1
|
Lv J, Xiong X. Extracellular Vesicle microRNA: A Promising Biomarker and Therapeutic Target for Respiratory Diseases. Int J Mol Sci 2024; 25:9147. [PMID: 39273095 PMCID: PMC11395461 DOI: 10.3390/ijms25179147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and coronavirus pneumonia, present a major global health challenge. Current diagnostic and therapeutic options for these diseases are limited, necessitating the urgent development of novel biomarkers and therapeutic strategies. In recent years, microRNAs (miRNAs) within extracellular vesicles (EVs) have received considerable attention due to their crucial role in intercellular communication and disease progression. EVs are membrane-bound structures released by cells into the extracellular environment, encapsulating a variety of biomolecules such as DNA, RNA, lipids, and proteins. Specifically, miRNAs within EVs, known as EV-miRNAs, facilitate intercellular communication by regulating gene expression. The expression levels of these miRNAs can reflect distinct disease states and significantly influence immune cell function, chronic airway inflammation, airway remodeling, cell proliferation, angiogenesis, epithelial-mesenchymal transition, and other pathological processes. Consequently, EV-miRNAs have a profound impact on the onset, progression, and therapeutic responses of respiratory diseases, with great potential for disease management. Synthesizing the current understanding of EV-miRNAs in respiratory diseases such as COPD, asthma, lung cancer, and novel coronavirus pneumonia, this review aims to explore the potential of EV-miRNAs as biomarkers and therapeutic targets and examine their prospects in the diagnosis and treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Jiaxi Lv
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xianzhi Xiong
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
2
|
Ahmed LA, Al-Massri KF. Exploring the Role of Mesenchymal Stem Cell-Derived Exosomes in Diabetic and Chemotherapy-Induced Peripheral Neuropathy. Mol Neurobiol 2024; 61:5916-5927. [PMID: 38252384 PMCID: PMC11249772 DOI: 10.1007/s12035-024-03916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
Diabetic and chemotherapy-induced peripheral neuropathies are known for long-term complications that are associated with uncontrolled hyperglycemia and cancer treatment, respectively. Peripheral neuropathy often requires long-term therapy and could persist after treatment provoking detrimental effects on the patient's quality of life. Despite continuous drug discoveries, development of efficient therapies is still needed for the significant management of diabetic and chemotherapy-induced peripheral neuropathy. Exosomes are nanosized extracellular vesicles that show great promise recently in tissue regeneration and injury repair compared to their parent stem cells. Herein, we provided a summary for the use of mesenchymal stem cell-derived exosomes in diabetic and chemotherapy-induced peripheral neuropathy in addition to recent advancements and ways proposed for the enhancement of their efficacy in these diseases.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini St, Cairo, 11562, Egypt.
| | - Khaled F Al-Massri
- Department of Pharmacy and Biotechnology, Faculty of Medicine and Health Sciences, University of Palestine, Gaza, Palestine
| |
Collapse
|
3
|
Jiang Y, Wang W, Tang F, Zhang W, Chen S, Gu X, Chen P, Xu X, Nian B, Li Z, Chen C, Yin H, Su L, Sun H, Chen W, Zhang D, Li Y. Identifying MiR-140-3p as a stable internal reference to normalize MicroRNA qRT-PCR levels of plasma small extracellular vesicles in lung cancer patients. Genomics 2024; 116:110875. [PMID: 38849018 DOI: 10.1016/j.ygeno.2024.110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 06/09/2024]
Abstract
Exploration of a stably expressed gene as a reference is critical for the accurate evaluation of miRNAs isolated from small extracellular vesicles (sEVs). In this study, we analyzed small RNA sequencing on plasma sEV miRNAs in the training dataset (n = 104) and found that miR-140-3p was the most stably expressed candidate reference for sEV miRNAs. We further demonstrated that miR-140-3p expressed most stably in the validation cohort (n = 46) when compared to two other reference miRNAs, miR-451a and miR-1228-3p, and the commonly-used miRNA reference U6. Finally, we compared the capability of miR-140-3p and U6 as the internal reference for sEV miRNA expression by evaluating key miRNAs expression in lung cancer patients and found that miR-140-3p was more suitable as a sEV miRNA reference gene. Taken together, our data indicated miR-140-3p as a stable internal reference miRNA of plasma sEVs to evaluate miRNA expression profiles in lung cancer patients.
Collapse
Affiliation(s)
- Yuan Jiang
- Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Weiwei Wang
- Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Faqing Tang
- Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Wei Zhang
- 3D Medicines Inc., Shanghai 201114, China
| | - Sheng Chen
- 3D Medicines Inc., Shanghai 201114, China
| | - Xiumei Gu
- Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ping Chen
- Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Xiaoya Xu
- 3D Medicines Inc., Shanghai 201114, China
| | | | - Zhikuan Li
- 3D Medicines Inc., Shanghai 201114, China
| | | | - Hanbing Yin
- Shenxian People's Hospital, Liaocheng 252411, China
| | - Linlin Su
- Shenxian People's Hospital, Liaocheng 252411, China
| | - Honghou Sun
- Shenxian Maternal and Child Health Hospital, Liaocheng 252499, China
| | - Wei Chen
- 3D Medicines Inc., Shanghai 201114, China
| | | | - Yuejin Li
- Department of Clinical Laboratory, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Yu X, Zheng L, Xia Z, Xu Y, Shen X, Huang Y, Dai Y. Comprehensive proteomic profiling of lung adenocarcinoma: development and validation of an innovative prognostic model. Transl Cancer Res 2024; 13:2187-2207. [PMID: 38881920 PMCID: PMC11170522 DOI: 10.21037/tcr-23-1940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/06/2024] [Indexed: 06/18/2024]
Abstract
Background Lung adenocarcinoma (LUAD), a global leading cause of cancer deaths, remains inadequately addressed by current protein biomarkers. Our study focuses on developing a protein-based risk signature for improved prognosis of LUAD. Methods We employed the least absolute shrinkage and selection operator (LASSO)-COX algorithm on The Cancer Genome Atlas database to construct a prognostic model incorporating six proteins (CD49B, UQCRC2, SMAD1, FOXM1, CD38, and KAP1). The model's performance was assessed using principal component, Kaplan-Meier (KM), and receiver operating characteristic (ROC) analysis, indicating strong predictive capability. The model stratifies LUAD patients into distinct risk groups, with further analysis revealing its potential as an independent prognostic factor. Additionally, we developed a predictive nomogram integrating clinicopathologic factors, aimed at assisting clinicians in survival prediction. Gene set enrichment analysis (GSEA) and examination of the tumor immune microenvironment were conducted, highlighting metabolic pathways in high-risk genes and immune-related pathways in low-risk genes, indicating varied immunotherapy sensitivity. Validation through immunohistochemistry from the Human Protein Atlas (HPA) database and immunofluorescence staining of clinical samples was performed, particularly focusing on CD38 expression. Results Our six-protein model (CD49B, UQCRC2, SMAD1, FOXM1, CD38, KAP1) effectively categorized LUAD patients into high and low-risk groups, confirmed by principal component, KM, and ROC analyses. The model showed high predictive accuracy, with distinct survival differences between risk groups. Notably, CD38, traditionally seen as protective, was paradoxically associated with poor prognosis in LUAD, a finding supported by immunohistochemistry and immunofluorescence data. GSEA revealed that high-risk genes are enriched in metabolic pathways, while low-risk genes align with immune-related pathways, suggesting better immunotherapy response in the latter group. Conclusions This study presented a novel prognostic protein model for LUAD, highlighting the CD38 expression paradox and enhancing our understanding of protein roles in lung cancer progression. It offered new clinical tools for prognosis prediction and provided assistance for future lung cancer pathogenesis research.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lei Zheng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zehai Xia
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yanling Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xihui Shen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yihui Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yifan Dai
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
5
|
Li Y, Cao Y, Liu W, Chen F, Zhang H, Zhou H, Zhao A, Luo N, Liu J, Wu L. Candidate biomarkers of EV-microRNA in detecting REM sleep behavior disorder and Parkinson's disease. NPJ Parkinsons Dis 2024; 10:18. [PMID: 38200052 PMCID: PMC10781790 DOI: 10.1038/s41531-023-00628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Parkinson's disease (PD) lacks reliable, non-invasive biomarker tests for early intervention and management. Thus, a minimally invasive test for the early detection and monitoring of PD and REM sleep behavior disorder (iRBD) is a highly unmet need for developing drugs and planning patient care. Extracellular vehicles (EVs) are found in a wide variety of biofluids, including plasma. EV-mediated functional transfer of microRNAs (miRNAs) may be viable candidates as biomarkers for PD and iRBD. Next-generation sequencing (NGS) of EV-derived small RNAs was performed in 60 normal controls, 56 iRBD patients and 53 PD patients to profile small non-coding RNAs (sncRNAs). Moreover, prospective follow-up was performed for these 56 iRBD patients for an average of 3.3 years. Full-scale miRNA profiles of plasma EVs were evaluated by machine-learning methods. After optimizing the library construction method for low RNA inputs (named EVsmall-seq), we built a machine learning algorithm that identified diagnostic miRNA signatures for distinguishing iRBD patients (AUC 0.969) and PD patients (AUC 0.916) from healthy individuals; and PD patients (AUC 0.929) from iRBD patients. We illustrated all the possible expression patterns across healthy-iRBD-PD hierarchy. We also showed 20 examples of miRNAs with consistently increasing or decreasing expression levels from controls to iRBD to PD. In addition, four miRNAs were found to be correlated with iRBD conversion. Distinct characteristics of the miRNA profiles among normal, iRBD and PD samples were discovered, which provides a panel of promising biomarkers for the identification of PD patients and those in the prodromal stage iRBD.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Cao
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Institute for Precision Medicine, Tsinghua University, Beijing, China
| | - Wei Liu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
| | - Fangzheng Chen
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongdao Zhang
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haisheng Zhou
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Aonan Zhao
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ningdi Luo
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ligang Wu
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Zhao J, Li X, Liu L, Zhu Z, He C. Exosomes in lung cancer metastasis, diagnosis, and immunologically relevant advances. Front Immunol 2023; 14:1326667. [PMID: 38155975 PMCID: PMC10752943 DOI: 10.3389/fimmu.2023.1326667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
Lung cancer is a chronic wasting disease with insidious onset and long treatment cycle. Exosomes are specialized extracellular vesicles, at first exosomes were considered as a transporter of cellular metabolic wastes, but recently many studies have identified exosomes which contain a variety of biologically active substances that play a role in the regulation of cellular communication and physiological functions. Exosomes play an important role in the development of lung cancer and can promote metastasis through a variety of mechanisms. However, at the same time, researchers have also discovered that immune cells can also inhibit lung cancer through exosomes. In addition, researchers have discovered that some specific miRNAs in exosomes can be used as markers for early diagnosis of lung cancer. Engineering exosomes may be one of the strategies to enhance the clinical translational application of exosomes in the future, for example, strategies such as modifying exosomes to enhance targeting or utilizing exosomes as carriers for drug delivery have been explored. but more studies are needed to verify the safety and efficacy. This article reviews the latest research on exosomes in the field of lung cancer, from the mechanism of lung cancer development, the functions of immune cell-derived exosomes and tumor-derived exosomes, to the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Jianhua Zhao
- Department of Thoracic Surgery, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Xiwen Li
- Department of Central Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Lele Liu
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Zhen Zhu
- Department of Thoracic Surgery, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| | - Chunyan He
- Department of Clinical Laboratory, Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| |
Collapse
|
7
|
Liu L, Wang F, Nan Y, Zou X, Jiang D, Wang Z. Diagnostic value of circulating miRNA in the benign and malignant lung nodules: A systematic review and meta-analysis. Medicine (Baltimore) 2023; 102:e35857. [PMID: 37986348 PMCID: PMC10659640 DOI: 10.1097/md.0000000000035857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Lung cancer is the leading cause of death worldwide, and its diagnosis remains a significant challenge. Identifying effective methods to differentiate benign from malignant lung nodules is of paramount importance. This meta-analysis aimed to evaluate the clinical utility of circulating microRNAs (miRNAs) for the differential diagnosis of benign and malignant lung nodules. METHODS This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A comprehensive search was conducted across 4 electronic databases, without any temporal restrictions. The inclusion and exclusion criteria were strictly applied to assess the clinical applications of circulating miRNAs. A robust and transparent quality assessment was performed using the quality assessment of diagnostic accuracy studies-2 tool, and rigorous statistical analyses were conducted to synthesize the various diagnostic measures. RESULTS In the meta-analysis of 11 studies, quality assessment of diagnostic accuracy studies-2 assessment revealed < 5% high-risk methodologies, ensuring robustness. Sensitivity and Specificity were consolidated at 0.83 (95% confidence interval [CI]: 0.72-0.90) and 0.81 (95% CI: 0.73-0.88), respectively. The positive likelihood ratio and negative likelihood ratio were 4.45 (95% CI: 3.03-6.54) and 0.21 (95% CI: 0.12-0.35), respectively. The diagnostic odds ratio was 21.31 (95% CI: 10.25-44.30) and area under the receiver operating characteristic curve was 0.89 (95% CI: 0.86-0.91). Subgroup analysis highlighted significant variations in diagnostic accuracy by ethnicity and miRNA source, with non-Asian populations and serum-based tests showing higher diagnostic accuracy. CONCLUSION This meta-analysis demonstrated that circulating miRNAs hold substantial diagnostic value in distinguishing between benign and malignant lung nodules.
Collapse
Affiliation(s)
- Li Liu
- General Practice Department, Beijing Tsinghua Changgung Hospital, Changping District, Beijing, China
| | - Fei Wang
- General Practice Department, Beijing Tsinghua Changgung Hospital, Changping District, Beijing, China
| | - Yan Nan
- General Practice Department, Beijing Tsinghua Changgung Hospital, Changping District, Beijing, China
| | - Xiaozhao Zou
- General Practice Department, Beijing Tsinghua Changgung Hospital, Changping District, Beijing, China
| | - Dan Jiang
- General Practice Department, Beijing Tsinghua Changgung Hospital, Changping District, Beijing, China
| | - Zhong Wang
- General Practice Department, Beijing Tsinghua Changgung Hospital, Changping District, Beijing, China
| |
Collapse
|
8
|
Hong Z, Cui B, Bai X, Li H, Cheng T, Sheng Y, Lu Y, Wu X, Jin D, Zhao J, Gou Y. Meta analysis of the diagnostic value of circulating miRNA in benign and malignant pulmonary nodules. World J Surg Oncol 2023; 21:284. [PMID: 37689670 PMCID: PMC10492278 DOI: 10.1186/s12957-023-03133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/02/2023] [Indexed: 09/11/2023] Open
Abstract
OBJECTIVE A meta-analysis was conducted to assess the impact of miRNAs in circulation on diagnosing benign and malignant pulmonary nodules (BPNs and MPNs). METHODS Electronic databases such as Embase, PubMed, Web of Science, and The Cochrane Library were utilized for diagnostic tests of circulating miRNAs to diagnose BPNs and MPNs from the library creation to February 2023. Meta-analysis of the included literature was performed using Stata 16, Meta-Disc 1.4, and Review Manager 5.4 software. This study determined the combined sensitivity, specificity, diagnostic ratio (DOR), positive/negative likelihood ratios (PLR/NLR), as well as value of area under the receiver operating characteristic (ROC) curve. RESULTS This meta-analysis included 14 publications and 17 studies. According to our findings, the pooled sensitivity for miRNA in diagnosing benign and malignant pulmonary nodules was 0.82 [95% CI (0.74, 0.88)], specificity was 0.84 [95% CI (0.79, 0.88)], whereas the DOR was 22.69 [95% CI (13.87, 37.13)], PLR was 5.00 [95% CI (3.87, 6.46)], NLR was 0.22 [95% CI (0.15, 0.32)], and the area under the working characteristic curve (AUC) of the subject was 0.89 [95% CI (0.86, 0.91)]. CONCLUSION Circulating miRNAs could be used with sensitivity, specificity, DOR, PLR, NLR, and AUC as biomarkers to diagnose pulmonary nodules (PNs). However, more research is needed to determine the optimum miRNA combinations for diagnosing PNs due to the significant heterogeneity on previous studies.
Collapse
Affiliation(s)
- Ziqiang Hong
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Baiqiang Cui
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Xiangdou Bai
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Hongchao Li
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Tao Cheng
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Yannan Sheng
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Yingjie Lu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Xusheng Wu
- The First Clinical Medical College of Gansu University of Chinese Medicine, Gansu Provincial Hospital, Lanzhou, China
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Dacheng Jin
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Jing Zhao
- Lanzhou First People's Hospital, Lanzhou, China.
| | - Yunjiu Gou
- Department of Thoracic Surgery, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
9
|
Chen X, Zhu X, Yan W, Wang L, Xue D, Zhu S, Pan J, Li Y, Zhao Q, Han D. Serum lncRNA THRIL predicts benign and malignant pulmonary nodules and promotes the progression of pulmonary malignancies. BMC Cancer 2023; 23:755. [PMID: 37582734 PMCID: PMC10426220 DOI: 10.1186/s12885-023-11264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND This project aimed to research the significance of THRIL in the diagnosis of benign and malignant solitary pulmonary nodules (SPNs) and to investigate the role of THRIL/miR-99a in malignant SPNs. METHODS The study groups consisted of 169 patients with SPN and 74 healthy subjects. The differences in THRIL levels were compared between the two groups and the healthy group. The receiver operating characteristic curve (ROC) was utilized to analyze the THRIL's significance in detecting benign and malignant SPN. Pearson correlation and binary regression coefficients represented the association between THRIL and SPN. CCK-8 assay, Transwell assay, and flow cytometry were utilized to detect the regulatory effect of THRIL silencing. The interaction between THRIL, miR-99a, and IGF1R was confirmed by the double luciferase reporter gene. RESULTS There were differences in THRIL expression in the healthy group, benign SPN group, and malignant SPN group. High accuracy of THRIL in the diagnosis of benign SPN and malignant SPN was observed. THRIL was associated with the development of SPN. The expression of THRIL was upregulated and miR-99a was downregulated in lung cancer cells. The double luciferase report experiment confirmed the connections between THRIL/miR-99a/IGF1R. Silencing THRIL could suppress cell proliferation, migration, and invasion and promote cell apoptosis by binding miR-99a. CONCLUSION The detection of THRIL in serum is useful for the assessment of malignant SPN. THRIL can regulate the expression of IGF1R through miR-99a, thereby promoting the growth of lung cancer cells and inhibiting apoptosis.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Xianji Zhu
- Department of Respiratory Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, China
| | - Wenjun Yan
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Luan Wang
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Dongming Xue
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Shouying Zhu
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Jiajun Pan
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Yufeng Li
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Qixiang Zhao
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China
| | - Dong Han
- Department of Cardiothoracic Surgery, Xuzhou No.1 People's Hospital, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical College, 269 Daxue Road, Xuzhou, 221000, China.
| |
Collapse
|
10
|
Chen Y, Zhang S, Lu J, Li D, Wu H, Zhang L, Li X, Gao X, Xu Y, Zeng Z, Zeng L, Ding X, Li X, Ding S. DNA-Guided Extracellular-Vesicle Metallization with High Catalytic Activity for Accurate Diagnosis of Pulmonary Nodules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208142. [PMID: 37066711 DOI: 10.1002/smll.202208142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Sensitive and specific analysis of extracellular vesicles (EVs) offers a promising minimally invasive way to identify malignant pulmonary nodules from benign lesions. However, accurate analysis of EVs is subject to free target proteins in blood samples, which compromises the clinical diagnosis value of EVs. Here a DNA-guided extracellular-vesicle metallization (DEVM) strategy is described for ultrasensitive and specific analysis of EV protein biomarkers and classification of pulmonary nodules. The facile DEVM process mainly includes the incorporation of DNA labeled with cholesterol and thiol groups into EV membranes and subsequent deposition of Au3+ and Pt4+ to allow the DNA-functionalized EVs to be encapsulated with AuPt nanoshells. It is found that the synthesized AuPt-metallized EVs possess extrinsic peroxidase-like activity. Utilizing the feature of the catalytic metal nanoshells just growth on the EV membranes, the DEVM method enables multiparametric recognition of target proteins and EV membranes and can produce an amplified colorimetric signal, avoiding the interference of free proteins. By profiling four surface proteins of EVs from 48 patients with pulmonary nodules, the highest area under the receiver operating characteristic curve (0.9983) is obtained. Therefore, this work provides a feasible EVs analysis tool for accurate pulmonary nodules management.
Collapse
Affiliation(s)
- Yirong Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Songzhi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jun Lu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lu Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xin Gao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yuan Xu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zijie Zeng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Li Zeng
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Xiaojuan Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xinmin Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
11
|
Yuan L, Chen Y, Ke L, Zhou Q, Chen J, Fan M, Wuethrich A, Trau M, Wang J. Plasma extracellular vesicle phenotyping for the differentiation of early-stage lung cancer and benign lung diseases. NANOSCALE HORIZONS 2023; 8:746-758. [PMID: 36974989 DOI: 10.1039/d2nh00570k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The development of a minimally invasive technique for early-stage lung cancer detection is crucial to reducing mortality. Phenotyping of tumor-associated extracellular vesicles (EVs) has the potential for early-stage lung cancer detection, yet remains challenging due to the lack of sensitive, integrated techniques that can accurately detect rare tumor-associated EV populations in blood. Here, we integrated gold core-silver shell nanoparticles and nanoscopic mixing in a microfluidic assay for sensitive phenotypic analysis of EVs directly in plasma without EV pre-isolation. The assay enabled multiplex detection of lung cancer-associated markers PTX3 and THBS1 and canonical EV marker CD63 by surface-enhanced Raman spectroscopy, providing a squared correlation coefficient of 0.97 in the range of 103-107 EVs mL-1 and a limit of detection of 19 EVs mL-1. Significantly, our machine learning-based nanostrategy provided 92.3% sensitivity and 100% specificity in differentiating early-stage lung cancer from benign lung diseases, superior to the CT scan-based lung cancer diagnosis (92.3% sensitivity and 71.4% specificity). Overall, our integrated nanostrategy achieved an AUC value of 0.978 in differentiating between early-stage lung cancer patients (n = 28) and controls consisting of patients with benign lung diseases (n = 23) and healthy controls (n = 26), which showed remarkable diagnostic performance and great clinical potential for detecting the early occurrence of lung cancer.
Collapse
Affiliation(s)
- Liwen Yuan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| | - Yanpin Chen
- Department of Pathology, Clinical Oncology School of Fujian Medical University, and Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Longfeng Ke
- Laboratory of Molecular Pathology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Quan Zhou
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jiayou Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou, Fujian 350014, China
| | - Min Fan
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
12
|
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes 2023; 11:proteomes11020018. [PMID: 37218923 DOI: 10.3390/proteomes11020018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Extracellular vesicles (EVs), the lipid bilayer membranous structures of particles, are produced and released from almost all cells, including eukaryotes and prokaryotes. The versatility of EVs has been investigated in various pathologies, including development, coagulation, inflammation, immune response modulation, and cell-cell communication. Proteomics technologies have revolutionized EV studies by enabling high-throughput analysis of their biomolecules to deliver comprehensive identification and quantification with rich structural information (PTMs, proteoforms). Extensive research has highlighted variations in EV cargo depending on vesicle size, origin, disease, and other features. This fact has sparked activities to use EVs for diagnosis and treatment to ultimately achieve clinical translation with recent endeavors summarized and critically reviewed in this publication. Notably, successful application and translation require a constant improvement of methods for sample preparation and analysis and their standardization, both of which are areas of active research. This review summarizes the characteristics, isolation, and identification approaches for EVs and the recent advances in EVs for clinical biofluid analysis to gain novel knowledge by employing proteomics. In addition, the current and predicted future challenges and technical barriers are also reviewed and discussed.
Collapse
Affiliation(s)
- Shipan Fan
- School of Basic Medical Sciences, Nanchang University, Nanchang 330021, China
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang 330021, China
| |
Collapse
|
13
|
Devara D, Choudhary Y, Kumar S. Role of MicroRNA-502-3p in Human Diseases. Pharmaceuticals (Basel) 2023; 16:ph16040532. [PMID: 37111289 PMCID: PMC10144852 DOI: 10.3390/ph16040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that play a major role in gene regulation in several diseases. MicroRNA-502-3p (MiR-502-3p) has been previously characterized in a variety of human diseases such as osteoporosis, diabetes, tuberculosis, cancers, and neurological disorders. Our studies recently explored the new role of miR-502-3p in regulating synapse function in Alzheimer’s disease (AD). AD is the most common cause of dementia in elderly individuals. Synapse is the initial target that is hit during AD progression. The most common causes of synapse dysfunction in AD are amyloid beta, hyperphosphorylated tau, and microglia activation. MiR-502-3p was found to be localized and overexpressed in the AD synapses. Overexpression of miR-502-3p was correlated with AD severity in terms of Braak stages. Studies have shown that miR-502-3p modulates the glutaminergic and GABAergic synapse function in AD. The current study’s emphasis is to discuss the in-depth roles of miR-502-3p in human diseases and AD and the future possibilities concerning miR-502-3p as a therapeutic for AD treatment.
Collapse
Affiliation(s)
- Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Yashmit Choudhary
- Maxine L. Silva Health Magnet High School, 121 Val Verde St., El Paso, TX 79905, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
14
|
Zhou Y, Zhang Y, Tian J, Miao Z, Lv S, Zhao X. A Meaningful Strategy for Glioma Diagnosis via Independent Determination of hsa_circ_0004214. Brain Sci 2023; 13:brainsci13020193. [PMID: 36831736 PMCID: PMC9954075 DOI: 10.3390/brainsci13020193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Glioma is one of the most common primary tumors in the central nervous system. Circular RNAs (circRNAs) may serve as novel biomarkers of various cancers. The purpose of this study is to reveal the diagnostic value of hsa_circ_0004214 for glioma and to predict its molecular interaction network. The expression of hsa_circ_0004214 was evaluated by RT-qPCR. The vector and siRNAs changed the expression of hsa_circ_0004214 to judge its influence on the migration degree of glioma cells. hsa_circ_0004214 can be stably expressed at a high level in high-grade glioma tissue (WHO III/IV). The area under the ROC curve of hsa_circ_0000745 in glioma tissue was 0.88, suggesting good diagnostic value. While used to distinguish high-grade glioma, AUC value can be increased to 0.931. The multi-factor correlation analysis found that the expression of hsa_circ_0004214 was correlated with GFAP (+) and Ki67 (+) in immunohistochemistry. In addition, the migration capacity of U87 was enhanced by overexpression of hsa_circ_0004214. Through miRNA microarray analysis and database screening, we finally identified 4 miRNAs and 9 RBPs that were most likely to interact with hsa_circ_0004214 and regulate the biological functions of glioma. Hsa_circ_0004 214 plays an important role in glioma, its expression level is a promising diagnostic marker for this malignancy.
Collapse
Affiliation(s)
- Yinan Zhou
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong 226019, China
- Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
| | - Yating Zhang
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong 226019, China
- Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
| | - Jiajia Tian
- Wuxi Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Wuxi 214002, China
| | - Zengli Miao
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong 226019, China
- Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
| | - Shangrui Lv
- Wuxi Clinical Medical College of Nanjing Medical University, Nanjing Medical University, Wuxi 214002, China
| | - Xudong Zhao
- Department of Neurosurgery, Medical School of Nantong University, Nantong University, Nantong 226019, China
- Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi 214002, China
- Department of Neurosurgery, Wuxi No. 2 People’s Hospital, Wuxi 214002, China
- Correspondence:
| |
Collapse
|
15
|
Rao DY, Huang DF, Si MY, Lu H, Tang ZX, Zhang ZX. Role of exosomes in non-small cell lung cancer and EGFR-mutated lung cancer. Front Immunol 2023; 14:1142539. [PMID: 37122754 PMCID: PMC10130367 DOI: 10.3389/fimmu.2023.1142539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
As an important mediator of information transfer between cells, exosomes play a unique role in regulating tumor growth, supporting vascular proliferation, tumor invasion, and metastasis. Exosomes are widely present in various body fluids, and therefore they can be used as a potential tool for non-invasive liquid biopsy. The present study reviews the role of exosomes in liquid biopsy, tumor microenvironment formation, and epithelial-mesenchymal transition in non-small cell lung cancer (NSCLC). By targeting epidermal growth factor receptor (EGFR) therapy as a first-line treatment for patients with NSCLC, this study also briefly describes the occurrence of EGRF+ exosomes and the role of exosomes and their contents in non-invasive detection and potential therapeutic targets in EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- Ding-Yu Rao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - De-Fa Huang
- Laboratory Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mao-Yan Si
- The First Clinical College, Gannan Medical University, Ganzhou, China
| | - Hua Lu
- The First Clinical College, Southern Medical University, Guangzhou, China
| | - Zhi-Xian Tang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Zhi-Xian Tang, ; Zu-Xiong Zhang,
| | - Zu-Xiong Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Wu Y, Chen W, Guo M, Tan Q, Zhou E, Deng J, Li M, Chen J, Yang Z, Jin Y. Metabolomics of Extracellular Vesicles: A Future Promise of Multiple Clinical Applications. Int J Nanomedicine 2022; 17:6113-6129. [PMID: 36514377 PMCID: PMC9741837 DOI: 10.2147/ijn.s390378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) can contain DNA, RNA, proteins and metabolic molecules from primary origins; they are coated with a phospholipid bilayer membrane and released by cells into the extracellular matrix. EVs can be obtained from various body liquids, including the blood, saliva, cerebrospinal fluid, and urine. As has been proved, EVs-mediated transfer of biologically active molecules is crucial for various physiological and pathological processes. Extensive investigations have already begun to explore the diagnosis and prognosis potentials for EVs. Furthermore, research has continued to recognize the critical role of nucleic acids and proteins in EVs. However, our understanding of the comprehensive effects of metabolites in these nanoparticles is currently limited and in its infancy. Therefore, we have attempted to summarize the recent research into the metabolomics of EVs in relation to potential clinical applications and discuss the problems and challenges that have occurred, to provide more guidance for the future development in this field.
Collapse
Affiliation(s)
- YaLi Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - WenJuan Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qi Tan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jingjing Deng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Minglei Li
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jiangbin Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zimo Yang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Diseases of National Health Commission, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Clinical Research Center for Major Respiratory Diseases in Hubei Province, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China,Correspondence: Yang Jin, Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China, Email
| |
Collapse
|
17
|
Ding Y, He C, Zhao X, Xue S, Tang J. Adding predictive and diagnostic values of pulmonary ground-glass nodules on lung cancer via novel non-invasive tests. Front Med (Lausanne) 2022; 9:936595. [PMID: 36059824 PMCID: PMC9433577 DOI: 10.3389/fmed.2022.936595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary ground-glass nodules (GGNs) are highly associated with lung cancer. Extensive studies using thin-section high-resolution CT images have been conducted to analyze characteristics of different types of GGNs in order to evaluate and determine the predictive and diagnostic values of GGNs on lung cancer. Accurate prediction of their malignancy and invasiveness is critical for developing individualized therapies and follow-up strategies for a better clinical outcome. Through reviewing the recent 5-year research on the association between pulmonary GGNs and lung cancer, we focused on the radiologic and pathological characteristics of different types of GGNs, pointed out the risk factors associated with malignancy, discussed recent genetic analysis and biomarker studies (including autoantibodies, cell-free miRNAs, cell-free DNA, and DNA methylation) for developing novel diagnostic tools. Based on current progress in this research area, we summarized a process from screening, diagnosis to follow-up of GGNs.
Collapse
Affiliation(s)
- Yizong Ding
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunming He
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojing Zhao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Xue
- Department of Cardiovascular Surgery, Reiji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Tang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jian Tang,
| |
Collapse
|
18
|
Zheng D, Zhu Y, Zhang J, Zhang W, Wang H, Chen H, Wu C, Ni J, Xu X, Nian B, Chen S, Wang B, Li X, Zhang Y, Zhang J, Zhong W, Xiong L, Li F, Zhang D, Xu J, Jiang G. Identification and evaluation of circulating small extracellular vesicle microRNAs as diagnostic biomarkers for patients with indeterminate pulmonary nodules. J Nanobiotechnology 2022; 20:172. [PMID: 35366907 PMCID: PMC8976298 DOI: 10.1186/s12951-022-01366-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Background The identification of indeterminate pulmonary nodules (IPNs) following a low-dose computed tomography (LDCT) is a major challenge for early diagnosis of lung cancer. The inadequate assessment of IPNs’ malignancy risk results in a large number of unnecessary surgeries or an increased risk of cancer metastases. However, limited studies on non-invasive diagnosis of IPNs have been reported. Methods In this study, we identified and evaluated the diagnostic value of circulating small extracellular vesicle (sEV) microRNAs (miRNAs) in patients with IPNs that had been newly detected using LDCT scanning and were scheduled for surgery. Out of 459 recruited patients, 109 eligible patients with IPNs were enrolled in the training cohort (n = 47) and the test cohort (n = 62). An external cohort (n = 99) was used for validation. MiRNAs were extracted from plasma sEVs, and assessed using Small RNA sequencing. 490 lung adenocarcinoma samples and follow-up data were used to investigate the role of miRNAs in overall survival. Results A circulating sEV miRNA (CirsEV-miR) model was constructed from five differentially expressed miRNAs (DEMs), showing 0.920 AUC in the training cohort (n = 47), and further identified in the test cohort (n = 62) and in an external validation cohort (n = 99). Among five DEMs of the CirsEV-miR model, miR-101-3p and miR-150-5p were significantly associated with better overall survival (p = 0.0001 and p = 0.0069). The CirsEV-miR scores were calculated, which significantly correlated with IPNs diameters (p < 0.05), and were able to discriminate between benign and malignant PNs (diameter ≤ 1 cm). The expression patterns of sEV miRNAs in the benign, adenocarcinoma in situ/minimally invasive adenocarcinoma, and invasive adenocarcinoma subgroups were found to gradually change with the increase in aggressiveness for the first time. Among all DEMs of the three subgroups, five miRNAs (miR-30c-5p, miR-30e-5p, miR-500a-3p, miR-125a-5p, and miR-99a-5p) were also significantly associated with overall survival of lung adenocarcinoma patients. Conclusions Our results indicate that the CirsEV-miR model could help distinguish between benign and malignant PNs, providing insights into the feasibility of circulating sEV miRNAs in diagnostic biomarker development. Trial registration: Chinese Clinical Trials: ChiCTR1800019877. Registered 05 December 2018, https://www.chictr.org.cn/showproj.aspx?proj=31346. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01366-0.
Collapse
|
19
|
Gao S, Guo W, Liu T, Liang N, Ma Q, Gao Y, Tan F, Xue Q, He J. Plasma extracellular vesicle microRNA profiling and the identification of a diagnostic signature for stage I lung adenocarcinoma. Cancer Sci 2021; 113:648-659. [PMID: 34837453 PMCID: PMC8819331 DOI: 10.1111/cas.15222] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/13/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
At present, there is no effective noninvasive method for the accurate diagnosis of early-stage lung adenocarcinoma (LUAD). This study examined the profile of plasma extracellular vesicle (EV)-delivered microRNAs (miRNAs) in patients with invasive stage I LUAD. In this study, a total of 460 participants were enrolled, including 254 patients with LUAD, 76 patients with benign pulmonary nodules (BPNs), and 130 healthy control patients (HCs). miRNA sequencing was used to analyze the EV miRNA profile of the patient plasma samples (n = 150). A diagnostic signature (d-signature) was identified by applying a stepwise logistic regression algorithm, and a single-center training cohort (n = 150) was tested, followed by a multicenter validation cohort (n = 100). A d-signature comprising four EV-derived miRNAs (hsa-miR-106b-3p, hsa-miR-125a-5p, hsa-miR-3615, and hsa-miR-450b-5p) was developed for the early detection of LUAD. The d-signature had high precision with area under the curve (AUC) values of 0.917 and 0.902 in the training and test cohorts, respectively. Moreover, the d-signature could recognize patients with adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) with AUC values of 0.846 and 0.92, respectively. To sum up, our study detailed the plasma EV-derived miRNA profile in early LUAD patients and developed an EV-derived miRNA d-signature to detect early LUAD.
Collapse
Affiliation(s)
- Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiejun Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Qianli Ma
- Department of Thoracic Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Li P, Bai Y, Shan B, Zhang W, Liu Z, Zhu Y, Xu X, Chen Q, Sheng X, Deng X, Guo Z, Zhang D, Wang H, Zhang Y, Hu Y. Exploration of Potential Diagnostic Value of Protein Content in Serum Small Extracellular Vesicles for Early-Stage Epithelial Ovarian Carcinoma. Front Oncol 2021; 11:707658. [PMID: 34604046 PMCID: PMC8479155 DOI: 10.3389/fonc.2021.707658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC) is one of the most common gynecologic malignancies with a high mortality rate. Serum biomarkers and imaging approaches are insufficient in identifying EOC patients at an early stage. This study is to set up a combination of proteins from serum small extracellular vesicles (sEVs) for the diagnosis of early-stage EOC and to determine its performance. A biomarker for early-stage ovarian cancer (BESOC) cohort was used as a Chinese multi-center population-based biomarker study and registered as a Chinese Clinical Trial ChiCTR2000040136. The sEV protein levels of CA125, HE4, and C5a were measured in 299 subjects. Logistic regression was exploited to calculate the odds ratio and to create the sEV protein model for the predicted probability and subsequently receiver-operating characteristic (ROC) analysis. The combined sEV marker panel of CA125, HE4, and C5a as a sEV model obtained an area under curve (AUC) of 0.912, which was greater than the serum model (0.809), by ROC analysis to identify EOC patients from the whole cohort. With the cutoff of 0.370, the sensitivity and specificity of the sEV model were 0.80 and 0.89, which were much better performance than the serum markers (sensitivity: 0.55~0.66; specificity: 0.59~0.68) and the risk of ovarian malignancy algorithm (ROMA) index approved by the U.S. Food and Drug Administration (sensitivity: 0.65; specificity: 0.61), to identify EOC patients from patients with benign ovarian diseases or other controls. The sEV levels of CA125 significantly differed among early-stage and late-stage EOC (p < 0.001). Moreover, the AUC of ROC to identify early-stage EOC patients was 0.888. Further investigation revealed that the sEV levels of these 3 proteins significantly decreased after cytoreductive surgery (CA125, p = 0.008; HE4, p = 0.025; C5a, p = 0.044). In summary, our study showed that CA125, HE4, and C5a levels in serum sEVs can identify EOC patients at the early stage, elucidating the possibility of using a sEV model for the diagnosis of early-stage EOC.
Collapse
Affiliation(s)
- Pu Li
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | - Yuezong Bai
- 3D Medicines Inc., Shanghai, China.,Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Boer Shan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | | | - Yingjie Zhu
- Department of Gynecology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | | | - Qian Chen
- Department of Gynecology, Yunnan Tumor Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiujie Sheng
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Gynecology Department of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyang Deng
- Gynecology Department, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhengchen Guo
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| | | | - Huaying Wang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | | | - Yuanjing Hu
- Department of Gynecology Oncology, Tianjin Central Hospital of Obstetrics and Gynecology, Tianjin, China
| |
Collapse
|
21
|
Guo S, Qin H, Liu K, Wang H, Bai S, Liu S, Shao Z, Zhang Y, Song B, Xu X, Shen J, Zeng P, Shi X, Chen H, Gao S, Xu J, Pan Y, Xiong L, Li F, Zhang D, Jiao X, Jin G. Blood small extracellular vesicles derived miRNAs to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Clin Transl Med 2021; 11:e520. [PMID: 34586739 PMCID: PMC8431442 DOI: 10.1002/ctm2.520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The differential diagnosis of pancreatic ductal adenocarcinoma (PDAC) from chronic pancreatitis (CP) is clinically challenging due to a lack of minimally invasive diagnosis methods. MicroRNAs (miRNAs) derived from small extracellular vesicles (EVs) in the blood have been reported as a promising diagnosis biomarker for various types of cancer. However, blood small EV miRNA signatures and their diagnostic value to differentiate between PDAC and CP remain to be determined. METHODS In this study, 107 patients with PDAC or CP were recruited, and 90 patients were finally enrolled for a training cohort (n = 48) and test cohort (n = 42). Small RNA sequencing was used to assess the expression of blood small EV miRNAs in these patients. RESULTS The linear model from the differentially expressed blood small EV miR-95-3p divided by miR-26b-5p showed an average sensitivity of 84.1% and an average specificity of 96.6% to identify PDAC from CP in the training cohort and the test cohort, respectively. When the model was combined with serum carbohydrate antigen 19-9 (CA19-9), the average sensitivity increased to 96.5%, and the average specificity remained at 96.4% of both cohorts, which demonstrated the best performance of all the published biomarkers for distinguishing between PDAC and CP. The causal analysis performed using the Bayesian network demonstrated that miR-95-3p was associated with a "consequence" of "cancer" and miR-26b-5p as a "cause" of "pancreatitis." A subgroup analysis revealed that blood small EV miR-335-5p/miR-340-5p could predict metastases in both cohorts and was associated with an overall survival (p = 0.020). CONCLUSIONS This study indicated that blood small EV miR-95-3p/miR-26b-5p and its combination with serum levels of CA19-9 could separate PDAC from CP, and miR-335-5p/miR-340-5p was identified to associate with PDAC metastasis and poor prognosis. These results suggested the potentiality of blood small EV miRNAs as differential diagnosis and metastases biomarkers of PDAC.
Collapse
Affiliation(s)
- Shiwei Guo
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Hao Qin
- 3D Medicines Inc.ShanghaiChina
| | - Ke Liu
- Department of Medical OncologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Huan Wang
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Sijia Bai
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Zhuo Shao
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Bin Song
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Jing Shen
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Xiaohan Shi
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Suizhi Gao
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | - Yaqi Pan
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| | | | | | | | - Xiaodong Jiao
- Department of Medical OncologyChangzheng HospitalNaval Medical UniversityShanghaiChina
| | - Gang Jin
- Department of Hepatobiliary Pancreatic SurgeryChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
22
|
Xu L, Su Z, Xie B. Diagnostic value of conventional tumor markers in young patients with pulmonary nodules. J Clin Lab Anal 2021; 35:e23912. [PMID: 34296781 PMCID: PMC8418517 DOI: 10.1002/jcla.23912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/25/2023] Open
Abstract
Background Lung cancer is one of the most common malignancies, and there is a trend of increasing incidence in young patients. The preoperative diagnosis of pulmonary nodules is mainly based on the combination of imaging and tumor markers. There is no relevant report on the diagnostic value of tumor markers in young pulmonary nodules. Our study was designed to explore the value of five tumor markers in young patients with pulmonary nodules. Methods We reviewed the medical records of 390 young patients (age ≤45 years) with pulmonary nodules treated at two separate centers from January 1, 2015, to January 1, 2021. Malignant pulmonary nodules were confirmed in 318 patients, and the other 72 patients were diagnosed with benign pulmonary nodules. The gold standard for diagnosis of pulmonary nodules was surgical biopsy. The conventional serum biomarkers included cytokeratin 19 (CYFRA21‐1), pro‐gastrin‐releasing‐peptide (ProGRP), carcinoembryonic antigen (CEA), neuron‐specific enolase (NSE), and squamous cell carcinoma‐associated antigen (SCCA). The diagnostic values of five tumor markers were analyzed by receiver operating characteristic (ROC) curves. Results There were no significant differences in the expression of five tumor markers between the groups (p > 0.05). Single tumor marker (CYFRA21‐1, ProGRP, CEA, NSE, and SCCA) showed a limited value in the diagnosis of malignant pulmonary nodules, with the AUC of 0.506, 0.503 0.532, 0.548, and 0.562, respectively. The AUC of the combined examination was only 0.502~0.596, which did not improve the diagnostic value. Conclusions Five conventional tumor markers had a limited diagnostic value in young patients with pulmonary nodules.
Collapse
Affiliation(s)
- Lihuan Xu
- Department of Pulmonary and Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Zhiming Su
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Baosong Xie
- Department of Pulmonary and Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
23
|
Xiao Q, Yin R, Wang Y, Yang S, Ma A, Pan X, Zhu X. Comprehensive Analysis of Peripheral Exosomal circRNAs in Large Artery Atherosclerotic Stroke. Front Cell Dev Biol 2021; 9:685741. [PMID: 34239876 PMCID: PMC8257506 DOI: 10.3389/fcell.2021.685741] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes are crucial vehicles in intercellular communication. Circular RNAs (circRNAs), novel endogenous noncoding RNAs, play diverse roles in ischemic stroke. Recently, the abundance and stability of circRNAs in exosomes have been identified. However, a comprehensive analysis of exosomal circRNAs in large artery atherosclerotic (LAA) stroke has not yet been reported. We performed RNA sequencing (RNA-Seq) to comprehensively identify differentially expressed (DE) exosomal circRNAs in five paired LAA and normal controls. Further, quantitative real-time PCR (qRT-PCR) was used to verify the RNA-Seq results in a cohort of stroke patients (32 versus 32). RNA-Seq identified a total of 462 circRNAs in peripheral exosomes; there were 25 DE circRNAs among them. Additionally, circRNA competing endogenous RNA (ceRNA) network and translatable analysis revealed the potential functions of the exosomal circRNAs in LAA progression. Two ceRNA pathways involving 5 circRNAs, 2 miRNAs, and 3 mRNAs were confirmed by qRT-PCR. In the validation cohort, receiver operating characteristic (ROC) curve analysis identified two circRNAs as possible novel biomarkers, and a logistic model combining two and four circRNAs increased the area under the curve compared with the individual circRNAs. Here, we show for the first time the comprehensive expression of exosomal circRNAs, which displayed the potential diagnostic and biological function in LAA stroke.
Collapse
Affiliation(s)
- Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.,Institute of Cerebrovascular Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Proteomics of extracellular vesicles in plasma reveals the characteristics and residual traces of COVID-19 patients without underlying diseases after 3 months of recovery. Cell Death Dis 2021; 12:541. [PMID: 34035220 PMCID: PMC8146187 DOI: 10.1038/s41419-021-03816-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
More and more patients suffered from Coronavirus disease 2019 (COVID-19) have got recovery gradually due to suitable intervention. Increasing data mainly studies the clinical characteristics of recovered COVID-19 patients, and their molecular changes especially proteome changes also play the same important role in understanding of biological characteristics of recovered COVID-19 patients as clinical characteristics do. In our study, we reported the whole lung-ground glass-CT value-average of mild/severe recovered patients 3 months after discharge without underlying diseases was significantly lower than that of healthy subjects. Then we isolated the extracellular vesicles (EVs) of plasma from 19 healthy subjects and 67 recovered COVID-19 patients. Mass Spectrometry was used to catalogue the proteins of these EVs compared to a defined group of controls. Identified 174 proteins were differentially expressed in the EVs of COVID-19 patients compared with healthy subjects, which involved in lipid metabolic process, response to cellular, and response to stress oxygen-containing compound. Besides, we identified several protein of plasma EVs in recovered patients associated with coagulation activity, inflammatory reaction, immune response, and low organ function. In addition, proteins correlating with clinical index such as alkaline phosphatase (ALP) and alanine aminotransferase (ALT) were also detected. Moreover, we also identified many unique or characteristic associations found in the recovered COVID-19 patients, which especially involved the kidney, serum electrolyte levels, and inflammation functions. This finding suggests that monitoring the situation of recovered patients might be useful, especially the indexes of coagulation, inflammation, immunity, and organ function, which can prevent bleeding, reinfection and organ dysfunction.
Collapse
|
25
|
Screening and identification of microRNAs from plasma-derived extracellular vesicles (EVs) of Dazu black goat (Capra hircus) in early pregnant stages. Gene 2021; 790:145706. [PMID: 33979681 DOI: 10.1016/j.gene.2021.145706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that extracellular vesicles (EVs) containing proteins, lipids, nucleic acids and other biological components exist in all kinds of body fluids. EVs, as an intercellular communication carrier, regulate the functions of its target cells by transporting biomacromolecules between cells. In this study, a total of six female Dazu black goats were divided into NP group (NP, non-pregnant group) and P30 (P30, 30-day pregnant group). The goats in NP group (n = 3) were in estrus, but failed to fertilize; the other goats in P30 group (n = 3) were fertilized by natural mating. Firstly, goats plasma-derived EVs were isolated using ultracentrifugation. Secondly, EVs were identified by transmission electron microscope (TEM), dynamic light scattering (DLS), and by testing its markers (CD9 and CD63) using west blotting in NP and P30 groups, respectively. Thirdly, EVs related miRNAs were sequenced and analyzed by bioinformatics method. Data shows that miR-31-5p, miR-137-3p, novel_miR_1355, novel_miR_734 and novel_miR_736 exclusively were expressed in P30 group. Their target genes were significantly enriched in the axon guidance, the Notch signaling pathway, the Wnt signaling pathway, tight junction and the Hippo signaling pathway. And miRNA-mRNA interactive network analysis reveals potential regulatory functions of miRNAs for goat during early pregnancy. These findings provided theretical references for studying the regulation of plasma-derived EVs between the fetal and placental development, and these candidate miRNAs identified might be as markers for diagnosis of goat early pregnancy.
Collapse
|
26
|
Tao R, Cao W, Zhu F, Nie J, Wang H, Wang L, Liu P, Chen H, Hong B, Zhao D. Liquid biopsies to distinguish malignant from benign pulmonary nodules. Thorac Cancer 2021; 12:1647-1655. [PMID: 33960710 PMCID: PMC8169297 DOI: 10.1111/1759-7714.13982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, low-dose computed tomography (LD-CT) screening has been widely used for the early detection of lung cancer. Increasing numbers of indeterminate pulmonary nodules are now being discovered. However, it remains challenging to distinguish malignant from benign pulmonary nodules, especially those considered to be small or ground-glass (GGN) nodules. Liquid biopsies have been successfully applied in the diagnosis of advanced lung cancer, and the potential value for early detection of lung cancer has made great progress. Recent studies have demonstrated the value of various blood-based tumor biomarkers in determining the nature of pulmonary nodules, including cell-free DNA (cfDNA), microRNAs (miRNAs), circulating tumor cells (CTCs) and tumor-associated autoantibodies (AAbs). In this review, we summarize the latest progress of liquid biopsies, and their potential applications and challenges in the diagnosis of malignant pulmonary nodules.
Collapse
Affiliation(s)
- Rui Tao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Wei Cao
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Feng Zhu
- Department of Thoracic Surgery, Anhui Chest Hospital, Thoracic Clinical College of Anhui Medical University, Hefei, China
| | - Jinfu Nie
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Heath & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Science, Hefei, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Heath & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Science, Hefei, China
| | - Lixiang Wang
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Hailong Chen
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Bo Hong
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Heath & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,Hefei Cancer Hospital, Chinese Academy of Science, Hefei, China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
27
|
Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, Zhan Y, Du L, Wang F, Jiang Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021; 274:120873. [PMID: 33989972 DOI: 10.1016/j.biomaterials.2021.120873] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022]
Abstract
Exosomes and their internal components have been proven to play critical roles in cell-cell interactions and intrinsic cellular regulations, showing promising prospects in both biomedical and clinical fields. Although conventional methods have so far been utilized to great effect, accurate bioanalysis remains a major challenge. In recent years, the fast-paced development of nanomaterials with unique physiochemical properties has led to a boom in the potential bioapplications of such materials. In particular, the application of nanomaterials in exosome bioanalysis provides a great opportunity to overcome the current challenges and limitations of conventional methods. A timely review of the research progress in this field is thus of great significance to the continued development of new methods. This review outlines the properties and potential uses of exosomes, and discusses the conventional methods currently used for their analysis. We then focus on exploring the current state of the art regarding the use of nanomaterials for the isolation, detection and even the subsequent profiling of exosomes. The main methods are based on principles including fluorescence, surface-enhanced Raman spectroscopy, colorimetry, electrochemistry, and surface plasmon resonance. Additionally, research on exosome-based nanomaterials tumor therapy is also promising from a clinical perspective, so the research progress in this branch is also summarized. Finally, we look at ways in which the field might develop in the future.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Cameron Fletcher
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
28
|
Hao S, Jiang P, Xie L, Xiang G, Liu Z, Hu W, Wu Q, Jiang L, Xiao Y, Li S. Essential Genes and MiRNA-mRNA Network Contributing to the Pathogenesis of Idiopathic Pulmonary Arterial Hypertension. Front Cardiovasc Med 2021; 8:627873. [PMID: 34026864 PMCID: PMC8133434 DOI: 10.3389/fcvm.2021.627873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease. Owing to its high fatality rate and narrow therapeutic options, identification of the pathogenic mechanisms of IPAH is becoming increasingly important. Methods: In our research, we utilized the robust rank aggregation (RRA) method to integrate four eligible pulmonary arterial hypertension (PAH) microarray datasets and identified the significant differentially expressed genes (DEGs) between IPAH and normal samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were performed to analyze their functions. The interaction network of protein-protein interaction (PPI) was constructed to explore the correlation between these DEGs. The functional modules and hub genes were further identified by the weighted gene coexpression network analysis (WGCNA). Moreover, a miRNA microarray dataset was involved and analyzed to filter differentially expressed miRNAs (DE-miRNAs). Potential target genes of screened DE-miRNAs were predicted and merged with DEGs to explore a miRNA-mRNA network in IPAH. Some hub genes were selected and validated by RT-PCR in lung tissues from the PAH animal model. Results: A total of 260 DEGs, consisting of 183 upregulated and 77 downregulated significant DEGs, were identified, and some of those genes were novel. Their molecular roles in the etiology of IPAH remained vague. The most crucial functional module involved in IPAH is mainly enriched in biological processes, including leukocyte migration, cell chemotaxis, and myeloid leukocyte migration. Construction and analysis of the PPI network showed that CXCL10, CXCL9, CCR1, CX3CR1, CX3CL1, CXCR2, CXCR1, PF4, CCL4L1, and ADORA3 were recognized as top 10 hub genes with high connectivity degrees. WGCNA further identified five main functional modules involved in the pathogenesis of IPAH. Twelve upregulated DE-miRNAs and nine downregulated DE-miRNAs were identified. Among them, four downregulated DEGs and eight upregulated DEGs were supposed to be negatively regulated by three upregulated DE-miRNAs and three downregulated DE-miRNAs, respectively. Conclusions: This study identifies some key and functional coexpression modules involved in IPAH, as well as a potential IPAH-related miRNA-mRNA regulated network. It provides deepening insights into the molecular mechanisms and provides vital clues in seeking novel therapeutic targets for IPAH.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Pan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liang Xie
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Guiling Xiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiping Hu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Qinhan Wu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Liyan Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yi Xiao
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shanqun Li
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
29
|
Smolarz M, Widlak P. Serum Exosomes and Their miRNA Load-A Potential Biomarker of Lung Cancer. Cancers (Basel) 2021; 13:cancers13061373. [PMID: 33803617 PMCID: PMC8002857 DOI: 10.3390/cancers13061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Early detection of lung cancer in screening programs is a rational way to reduce mortality associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung cancer screening, generates a relatively large number of false-positive results, and its complementation with molecular biomarkers would greatly improve the effectiveness of such programs. Several biomarkers of lung cancer based on different components of blood, including miRNA signatures, were proposed. However, only a few of them have been positively validated in the context of early cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and showed different levels in lung cancer patients and healthy individuals. Several studies focused on the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising diagnostic value, though none of them have yet been clinically validated. These signatures involved a few dozen miRNA species overall, including a few species that recurred in different signatures. It is worth noting that all these miRNA species have cancer-related functions and have been associated with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19, miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the whole serum/plasma and serum/plasma-derived exosomes.
Collapse
|
30
|
Sheng LQ, Li JR, Qin H, Liu L, Zhang DD, Zhang Q, Huang ML, Li XL, Xu XY, Wei YN, Chen ZS, Luo H, Zhang JY, Zhou CH, Chen H, Chen ZG, Li FG, Li NF. Blood exosomal micro ribonucleic acid profiling reveals the complexity of hepatocellular carcinoma and identifies potential biomarkers for differential diagnosis. World J Gastrointest Oncol 2020; 12:1195-1208. [PMID: 33133386 PMCID: PMC7579736 DOI: 10.4251/wjgo.v12.i10.1195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide, but there is a shortage of effective biomarkers for its diagnosis.
AIM To explore blood exosomal micro ribonucleic acids (miRNAs) as potential biomarkers for HCC diagnosis.
METHODS T RESULTS The principal component analysis suggested that daily alcohol consumption could alter the blood exosomal miRNA profiles of hepatitis B virus positive non-HCC patients through miR-3168 and miR-223-3p. The miRNA profiles also revealed the tumor stages of HCC patients. High expression of miR-455-5p and miR-30c-5p, which significantly correlated with better overall survival in tumor tissues, could also be detected in blood exosomes. Two pairs of miRNAs (miR-584-5p/miR-106-3p and miR-628-3p/miR-941) showed a 94.1% sensitivity and 68.4% specificity to differentiate HCC patients from non-HCC patients. The specificity of the combination was substantially influenced by alcohol consumption habits.
CONCLUSION This study suggested that blood exosomal miRNAs can be used as new non-invasive diagnostic tools for HCC. However, their accuracy could be affected by tumor stage and alcohol consumption habits.
Collapse
Affiliation(s)
- Lang-Qing Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Jia-Rong Li
- Department of Biliopancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hao Qin
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Ling Liu
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Da-Dong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Meng-Li Huang
- The Medical Department, 3D Medicines Inc., Shanghai 201114, China
| | - Xiao-Li Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Xiao-Ya Xu
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Yang-Nian Wei
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Zi-Shuo Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Hui Luo
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Ji-Yang Zhang
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Cheng-Hui Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Hao Chen
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Ze-Guo Chen
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Gen Li
- Research and Development Institute of Precision Medicine, 3D Medicines Inc., Shanghai 201114, Hunan Province, China
| | - Nian-Feng Li
- Department of Hepatobiliary and Pancreatic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
31
|
Li Y, He X, Li Q, Lai H, Zhang H, Hu Z, Li Y, Huang S. EV-origin: Enumerating the tissue-cellular origin of circulating extracellular vesicles using exLR profile. Comput Struct Biotechnol J 2020; 18:2851-2859. [PMID: 33133426 PMCID: PMC7588739 DOI: 10.1016/j.csbj.2020.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are complex ecosystems that can be derived from all body cells and circulated in the body fluids. Characterizing the tissue-cellular source contributing to circulating EVs provides biological information about the cell or tissue of origin and their functional states. However, the relative proportion of tissue-cellular origin of circulating EVs in body fluid has not been thoroughly characterized. Here, we developed an approach for digital EVs quantification, called EV-origin, that enables enumerating of EVs tissue-cellular source contribution from plasma extracellular vesicles long RNA sequencing profiles. EV-origin was constructed by the input matrix of gene expression signatures and robust deconvolution algorithm, collectively used to separate the relative proportions of each tissue or cell type of interest. EV-origin respectively predicted the relative enrichment of seven types of hemopoietic cells and sixteen solid tissue subsets from exLR-seq profile. Using the EV-origin approach, we depicted an integrated landscape of the traceability system of plasma EVs for healthy individuals. We also compared the heterogenous tissue-cellular source components from plasma EVs samples with diverse disease status. Notably, the aberrant liver fraction could reflect the development and progression of hepatic disease. The liver fraction could also serve as a diagnostic indicator and effectively separate HCC patients from normal individuals. The EV-origin provides an approach to decipher the complex heterogeneity of tissue-cellular origin in circulating EVs. Our approach could inform the development of exLR-based applications for liquid biopsy.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xigan He
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qin Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Soekmadji C, Li B, Huang Y, Wang H, An T, Liu C, Pan W, Chen J, Cheung L, Falcon-Perez JM, Gho YS, Holthofer HB, Le MTN, Marcilla A, O'Driscoll L, Shekari F, Shen TL, Torrecilhas AC, Yan X, Yang F, Yin H, Xiao Y, Zhao Z, Zou X, Wang Q, Zheng L. The future of Extracellular Vesicles as Theranostics - an ISEV meeting report. J Extracell Vesicles 2020; 9:1809766. [PMID: 33144926 PMCID: PMC7580849 DOI: 10.1080/20013078.2020.1809766] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The utilization of extracellular vesicles (EVs) in clinical theranostics has rapidly advanced in the past decade. In November 2018, the International Society for Extracellular Vesicles (ISEV) held a workshop on “EVs in Clinical Theranostic”. Here, we report the conclusions of roundtable discussions on the current advancement in the analysis technologies and we provide some guidelines to researchers in the field to consider the use of EVs in clinical application. The main challenges and the requirements for EV separation and characterization strategies, quality control and clinical investigation were discussed to promote the application of EVs in future clinical studies.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haifang Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Taixue An
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chunchen Liu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lesley Cheung
- The Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Juan Manuel Falcon-Perez
- Exosomes Laboratory and Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro De Investigación Biomédica En Red De Enfermedades Hepáticas Y Digestivas (Ciberehd), Madrid, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Yong Song Gho
- Laboratory of Intercellular Communication, Department of Life Science, POSTECH, South Korea
| | - Harry B Holthofer
- Medical Department, University Medical Center Hamburg-Eppendorf, Germany
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Antonio Marcilla
- Àrea De Parasitologia, Departament De Farmàcia I Tecnologia Farmacèutica I Parasitologia, Universitat De València, Burjassot, Valencia, Spain.,Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, Health Research Institute La Fe-Universitat De Valencia, Valencia, Spain
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Trinity St. James's Cancer Institute (TSJCI), Trinity College Dublin, Dublin, Ireland
| | - Faezeh Shekari
- Department of Stem Cells and Developmental BiologyCell Science, Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tang Long Shen
- Department of Plant Pathology and Microbiology & Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Xiaomei Yan
- Department of Chemical Biology, the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Fuquan Yang
- Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yu Xiao
- Laboratory of Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zezhou Zhao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xue Zou
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
| | - Qian Wang
- Laboratory of Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
33
|
Zheng Y, Jiang W, Chen D, Wang L, Li Y, Dai L, Huang L, Wang M. [Research Progress on Exosome in Malignant Tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:689-694. [PMID: 32838490 PMCID: PMC7467984 DOI: 10.3779/j.issn.1009-3419.2020.101.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
“体液活检”是近些年恶性肿瘤研究的热点,肿瘤细胞外泌体因携带其“母体”肿瘤细胞的部分功能性蛋白及基因,介导信息传递、参与调控机体的生理功能及病理状态在肿瘤的发生发展过程中起着重要作用,并作为肿瘤液态活检的一种新途径。本文旨在对外泌体的结构、生物特性和检测方法在恶性肿瘤发生发展及临床诊断治疗中的作用进行综述。
Collapse
Affiliation(s)
- Yujun Zheng
- Department of Oncology, The Friendship Hospital of Dalian, Dalian 116001, China
| | - Wei Jiang
- Department of Oncology, The Friendship Hospital of Dalian, Dalian 116001, China
| | - Dongyan Chen
- Department of Oncology, The Friendship Hospital of Dalian, Dalian 116001, China
| | - Lei Wang
- Department of Oncology, The Friendship Hospital of Dalian, Dalian 116001, China
| | - Yanjun Li
- Department of Oncology, The Friendship Hospital of Dalian, Dalian 116001, China
| | - Lulu Dai
- Department of Oncology, The Friendship Hospital of Dalian, Dalian 116001, China
| | - Lei Huang
- Department of Oncology, The Friendship Hospital of Dalian, Dalian 116001, China
| | - Mingji Wang
- Department of Oncology, The Friendship Hospital of Dalian, Dalian 116001, China
| |
Collapse
|
34
|
Wu J, Shen Z. Exosomal miRNAs as biomarkers for diagnostic and prognostic in lung cancer. Cancer Med 2020; 9:6909-6922. [PMID: 32779402 PMCID: PMC7541138 DOI: 10.1002/cam4.3379] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
More and more studies report that exosomes released by various cells can serve as a medium for information exchange between different cells. Through a deep understanding of the physical and chemical properties of exosomes, the researchers revealed a more precise molecular mechanism of its participation in the process of intercellular communication. In particular, microRNA (miRNA) is found inside exosomes, as well as long noncoding RNA (lncRNA). Extensive evidence indicates that exosomal miRNAs participates in the occurrence and development of lung cancer and plays a variety of roles. Therefore, the release of RNA‐containing exosomes in many different kinds of body fluids has caused widespread interest among researchers. In this review, we report evidence from human studies involving miRNAs and other ncRNAs in exosomes associated with lung cancer as diagnostic and prognostic markers. Currently, there is a small amount of evidence that exosomal miRNAs can be used as early diagnosis and prognostic markers for lung cancer, and their exact role in lung cancer patients still needs further study.
Collapse
Affiliation(s)
- Jing Wu
- Department of Clinical Laboratory, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China
| | - Zuojun Shen
- Department of Clinical Laboratory, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P.R. China.,Department of Clinical Laboratory, Division of Life Sciences and Medicine, The First Affliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, P.R. China
| |
Collapse
|
35
|
Luo D, Li C, Wu L, Chen Q. [Advances of Exosomes Extraction and Its Mechanism in Early Diagnosis of Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:999-1006. [PMID: 32752584 PMCID: PMC7679221 DOI: 10.3779/j.issn.1009-3419.2020.101.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
肺癌是世界范围内发病率和死亡率较高的恶性肿瘤之一,严重威胁着国民的生命安全与健康。肺癌的早期诊断是肺癌预防和治疗过程中的关键环节,对肺癌进行早期诊断有利于提高患者的生存率。外泌体(exosomes)与肿瘤的侵袭与转移过程密切相关,在肺癌的发生发展过程中,外泌体发挥着重要的调控作用。近年来,以外泌体为载体的生物标记物成为肺癌强有力的诊断工具。外泌体是一种由细胞分泌的由膜包裹的大小均一、直径约为30 nm-200 nm的脂质双分子层结构小囊泡。外泌体的内容物包含不同类型的核酸和蛋白质,这些核酸和蛋白质来源于其亲本细胞(包括亲本癌细胞),具有广泛的生理功能,包括参与免疫调节、细胞间联络等。外泌体中的生物大分子物质,如单链RNA、长非编码RNA、微小RNA(microRNA, miRNA)、蛋白质以及脂类,可以为肺癌的早期临床诊断提供有价值的信息。因此,本文就外泌体的来源、结构特点、提取方法、生物学特性和在肺癌早期诊断中的作用研究进展做简要阐述。
Collapse
Affiliation(s)
- Dan Luo
- Department of Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, China.,Hubei University of Medicine, College of Pharmacy, Shiyan 442000, China
| | - Chunlei Li
- Department of Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Lun Wu
- Department of Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, China
| | - Qinhua Chen
- Department of Medical Experimental Center, Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan 442008, China.,Shenzhen Baoan Authentic Traditional Chinese Medicine Therapy Hospital, Shenzhen 518102, China
| |
Collapse
|