1
|
Huang R, Wu J, Ma Y, Kang K. Molecular Mechanisms of Ferroptosis and Its Role in Viral Pathogenesis. Viruses 2023; 15:2373. [PMID: 38140616 PMCID: PMC10747891 DOI: 10.3390/v15122373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a novelty form of regulated cell death, and it is mainly characterized by iron accumulation and lipid peroxidation in the cells. Its underlying mechanism is related to the amino acid, iron, and lipid metabolisms. During viral infection, pathogenic microorganisms have evolved to interfere with ferroptosis, and ferroptosis is often manipulated by viruses to regulate host cell servicing for viral reproduction. Therefore, this review provides a comprehensive overview of the mechanisms underlying ferroptosis, elucidates the intricate signaling pathways involved, and explores the pivotal role of ferroptosis in the pathogenesis of viral infections. By enhancing our understanding of ferroptosis, novel therapeutic strategies can be devised to effectively prevent and treat diseases associated with this process. Furthermore, unraveling the developmental mechanisms through which viral infections exploit ferroptosis will facilitate development of innovative antiviral agents.
Collapse
Affiliation(s)
- Riwei Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiang Wu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Yaodan Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| | - Kai Kang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.H.); (J.W.); (Y.M.)
| |
Collapse
|
2
|
Papadopoulou G, Petroulia S, Karamichali E, Dimitriadis A, Marousis D, Ioannidou E, Papazafiri P, Koskinas J, Foka P, Georgopoulou U. The Epigenetic Controller Lysine-Specific Demethylase 1 (LSD1) Regulates the Outcome of Hepatitis C Viral Infection. Cells 2023; 12:2568. [PMID: 37947646 PMCID: PMC10648375 DOI: 10.3390/cells12212568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Hepatitis C virus (HCV) alters gene expression epigenetically to rearrange the cellular microenvironment in a beneficial way for its life cycle. The host epigenetic changes induced by HCV lead to metabolic dysfunction and malignant transformation. Lysine-specific demethylase 1 (LSD1) is an epigenetic controller of critical cellular functions that are essential for HCV propagation. We investigated the putative role of LSD1 in the establishment of HCV infection using genetic engineering and pharmacological inhibition to alter endogenous LSD1 levels. We demonstrated for the first time that HCV replication was inhibited in LSD1-overexpressing cells, while specific HCV proteins differentially fine-tuned endogenous LSD1 expression levels. Electroporation of the full-length HCV genome and subgenomic replicons in LSD1 overexpression enhanced translation and partially restored HCV replication, suggesting that HCV might be inhibited by LSD1 during the early steps of infection. Conversely, the inhibition of LSD1, followed by HCV infection in vitro, increased viral replication. LSD1 was shown to participate in an intriguing antiviral mechanism, where it activates endolysosomal interferon-induced transmembrane protein 3 (IFITM3) via demethylation, leading endocytosed HCV virions to degradation. Our study proposes that HCV-mediated LSD1 oscillations over countless viral life cycles throughout chronic HCV infection may promote epigenetic changes related to HCV-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Georgia Papadopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Stavroula Petroulia
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Alexios Dimitriadis
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Dimitrios Marousis
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Elisavet Ioannidou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Panagiota Papazafiri
- Division of Animal and Human Physiology, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - John Koskinas
- 2nd Department of Internal Medicine, Medical School of Athens, Hippokration General Hospital, 11521 Athens, Greece
| | - Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
3
|
ARIFFIANTO ADI, DENG LIN, HARADA SAKI, LIANG YUJIAO, MATSUI CHIEKO, ABE TAKAYUKI, SHOJI IKUO. Transcription Factor JunB Suppresses Hepatitis C Virus Replication. THE KOBE JOURNAL OF MEDICAL SCIENCES 2023; 69:E86-E95. [PMID: 37661632 PMCID: PMC10695097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 09/05/2023]
Abstract
We previously reported that hepatitis C virus (HCV) infection activates the reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK) signaling pathway. Activation of JNK contributes to the development of liver diseases, including metabolic disorders, steatosis, liver cirrhosis and hepatocellular carcinoma. JNK is known to have numerous target genes, including JunB, a member of activator protein-1 transcription factor family. However, the roles of JunB in the HCV life cycle and HCV-associated pathogenesis remain unclear. To clarify a physiological role of JunB in HCV infection, we investigated the phosphorylation of JunB in HCV J6/JFH1-infected Huh-7.5 cells. Immunoblot analysis revealed that HCV-induced ROS/JNK activation promoted phosphorylation of JunB. The small interfering RNA (siRNA) knockdown of JunB significantly increased the amount of intracellular HCV RNA as well as the intracellular and extracellular HCV infectivity titers. Conversely, overexpression of JunB significantly reduced the amount of intracellular HCV RNA and the intracellular and extracellular HCV infectivity titers. These results suggest that JunB plays a role in inhibiting HCV propagation. Additionally, HCV-mediated JunB activation promoted hepcidin promoter activity and hepcidin mRNA levels, a key factor in modulating iron homeostasis, suggesting that JunB is involved in HCV-induced transcriptional upregulation of hepcidin. Taken together, we propose that the HCV-induced ROS/JNK/JunB signaling pathway plays roles in inhibiting HCV replication and contributing to HCV-mediated iron metabolism disorder.
Collapse
Affiliation(s)
- ADI ARIFFIANTO
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - LIN DENG
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - SAKI HARADA
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUJIAO LIANG
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - CHIEKO MATSUI
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - TAKAYUKI ABE
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - IKUO SHOJI
- Division of Infectious Disease Control, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
4
|
Zheng H, Yang F, Deng K, Wei J, Liu Z, Zheng YC, Xu H. Relationship between iron overload caused by abnormal hepcidin expression and liver disease: A review. Medicine (Baltimore) 2023; 102:e33225. [PMID: 36930080 PMCID: PMC10019217 DOI: 10.1097/md.0000000000033225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Iron is essential to organisms, the liver plays a vital role in its storage. Under pathological conditions, iron uptake by the intestine or hepatocytes increases, allowing excess iron to accumulate in liver cells. When the expression of hepcidin is abnormal, iron homeostasis in humans cannot be regulated, and resulting in iron overload. Hepcidin also regulates the release of iron from siderophores, thereby regulating the concentration of iron in plasma. Important factors related to hepcidin and systemic iron homeostasis include plasma iron concentration, body iron storage, infection, inflammation, and erythropoietin. This review summarizes the mechanism and regulation of iron overload caused by hepcidin, as well as related liver diseases caused by iron overload and treatment.
Collapse
Affiliation(s)
- Haoran Zheng
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Fan Yang
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Kaige Deng
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaxin Wei
- Department of Emergency, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhenting Liu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-Chang Zheng
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Haifeng Xu
- Division of Liver Surgery, Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
6
|
Giordano G, Teresa Bochicchio M, Niro G, Lucchesi A, Napolitano M. Genetic regulation of iron homeostasis in sideropenic patients with mild COVID-19 disease under a new oral iron formulation: Lessons from a different perspective. Immunobiology 2022; 227:152297. [PMID: 36327544 PMCID: PMC9597571 DOI: 10.1016/j.imbio.2022.152297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Background Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) needs iron to replicate itself. Coronaviruses are able to upregulate Chop/Gadd153 and Arg1 genes, consequently leading to CD8 lymphocytes decrease, degradation of asparagine and decreased nitric oxide (NO), thus impairing immune response and antithrombotic functions. Little is known about regulation of genes involved in iron metabolism in paucisymptomatic patients with COVID-19 disease or in patients with iron deficiency treated with sucrosomial iron. Methods Whole blood was taken from the COVID-19 patients and from patients with sideropenic anemia, treated or not (control group) with iron supplementations. Enrolled patients were: affected by COVID19 under sucrosomal iron support (group A), affected by COVID-19 not under oral iron support (group B), iron deficiency not under treatment, not affected by COVID19 (control group). After RNA extraction and complementary DNA (cDNA) synthesis of Arg1, Hepcidin and Chop/Gadd153, gene expression from the 3 groups was measured by qRT-PCR. M2 macrophages were detected by cytofluorimetry using CD163 and CD14 markers. Results Forty patients with COVID-19 (group A), 20 patients with iron deficiency treated with sucrosomial iron (group B) and 20 patients with iron deficiency not under treatment (control group) were enrolled. In all the patients supported with oral sucrosomial iron, the gene expression of Chop, Arg1 and Hepcidin genes was lower than in sideropenic patients not supported with iron, M1 macrophages polarization and functional iron deficiency was also lower in group A and B, than observed in the control group. Conclusions New oral iron formulations, as sucrosomial iron, are able to influence the expression of genes like Chop and Arg1 and to influence M2 macrophage polarization mainly in the early phase of COVID-19 disease.
Collapse
Affiliation(s)
- Giulio Giordano
- Division of Internal Medicine, Hematology Service, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy
| | - Maria Teresa Bochicchio
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Giovanna Niro
- Division of Laboratory Medicine, Regional Hospital “A. Cardarelli”, 86100 Campobasso, Italy
| | - Alessandro Lucchesi
- Hematology Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) “Dino Amadori”, Meldola (FC), Italy,Corresponding author
| | - Mariasanta Napolitano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), Haematology Unit, University Hospital “P. Giaccone”, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
7
|
Hepatitis Viruses Control Host Immune Responses by Modifying the Exosomal Biogenesis Pathway and Cargo. Int J Mol Sci 2022; 23:ijms231810862. [PMID: 36142773 PMCID: PMC9505460 DOI: 10.3390/ijms231810862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The development of smart immune evasion mechanisms is crucial for the establishment of acute and chronic viral hepatitis. Hepatitis is a major health problem worldwide arising from different causes, such as pathogens, metabolic disorders, and xenotoxins, with the five hepatitis viruses A, B, C, D, and E (HAV, HBV, HCV, HDV, and HEV) representing the majority of the cases. Most of the hepatitis viruses are considered enveloped. Recently, it was reported that the non-enveloped HAV and HEV are, in reality, quasi-enveloped viruses exploiting exosomal-like biogenesis mechanisms for budding. Regardless, all hepatitis viruses use exosomes to egress, regulate, and eventually escape from the host immune system, revealing another key function of exosomes apart from their recognised role in intercellular communication. This review will discuss how the hepatitis viruses exploit exosome biogenesis and transport capacity to establish successful infection and spread. Then, we will outline the contribution of exosomes in viral persistence and liver disease progression.
Collapse
|
8
|
Tsuchiya H. Iron-Induced Hepatocarcinogenesis—Preventive Effects of Nutrients. Front Oncol 2022; 12:940552. [PMID: 35832553 PMCID: PMC9271801 DOI: 10.3389/fonc.2022.940552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/03/2022] [Indexed: 01/10/2023] Open
Abstract
The liver is a primary organ that stores body iron, and plays a central role in the regulation of iron homeostasis. Hepatic iron overload (HIO) is a prevalent feature among patients with chronic liver diseases (CLDs), including alcoholic/nonalcoholic liver diseases and hepatitis C. HIO is suggested to promote the progression toward hepatocellular carcinoma because of the pro-oxidant nature of iron. Iron metabolism is tightly regulated by various factors, such as hepcidin and ferroportin, in healthy individuals to protect the liver from such deteriorative effects. However, their intrinsic expressions or functions are frequently compromised in patients with HIO. Thus, various nutrients have been reported to regulate hepatic iron metabolism and protect the liver from iron-induced damage. These nutrients are beneficial in HIO-associated CLD treatment and eventually prevent iron-mediated hepatocarcinogenesis. This mini-review aimed to discuss the mechanisms and hepatocarcinogenic risk of HIO in patients with CLDs. Moreover, nutrients that hold the potential to prevent iron-induced hepatocarcinogenesis are summarized.
Collapse
|
9
|
Inomata S, Morihara D, Anan A, Yamauchi E, Yamauchi R, Takata K, Tanaka T, Yokoyama K, Takeyama Y, Irie M, Shakado S, Sohda T, Sakisaka S, Hirai F. Male-specific Association between Iron and Lipid Metabolism Changes and Erythroferrone after Hepatitis C Virus Eradication. Intern Med 2022; 61:461-467. [PMID: 34433710 PMCID: PMC8907759 DOI: 10.2169/internalmedicine.7172-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective Hepatitis C virus (HCV) eradication is associated with decreased serum ferritin and increased serum low-density lipoprotein-cholesterol (LDL-C) levels, although the mechanisms underlying these changes remain unclear. This study aimed to identify the mechanisms underlying the changes in iron and lipid metabolism after HCV eradication. Methods We retrospectively investigated iron and lipid metabolism changes in 22 patients with chronic hepatitis or compensated liver cirrhosis with HCV genotype 1b infection after HCV eradication. We measured the serum erythroferrone (ERFE) levels to assess the association with these metabolic changes. Patients were administered ledipasvir 90 mg and sofosbuvir 400 mg once daily for 12 weeks and were observed for 12 more weeks to evaluate the sustained virological response. Results Half of the patients were men. At baseline, the serum ferritin and ERFE levels were elevated, while the serum LDL-C levels were within the normal range. All patients achieved a sustained virological response at 24 weeks; furthermore, the serum ferritin and ERFE levels were significantly decreased, and the serum LDL-C levels were significantly increased at 24 weeks from baseline (p<0.001, all). In men, a decrease in serum ERFE levels was correlated with changes in the serum ferritin and LDL-C levels (r=0.78, p<0.01; r=-0.76, p<0.01, respectively). In addition, a decrease in the serum ferritin levels was correlated with an increase in the serum LDL-C levels (r=-0.89, p<0.001). These correlations were not observed in women. Conclusion Our results suggest a possible association between iron and lipid metabolism changes and the involvement of ERFE after HCV eradication in men as well as potential sex-related differences.
Collapse
Affiliation(s)
- Shinjiro Inomata
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- Meotoiwa Hospital, Japan
| | - Daisuke Morihara
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Akira Anan
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- Shiida Clinic, Japan
| | - Eri Yamauchi
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Ryo Yamauchi
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Kazuhide Takata
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Takashi Tanaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Keiji Yokoyama
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Yasuaki Takeyama
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Makoto Irie
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- Division of Gastroenterology, Fukuoka University Nishijin Hospital, Japan
| | - Satoshi Shakado
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Tetsuro Sohda
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
- Department of Hepatology, Red Cross Fukuoka Hospital, Japan
| | - Shotaro Sakisaka
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| | - Fumihito Hirai
- Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Japan
| |
Collapse
|
10
|
Kouroumalis E, Voumvouraki A. Hepatitis C virus: A critical approach to who really needs treatment. World J Hepatol 2022; 14:1-44. [PMID: 35126838 PMCID: PMC8790391 DOI: 10.4254/wjh.v14.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction of effective drugs in the treatment of hepatitis C virus (HCV) infection has prompted the World Health Organization to declare a global eradication target by 2030. Propositions have been made to screen the general population and treat all HCV carriers irrespective of the disease status. A year ago the new severe acute respiratory syndrome coronavirus 2 virus appeared causing a worldwide pandemic of coronavirus disease 2019 disease. Huge financial resources were redirected, and the pandemic became the first priority in every country. In this review, we examined the feasibility of the World Health Organization elimination program and the actual natural course of HCV infection. We also identified and analyzed certain comorbidity factors that may aggravate the progress of HCV and some marginalized subpopulations with characteristics favoring HCV dissemination. Alcohol consumption, HIV coinfection and the presence of components of metabolic syndrome including obesity, hyperuricemia and overt diabetes were comorbidities mostly responsible for increased liver-related morbidity and mortality of HCV. We also examined the significance of special subpopulations like people who inject drugs and males having sex with males. Finally, we proposed a different micro-elimination screening and treatment program that can be implemented in all countries irrespective of income. We suggest that screening and treatment of HCV carriers should be limited only in these particular groups.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, University of Crete Medical School, Heraklion 71500, Crete, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
11
|
Deng Q, Yang S, Sun L, Dong K, Li Y, Wu S, Huang R. Salmonella effector SpvB aggravates dysregulation of systemic iron metabolism via modulating the hepcidin-ferroportin axis. Gut Microbes 2022; 13:1-18. [PMID: 33475464 PMCID: PMC7833757 DOI: 10.1080/19490976.2020.1849996] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Iron withholding, an essential component of nutritional immunity, plays a fundamental role in host resistance to Salmonella infection. Our previous study showed that SpvB, an important pSLT-encoded cytotoxic effector, facilitated Salmonella pathogenesis within macrophages via perturbing cellular iron metabolism. However, the underlying mechanisms of SpvB in Salmonella-relevant disorders of systemic iron metabolism have not yet been identified. Here, we demonstrated that SpvB facilitated Salmonella to scavenge iron from the host by modulating the hepcidin-ferroportin axis, a key regulator of systemic iron metabolism. We observed that SpvB enhanced hepatic hepcidin synthesis in a STAT3-dependent manner, but not the BMP/SMAD pathway. This subsequently resulted in a reduction of the unique cellular iron exporter ferroportin, which facilitated hypoferremia and hepatic iron accumulation and ultimately countered the limitation of iron availability, thereby improving the chances of Salmonella survival and replication. Moreover, SpvB promoted the production of proinflammatory molecules associated with the infiltration of inflammatory cells via highly upregulating TREM-1 signaling. Our data supported a role of TREM-1 in SpvB-related dysregulation of host iron metabolism and suggested that targeting TREM-1 might provide a potential therapeutic strategy to prevent or alleviate Salmonella pathogenesis.
Collapse
Affiliation(s)
- Qifeng Deng
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China,CONTACT Shuyan Wu Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, PR China
| | - Sidi Yang
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China,Rui Huang Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, PR China
| | - Lanqing Sun
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Kedi Dong
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China,CONTACT Shuyan Wu Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, PR China
| | - Rui Huang
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, Suzhou, Jiangsu, PR China,Rui Huang Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
12
|
Foka P, Dimitriadis A, Karamichali E, Kochlios E, Eliadis P, Valiakou V, Koskinas J, Mamalaki A, Georgopoulou U. HCV-Induced Immunometabolic Crosstalk in a Triple-Cell Co-Culture Model Capable of Simulating Systemic Iron Homeostasis. Cells 2021; 10:cells10092251. [PMID: 34571900 PMCID: PMC8465420 DOI: 10.3390/cells10092251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Iron is crucial to the regulation of the host innate immune system and the outcome of many infections. Hepatitis C virus (HCV), one of the major viral human pathogens that depends on iron to complete its life cycle, is highly skilled in evading the immune system. This study presents the construction and validation of a physiologically relevant triple-cell co-culture model that was used to investigate the input of iron in HCV infection and the interplay between HCV, iron, and determinants of host innate immunity. We recorded the expression patterns of key proteins of iron homeostasis involved in iron import, export and storage and examined their relation to the iron regulatory hormone hepcidin in hepatocytes, enterocytes and macrophages in the presence and absence of HCV. We then assessed the transcriptional profiles of pro-inflammatory cytokines Interleukin-6 (IL-6) and interleukin-15 (IL-15) and anti-inflammatory interleukin-10 (IL-10) under normal or iron-depleted conditions and determined how these were affected by infection. Our data suggest the presence of a link between iron homeostasis and innate immunity unfolding among liver, intestine, and macrophages, which could participate in the deregulation of innate immune responses observed in early HCV infection. Coupled with iron-assisted enhanced viral propagation, such a mechanism may be important for the establishment of viral persistence and the ensuing chronic liver disease.
Collapse
Affiliation(s)
- Pelagia Foka
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.K.); (E.K.); (U.G.)
- Correspondence:
| | - Alexios Dimitriadis
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (P.E.); (V.V.); (A.M.)
| | - Eirini Karamichali
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.K.); (E.K.); (U.G.)
| | - Emmanouil Kochlios
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.K.); (E.K.); (U.G.)
| | - Petros Eliadis
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (P.E.); (V.V.); (A.M.)
| | - Vaia Valiakou
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (P.E.); (V.V.); (A.M.)
| | - John Koskinas
- 2nd Department of Internal Medicine, Hippokration Hospital, Medical School of Athens, 11527 Athens, Greece;
| | - Avgi Mamalaki
- Molecular Biology and Immunobiotechnology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (A.D.); (P.E.); (V.V.); (A.M.)
| | - Urania Georgopoulou
- Molecular Virology Laboratory, Hellenic Pasteur Institute, 11521 Athens, Greece; (E.K.); (E.K.); (U.G.)
| |
Collapse
|
13
|
Differential Expression of the Host Lipid Regulators ANGPTL-3 and ANGPTL-4 in HCV Infection and Treatment. Int J Mol Sci 2021; 22:ijms22157961. [PMID: 34360721 PMCID: PMC8348577 DOI: 10.3390/ijms22157961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/29/2022] Open
Abstract
Host lipid metabolism reprogramming is essential for hepatitis C virus (HCV) infection and progression to severe liver disease. Direct-acting antivirals (DAAs) achieve a sustained virological response (SVR) in most patients, but virus eradication does not always protect against hepatocellular carcinoma (HCC). Angiopoietin-like protein-3 (ANGPTL-3) and angiopoietin-like protein-4 (ANGPTL-4) regulate the clearance of plasma lipids by inhibiting cellular lipase activity and possess emerging roles in tumourigenesis. We used ELISA and RT-qPCR to investigate ANGPTL-3 and ANGPTL-4 expression in HCV patients with characterised fibrosis throughout the natural history of hepatitis C and in long-term HCV infection in vitro, before and after DAA treatment. ANGPTL-3 was decreased in patients with advanced fibrosis compared to other disease stages, while ANGPTL-4 was progressively increased from acute infection to cirrhosis and HCC, peaking at the advanced fibrosis stage. Only ANGPTL-3 mRNA was down-regulated during early infection in vitro, although both ANGPTLs were increased later. DAA treatment did not alter ANGPTL-3 levels in advanced fibrosis/cirrhosis and in HCV infection in vitro, in contrast to ANGPTL-4. The association between ANGPTLs and fibrosis in HCV infection was underlined by an inverse correlation between the levels of ANGPTLs and serum transforming growth factor- β (TGF-β). Collectively, we demonstrate the pivotal role of advanced fibrosis in defining the expression fate of ANGPTLs in HCV infection and after treatment and propose a role for ANGPTL-3 as a contributor to post-treatment deregulation of lipid metabolism that could predispose certain individuals to HCC development.
Collapse
|
14
|
Ganesh GV, Mohanram RK. Metabolic reprogramming and immune regulation in viral diseases. Rev Med Virol 2021; 32:e2268. [PMID: 34176174 DOI: 10.1002/rmv.2268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
The recent outbreak and transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide and the ensuing coronavirus disease 2019 (COVID-19) pandemic has left us scrambling for ways to contain the disease and develop vaccines that are safe and effective. Equally important, understanding the impact of the virus on the host system in convalescent patients, healthy otherwise or with co-morbidities, is expected to aid in developing effective strategies in the management of patients afflicted with the disease. Viruses possess the uncanny ability to redirect host metabolism to serve their needs and also limit host immune response to ensure their survival. An ever-increasingly powerful approach uses metabolomics to uncover diverse molecular signatures that influence a wide array of host signalling networks in different viral infections. This would also help integrate experimental findings from individual studies to yield robust evidence. In addition, unravelling the molecular mechanisms harnessed by both viruses and tumours in their host metabolism will help broaden the repertoire of therapeutic tools available to combat viral disease.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| | - Ramkumar K Mohanram
- Life Science Division, SRM Research Institute and Department of Biotechnology, School of Bioengineering, SRM Institute of Science & Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
15
|
Dimitriadis A, Foka P, Kyratzopoulou E, Karamichali E, Petroulia S, Tsitoura P, Kakkanas A, Eliadis P, Georgopoulou U, Mamalaki A. The Hepatitis C virus NS5A and core proteins exert antagonistic effects on HAMP gene expression: the hidden interplay with the MTF-1/MRE pathway. FEBS Open Bio 2021; 11:237-250. [PMID: 33247551 PMCID: PMC7780115 DOI: 10.1002/2211-5463.13048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 12/26/2022] Open
Abstract
Hepcidin, a 25-amino acid peptide encoded by the HAMP gene and produced mainly by hepatocytes and macrophages, is a mediator of innate immunity and the central iron-regulatory hormone. Circulating hepcidin controls iron efflux by inducing degradation of the cellular iron exporter ferroportin. HCV infection is associated with hepatic iron overload and elevated serum iron, which correlate with poor antiviral responses. The HCV nonstructural NS5A protein is known to function in multiple aspects of the HCV life cycle, probably exerting its activity in concert with cellular factor(s). In this study, we attempted to delineate the effect of HCV NS5A on HAMP gene expression. We observed that transient transfection of hepatoma cell lines with HCV NS5A resulted in down-regulation of HAMP promoter activity. A similar effect was evident after transduction of Huh7 cells with a recombinant baculovirus vector expressing NS5A protein. We proceeded to construct an NS5A-expressing stable cell line, which also exhibited down-regulation of HAMP gene promoter activity and significant reduction of HAMP mRNA and hepcidin protein levels. Concurrent expression of HCV core protein, a well-characterized hepcidin inducer, revealed antagonism between those two proteins for hepcidin regulation. In attempting to identify the pathways involved in NS5A-driven reduction of hepcidin levels, we ruled out any NS5A-induced alterations in the expression of the well-known hepcidin inducers SMAD4 and STAT3. Further analysis linked the abundance of intracellular zinc ions and the deregulation of the MTF-1/MRE/hepcidin axis with the observed phenomenon. This effect could be associated with distinct phases in HCV life cycle.
Collapse
Affiliation(s)
- Alexios Dimitriadis
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | - Pelagia Foka
- Laboratory of Molecular VirologyHellenic Pasteur InstituteAthensGreece
| | - Eleni Kyratzopoulou
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | | | - Panagiota Tsitoura
- Laboratory of Molecular VirologyHellenic Pasteur InstituteAthensGreece
- Present address:
Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | - Petros Eliadis
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| | | | - Avgi Mamalaki
- Laboratory of Molecular Biology and ImmunobiotechnologyHellenic Pasteur InstituteAthensGreece
| |
Collapse
|
16
|
Evolution of ferritin levels in hepatitis C patients treated with antivirals. Sci Rep 2020; 10:19744. [PMID: 33184464 PMCID: PMC7661708 DOI: 10.1038/s41598-020-76871-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
The evolution of ferritin levels in hepatitis C virus (HCV)-infected patients with sustained virological responses (SVRs) following various therapy regimens remains elusive. An 8-year prospective cohort study of 1194 HCV-infected patients [interferon-based therapy (n = 620), direct-acting antiviral agent (DAA) therapy (n = 355)] was conducted. At baseline, sex, alanine aminotransferase (ALT), triglycerides, homeostatic model assessment of insulin resistance (HOMA-IR), estimated glomerular filtration rate (eGFR), hemoglobin, iron/total iron-binding capacity (Fe/TIBC) and IFNL3-rs12979860 genotypes were associated with ferritin levels. At 24 weeks posttherapy, ALT, triglycerides, total cholesterol, eGFR, Fe/TIBC and the therapy regimen were associated with ferritin levels in SVR patients. Among interferon-treated patients, ferritin levels increased at 24 weeks posttherapy, regardless of SVR, and 24-week posttherapy ferritin levels were higher in non-SVR patients (n = 111) than in SVR patients (n = 509); ferritin levels began decreasing at 3 years posttherapy and were lower than pretherapy levels since 4 years posttherapy in SVR patients. Among DAA-treated SVR patients (n = 350), ferritin levels decreased and remained stable since 24 weeks posttherapy. ALT, triglycerides, eGFR, and Fe/TIBC were HCV-unrelated factors associated with ferritin levels; sex, HOMA-IR, total cholesterol, hemoglobin and IFNL3-rs12979860 genotype were HCV-related factors associated with ferritin levels. In interferon-treated SVR patients, the increased trend of posttherapy ferritin levels was not reversed until 4 years posttherapy. In DAA-treated SVR patients, ferritin levels decreased since 24 weeks posttherapy.
Collapse
|
17
|
Infection-iron interaction during COVID-19 pandemic: Time to re-design iron supplementation programs. Med Hypotheses 2020; 143:110173. [PMID: 33017907 PMCID: PMC7416685 DOI: 10.1016/j.mehy.2020.110173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
18
|
Himoto T, Masaki T. Current Trends of Essential Trace Elements in Patients with Chronic Liver Diseases. Nutrients 2020; 12:nu12072084. [PMID: 32674425 PMCID: PMC7400835 DOI: 10.3390/nu12072084] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Essential trace elements play crucial roles in the maintenance of health, since they are involved in many metabolic pathways. A deficiency or an excess of some trace elements, including zinc, selenium, iron, and copper, frequently causes these metabolic disorders such as impaired glucose tolerance and dyslipidemia. The liver largely regulates most of the metabolism of trace elements, and accordingly, an impairment of liver functions can result in numerous metabolic disorders. The administration or depletion of these trace elements can improve such metabolic disorders and liver dysfunction. Recent advances in molecular biological techniques have helped to elucidate the putative mechanisms by which liver disorders evoke metabolic abnormalities that are due to deficiencies or excesses of these trace elements. A genome-wide association study revealed that a genetic polymorphism affected the metabolism of a specific trace element. Gut dysbiosis was also responsible for impairment of the metabolism of a trace element. This review focuses on the current trends of four trace elements in chronic liver diseases, including chronic hepatitis, liver cirrhosis, nonalcoholic fatty liver disease, and autoimmune liver diseases. The novel mechanisms by which the trace elements participated in the pathogenesis of the chronic liver diseases are also mentioned.
Collapse
Affiliation(s)
- Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1, Hara, Mure-Cho, Takamatsu, Kagawa 761-0123, Japan
- Correspondence: ; Tel.: +81-87-870-1240; Fax: +81-87-870-1202
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University School of Medicine, Kagawa 761-0123, Japan;
| |
Collapse
|
19
|
Chen P, De Meulenaere E, Deheyn DD, Bandaru PR. Iron redox pathway revealed in ferritin via electron transfer analysis. Sci Rep 2020; 10:4033. [PMID: 32132578 PMCID: PMC7055317 DOI: 10.1038/s41598-020-60640-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Ferritin protein is involved in biological tissues in the storage and management of iron - an essential micro-nutrient in the majority of living systems. While there are extensive studies on iron-loaded ferritin, its functionality in iron delivery is not completely clear. Here, for the first time, differential pulse voltammetry (DPV) has been successfully adapted to address the challenge of resolving a cascade of fast and co-occurring redox steps in enzymatic systems such as ferritin. Using DPV, comparative analysis of ferritins from two evolutionary-distant organisms has allowed us to propose a stepwise resolution for the complex mix of concurrent redox steps that is inherent to ferritins and to fine-tune the structure-function relationship of each redox step. Indeed, the cyclic conversion between Fe3+ and Fe2+ as well as the different oxidative steps of the various ferroxidase centers already known in ferritins were successfully discriminated, bringing new evidence that both the 3-fold and 4-fold channels can be functional in ferritin.
Collapse
Affiliation(s)
- Peng Chen
- Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Evelien De Meulenaere
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA.
| | - Prabhakar R Bandaru
- Department of Mechanical Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
20
|
Danilenko NG, Siniauskaya MG, Lukashyk SP, Karpov IA, Davydenko OG. “Double Punch”: Hepatitis C in Patients with Genetic Defects of Iron Metabolism. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719050062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Vela D. Low hepcidin in liver fibrosis and cirrhosis; a tale of progressive disorder and a case for a new biochemical marker. Mol Med 2018; 24:5. [PMID: 30134796 PMCID: PMC6016890 DOI: 10.1186/s10020-018-0008-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a precursor of liver cirrhosis, which is associated with increased mortality. Though liver biopsy remains the gold standard for the diagnosis of fibrosis, noninvasive biochemical methods are cost-effective, practical and are not linked with major risks of complications. In this respect, serum hepcidin, has emerged as a new marker of fibrosis and cirrhosis. In this review the discussion uncovers molecular links between hepcidin disturbance and liver fibrosis/cirrhosis. The discussion also expands on clinical studies that suggest that hepcidin can potentially be used as a biochemical parameter of fibrosis/cirrhosis and target of therapeutic strategies to treat liver diseases. The debatable issues such as the complicated nature of hepcidin disturbance in non-alcoholic liver disease, serum levels of hepcidin in acute hepatitis C virus infection, cause of hepcidin disturbance in autoimmune hepatitis and hepatic insulin resistance are discussed, with potential solutions unveiled in order to be studied by future research.
Collapse
Affiliation(s)
- Driton Vela
- Department of Physiology, Faculty of Medicine, University of Prishtina, Martyr's Boulevard n.n, Prishtina, 10000, Kosovo.
| |
Collapse
|
22
|
Abstract
Objective: The aim of this study was to summarize the interactions between hepatitis C virus (HCV) infection and iron overload, and to understand the mechanisms of iron overload in chronic hepatitis C (CHC) and the role iron plays in HCV life cycle. Data Sources: This review was based on data in articles published in the PubMed databases up to January 28, 2017, with the keywords “hepatitis C virus”, “iron overload”, “iron metabolism”, “hepcidin”, “translation”, and “replication”. Study Selection: Articles related to iron metabolism, iron overload in patients with CHC, or the effects of iron on HCV life cycle were selected for the review. Results: Iron overload is common in patients with CHC. The mechanisms involve decreased hepcidin levels caused by HCV through signal transducer and activator of transcription 3, mitogen-activated protein kinase, or bone morphogenetic protein/SMAD signaling pathways, and the altered expression of other iron-metabolism-related genes. Some studies found that iron increases HCV replication, while other studies found the opposite result. Most of the studies suggest the positive role of iron on HCV translation, the mechanisms of which involve increased expression levels of factors associated with HCV internal ribosome entry site-dependent translation, such as eukaryotic initiation factor 3 and La protein. Conclusion: The growing literature demonstrates that CHC leads to iron overload, and iron affects the HCV life cycle in turn. Further research should be conducted to clarify the mechanism involved in the complicated interaction between iron and HCV.
Collapse
Affiliation(s)
- Dong-Mei Zou
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wan-Ling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
23
|
Sikorska K. The iron homeostasis network and hepatitis C virus - a new challenge in the era of directly acting antivirals. Virulence 2016; 7:620-2. [PMID: 27196953 DOI: 10.1080/21505594.2016.1191739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Katarzyna Sikorska
- a Department of Tropical Medicine and Epidemiology , Medical University of Gdańsk , Gdynia , Poland.,b Department of Infectious Diseases , Medical University of Gdańsk , Gdańsk , Poland
| |
Collapse
|