1
|
Sanchez SE, Chiarelli TJ, Park MA, Carlyon JA. Orientia tsutsugamushi infection reduces host gluconeogenic but not glycolytic substrates. Infect Immun 2024; 92:e0028424. [PMID: 39324805 PMCID: PMC11556148 DOI: 10.1128/iai.00284-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Orientia tsutsugamushi a causal agent of scrub typhus, is an obligate intracellular bacterium that, akin to other rickettsiae, is dependent on host cell-derived nutrients for survival and thus pathogenesis. Based on limited experimental evidence and genome-based in silico predictions, O. tsutsugamushi is hypothesized to parasitize host central carbon metabolism (CCM). Here, we (re-)evaluated O. tsutsugamushi dependency on host cell CCM as initiated by glucose and glutamine. Orientia infection had no effect on host glucose and glutamine consumption or lactate accumulation, indicating no change in overall flux through CCM. However, host cell mitochondrial activity and ATP levels were reduced during infection and correspond with lower intracellular glutamine and glutamate pools. To further probe the essentiality of host CCM in O. tsutsugamushi proliferation, we developed a minimal medium for host cell cultivation and paired it with chemical inhibitors to restrict the intermediates and processes related to glucose and glutamine metabolism. These conditions failed to negatively impact O. tsutsugamushi intracellular growth, suggesting the bacterium is adept at scavenging from host CCM. Accordingly, untargeted metabolomics was utilized to evaluate minor changes in host CCM metabolic intermediates across O. tsutsugamushi infection and revealed that pathogen proliferation corresponds with reductions in critical CCM building blocks, including amino acids and TCA cycle intermediates, as well as increases in lipid catabolism. This study directly correlates O. tsutsugamushi proliferation to alterations in host CCM and identifies metabolic intermediates that are likely critical for pathogen fitness.IMPORTANCEObligate intracellular bacterial pathogens have evolved strategies to reside and proliferate within the eukaryotic intracellular environment. At the crux of this parasitism is the balance between host and pathogen metabolic requirements. The physiological basis driving O. tsutsugamushi dependency on its mammalian host remains undefined. By evaluating alterations in host metabolism during O. tsutsugamushi proliferation, we discovered that bacterial growth is independent of the host's nutritional environment but appears dependent on host gluconeogenic substrates, including amino acids. Given that O. tsutsugamushi replication is essential for its virulence, this study provides experimental evidence for the first time in the post-genomic era of metabolic intermediates potentially parasitized by a scrub typhus agent.
Collapse
Affiliation(s)
- Savannah E. Sanchez
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Travis J. Chiarelli
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Margaret A. Park
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, Florida, USA
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Screpanti L, Desmasures N, Schlusselhuber M. Exploring resource competition by protective lactic acid bacteria cultures to control Salmonella in food: an Achilles' heel to target? Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39420579 DOI: 10.1080/10408398.2024.2416467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Salmonella is a pathogenic bacterium, being the second most commonly reported foodborne pathogen in Europe, due to the ability of its different serovars to contaminate a wide variety of foods, with differences among countries. Common chemical or physical control methods are not always effective, eco-sustainable and adapted to the diversity of Salmonella serovars. Thus, great attention is given to developing complementary or alternative control methods that can be tailor made for specific situations. One of these methods is biopreservation using lactic acid bacteria, with most studies on their antagonistic activity focused on the production of antimicrobials. Less attention has been given to competition by exploitation of nutrients. This review is thus set to investigate and highlight limiting resources that may be involved in the competitive exclusion of Salmonella in food matrices. To do this the needs for nutrients and microelements and the known homeostatic pathways of Salmonella and lactic acid bacteria are examined. Finally, milk, intended for the manufacture of fermented dairy foods, is pointed out as an example of food to investigate the bioavailable macronutrients, metals and vitamins that could be involved in competition between the different species and serovars, and could be exploited for targeted biopreservation.
Collapse
Affiliation(s)
- Ludovico Screpanti
- Université de Caen Normandie, Université de Rouen Normandie, ABTE UR4651, Caen, France
| | - Nathalie Desmasures
- Université de Caen Normandie, Université de Rouen Normandie, ABTE UR4651, Caen, France
| | - Margot Schlusselhuber
- Université de Caen Normandie, Université de Rouen Normandie, ABTE UR4651, Caen, France
| |
Collapse
|
3
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
4
|
Zhu H, Chelysheva I, Cross DL, Blackwell L, Jin C, Gibani MM, Jones E, Hill J, Trück J, Kelly DF, Blohmke CJ, Pollard AJ, O’Connor D. Molecular correlates of vaccine-induced protection against typhoid fever. J Clin Invest 2023; 133:e169676. [PMID: 37402153 PMCID: PMC10425215 DOI: 10.1172/jci169676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUNDTyphoid fever is caused by the Gram-negative bacterium Salmonella enterica serovar Typhi and poses a substantial public health burden worldwide. Vaccines have been developed based on the surface Vi-capsular polysaccharide of S. Typhi; these include a plain-polysaccharide-based vaccine, ViPS, and a glycoconjugate vaccine, ViTT. To understand immune responses to these vaccines and their vaccine-induced immunological protection, molecular signatures were analyzed using bioinformatic approaches.METHODSBulk RNA-Seq data were generated from blood samples obtained from adult human volunteers enrolled in a vaccine trial, who were then challenged with S. Typhi in a controlled human infection model (CHIM). These data were used to conduct differential gene expression analyses, gene set and modular analyses, B cell repertoire analyses, and time-course analyses at various post-vaccination and post-challenge time points between participants receiving ViTT, ViPS, or a control meningococcal vaccine.RESULTSTranscriptomic responses revealed strong differential molecular signatures between the 2 typhoid vaccines, mostly driven by the upregulation in humoral immune signatures, including selective usage of immunoglobulin heavy chain variable region (IGHV) genes and more polarized clonal expansions. We describe several molecular correlates of protection against S. Typhi infection, including clusters of B cell receptor (BCR) clonotypes associated with protection, with known binders of Vi-polysaccharide among these.CONCLUSIONThe study reports a series of contemporary analyses that reveal the transcriptomic signatures after vaccination and infectious challenge, while identifying molecular correlates of protection that may inform future vaccine design and assessment.TRIAL REGISTRATIONClinicalTrials.gov NCT02324751.
Collapse
Affiliation(s)
- Henderson Zhu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Deborah L. Cross
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Malick M. Gibani
- Department of Infectious Disease, Imperial College London, St Mary’s Campus, London, United Kingdom
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Johannes Trück
- Division of Immunology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Daniel O’Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
5
|
Koepsell S. Forensic sequencing of Salmonella cultured from hematopoietic progenitor cell products collected by apheresis from two asymptomatic donors. Transfusion 2023; 63:1615-1617. [PMID: 37563840 DOI: 10.1111/trf.17489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Scott Koepsell
- Division of Transfusionand Transplantation Support Services, Nebraska Medicine, Omaha, Nebraska, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
6
|
Mitosch K, Beyß M, Phapale P, Drotleff B, Nöh K, Alexandrov T, Patil KR, Typas A. A pathogen-specific isotope tracing approach reveals metabolic activities and fluxes of intracellular Salmonella. PLoS Biol 2023; 21:e3002198. [PMID: 37594988 PMCID: PMC10468081 DOI: 10.1371/journal.pbio.3002198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/30/2023] [Accepted: 06/16/2023] [Indexed: 08/20/2023] Open
Abstract
Pathogenic bacteria proliferating inside mammalian host cells need to rapidly adapt to the intracellular environment. How they achieve this and scavenge essential nutrients from the host has been an open question due to the difficulties in distinguishing between bacterial and host metabolites in situ. Here, we capitalized on the inability of mammalian cells to metabolize mannitol to develop a stable isotopic labeling approach to track Salmonella enterica metabolites during intracellular proliferation in host macrophage and epithelial cells. By measuring label incorporation into Salmonella metabolites with liquid chromatography-mass spectrometry (LC-MS), and combining it with metabolic modeling, we identify relevant carbon sources used by Salmonella, uncover routes of their metabolization, and quantify relative reaction rates in central carbon metabolism. Our results underline the importance of the Entner-Doudoroff pathway (EDP) and the phosphoenolpyruvate carboxylase for intracellularly proliferating Salmonella. More broadly, our metabolic labeling strategy opens novel avenues for understanding the metabolism of pathogens inside host cells.
Collapse
Affiliation(s)
- Karin Mitosch
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Beyß
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- RWTH Aachen University, Computational Systems Biotechnology, Aachen, Germany
| | - Prasad Phapale
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Theodore Alexandrov
- Metabolomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- BioInnovation Institute, Copenhagen, Denmark
| | - Kiran R. Patil
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Athanasios Typas
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
7
|
Ronneau S, Michaux C, Helaine S. Decline in nitrosative stress drives antibiotic persister regrowth during infection. Cell Host Microbe 2023; 31:993-1006.e6. [PMID: 37236190 DOI: 10.1016/j.chom.2023.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Internalization of pathogenic bacteria by macrophages results in formation of antibiotic-tolerant persisters. These cells are maintained in a non-growing state for extended periods of time, and it is assumed that their growth resumption causes infection relapse after cessation of antibiotic treatment. Despite this clinical relevance, the signals and conditions that drive persister regrowth during infection are not yet understood. Here, we found that after persister formation in macrophages, host reactive nitrogen species (RNS) produced in response to Salmonella infection lock persisters in growth arrest by intoxicating their TCA cycle, lowering cellular respiration and ATP production. Intracellular persisters resume growth when macrophage RNS production subsides and functionality of their TCA cycle is regained. Persister growth resumption within macrophages is slow and heterogeneous, dramatically extending the time the persister reservoir feeds infection relapse. Using an inhibitor of RNS production, we can force recalcitrant bacteria to regrow during antibiotic treatment, thereby facilitating their eradication.
Collapse
Affiliation(s)
- Séverin Ronneau
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Charlotte Michaux
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Hasan MK, Scott NE, Hays MP, Hardwidge PR, El Qaidi S. Salmonella T3SS effector SseK1 arginine-glycosylates the two-component response regulator OmpR to alter bile salt resistance. Sci Rep 2023; 13:9018. [PMID: 37270573 DOI: 10.1038/s41598-023-36057-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
Type III secretion system (T3SS) effector proteins are primarily recognized for binding host proteins to subvert host immune response during infection. Besides their known host target proteins, several T3SS effectors also interact with endogenous bacterial proteins. Here we demonstrate that the Salmonella T3SS effector glycosyltransferase SseK1 glycosylates the bacterial two-component response regulator OmpR on two arginine residues, R15 and R122. Arg-glycosylation of OmpR results in reduced expression of ompF, a major outer membrane porin gene. Glycosylated OmpR has reduced affinity to the ompF promoter region, as compared to the unglycosylated form of OmpR. Additionally, the Salmonella ΔsseK1 mutant strain had higher bile salt resistance and increased capacity to form biofilms, as compared to WT Salmonella, thus linking OmpR glycosylation to several important aspects of bacterial physiology.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne Within the Peter Doherty Institute for Infection and Immunity, Melbourne, 3000, Australia
| | - Michael P Hays
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Samir El Qaidi
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
9
|
Tan W, Tian Y, Zhang Q, Miao S, Wu W, Miao X, Kuang H, Yang W. Antioxidant and antibacterial activity of Apis laboriosa honey against Salmonella enterica serovar Typhimurium. Front Nutr 2023; 10:1181492. [PMID: 37252242 PMCID: PMC10211265 DOI: 10.3389/fnut.2023.1181492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a common food-borne pathogen that commonly causes gastroenteritis in humans and animals. Apis laboriosa honey (ALH) harvested in China has significant antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus subtilis. We hypothesize that ALH has antibacterial activity against S. Typhimurium. The physicochemical parameters, minimum inhibitory and bactericidal concentrations (MIC and MBC) and the possible mechanism were determined. The results showed that there were significantly different physicochemical parameters, including 73 phenolic compounds, among ALH samples harvested at different times and from different regions. Their antioxidant activity was affected by their components, especially total phenol and flavonoid contents (TPC, TFC), which had a high correlation with antioxidant activities except for the O2- assay. The MIC and MBC of ALH against S. Typhimurium were 20-30% and 25-40%, respectively, which were close to those of UMF5+ manuka honey. The proteomic experiment revealed the possible antibacterial mechanism of ALH1 at IC50 (2.97%, w/v), whose antioxidant activity reduced the bacterial reduction reaction and energy supply, mainly by inhibiting the citrate cycle (TCA cycle), amino acid metabolism pathways and enhancing the glycolysis pathway. The results provide a theoretical basis for the development of bacteriostatic agents and application of ALH.
Collapse
Affiliation(s)
- Weihua Tan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanyuan Tian
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
| | - Qingya Zhang
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Siwei Miao
- M.X.’s Expert Workstation, Pu’er, Yunnan, China
| | - Wenrong Wu
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoqing Miao
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- M.X.’s Expert Workstation, Pu’er, Yunnan, China
| | - Haiou Kuang
- M.X.’s Expert Workstation, Pu’er, Yunnan, China
- Research Institute of Eastern Honeybee, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenchao Yang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Bee Product Processing and Application Research Center of the Ministry of Education, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- M.X.’s Expert Workstation, Pu’er, Yunnan, China
| |
Collapse
|
10
|
Salmonella in Poultry and Other Birds. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
11
|
Sarkhel R, Apoorva S, Priyadarsini S, Sridhar HB, Bhure SK, Mahawar M. Malate synthase contributes to the survival of Salmonella Typhimurium against nutrient and oxidative stress conditions. Sci Rep 2022; 12:15979. [PMID: 36155623 PMCID: PMC9510125 DOI: 10.1038/s41598-022-20245-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
To survive and replicate in the host, S. Typhimurium have evolved several metabolic pathways. The glyoxylate shunt is one such pathway that can utilize acetate for the synthesis of glucose and other biomolecules. This pathway is a bypass of the TCA cycle in which CO2 generating steps are omitted. Two enzymes involved in the glyoxylate cycle are isocitrate lyase (ICL) and malate synthase (MS). We determined the contribution of MS in the survival of S. Typhimurium under carbon limiting and oxidative stress conditions. The ms gene deletion strain (∆ms strain) grew normally in LB media but failed to grow in M9 minimal media supplemented with acetate as a sole carbon source. However, the ∆ms strain showed hypersensitivity (p < 0.05) to hypochlorite. Further, ∆ms strain has been significantly more susceptible to neutrophils. Interestingly, several folds induction of ms gene was observed following incubation of S. Typhimurium with neutrophils. Further, ∆ms strain showed defective colonization in poultry spleen and liver. In short, our data demonstrate that the MS contributes to the virulence of S. Typhimurium by aiding its survival under carbon starvation and oxidative stress conditions.
Collapse
|
12
|
Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022; 12:989451. [PMID: 36061869 PMCID: PMC9433700 DOI: 10.3389/fcimb.2022.989451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica is capable of invading different host cell types including epithelial cells and M cells during local infection, and immune cells and fibroblasts during the subsequent systemic spread. The intracellular lifestyles of Salmonella inside different cell types are remarkable for their distinct residential niches, and their varying replication rates. To study this, researchers have employed different cell models, such as various epithelial cells, immune cells, and fibroblasts. In epithelial cells, S. Typhimurium dwells within modified endolysosomes or gains access to the host cytoplasm. In the cytoplasm, the pathogen is exposed to the host autophagy machinery or poised for rapid multiplication, whereas it grows at a slower rate or remains dormant within the endomembrane-bound compartments. The swift bimodal lifestyle is not observed in fibroblasts and immune cells, and it emerges that these cells handle intracellular S. Typhimurium through different clearance machineries. Moreover, in these cell types S. Typhimurium grows withing modified phagosomes of distinct functional composition by adopting targeted molecular countermeasures. The preference for one or the other intracellular niche and the diverse cell type-specific Salmonella lifestyles are determined by the complex interactions between a myriad of bacterial effectors and host factors. It is important to understand how this communication is differentially regulated dependent on the host cell type and on the distinct intracellular growth rate. To support the efforts in deciphering Salmonella invasion across the different infection models, we provide a systematic comparison of the findings yielded from cell culture models. We also outline the future directions towards a better understanding of these differential Salmonella intracellular lifestyles.
Collapse
Affiliation(s)
- Chak Hon Luk
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| | - Jost Enninga
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| |
Collapse
|
13
|
Salaheen S, Kim SW, Haley BJ, Van Kessel JAS. Differences between the global transcriptomes of Salmonella enterica serovars Dublin and Cerro infecting bovine epithelial cells. BMC Genomics 2022; 23:498. [PMID: 35804292 PMCID: PMC9270791 DOI: 10.1186/s12864-022-08725-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background The impact of S. enterica colonization in cattle is highly variable and often serovar-dependent. The aim of this study was to compare the global transcriptomes of highly pathogenic bovine-adapted S. enterica serovar Dublin and the less pathogenic, bovine-adapted, serovar Cerro during interactions with bovine epithelial cells, to identify genes that impact serovar-related outcomes of S. enterica infections in dairy animals. Result Bovine epithelial cells were infected with S. enterica strains from serovars Dublin and Cerro, and the bacterial RNA was extracted and sequenced. The total number of paired-end reads uniquely mapped to non-rRNA and non-tRNA genes in the reference genomes ranged between 12.1 M (Million) and 23.4 M (median: 15.7 M). In total, 360 differentially expressed genes (DEGs) were identified with at least two-fold differences in the transcript abundances between S. Dublin and S. Cerro (false discovery rate ≤ 5%). The highest number of DEGs (17.5%, 63 of 360 genes) between the two serovars were located on the genomic regions potentially associated with Salmonella Pathogenicity Islands (SPIs). DEGs potentially located in the SPI-regions that were upregulated (≥ 2-fold) in the S. Dublin compared with S. Cerro included: 37 SPI-1 genes encoding mostly Type 3 Secretion System (T3SS) apparatus and effectors; all of the six SPI-4 genes encoding type I secretion apparatus (siiABCDEF); T3SS effectors and chaperone (sopB, pipB, and sigE) located in SPI-5; type VI secretion system associated protein coding genes (sciJKNOR) located in SPI-6; and T3SS effector sopF in SPI-11. Additional major functional categories of DEGs included transcription regulators (n = 25), amino acid transport and metabolism (n = 20), carbohydrate transport and metabolism (n = 20), energy production and metabolism (n = 19), cell membrane biogenesis (n = 18), and coenzyme transport and metabolism (n = 15). DEGs were further mapped to the metabolic pathways listed in the KEGG database; most genes of the fatty acid β-oxidation pathway were upregulated/uniquely present in the S. Dublin strains compared with the S. Cerro strains. Conclusions This study identified S. enterica genes that may be responsible for symptomatic or asymptomatic infection and colonization of two bovine-adapted serovars in cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08725-z.
Collapse
Affiliation(s)
- Serajus Salaheen
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| | - Seon Woo Kim
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| | - Bradd J Haley
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA.
| | - Jo Ann S Van Kessel
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, USDA-ARS, Beltsville, MD, USA
| |
Collapse
|
14
|
Dual transcriptome based reconstruction of Salmonella-human integrated metabolic network to screen potential drug targets. PLoS One 2022; 17:e0268889. [PMID: 35609089 PMCID: PMC9129043 DOI: 10.1371/journal.pone.0268889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a highly adaptive pathogenic bacteria with a serious public health concern due to its increasing resistance to antibiotics. Therefore, identification of novel drug targets for S. Typhimurium is crucial. Here, we first created a pathogen-host integrated genome-scale metabolic network by combining the metabolic models of human and S. Typhimurium, which we further tailored to the pathogenic state by the integration of dual transcriptome data. The integrated metabolic model enabled simultaneous investigation of metabolic alterations in human cells and S. Typhimurium during infection. Then, we used the tailored pathogen-host integrated genome-scale metabolic network to predict essential genes in the pathogen, which are candidate novel drug targets to inhibit infection. Drug target prioritization procedure was applied to these targets, and pabB was chosen as a putative drug target. It has an essential role in 4-aminobenzoic acid (PABA) synthesis, which is an essential biomolecule for many pathogens. A structure based virtual screening was applied through docking simulations to predict candidate compounds that eliminate S. Typhimurium infection by inhibiting pabB. To our knowledge, this is the first comprehensive study for predicting drug targets and drug like molecules by using pathogen-host integrated genome-scale models, dual RNA-seq data and structure-based virtual screening protocols. This framework will be useful in proposing novel drug targets and drugs for antibiotic-resistant pathogens.
Collapse
|
15
|
Abstract
Coxiella burnetii, the causative agent of query (Q) fever in humans, is an obligate intracellular bacterium. C. burnetii can naturally infect a broad range of host organisms (e.g., mammals and arthropods) and cell types. This amphotropic nature of C. burnetii, in combination with its ability to utilize both glycolytic and gluconeogenic carbon sources, suggests that the pathogen relies on metabolic plasticity to replicate in nutritionally diverse intracellular environments. To test the significance of metabolic plasticity in C. burnetii host cell colonization, C. burnetii intracellular replication in seven distinct cell lines was compared between a metabolically competent parental strain and a mutant, CbΔpckA, unable to undergo gluconeogenesis. Both the parental strain and CbΔpckA mutant exhibited host cell-dependent infection phenotypes, which were influenced by alterations to host glycolytic or gluconeogenic substrate availability. Because the nutritional environment directly impacts host cell physiology, our analysis was extended to investigate the response of C. burnetii replication in mammalian host cells cultivated in a novel physiological medium based on the nutrient composition of mammalian interstitial fluid, interstitial fluid-modeled medium (IFmM). An infection model based on IFmM resulted in exacerbation of a replication defect exhibited by the CbΔpckA mutant in specific cell lines. The CbΔpckA mutant was also attenuated during infection of an animal host. Overall, the study underscores that gluconeogenic capacity aids C. burnetii amphotropism and that the amphotropic nature of C. burnetii should be considered when resolving virulence mechanisms in this pathogen.
Collapse
|
16
|
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021; 177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Bacteria have developed a wealth of strategies to avoid and resist the action of antibiotics, one of which involves pathogens invading and forming reservoirs within host cells. Due to the poor cell membrane permeability, stability and retention of conventional antibiotics, this renders current treatments largely ineffective, since achieving a therapeutically relevant antibiotic concentration at the site of intracellular infection is not possible. To overcome such challenges, current antibiotics are 'repurposed' via reformulation using micro- or nano-carrier systems that effectively encapsulate and deliver therapeutics across cellular membranes of infected cells. Bioinspired materials that imitate the uptake of biological particulates and release antibiotics in response to natural stimuli are recently explored to improve the targeting and specificity of this 'nanoantibiotic' approach. In this review, the mechanisms of internalization and survival of intracellular bacteria are elucidated, effectively accentuating the current treatment challenges for intracellular infections and the implications for repurposing conventional antibiotics. Key case studies of nanoantibiotics that have drawn inspiration from natural biological particles and cellular uptake pathways to effectively eradicate intracellular pathogens are detailed, clearly highlighting the rational for harnessing bioinspired drug delivery strategies.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
17
|
Formulation strategies for bacteriophages to target intracellular bacterial pathogens. Adv Drug Deliv Rev 2021; 176:113864. [PMID: 34271022 DOI: 10.1016/j.addr.2021.113864] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Bacteriophages (Phages) are antibacterial viruses that are unaffected by antibiotic drug resistance. Many Phase I and Phase II phage therapy clinical trials have shown acceptable safety profiles. However, none of the completed trials could yield data supporting the promising observations noted in the experimental phage therapy. These trials have mainly focused on phage suspensions without enough attention paid to the stability of phage during processing, storage, and administration. This is important because in vivo studies have shown that the effectiveness of phage therapy greatly depends on the ratio of phage to bacterial concentrations (multiplicity of infection) at the infection site. Additionally, bacteria can evade phages through the development of phage-resistance and intracellular residence. This review focuses on the use of phage therapy against bacteria that survive within the intracellular niches. Recent research on phage behavior reveals that some phage can directly interact with, get internalized into, and get transcytosed across mammalian cells, prompting further research on the governing mechanisms of these interactions and the feasibility of harnessing therapeutic phage to target intracellular bacteria. Advances to improve the capability of phage attacking intracellular bacteria using formulation approaches such as encapsulating/conjugating phages into/with vector carriers via liposomes, polymeric particles, inorganic nanoparticles, and cell penetrating peptides, are summarized. While promising progress has been achieved, research in this area is still in its infancy and warrants further attention.
Collapse
|
18
|
Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii. Int J Mol Sci 2021; 22:ijms22169077. [PMID: 34445780 PMCID: PMC8396566 DOI: 10.3390/ijms22169077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.
Collapse
|
19
|
Esteban-Cuesta I, Labrador M, Hunt K, Reese S, Fischer J, Schwaiger K, Gareis M. Phenotypic and Genetic Comparison of a Plant-Internalized and an Animal-Isolated Salmonella Choleraesuis Strain. Microorganisms 2021; 9:microorganisms9081554. [PMID: 34442630 PMCID: PMC8398053 DOI: 10.3390/microorganisms9081554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Contamination of fresh produce with human pathogens poses an important risk for consumers, especially after raw consumption. Moreover, if microorganisms are internalized, no removal by means of further hygienic measures would be possible. Human pathogenic bacteria identified in these food items are mostly of human or animal origin and an adaptation to this new niche and particularly for internalization would be presumed. This study compares a plant-internalized and an animal-borne Salmonella enterica subsp. enterica serovar Choleraesuis aiming at the identification of adaptation of the plant-internalized strain to its original environment. For this purpose, a phenotypical characterization by means of growth curves under conditions resembling the indigenous environment from the plant-internalized strain and further analyses using Pulsed-field gel electrophoresis and Matrix-assisted laser desorption ionization time of flight spectrometry were assessed. Furthermore, comparative genomic analyses by means of single nucleotide polymorphisms and identification of present/absent genes were performed. Although some phenotypical and genetic differences could be found, no signs of a specific adaptation for colonization and internalization in plants could be clearly identified. This could suggest that any Salmonella strain could directly settle in this niche without any evolutionary process being necessary. Further comparative analysis including internalized strains would be necessary to assess this question. However, these kinds of strains are not easily available.
Collapse
Affiliation(s)
- Irene Esteban-Cuesta
- Chair of Food Safety, Veterinary Faculty, LMU Munich, 85764 Oberschleissheim, Germany; (K.H.); (K.S.); (M.G.)
- Correspondence:
| | - Mirian Labrador
- Departamento de Producción Animal y Ciencia de los Alimentos, Veterinary Faculty, Instituto Agroalimentario de Aragon-IA2, University of Zaragoza-CITA, 50013 Zaragoza, Spain;
| | - Katharina Hunt
- Chair of Food Safety, Veterinary Faculty, LMU Munich, 85764 Oberschleissheim, Germany; (K.H.); (K.S.); (M.G.)
| | - Sven Reese
- Chair of Anatomy, Histology and Embryology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, LMU Munich, 80539 Munich, Germany;
| | - Jennie Fischer
- National Salmonella Reference Laboratory, Unit Food Microbiology, Host-Pathogen-Interactions, Department of Biological Safety, German Federal Institute for Risk Assessment (Bundesinstitut für Risikobewertung—BfR), 12277 Berlin, Germany;
| | - Karin Schwaiger
- Chair of Food Safety, Veterinary Faculty, LMU Munich, 85764 Oberschleissheim, Germany; (K.H.); (K.S.); (M.G.)
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, 1220 Vienna, Austria
| | - Manfred Gareis
- Chair of Food Safety, Veterinary Faculty, LMU Munich, 85764 Oberschleissheim, Germany; (K.H.); (K.S.); (M.G.)
| |
Collapse
|
20
|
Sanchez SE, Omsland A. Conditional impairment of Coxiella burnetii by glucose-6P dehydrogenase activity. Pathog Dis 2021; 79:6321164. [PMID: 34259815 PMCID: PMC8292140 DOI: 10.1093/femspd/ftab034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/06/2021] [Indexed: 11/12/2022] Open
Abstract
Coxiella burnetii is a bacterial obligate intracellular parasite and the etiological agent of query (Q) fever. While the C. burnetii genome has been reduced to ∼2 Mb as a likely consequence of genome streamlining in response to parasitism, enzymes for a nearly complete central metabolic machinery are encoded by the genome. However, lack of a canonical hexokinase for phosphorylation of glucose and an apparent absence of the oxidative branch of the pentose phosphate pathway, a major mechanism for regeneration of the reducing equivalent nicotinamide adenine dinucleotide phosphate (NADPH), have been noted as potential metabolic limitations of C. burnetii. By complementing C. burnetii with the gene zwf encoding the glucose-6-phosphate-consuming and NADPH-producing enzyme glucose-6-phosphate dehydrogenase (G6PD), we demonstrate a severe metabolic fitness defect for C. burnetii under conditions of glucose limitation. Supplementation of the medium with the gluconeogenic carbon source glutamate did not rescue the growth defect of bacteria complemented with zwf. Absence of G6PD in C. burnetii therefore likely relates to the negative effect of its activity under conditions of glucose limitation. Coxiella burnetii central metabolism with emphasis on glucose, NAD+, NADP+ and NADPH is discussed in a broader perspective, including comparisons with other bacterial obligate intracellular parasites.
Collapse
Affiliation(s)
- Savannah E Sanchez
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA.,School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
21
|
Light Modulates Important Pathogenic Determinants and Virulence in ESKAPE Pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus. J Bacteriol 2021; 203:JB.00566-20. [PMID: 33288627 DOI: 10.1128/jb.00566-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023] Open
Abstract
Light sensing has been extensively characterized in the human pathogen Acinetobacter baumannii at environmental temperatures. However, the influence of light on the physiology and pathogenicity of human bacterial pathogens at temperatures found in warm-blooded hosts is still poorly understand. In this work, we show that Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa (ESKAPE) priority pathogens, which have been recognized by the WHO and the CDC as critical, can also sense and respond to light at temperatures found in human hosts. Most interestingly, in these pathogens, light modulates important pathogenicity determinants as well as virulence in an epithelial infection model, which could have implications in human infections. In fact, we found that alpha-toxin-dependent hemolysis, motility, and growth under iron-deprived conditions are modulated by light in S. aureus Light also regulates persistence, metabolism, and the ability to kill competitors in some of these microorganisms. Finally, light exerts a profound effect on the virulence of these pathogens in an epithelial infection model, although the response is not the same in the different species; virulence was enhanced by light in A. baumannii and S. aureus, while in A. nosocomialis and P. aeruginosa it was reduced. Neither the BlsA photoreceptor nor the type VI secretion system (T6SS) is involved in virulence modulation by light in A. baumannii Overall, this fundamental knowledge highlights the potential use of light to control pathogen virulence, either directly or by manipulating the light regulatory switch toward the lowest virulence/persistence configuration.IMPORTANCE Pathogenic bacteria are microorganisms capable of producing disease. Dangerous bacterial pathogens, such as Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii, are responsible for serious intrahospital and community infections in humans. Therapeutics is often complicated due to resistance to multiple antibiotics, rendering them ineffective. In this work, we show that these pathogens sense natural light and respond to it by modulating aspects related to their ability to cause disease; in the presence of light, some of them become more aggressive, while others show an opposite response. Overall, we provide new understanding on the behavior of these pathogens, which could contribute to the control of infections caused by them. Since the response is distributed in diverse pathogens, this notion could prove a general concept.
Collapse
|
22
|
Nale JY, Vinner GK, Lopez VC, Thanki AM, Phothaworn P, Thiennimitr P, Garcia A, AbuOun M, Anjum MF, Korbsrisate S, Galyov EE, Malik DJ, Clokie MRJ. An Optimized Bacteriophage Cocktail Can Effectively Control Salmonella in vitro and in Galleria mellonella. Front Microbiol 2021; 11:609955. [PMID: 33552020 PMCID: PMC7858669 DOI: 10.3389/fmicb.2020.609955] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella spp. is a leading cause of gastrointestinal enteritis in humans where it is largely contracted via contaminated poultry and pork. Phages can be used to control Salmonella infection in the animals, which could break the cycle of infection before the products are accessible for consumption. Here, the potential of 21 myoviruses and a siphovirus to eliminate Salmonella in vitro and in vivo was examined with the aim of developing a biocontrol strategy to curtail the infection in poultry and swine. Together, the phages targeted the twenty-three poultry and ten swine prevalent Salmonella serotype isolates tested. Although individual phages significantly reduced bacterial growth of representative isolates within 6 h post-infection, bacterial regrowth occurred 1 h later, indicating proliferation of resistant strains. To curtail bacteriophage resistance, a novel three-phage cocktail was developed in vitro, and further investigated in an optimized Galleria mellonella larva Salmonella infection model colonized with representative swine, chicken and laboratory strains. For all the strains examined, G. mellonella larvae given phages 2 h prior to bacterial exposure (prophylactic regimen) survived and Salmonella was undetectable 24 h post-phage treatment and throughout the experimental time (72 h). Administering phages with bacteria (co-infection), or 2 h post-bacterial exposure (remedial regimen) also improved survival (73-100% and 15-88%, respectively), but was less effective than prophylaxis application. These pre-livestock data support the future application of this cocktail for further development to effectively treat Salmonella infection in poultry and pigs. Future work will focus on cocktail formulation to ensure stability and incorporation into feeds and used to treat the infection in target animals.
Collapse
Affiliation(s)
- Janet Y Nale
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Gurinder K Vinner
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Viviana C Lopez
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Anisha M Thanki
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Angela Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Edouard E Galyov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Danish J Malik
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Martha R J Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
23
|
Koduru L, Kim HY, Lakshmanan M, Mohanty B, Lee YQ, Lee CH, Lee D. Genome-scale metabolic reconstruction and in silico analysis of the rice leaf blight pathogen, Xanthomonas oryzae. MOLECULAR PLANT PATHOLOGY 2020; 21:527-540. [PMID: 32068953 PMCID: PMC7060145 DOI: 10.1111/mpp.12914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/29/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a vascular pathogen that causes leaf blight in rice, leading to severe yield losses. Since the usage of chemical control methods has not been very promising for the future disease management, it is of high importance to systematically gain new insights about Xoo virulence and pathogenesis, and devise effective strategies to combat the rice disease. To do this, we reconstructed a genome-scale metabolic model of Xoo (iXOO673) and validated the model predictions using culture experiments. Comparison of the metabolic architecture of Xoo and other plant pathogens indicated that the Entner-Doudoroff pathway is a more common feature in these bacteria than previously thought, while suggesting some of the unique virulence mechanisms related to Xoo metabolism. Subsequent constraint-based flux analysis allowed us to show that Xoo modulates fluxes through gluconeogenesis, glycogen biosynthesis, and degradation pathways, thereby exacerbating the leaf blight in rice exposed to nitrogenous fertilizers, which is remarkably consistent with published experimental literature. Moreover, model-based interrogation of transcriptomic data revealed the metabolic components under the diffusible signal factor regulon that are crucial for virulence and survival in Xoo. Finally, we identified promising antibacterial targets for the control of leaf blight in rice by using gene essentiality analysis.
Collapse
Affiliation(s)
- Lokanand Koduru
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Hyang Yeon Kim
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Meiyappan Lakshmanan
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Bijayalaxmi Mohanty
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Yi Qing Lee
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Dong‐Yup Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
24
|
Han S, Hu W, Kan W, Ge Z, Song X, Li L, Shang Y, Zeng Q, Zhou JH. Analyses of genetics and pathogenesis of Salmonella enterica QH with narrow spectrum of antibiotic resistance isolated from yak. INFECTION GENETICS AND EVOLUTION 2020; 82:104293. [PMID: 32247035 DOI: 10.1016/j.meegid.2020.104293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Salmonella is an important pathogen for public health due to food poisoning and acute infectious intestinal disease by zoonotic trait. We isolated Salmonella enterica QH which represents the normal growth condition in Luria-Bertani culture and displays a wide range of susceptibility for multiple antibiotics. To further investigate genetic and pathogenic traits of S. enterica QH, the sequencing genome of S. enterica QH and oral Salmonella infection in mice were performed in this study. Compared with other Salmonella strains, several large sequences containing prophages and genomic islands were inserted into S. enterica QH genome. Furthermore, nucleotide and synonymous codon usage patterns display mutation pressure and natural selection serving as drivers for the evolutionary trend of S. enterica QH at gene level. The unique codon usage pattern of S. enterica QH probably contributes to adaptation to environmental/host niches and to pathogenicity. In an early oral S. enterica QH infection, the levels of CD4+ and CD8+ lymphocytes significantly reduce in peripheral blood of mice, but the increasing transcription levels of some cytokines (IFN-β1, IFN-γ and CXCL10) might have pleiotypic immune effects against S. enterica QH infection. Of note, IL10 displays significant enhancement at levels of transcription and translation, suggesting that immunosuppressive effects mediated by IL10 may function as an early oral S. enterica QH infection. The systemic investigations, including genomic and genetic characterizations and biological traits of S. enterica QH in vivo and in vitro may reflect the basic lifestyle of S. enterica QH, requiring intestine colonization, undergoing environmental stresses and performing dissemination.
Collapse
Affiliation(s)
- Shengyi Han
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China; State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Wen Hu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China; Gansu Police Vocational College, Lanzhou, 730046, Gansu, PR China
| | - Wei Kan
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China; Qinghai Animal Disease Prevention and Control Center, Xi-ning 810000, PR China
| | - Zhiyi Ge
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Xiangyang Song
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Lingxia Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Youjun Shang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China
| | - Qiaoying Zeng
- The College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, PR China.
| | - Jian-Hua Zhou
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, PR China.
| |
Collapse
|
25
|
Jiang L, Lee HW, Loo SCJ. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Adv 2020; 10:8497-8517. [PMID: 35497832 PMCID: PMC9050015 DOI: 10.1039/c9ra10921h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
One of the most important health concerns in society is the development of pathogen-causing nosocomial infections. Since the first discovery of antibiotics, bacterial infections have been highly treatable. However, with evolution and the nondiscretionary usage of antibiotics, pathogens have also found new ways to survive the onslaught of antibiotics by surviving intracellularly or through the formation of obstinate biofilms, and through these, the outcomes of regular antibiotic treatments may now be unsatisfactory. Lipid-coated hybrid nanoparticles (LCHNPs) are the next-generation core–shell structured nanodelivery system, where an inorganic or organic core, loaded with antimicrobials, is enveloped by lipid layers. This core–shell structure, with multifarious decorations, not only improves the loading capabilities of therapeutics but also has the potential to improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections. Although there has been significant interest in the development of LCHNPs, they have yet to be widely exploited for bacterial infections. In this review, we will provide an overview on the latest development of LCHNPs and the various approaches in synthesizing this nano-delivery system. In addition, a discussion on future perspectives of LCHNPs, in combination with other novel anti-bacterial technologies, will be provided towards the end of this review. Lipid-coated hybrid nanoparticles are next-generation core–shell structured nanodelivery systems, which improve the loading capabilities of therapeutics and can improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections.![]()
Collapse
Affiliation(s)
- Lai Jiang
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Hiang Wee Lee
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Say Chye Joachim Loo
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Nanyang Technological University
| |
Collapse
|
26
|
Salmonella enterica Requires Lipid Metabolism Genes To Replicate in Proinflammatory Macrophages and Mice. Infect Immun 2019; 88:IAI.00776-19. [PMID: 31611277 DOI: 10.1128/iai.00776-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 12/28/2022] Open
Abstract
To survive and replicate during infection, pathogens utilize different carbon and energy sources depending on the nutritional landscape of their host microenvironment. Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen that occupies diverse cellular niches. While it is clear that Salmonella Typhimurium requires access to glucose during systemic infection, data on the need for lipid metabolism are mixed. We report that Salmonella Typhimurium strains lacking lipid metabolism genes were defective for systemic infection of mice. Bacterial lipid import, β-oxidation, and glyoxylate shunt genes were required for tissue colonization upon oral or intraperitoneal inoculation. In cultured macrophages, lipid import and β-oxidation genes were required for bacterial replication and/or survival only when the cell culture medium was supplemented with nonessential amino acids. Removal of glucose from tissue culture medium further enhanced these phenotypes and, in addition, conferred a requirement for glyoxylate shunt genes. We also observed that Salmonella Typhimurium needs lipid metabolism genes in proinflammatory but not anti-inflammatory macrophages. These results suggest that during systemic infection, the Salmonella Typhimurium that relies upon host lipids to replicate is within proinflammatory macrophages that have access to amino acids but not glucose. An improved understanding of the host microenvironments in which pathogens have specific metabolic requirements may facilitate the development of targeted approaches to treatment.
Collapse
|
27
|
Pardo-Esté C, Castro-Severyn J, Krüger GI, Cabezas CE, Briones AC, Aguirre C, Morales N, Baquedano MS, Sulbaran YN, Hidalgo AA, Meneses C, Poblete-Castro I, Castro-Nallar E, Valvano MA, Saavedra CP. The Transcription Factor ArcA Modulates Salmonella's Metabolism in Response to Neutrophil Hypochlorous Acid-Mediated Stress. Front Microbiol 2019; 10:2754. [PMID: 31866961 PMCID: PMC6906141 DOI: 10.3389/fmicb.2019.02754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/03/2023] Open
Abstract
Salmonella Typhimurium, a bacterial pathogen with high metabolic plasticity, can adapt to different environmental conditions; these traits enhance its virulence by enabling bacterial survival. Neutrophils play important roles in the innate immune response, including the production of microbicidal reactive oxygen species (ROS). In addition, the myeloperoxidase in neutrophils catalyzes the formation of hypochlorous acid (HOCl), a highly toxic molecule that reacts with essential biomolecules, causing oxidative damage including lipid peroxidation and protein carbonylation. The bacterial response regulator ArcA regulates adaptive responses to oxygen levels and influences the survival of Salmonella inside phagocytic cells. Here, we demonstrate by whole transcriptomic analyses that ArcA regulates genes related to various metabolic pathways, enabling bacterial survival during HOCl-stress in vitro. Also, inside neutrophils, ArcA controls the transcription of several metabolic pathways by downregulating the expression of genes related to fatty acid degradation, lysine degradation, and arginine, proline, pyruvate, and propanoate metabolism. ArcA also upregulates genes encoding components of the oxidative pathway. These results underscore the importance of ArcA in ATP generation inside the neutrophil phagosome and its participation in bacterial metabolic adaptations during HOCl stress.
Collapse
Affiliation(s)
- Coral Pardo-Esté
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Gabriel I Krüger
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Carolina Elizabeth Cabezas
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alan Cristóbal Briones
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Camila Aguirre
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Naiyulin Morales
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Maria Soledad Baquedano
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Yoelvis Noe Sulbaran
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alejandro A Hidalgo
- Laboratorio de Patogenesis Bacteriana, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Ignacio Poblete-Castro
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Centro de Bioinformática y Biología Integrativa, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
28
|
Xu J, Preciado-Llanes L, Aulicino A, Decker CM, Depke M, Gesell Salazar M, Schmidt F, Simmons A, Huang WE. Single-Cell and Time-Resolved Profiling of Intracellular Salmonella Metabolism in Primary Human Cells. Anal Chem 2019; 91:7729-7737. [PMID: 31117406 PMCID: PMC7006958 DOI: 10.1021/acs.analchem.9b01010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
The
intracellular pathogen Salmonella enterica has evolved
an array of traits for propagation and invasion of the
intestinal layers. It remains largely elusive how Salmonella adjusts its metabolic states to survive inside immune host cells.
In this study, single-cell Raman biotechnology combined with deuterium
isotope probing (Raman-DIP) have been applied to reveal metabolic
changes of the typhoidal Salmonella Typhi Ty2, the
nontyphoidal Salmonella Typhimurium LT2, and a clinical
isolate Typhimurium D23580. By initially labeling the Salmonella strains with deuterium, we employed reverse labeling to track their
metabolic changes in the time-course infection of THP-1 cell line,
human monocyte-derived dendritic cells (MoDCs) and macrophages (Mf).
We found that, in comparison with a noninvasive serovar, the invasive Salmonella strains Ty2 and D23580 have downregulated metabolic
activity inside human macrophages and dendritic cells and used lipids
as alternative carbon source, perhaps a strategy to escape from the
host immune response. Proteomic analysis using high sensitivity mass
spectrometry validated the findings of Raman-DIP analysis.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| | - Lorena Preciado-Llanes
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Anna Aulicino
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Christoph Martin Decker
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Maren Depke
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany
| | - Frank Schmidt
- Interfaculty Institute for Genetics and Functional Genomics , University Medicine Greifswald , Felix-Hausdorff-Str. 8 , 17475 Greifswald , Germany.,Proteomics Core, Weill Cornel Medicine-Qatar , Education City , PO 24144 Doha , Qatar
| | - Alison Simmons
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , United Kingdom.,Translational Gastroenterology Unit, John Radcliffe Hospital , Headington, Oxford OX3 9DU , United Kingdom
| | - Wei E Huang
- Department of Engineering Science , University of Oxford , Parks Road , Oxford OX1 3PJ , United Kingdom
| |
Collapse
|
29
|
Correia DM, Sargo CR, Silva AJ, Santos ST, Giordano RC, Ferreira EC, Zangirolami TC, Ribeiro MPA, Rocha I. Mapping Salmonella typhimurium pathways using 13C metabolic flux analysis. Metab Eng 2019; 52:303-314. [PMID: 30529284 DOI: 10.1016/j.ymben.2018.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022]
Abstract
In the last years, Salmonella has been extensively studied not only due to its importance as a pathogen, but also as a host to produce pharmaceutical compounds. However, the full exploitation of Salmonella as a platform for bioproduct delivery has been hampered by the lack of information about its metabolism. Genome-scale metabolic models can be valuable tools to delineate metabolic engineering strategies as long as they closely represent the actual metabolism of the target organism. In the present study, a 13C-MFA approach was applied to map the fluxes at the central carbon pathways of S. typhimurium LT2 growing at glucose-limited chemostat cultures. The experiments were carried out in a 2L bioreactor, using defined medium enriched with 20% 13C-labeled glucose. Metabolic flux distributions in central carbon pathways of S. typhimurium LT2 were estimated using OpenFLUX2 based on the labeling pattern of biomass protein hydrolysates together with biomass composition. The results suggested that pentose phosphate is used to catabolize glucose, with minor fluxes through glycolysis. In silico simulations, using Optflux and pFBA as simulation method, allowed to study the performance of the genome-scale metabolic model. In general, the accuracy of in silico simulations was improved by the superimposition of estimated intracellular fluxes to the existing genome-scale metabolic model, showing a better fitting to the experimental extracellular fluxes, whereas the intracellular fluxes of pentose phosphate and anaplerotic reactions were poorly described.
Collapse
Affiliation(s)
- Daniela M Correia
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Cintia R Sargo
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Adilson J Silva
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Sophia T Santos
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Roberto C Giordano
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Eugénio C Ferreira
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal
| | - Teresa C Zangirolami
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Marcelo P A Ribeiro
- Graduate Program of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil
| | - Isabel Rocha
- CEB-Centre of Biological Engineering, University of Minho, Campus De Gualtar, Braga 4710-057, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal.
| |
Collapse
|
30
|
The Role of the Host in Driving Phenotypic Heterogeneity in Salmonella. Trends Microbiol 2019; 27:508-523. [PMID: 30755344 DOI: 10.1016/j.tim.2019.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/21/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
The complex infection environment within hosts exerts unique stresses across tissues and cell types, selecting for phenotypic heterogeneity in bacterial populations. Pathogens maintain variability during infection as a strategy to cope with fluctuating host immune conditions, leading to diversification of virulence phenotypes. Recent improvements in single-cell analyses have revealed that distinct bacterial subpopulations contribute unique colonization and growth strategies across infection sites. We discuss several examples of host-driven phenotypic heterogeneity in Salmonella populations throughout the course of infection, highlighting how variation in gene expression, growth rate, immune evasion, and metabolic activity contribute to overall bacterial success at the population level. We additionally focus our discussion on the implications of diversity within bacterial communities for antimicrobial efficacy.
Collapse
|
31
|
Diet-induced obese mice exhibit altered immune responses to early Salmonella Typhimurium oral infection. J Microbiol 2018; 56:673-682. [PMID: 30141160 DOI: 10.1007/s12275-018-8083-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 10/28/2022]
Abstract
Obesity is a chronic disease associated with different metabolic diseases as well as alterations in immune cell function. It is characterized by a chronic systemic low grade inflammation. There are several studies demonstrating the influence of obesity on the impaired immune response to infection. However, it is not completely clear whether the obese environment influences the development or maintenance of the immune response against infections. The aim of this study was to determine how obesity induced by a high-fat diet affects the immune response to an early oral Salmonella infection. Four groups of mice were kept in separate cages. Two of these designated as controls, fed with a normal diet; whereas other two groups were fed with a high fat diet for 10 weeks. Some mice were used for Salmonella oral infection. After 7 days of oral infection with S. Thypimurium the proportions of spleen cell subsets expressing activation markers in normal diet and HFD obese mice were stained with monoclonal antibodies and analyzed by flow cytometry. Also, mRNA levels of different cytokines were quantified by RT-PCR. It was found that obesity affects the function of the immune system against an early oral Salmonella infection, decreasing NK cells, altering the expression of activation molecules as well as cytokines mRNA levels. Interestingly, the expression some activation molecules on T lymphocytes was reestablished after Salmonella infection, but not the CD25 expression. Immune alterations could lead to immunosuppression or increased susceptibility to infections in HFD obese mice.
Collapse
|
32
|
Gil M, Enninga J. Tracing a fat or sweet lifestyle - New insights on catabolic paths of intracellular Salmonella. Virulence 2017; 8:655-657. [PMID: 28112570 DOI: 10.1080/21505594.2017.1283466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Magdalena Gil
- a Institut Pasteur, Research Unit "Dynamics of Host Pathogen Interactions" , Paris , France
| | - Jost Enninga
- a Institut Pasteur, Research Unit "Dynamics of Host Pathogen Interactions" , Paris , France
| |
Collapse
|