle and an HG diet specifically enriched aminoglycosides resistance that is likely by stimulating microbial LGT.IMPORTANCEThe increasing prevalence of antimicrobial resistance is one of the most severe threats to public health, and developing novel mitigation strategies deserves our top priority. High-grain (HG) diet is commonly applied in dairy cattle to enhance animals' performance to produce more high-quality milk. We present that despite such benefits, the application of an HG diet is correlated with an elevated prevalence of resistance to aminoglycosides, and this is a combined effect of the expansion of antibiotic-resistant bacteria and increased frequency of lateral gene transfer in the fecal microbiome of dairy cattle. Our results provided new knowledge in a typically ignored area by showing an unexpected enrichment of antibiotic resistance under an HG diet. Importantly, our findings laid the foundation for designing potential dietary intervention strategies to lower the prevalence of antibiotic resistance in dairy production.
Collapse
Affiliation(s)
- Tao Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yingyu Mu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yunlong Gao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yijun Tang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jinxin Liu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Baquero F, Rodríguez-Beltrán J, Coque TM, del Campo R. Boosting Fitness Costs Associated with Antibiotic Resistance in the Gut: On the Way to Biorestoration of Susceptible Populations. Biomolecules 2024; 14:76. [PMID: 38254676 PMCID: PMC10812938 DOI: 10.3390/biom14010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The acquisition and expression of antibiotic resistance implies changes in bacterial cell physiology, imposing fitness costs. Many human opportunistic pathogenic bacteria, such as those causing urinary tract or bloodstream infections, colonize the gut. In this opinionated review, we will examine the various types of stress that these bacteria might suffer during their intestinal stay. These stresses, and their compensatory responses, probably have a fitness cost, which might be additive to the cost of expressing antibiotic resistance. Such an effect could result in a disadvantage relative to antibiotic susceptible populations that might replace the resistant ones. The opinion proposed in this paper is that the effect of these combinations of fitness costs should be tested in antibiotic resistant bacteria with susceptible ones as controls. This testing might provide opportunities to increase the bacterial gut stress boosting physiological biomolecules or using dietary interventions. This approach to reduce the burden of antibiotic-resistant populations certainly must be answered empirically. In the end, the battle against antibiotic resistance should be won by antibiotic-susceptible organisms. Let us help them prevail.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Epidemiology and Public Health (CIBER-ESP), 28029 Madrid, Spain
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| | - Rosa del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), 28034 Madrid, Spain
- Network Center for Biomedical Research in Infectious Diseases (CIBER-INFEC), 28034 Madrid, Spain
| |
Collapse
|
11
|
Zhang YW, Song PR, Wang SC, Liu H, Shi ZM, Su JC. Diets intervene osteoporosis via gut-bone axis. Gut Microbes 2024; 16:2295432. [PMID: 38174650 PMCID: PMC10773645 DOI: 10.1080/19490976.2023.2295432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Osteoporosis is a systemic skeletal disease that seriously endangers the health of middle-aged and older adults. Recently, with the continuous deepening of research, an increasing number of studies have revealed gut microbiota as a potential target for osteoporosis, and the research concept of the gut-bone axis has gradually emerged. Additionally, the intake of dietary nutrients and the adoption of dietary patterns may affect the gut microbiota, and alterations in the gut microbiota might also influence the metabolic status of the host, thus adjusting bone metabolism. Based on the gut-bone axis, dietary intake can also participate in the modulation of bone metabolism by altering abundance, diversity, and composition of gut microbiota. Herein, combined with emerging literatures and relevant studies, this review is aimed to summarize the impacts of different dietary components and patterns on osteoporosis by acting on gut microbiota, as well as underlying mechanisms and proper dietary recommendations.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Pei-Ran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| | - Zhong-Min Shi
- Department of Orthopaedics, Sixth People’s Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Organoid Research Center, Shanghai University, Shanghai, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, China
| |
Collapse
|
12
|
Cai S, Yang Y, Zeng X, Zhu Z, Wang F, Zhang S, Chen F, Cai C, Zeng X, Qiao S. Methionine influences the profile of intestinal antibiotic resistome through inhibiting the growth of Escherichia coli. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165610. [PMID: 37474041 DOI: 10.1016/j.scitotenv.2023.165610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance genes (ARGs) are a new type of environmental pollutant. However, studies have mainly focused on the distribution characteristics of ARGs in the livestock environment, lacking of studies on the composition of ARGs in the intestinal tract of animals and the effect of nutrients on intestinal ARGs and microbial communities. Reducing antimicrobial resistance and maintaining optimal animal health and performance are urgently needed. Methionine is an essential amino acid which plays a critical role in the growth and reproductive performance of animals. In this study, feeding experiment, in vitro fermentation and bacterial culture experiment were performed to explore the influence of methionine on the intestinal resistome of sows. We found that dietary 0.2 % methionine supplementation decreased the total abundance of intestinal ARGs, which was further confirmed by in vitro fecal microbial fermentation of sows. Metagenome binning analysis identified that Escherichia coli was the major ARG host, which carried 60-113 ARGs and 134-286 virulence factors, indicating that Escherichia coli in the pig intestine is not only a core ARG host, but also an important pathogen. In addition, we found that methionine supplementation inhibited the growth of Escherichia coli, indicating that dietary methionine may reduce the resistome risk in sow intestine by inhibiting core ARG hosts such as Escherichia coli. These findings reveal that dietary methionine application plays a critical role in intestinal antibiotic resistance, providing a new idea for preventing and controlling environmental pollution by antibiotic-resistant microbes.
Collapse
Affiliation(s)
- Shuang Cai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| | - Yiwen Yang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangzhou Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| | - Zhekun Zhu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| | - Fenglai Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| | - Shihai Zhang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China.
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biofeed Additives, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Weiss A, Wang T, You L. Promotion of plasmid maintenance by heterogeneous partitioning of microbial communities. Cell Syst 2023; 14:895-905.e5. [PMID: 37820728 PMCID: PMC10591896 DOI: 10.1016/j.cels.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Transferable plasmids play a critical role in shaping the functions of microbial communities. Previous studies suggested multiple mechanisms underlying plasmid persistence and abundance. Here, we focus on the interplay between heterogeneous community partitioning and plasmid fates. Natural microbiomes often experience partitioning that creates heterogeneous local communities with reduced population sizes and biodiversity. Little is known about how population partitioning affects the plasmid fate through the modulation of community structure. By modeling and experiments, we show that heterogeneous community partitioning can paradoxically promote the persistence of a plasmid that would otherwise not persist in a global community. Among the local communities created by partitioning, a minority will primarily consist of members able to transfer the plasmid fast enough to support its maintenance by serving as a local plasmid haven. Our results provide insights into plasmid maintenance and suggest a generalizable approach to modulate plasmid persistence for engineering and medical applications.
Collapse
Affiliation(s)
- Andrea Weiss
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Teng Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Center for Quantitative Biodesign, Duke University, Durham, NC 27708, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
14
|
Li P, Hong J, Wu M, Yuan Z, Li D, Wu Z, Sun X, Lin D. Metagenomic Analysis Reveals Variations in Gut Microbiomes of the Schistosoma mansoni-Transmitting Snails Biomphalaria straminea and Biomphalaria glabrata. Microorganisms 2023; 11:2419. [PMID: 37894077 PMCID: PMC10609589 DOI: 10.3390/microorganisms11102419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Biomphalaria snails play a crucial role in the transmission of the human blood fluke Schistosoma mansoni. The gut microbiota of intermediate hosts is known to influence their physiological functions, but little is known about its composition and role in Biomphalaria snails. To gain insights into the biological characteristics of these freshwater intermediate hosts, we conducted metagenomic sequencing on Biomphalaria straminea and B. glabrata to investigate variations in their gut microbiota. This study revealed that the dominant members of the gut microbiota in B. glabrata belong to the phyla Bacteroidetes and Proteobacteria, which were also found to be the top two most abundant gut bacteria in B. straminea. We identified Firmicutes, Acidovorax and Bosea as distinctive gut microbes in B. straminea, while Aeromonas, Cloacibacterium and Chryseobacterium were found to be dependent features of the B. glabrata gut microbiota. We observed significant differences in the community structures and bacterial functions of the gut microbiota between the two host species. Notably, we found a distinctive richness of antibiotic resistance genes (ARGs) associated with various classes of antibiotics, including bacitracin, chloramphenicol, tetracycline, sulfonamide, penicillin, cephalosporin_ii and cephalosporin_i, fluoroquinolone, aminoglycoside, beta-lactam, multidrug and trimethoprim, in the digestive tracts of the snails. Furthermore, this study revealed the potential correlations between snail gut microbiota and the infection rate of S. mansoni using Spearman correlation analysis. Through metagenomic analysis, our study provided new insights into the gut microbiota of Biomphalaria snails and how it is influenced by host species, thereby enhancing our understanding of variant patterns of gut microbial communities in intermediate hosts. Our findings may contribute to future studies on gastropod-microbe interactions and may provide valuable knowledge for developing snail control strategies to combat schistosomiasis in the future.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510180, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Zhai Z, Zhou Y, Zhang H, Zhang Y. Horizontal transfer and driving factors of extended-spectrum β-lactamase-producing resistance genes in mice intestine after the ingestion of contaminated water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96376-96383. [PMID: 37572258 DOI: 10.1007/s11356-023-29158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) has been identified in various water environments, posing a serious risk to public health. However, whether and how ESBL-producing genes in water-derived E. coli can spread among mammalian gut microbiota via drinking water is largely unclear. To address this problem, horizontal transfer characterization of ESBL-producing genes in mice gut microbiota was determined after the oral ingestion of contaminated water by ESBL-producing E. coli, and then the driving factors were comprehensively examined from multiple different perspectives. The results showed that water-borne ESBL-producing E. coli can colonize in the mice intestine, the ESBL-producing genes can horizontally spread among gut microbiota, and the recipient bacteria include opportunistic pathogens Klebsiella pneumoniae and Salmonella enterica. This horizontal spread may be attributed to the intestinal micro-environment changes caused by the ingestion of contaminated water by ESBL-producing E. coli. These changes, including gut microbiota diversity, increased levels of inflammatory response and reactive oxygen species, cell membrane permeability, and expression levels of conjugative transfer-related genes, are all major driving factors for horizontal transfer of ESBL-producing genes in mice gut microbiota. Our findings highlight the potential for ESBL-producing E. coli to spread resistance genes to mammalian gut microbiota during ingestion of contaminated water.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- The Affiliated Taian City Central Hospital of Qingdao University, Shandong Province, Tai'an City, 271000, China
| | - Yufa Zhou
- Center for Animal Disease Control and Prevention, Bureau of Agriculture and Rural Affairs of Daiyue District, Shandong Province, Tai'an City, 271000, China
| | - Hongna Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Hebei Province, 47 Xuefu Road, Shijiazhuang City, 050061, China.
| | - Yujing Zhang
- College of Bioscience and Engineering, Hebei University of Economics and Business, Hebei Province, 47 Xuefu Road, Shijiazhuang City, 050061, China
| |
Collapse
|
16
|
Bloemendaal M, Veniaminova E, Anthony DC, Gorlova A, Vlaming P, Khairetdinova A, Cespuglio R, Lesch KP, Arias Vasquez A, Strekalova T. Serotonin Transporter (SERT) Expression Modulates the Composition of the Western-Diet-Induced Microbiota in Aged Female Mice. Nutrients 2023; 15:3048. [PMID: 37447374 PMCID: PMC10346692 DOI: 10.3390/nu15133048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert-/-: KO) or partial (Sert+/-: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.
Collapse
Affiliation(s)
- Mirjam Bloemendaal
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | | | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Priscilla Vlaming
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Adel Khairetdinova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
| | - Raymond Cespuglio
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.V.); (A.G.); (A.K.); (R.C.)
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69500 Bron, France
| | - Klaus Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| | - Alejandro Arias Vasquez
- Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (P.V.); (A.A.V.)
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany; (K.P.L.); (T.S.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
17
|
Zhu S, Yang B, Wang Z, Liu Y. Augmented dissemination of antibiotic resistance elicited by non-antibiotic factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115124. [PMID: 37327521 DOI: 10.1016/j.ecoenv.2023.115124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/24/2023] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
The emergence and rapid spread of antibiotic resistance seriously compromise the clinical efficacy of current antibiotic therapies, representing a serious public health threat worldwide. Generally, drug-susceptible bacteria can acquire antibiotic resistance through genetic mutation or gene transfer, among which horizontal gene transfer (HGT) plays a dominant role. It is widely acknowledged that the sub-inhibitory concentrations of antibiotics are the key drivers in promoting the transmission of antibiotic resistance. However, accumulating evidence in recent years has shown that in addition to antibiotics, non-antibiotics can also accelerate the horizontal transfer of antibiotic resistance genes (ARGs). Nevertheless, the roles and potential mechanisms of non-antibiotic factors in the transmission of ARGs remain largely underestimated. In this review, we depict the four pathways of HGT and their differences, including conjugation, transformation, transduction and vesiduction. We summarize non-antibiotic factors accounting for the enhanced horizontal transfer of ARGs and their underlying molecular mechanisms. Finally, we discuss the limitations and implications of current studies.
Collapse
Affiliation(s)
- Shuyao Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
18
|
Zhang L, Guo H, Gu J, Hu T, Wang X, Sun Y, Li H, Sun W, Qian X, Song Z, Xie J, An L. Metagenomic insights into dietary remodeling of gut microbiota and antibiotic resistome in meat rabbits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162006. [PMID: 36791852 DOI: 10.1016/j.scitotenv.2023.162006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The gut microbiota is a repository of antibiotic resistance genes (ARGs), which may affect the health of humans and animals. The intestinal flora is affected by many factors but it is unclear how the intestinal microflora and antibiotic resistome in rabbits might change under dietary intervention. Feeding with lettuce led to the amplification and transfer of exogenous ARGs in the intestinal flora, but there were no significant differences when fed lettuces grown with different manure types. For example, the lsaC of lettuce fed with bovine, chicken and pig manure without adding organic fertilizer increased by 0.143, 0.151, 0.179 and 0.169 logs respectively after 4 weeks, and the efrB also increased by 0.074, 0.068, 0.079 and 0.106 logs respectively. Network analysis showed that Clostridium_ sensu_ stricto_ 18 was a potential host of type 6 virulence factor genes (VFGs). Mantel analysis showed that ARGs were directly influenced by mobile genetic elements (MGEs) and VFGs. Thus, feeding rabbits lettuce grown with different manure types contribute to the transmission of ARGs by remodeling the intestinal microenvironment. In addition, diet may affect exogenous ARGs to change the intestinal antibiotic resistome and possibly threaten health.
Collapse
Affiliation(s)
- Li Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Honghong Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jie Gu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Ting Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojuan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yifan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huakang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xun Qian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zilin Song
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lu An
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
Yang J, Tian H, Guo J, He J. 3D porous carbon-embedded nZVI@Fe 2O 3 nanoarchitectures enable prominent performance and recyclability in antibiotic removal. CHEMOSPHERE 2023; 331:138716. [PMID: 37076086 DOI: 10.1016/j.chemosphere.2023.138716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Overcoming the instability and poor recyclability during the practical applications of contaminant scavengers is a challenging topic. Herein, a three-dimensional (3D) interconnected carbon aerogel (nZVI@Fe2O3/PC) embedding a core-shell nanostructure of nZVI@Fe2O3 was elaborately designed and fabricated via an in-situ self-assembly process. The porous carbon with 3D network architecture exhibits strong adsorption towards various antibiotic contaminants in water, where the stably embedded nZVI@Fe2O3 nanoparticles not only serve as magnetic seeds for recycling, but also avoid the shedding and oxidation of nZVI in the adsorption process. As a result, nZVI@Fe2O3/PC efficiently captures sulfamethoxazole (SMX), sulfamethazine (SMZ), ciprofloxacin (CIP), tetracycline (TC) and other antibiotics in water. In particular, an excellent adsorptive removal capacity of 329 mg g-1 and a rapid capture kinetics (99% of removal efficiency in 10 min) under a wide pH adaptability (2-8) are achieved using nZVI@Fe2O3/PC as an SMX scavenger. nZVI@Fe2O3/PC displays exceptional long-term stability given that it shows excellent magnetic property after it is stored in water solution for 60 d, making it an ideal stable scavenger for contaminants in an etching-resistant and efficient manner. This work would also provide a general strategy to develop other stable iron-based functional architectures for efficient catalytic degradation, energy conversion and biomedicine.
Collapse
Affiliation(s)
- Jianzheng Yang
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, And Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Tian
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, And Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jianrong Guo
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, And Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, And Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
20
|
Alverdy JC. Rationale for Colonic Pre-Habilitation Prior to Restoration of Gastrointestinal Continuity. Surg Infect (Larchmt) 2023; 24:265-270. [PMID: 37010975 PMCID: PMC10061335 DOI: 10.1089/sur.2023.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The emergence of the gut microbiome as a complex ecosystem that plays a key role in human heath and disease has touched virtually every aspect of medical and surgical care. With the advent of next-generation technology to interrogate the microbiome at the level of its membership, community structure and production of metabolites, applying measures by which the gut microbiome can be manipulated to the advantage of both the patient and provider is now possible. Among the many proposed methods, the most practical and promising is dietary pre-habilitation of the gut microbiome prior to high-risk anastomotic surgery. In this review, we will outline the scientific rationale and molecular underpinning that support dietary pre-habilitation as a practical and deliverable method to prevent complications after high-risk anastomotic surgery.
Collapse
Affiliation(s)
- John C. Alverdy
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
21
|
Ren Z, Zhang X, Fan H, Yu Y, Yao S, Wang Y, Dong Y, Deng H, Zuo Z, Deng Y, Wang Y, Xu Z, Deng J. Effects of different dietary protein levels on intestinal aquaporins in weaned piglets. J Anim Physiol Anim Nutr (Berl) 2023; 107:541-555. [PMID: 35586975 DOI: 10.1111/jpn.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 04/10/2022] [Indexed: 01/20/2023]
Abstract
This study was conducted to investigate the relationship between changes in intestinal aquaporins (AQPs) in piglets fed diets with different protein levels and nutritional diarrhoea in piglets. Briefly, 96 weaned piglets were randomly divided into four groups fed diets with crude protein (CP) levels of 18%, 20%, 22% and 24%. The small intestines and colons of the weaned piglets were collected, and several experiments were conducted. In the small intestine, AQP4 protein expression was higher in weaned piglets fed the higher-CP diets (22% and 24% CP) than in those fed the 20% CP diet except at 72 h (p < 0.01). At 72 h, the AQP4 protein expression in the small intestine was lower in the 18% group than in the other three groups (p < 0.01). Under 20% CP feeding, AQP2, AQP4 and AQP9 protein expression in the colons of piglets peaked at certain time points. The AQP2 and AQP4 mRNA levels in the colon and the AQP4 and AQP4 mRNA levels in the distal colon were approximately consistent with the protein expression levels. However, the AQP9 mRNA content in the colon was highest in the 18% group, and the AQP2 mRNA content in the distal colon was significantly higher in the 24% group than in the 20% group. AQP2 and AQP4 were expressed mainly around columnar cells in the upper part of the smooth colonic intestinal villi, and AQP9 was expressed mainly on columnar cells and goblet cells in the colonic mucosa. In conclusion, 20% CP is beneficial to the normal expression of AQP4 in the small intestine, AQP2, AQP4 and AQP9 in the colon of weaned piglets, which in turn maintains the balance of intestinal water absorption and secretion in piglets.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Xinyue Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Haoyue Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Yueru Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Shuhua Yao
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Yuqian Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Yanqiang Dong
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Youtian Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Ya'an, Sichuan, P.R. China.,Sichuan Province Key Laboratory of Animal Disease & Human Health, Chengdu, Sichuan, P.R. China.,Key Laboratory of Environmental Hazard and Human Health of Sichuan Province, Chengdu, Sichuan, P.R. China
| |
Collapse
|
22
|
Wanyan R, Pan M, Mai Z, Xiong X, Su W, Yang J, Yu Q, Wang X, Han Q, Li H, Wang G, Wu S. Distribution and influencing factors of antibiotic resistance genes of crayfish (Procambarus clarkii) intestine in main crayfish breeding provinces in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159611. [PMID: 36273569 DOI: 10.1016/j.scitotenv.2022.159611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The propagation of antibiotic resistance genes (ARGs) has become a global public health concern. However, the distribution and influencing factors of ARGs, especially high-risk ARGs, in the gut of aquaculture animals remain unclear. Here, we employed 16S rRNA gene sequencing and high-throughput quantitative PCR techniques to determine crayfish gut microbiota and ARGs collected from 40 culture ponds in major crayfish farming provinces of China. We detected 74 ARGs in crayfish gut. Among them, the beta-lactamase and tetracycline resistance genes were dominant. The total ARG abundance was the highest in Hubei Province. High-risk ARGs were also found in crayfish gut, and ermB had the highest abundance and distributed in Anhui, Hubei, Henan and Jiangxi Province. In addition, opportunistic pathogens (Streptococcus, Aeromonas and Acinetobacter) might be potential hosts for ARGs, including high-risk ARGs. Finally, habitat, environmental factors (NO3-N, pH and temperature), microbial alpha diversity and mobile genetic elements (MGEs) showed significant influence on ARGs profiles. Generally, our results illustrate that ARGs are prevalent in crayfish gut and may pose potential risk to human health, which will help develop targeted strategies for the risk management and assessment of ARGs in the aquaculture.
Collapse
Affiliation(s)
- Ruijun Wanyan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Meijing Pan
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhan Mai
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Xiong
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu 730000, China
| | - Guitang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangong Wu
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Advances in Lactobacillus Restoration for β-Lactam Antibiotic-Induced Dysbiosis: A System Review in Intestinal Microbiota and Immune Homeostasis. Microorganisms 2023; 11:microorganisms11010179. [PMID: 36677471 PMCID: PMC9861108 DOI: 10.3390/microorganisms11010179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
A balanced gut microbiota and their metabolites are necessary for the maintenance of the host's health. The antibiotic-induced dysbiosis can cause the disturbance of the microbial community, influence the immune homeostasis and induce susceptibility to metabolic- or immune-mediated disorders and diseases. The Lactobacillus and their metabolites or components affect the function of the host's immune system and result in microbiota-mediated restoration. Recent data have indicated that, by altering the composition and functions of gut microbiota, antibiotic exposure can also lead to a number of specific pathologies, hence, understanding the potential mechanisms of the interactions between gut microbiota dysbiosis and immunological homeostasis is very important. The Lactobacillus strategies for detecting the associations between the restoration of the relatively imbalanced microbiome and gut diseases are provided in this discussion. In this review, we discuss the recently discovered connections between microbial communities and metabolites in the Lactobacillus treatment of β-lactam antibiotic-induced dysbiosis, and establish the relationship between commensal bacteria and host immunity under this imbalanced homeostasis of the gut microbiota.
Collapse
|
24
|
Samarra A, Esteban-Torres M, Cabrera-Rubio R, Bernabeu M, Arboleya S, Gueimonde M, Collado MC. Maternal-infant antibiotic resistance genes transference: what do we know? Gut Microbes 2023; 15:2194797. [PMID: 37020319 PMCID: PMC10078139 DOI: 10.1080/19490976.2023.2194797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
Resistance to antibiotics is becoming a worldwide threat as infections caused by multidrug-resistant pathogenic microorganisms can overcome antibiotic treatments and spread quickly in the population. In the context of early life, newborns are at increased risk as their immune system is still under development, so infections and acquisition of resistance during childhood have short- and long-term consequences for the health. The moment of birth is the first exposure of infants to possible antibiotic-resistant microorganisms that may colonize their gut and other body sites. Different factors including mode of delivery, previous antibiotic exposure of the mother, gestational age and consumption of antibiotics in early-life have been described to modulate the neonate's microbiota, and thus, the resistome. Other factors, such as lactation, also impact the establishment and development of gut microbiota, but little is known about the role of breastmilk in transferring Antibiotic Resistant Genes (ARG). A deeper understanding of vertical transmission of antibiotic resistance from mothers to their offspring is necessary to determine the most effective strategies for reducing antibiotic resistance in the early life. In this review, we aim to present the current perspective on antibiotic resistances in mother-infant dyads, as well as a new insight on the study of the human gut and breastmilk resistome, and current strategies to overcome this public health problem, toward highlighting the gaps of knowledge that still need to be closed.
Collapse
Affiliation(s)
- Anna Samarra
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Maria Esteban-Torres
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Raul Cabrera-Rubio
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| | - Manuel Bernabeu
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
- Vicerectorat de Recerca, Universitat de Barcelona (UB), Barcelona, Spain
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry, Dairy Research Institute- National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry, Dairy Research Institute- National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology- National Research Council (IATA-CSIC), Valencia, Spain
| |
Collapse
|
25
|
Zakrzewska M, Burmistrz M. Mechanisms regulating the CRISPR-Cas systems. Front Microbiol 2023; 14:1060337. [PMID: 36925473 PMCID: PMC10013973 DOI: 10.3389/fmicb.2023.1060337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
The CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR associated proteins) is a prokaryotic system that enables sequence specific recognition and cleavage of nucleic acids. This is possible due to cooperation between CRISPR array which contains short fragments of DNA called spacers that are complimentary to the targeted nucleic acid and Cas proteins, which take part in processes of: acquisition of new spacers, processing them into their functional form as well as recognition and cleavage of targeted nucleic acids. The primary role of CRISPR-Cas systems is to provide their host with an adaptive and hereditary immunity against exogenous nucleic acids. This system is present in many variants in both Bacteria and Archea. Due to its modular structure, and programmability CRISPR-Cas system become attractive tool for modern molecular biology. Since their discovery and implementation, the CRISPR-Cas systems revolutionized areas of gene editing and regulation of gene expression. Although our knowledge on how CRISPR-Cas systems work has increased rapidly in recent years, there is still little information on how these systems are controlled and how they interact with other cellular mechanisms. Such regulation can be the result of both auto-regulatory mechanisms as well as exogenous proteins of phage origin. Better understanding of these interaction networks would be beneficial for optimization of current and development of new CRISPR-Cas-based tools. In this review we summarize current knowledge on the various molecular mechanisms that affect activity of CRISPR-Cas systems.
Collapse
Affiliation(s)
- Marta Zakrzewska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland.,Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Michal Burmistrz
- Department of Molecular Microbiology, Biological and Chemical Research Centre, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Tan R, Jin M, Chen Z, Shao Y, Song Y, Yin J, Wang L, Chen T, Li J, Yang D. Exogenous antibiotic resistance gene contributes to intestinal inflammation by modulating the gut microbiome and inflammatory cytokine responses in mouse. Gut Microbes 2023; 15:2156764. [PMID: 36573825 PMCID: PMC9809935 DOI: 10.1080/19490976.2022.2156764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Dysregulation of the gut microbiota by environmental factors is associated with a variety of autoimmune and immune-mediated diseases. In addition, naturally-occurring extracellular antibiotic resistance genes (eARGs) might directly enter the gut via the food chain. However, following gut microbiota exposure to eARGs, the ecological processes shaping the microbiota community assembly, as well as the interplay between the microbiota composition, metabolic function, and the immune responses, are not well understood. Increasing focus on the One Health approach has led to an urgent need to investigate the direct health damage caused by eARGs. Herein, we reveal the significant influence of eARGs on microbiota communities, strongly driven by stochastic processes. How eARGs-stimulate variations in the composition and metabolomic function of the gut microbiota led to cytokine responses in mice of different age and sex were investigated. The results revealed that cytokines were significantly associated with immunomodulatory microbes, metabolites, and ARGs biomarkers. Cytokine production was associated with specific metabolic pathways (arachidonic acid and tryptophan metabolic pathways), as confirmed by ex vivo cytokine responses and recovery experiments in vivo. Furthermore, the gut microbial profile could be applied to accurately predict the degree of intestinal inflammation ascribed to the eARGs (area under the curve = 0.9616). The present study provided a comprehensive understanding of the influence of an eARGs on immune responses and intestinal barrier damage, shedding light on the interplay between eARGs, microbial, metabolites, and the gut antibiotic resistome in modulating the human immune system.
Collapse
Affiliation(s)
- Rong Tan
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Min Jin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Zhengshan Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Yifan Shao
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Yuanyuan Song
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Jing Yin
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Lifang Wang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Tianjiao Chen
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China
| | - Junwen Li
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,Junwen Li Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin 300050, China
| | - Dong Yang
- Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin, China,CONTACT Dong Yang Department of Environment and Health, Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, No. 1 Dali Road, Tianjin300050, China
| |
Collapse
|
27
|
Singh R, Thakur L, Kumar A, Singh S, Kumar S, Kumar M, Kumar Y, Kumar N. Comparison of freeze-thaw and sonication cycle-based methods for extracting AMR-associated metabolites from Staphylococcus aureus. Front Microbiol 2023; 14:1152162. [PMID: 37180233 PMCID: PMC10174324 DOI: 10.3389/fmicb.2023.1152162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Emerging antimicrobial resistance (AMR) among Gram-positive pathogens, specifically in Staphylococcus aureus (S. aureus), is becoming a leading public health concern demanding effective therapeutics. Metabolite modulation can improve the efficacy of existing antibiotics and facilitate the development of effective therapeutics. However, it remained unexplored for drug-resistant S. aureus (gentamicin and methicillin-resistant), primarily due to the dearth of optimal metabolite extraction protocols including a protocol for AMR-associated metabolites. Therefore, in this investigation, we have compared the performance of the two most widely used methods, i.e., freeze-thaw cycle (FTC) and sonication cycle (SC), alone and in combination (FTC + SC), and identified the optimal method for this purpose. A total of 116, 119, and 99 metabolites were identified using the FTC, SC, and FTC + SC methods, respectively, leading to the identification of 163 metabolites cumulatively. Out of 163, 69 metabolites were found to be associated with AMR in published literature consisting of the highest number of metabolites identified by FTC (57) followed by SC (54) and FTC + SC (40). Thus, the performances of FTC and SC methods were comparable with no additional benefits of combining both. Moreover, each method showed biasness toward specific metabolite(s) or class of metabolites, suggesting that the choice of metabolite extraction method shall be decided based on the metabolites of interest in the investigation.
Collapse
Affiliation(s)
- Rita Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Lovnish Thakur
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Sevaram Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Jawaharlal Nehru University, Delhi, India
| | - Shailesh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Manoj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Yashwant Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- *Correspondence: Yashwant Kumar,
| | - Niraj Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- Niraj Kumar,
| |
Collapse
|
28
|
Geng Z, Nie X, Ling L, Li B, Liu P, Yuan L, Zhang K, Liu T, Zhang B. Electroacupuncture May Inhibit Oxidative Stress of Premature Ovarian Failure Mice by Regulating Intestinal Microbiota. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4362317. [PMID: 36082082 PMCID: PMC9448555 DOI: 10.1155/2022/4362317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/20/2022]
Abstract
Premature ovarian failure (POF) is the leading cause of female infertility, and there is no optimal treatment or medication available currently. For POF, electroacupuncture (EA) has been considered a promising therapeutic approach, but the mechanism for this is not clear. In this study, we explored the effects of EA (CV4, ST36, and SP6) on oxidative stress and intestinal microbiota of high-fat and high-sugar- (HFHS-) induced POF mice. The development of mice follicles was observed by hematoxylin and eosin (HE) staining. The serum levels of estrone (E1), estrogen (E2), estriol (E3), and 21-deoxycortisol (21D) were measured by the HPLC-MS/MS method. The concentrations of Fe2+, superoxide dismutase (SOD), hydroxyl radical (·OH), glutathione (GSH), superoxide anion, and malondialdehyde (MDA) were measured by spectrophotometry. The 16S-rDNA sequencing was used to measure many parameters related to the host gut bacteriome and mycobiome composition, relative abundance, and diversity. mRNA expression levels of ferroptosis-related genes were determined by RT-qPCR. After 4 weeks of EA intervention in POF mice, mature follicles were increased and the levels of the sex hormone were improved. SOD activities, antisuperoxide activities, and GSH increased while MDA, ·OH, and Fe2+ decreased. In addition, EA also altered the intestinal microbiota. These results reveal that EA can effectively inhibit ovarian oxidative stress and the accumulation of Fe2+ in POF mice. It may be that the alteration in the intestinal microbiota is one of the potential mechanisms of EA treatment. These findings suggest that EA has clinical potential as a safe treatment for POF.
Collapse
Affiliation(s)
- Zixiang Geng
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Lele Ling
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Bingrong Li
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China
| | - Peng Liu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Long Yuan
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| |
Collapse
|
29
|
Tao S, Chen H, Li N, Wang T, Liang W. The Spread of Antibiotic Resistance Genes In Vivo Model. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:3348695. [PMID: 35898691 PMCID: PMC9314185 DOI: 10.1155/2022/3348695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022]
Abstract
Infections caused by antibiotic-resistant bacteria are a major public health threat. The emergence and spread of antibiotic resistance genes (ARGs) in the environment or clinical setting pose a serious threat to human and animal health worldwide. Horizontal gene transfer (HGT) of ARGs is one of the main reasons for the dissemination of antibiotic resistance in vitro and in vivo environments. There is a consensus on the role of mobile genetic elements (MGEs) in the spread of bacterial resistance. Most drug resistance genes are located on plasmids, and the spread of drug resistance genes among microorganisms through plasmid-mediated conjugation transfer is the most common and effective way for the spread of multidrug resistance. Experimental studies of the processes driving the spread of antibiotic resistance have focused on simple in vitro model systems, but the current in vitro protocols might not correctly reflect the HGT of antibiotic resistance genes in realistic conditions. This calls for better models of how resistance genes transfer and disseminate in vivo. The in vivo model can better mimic the situation that occurs in patients, helping study the situation in more detail. This is crucial to develop innovative strategies to curtail the spread of antibiotic resistance genes in the future. This review aims to give an overview of the mechanisms of the spread of antibiotic resistance genes and then demonstrate the spread of antibiotic resistance genes in the in vivo model. Finally, we discuss the challenges in controlling the spread of antibiotic resistance genes and their potential solutions.
Collapse
Affiliation(s)
- Shuan Tao
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| | - Huimin Chen
- School of Medical, Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Na Li
- Bengbu Medical College, Bengbu, Anhui Province, China
| | - Tong Wang
- Nanjing Brain Hospital Affiliated Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Liang
- Lianyungang Clinical College of Jiangsu University, Lianyungang, Jiangsu Province, China
| |
Collapse
|