1
|
Rab SO, Roopashree R, Altalbawy FMA, Kumar MR, Chahar M, Singh M, Kubaev A, Alamir HTA, Mohammed F, Kadhim AJ, Alhadrawi M. Phytochemicals and Their Nanoformulations for Targeting Hepatocellular Carcinoma: Exploring Potential and Targeting Strategies. Cell Biochem Funct 2024; 42:e70013. [PMID: 39521962 DOI: 10.1002/cbf.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Hepatocellular carcinoma (HCC) continues to pose a global health concern, necessitating the exploration of innovative therapeutic approaches. In the recent decade, targeting tumor stroma consisting of extracellular matrix (ECM), immune cells, vascular system, hypoxia, and also suppressive mechanisms in HCC has attracted interest in repressing tumor growth and metastasis. Phytochemicals have attained considerable attention because of their manifold biological effects and high capacity for anticancer activities. These chemical agents have shown the capability to modulate different cells and secretions within the stroma of malignancies. In recent years, the development of nanoformulations has further enhanced the therapeutic potential of phytochemicals by improving their solubility, bioavailability, and targeted delivery to tumor tissues. This review aims to provide an encyclopedic overview of the potential of phytochemicals and their nanoformulations as promising therapeutic strategies for targeting HCC. The review initially highlights the broad array of phytochemicals exhibiting potent anticancer properties, including flavonoids, alkaloids, terpenoids, and phenolic compounds, among others. Then, the nanoformulations and modification of these agents will be reviewed. Finally, we will review the latest experiments that have examined the modulation of HCC using adjuvant phytochemicals and their nanoformulations.
Collapse
Affiliation(s)
- Safia Obaidur Rab
- Central Labs, King Khalid University, AlQura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - M Ravi Kumar
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, Rajasthan, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Amarah, Maysan, Iraq
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Merwa Alhadrawi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
He E, Li Y, Zhao R, Kong Q, Shao Y, Wang C, Liu B, Jiang Y, Liu Q, Cui H. IL7 as a Risk Factor for Prostate Cancer: Implications for T Cell Apoptosis and Infiltration in the Tumor Microenvironment. Prostate 2024. [PMID: 39593187 DOI: 10.1002/pros.24830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Prostate cancer's complex interplay with the immune microenvironment prompted an investigation into immune-related pathogenic mechanisms and potential therapeutic targets. METHODS Within the GSE176031 data set, Seurat meticulously dissected single-cell profiles from radical prostatectomy patients. Leveraging CellMarker and SingleR cell identities were precisely annotated. Then, monocle traced pseudotime trajectories, illuminating cellular paths, complemented by CellChat's insights into intricate intercellular communications. Furthermore, mendelian randomization (MR) robustly substantiated causal associations within prostate cancer contexts. RESULTS Employing single-cell analysis on intraoperative tumor and normal tissue, we identified 15 distinct cell types, notably observing a significant T cell reduction in tumor samples. Intercellular communication analysis revealed multiple pathways between epithelial cells and T cells, highlighting interleukin (IL)-IL7R-IL2RG interactions. IL7R, crucial in T cell apoptosis, showed differential expression across T cell development stages. Patients with IL7 amplification had poorer outcomes (p < 0.05), supported by MR in two cohorts (ieu-b-4809 cohort: odds ratio [OR] = 1.005, p = 0.002, 95% confidence interval [CI] [1.002-1.008]; ebi-a-GCST90018905: OR = 1.063, p = 0.032, 95% CI [1.005-1.125]), confirming IL7 as a prostate cancer risk factor. CONCLUSIONS These findings suggest T cell depletion via IL7-IL7R signaling may drive prostate cancer progression, offering novel therapeutic insights.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Yaowen Li
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Rui Zhao
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Qinyan Kong
- West China Hospital of Sichuan University, Chengdu, China
| | - Yi Shao
- Tianjin Medical University, Tianjin, China
- The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Cong Wang
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Baoqun Liu
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Yvhang Jiang
- Tianjin Medical University, Tianjin, China
- General Hospital of Tianjin Medical University, Tianjin, China
| | - Qian Liu
- Tianjin Medical University, Tianjin, China
- The First Central Hospital of Tianjin, Tianjin, China
| | - Hualei Cui
- Tianjin Medical University, Tianjin, China
- Graduate School of Tianjin Medical University, Tianjin, China
| |
Collapse
|
3
|
Zhu Z, Huang J, Zhang Y, Hou W, Chen F, Mo YY, Zhang Z. Landscape of tumoral ecosystem for enhanced anti-PD-1 immunotherapy by gut Akkermansia muciniphila. Cell Rep 2024; 43:114306. [PMID: 38819989 DOI: 10.1016/j.celrep.2024.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
Gut Akkermansia muciniphila (Akk) has been implicated in impacting immunotherapy or oncogenesis. This study aims to dissect the Akk-associated tumor immune ecosystem (TIME) by single-cell profiling coupled with T cell receptor (TCR) sequencing. We adopted mouse cancer models under anti-PD-1 immunotherapy, combined with oral administration of three forms of Akk, including live Akk, pasteurized Akk (Akk-past), or its membrane protein Amuc_1100 (Amuc). We show that live Akk is most effective in activation of CD8 T cells by rescuing the exhausted type into cytotoxic subpopulations. Remarkably, only live Akk activates MHC-II-pDC pathways, downregulates CXCL3 in Bgn(+)Dcn(+) cancer-associated fibroblasts (CAFs), blunts crosstalk between Bgn(+)Dcn(+) CAFs and PD-L1(+) neutrophils by a CXCL3-PD-L1 axis, and further suppresses the crosstalk between PD-L1(+) neutrophils and CD8 T cells, leading to the rescue of exhausted CD8 T cells. Together, this comprehensive picture of the tumor ecosystem provides deeper insights into immune mechanisms associated with gut Akk-dependent anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Zhuxian Zhu
- Department of Nephrology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jianguo Huang
- Earle A. Chiles Research Institute, a division of Providence Cancer Institute, Portland, OR 97213, USA
| | - Yanling Zhang
- Department of Emergency Medicine, Tongji University School of Medicine, Shanghai 200065, China
| | - Weiwei Hou
- Department of Clinical Laboratory, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Fei Chen
- Department of Emergency Medicine, Tongji University School of Medicine, Shanghai 200065, China
| | - Yin-Yuan Mo
- Institute of Clinical Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, Hangzhou 310014 , China.
| | - Ziqiang Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong Hospital of Fudan University, Shanghai 201399, China.
| |
Collapse
|
4
|
Poniewierska-Baran A, Sobolak K, Niedźwiedzka-Rystwej P, Plewa P, Pawlik A. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer-Narrative Review. Int J Mol Sci 2024; 25:6471. [PMID: 38928174 PMCID: PMC11203505 DOI: 10.3390/ijms25126471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Due to its rapid progression to advanced stages and highly metastatic properties, gastric cancer (GC) is one of the most aggressive malignancies and the fourth leading cause of cancer-related deaths worldwide. The metastatic process includes local invasion, metastasis initiation, migration with colonisation at distant sites, and evasion of the immune response. Tumour growth involves the activation of inhibitory signals associated with the immune response, also known as immune checkpoints, including PD-1/PD-L1 (programmed death 1/programmed death ligand 1), CTLA-4 (cytotoxic T cell antigen 4), TIGIT (T cell immunoreceptor with Ig and ITIM domains), and others. Immune checkpoint molecules (ICPMs) are proteins that modulate the innate and adaptive immune responses. While their expression is prominent on immune cells, mainly antigen-presenting cells (APC) and other types of cells, they are also expressed on tumour cells. The engagement of the receptor by the ligand is crucial for inhibiting or stimulating the immune cell, which is an extremely important aspect of cancer immunotherapy. This narrative review explores immunotherapy, focusing on ICPMs and immune checkpoint inhibitors in GC. We also summarise the current clinical trials that are evaluating ICPMs as a target for GC treatment.
Collapse
Affiliation(s)
- Agata Poniewierska-Baran
- Center of Experimental Immunology and Immunobiology of Infectious and Cancer Diseases, University of Szczecin, 71-417 Szczecin, Poland; (A.P.-B.); (P.N.-R.)
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Karolina Sobolak
- Students Research Club of Immunobiology of Infectious and Cancer Diseases “NEUTROPHIL”, University of Szczecin, 71-417 Szczecin, Poland; (K.S.); (P.P.)
| | - Paulina Niedźwiedzka-Rystwej
- Center of Experimental Immunology and Immunobiology of Infectious and Cancer Diseases, University of Szczecin, 71-417 Szczecin, Poland; (A.P.-B.); (P.N.-R.)
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Paulina Plewa
- Students Research Club of Immunobiology of Infectious and Cancer Diseases “NEUTROPHIL”, University of Szczecin, 71-417 Szczecin, Poland; (K.S.); (P.P.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Xue C, Zhou Q, Zhang B, Ke X, Zhang P, Liu X, Li S, Deng J, Zhou J. Vasari-Based Features Nomogram to Predict the Tumor-Infiltrating CD8+ T Cell Levels in Glioblastoma. Acad Radiol 2024; 31:2050-2060. [PMID: 37985291 DOI: 10.1016/j.acra.2023.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
RATIONALE AND OBJECTIVES Tumor-infiltrating CD8 + T cells play a key role in glioblastoma (GB) development, malignant progression, and recurrence. The aim of the study was to establish nomograms based on the Visually AcceSAble Rembrandt Images (VASARI) features of multiparametric magnetic resonance imaging (MRI) to determine the expression levels of tumor-infiltrating CD8 + T cells in patients with GB. MATERIALS AND METHODS Pathological and imaging data of 140 patients with GB confirmed by surgery and pathology were retrospectively analyzed. The levels of tumor-infiltrating CD8 + T cells in tumor tissue samples obtained from patients were quantified using immunohistochemical staining. Patients were divided into high and low CD8 expression groups. The MRI images of patients with GB were analyzed by two radiologists using the VASARI scoring system. RESULTS A total of 25 MRI-based VASARI imaging features were evaluated by two neuroradiologists. The features with the greatest predictive power for CD8 expression levels were, cystic (OR, 3.063; 95% CI: 1.387, 6.766; P = 0.006), hemorrhage (OR, 2.980; 95% CI: 1.172, 7.575; P = 0.022), and ependymal extension (OR, 0.257; 95% CI: 0.114 0.581; P = 0.001). A logistic regression model based on these three features showed better sample predictive performance (AUC=0.745; 95% CI: 0.665, 0.825; Sensitivity=0.527; Specificity=0.857). CONCLUSION The VASARI feature-based nomogram model can show promise to predict the level of infiltrative CD8 expression in GB tumors non-invasively for earlier tissue diagnosis and more aggressive treatment.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
6
|
Tie CW, Zhu JQ, Yu Z, Dou LZ, Wang ML, Wang GQ, Ni XG. Revealing molecular and cellular heterogeneity in hypopharyngeal carcinogenesis through single-cell RNA and TCR/BCR sequencing. Front Immunol 2024; 15:1310376. [PMID: 38720887 PMCID: PMC11076829 DOI: 10.3389/fimmu.2024.1310376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Hypopharyngeal squamous cell carcinoma (HSCC) is one of the malignant tumors with the worst prognosis in head and neck cancers. The transformation from normal tissue through low-grade and high-grade intraepithelial neoplasia to cancerous tissue in HSCC is typically viewed as a progressive pathological sequence typical of tumorigenesis. Nonetheless, the alterations in diverse cell clusters within the tissue microenvironment (TME) throughout tumorigenesis and their impact on the development of HSCC are yet to be fully understood. Methods We employed single-cell RNA sequencing and TCR/BCR sequencing to sequence 60,854 cells from nine tissue samples representing different stages during the progression of HSCC. This allowed us to construct dynamic transcriptomic maps of cells in diverse TME across various disease stages, and experimentally validated the key molecules within it. Results We delineated the heterogeneity among tumor cells, immune cells (including T cells, B cells, and myeloid cells), and stromal cells (such as fibroblasts and endothelial cells) during the tumorigenesis of HSCC. We uncovered the alterations in function and state of distinct cell clusters at different stages of tumor development and identified specific clusters closely associated with the tumorigenesis of HSCC. Consequently, we discovered molecules like MAGEA3 and MMP3, pivotal for the diagnosis and treatment of HSCC. Discussion Our research sheds light on the dynamic alterations within the TME during the tumorigenesis of HSCC, which will help to understand its mechanism of canceration, identify early diagnostic markers, and discover new therapeutic targets.
Collapse
MESH Headings
- Humans
- Hypopharyngeal Neoplasms/genetics
- Hypopharyngeal Neoplasms/pathology
- Hypopharyngeal Neoplasms/immunology
- Single-Cell Analysis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Carcinogenesis/genetics
- Sequence Analysis, RNA
- Transcriptome
- Biomarkers, Tumor/genetics
- Squamous Cell Carcinoma of Head and Neck/genetics
- Squamous Cell Carcinoma of Head and Neck/immunology
- Squamous Cell Carcinoma of Head and Neck/pathology
- Gene Expression Regulation, Neoplastic
- Male
Collapse
Affiliation(s)
- Cheng-Wei Tie
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Qing Zhu
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhan Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Li-Zhou Dou
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Ling Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Gui-Qi Wang
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Guang Ni
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Peng X, Lu X, Yang D, Liu J, Wu H, Peng H, Zhang Y. A novel CD8+ T cell-related gene signature as a prognostic biomarker in hepatocellular carcinoma. Medicine (Baltimore) 2024; 103:e37496. [PMID: 38489709 PMCID: PMC10939595 DOI: 10.1097/md.0000000000037496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/16/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
CD8+ T cells have great roles in tumor suppression and elimination of various tumors including hepatocellular carcinoma (HCC). Nonetheless, potential prognostic roles of CD8+ T cell-related genes (CD8Gs) in HCC remains unknown. In our study, 416 CD8Gs were identified in HCC, which were enriched in inflammatory and immune signaling pathways. Using The Cancer Genome Atlas dataset, a 5-CD8Gs risk model (KLRB1, FYN, IL2RG, FCER1G, and DGKZ) was constructed, which was verified in International Cancer Genome Consortium and gene expression omnibus datasets. Furthermore, we found that overall survival was independently correlated with the CD8Gs signature, and it was associated with immune- and cancer-related signaling pathways and immune cells infiltration. Finally, drug sensitivity data indicated that 10 chemotherapeutic drugs held promise as therapeutics for HCC patients with high-risk. In conclusion, multi-databases analysis showed that 5-CD8Gs and their signature could be an indicator to predict candidate drugs for HCC therapy.
Collapse
Affiliation(s)
- Xiaozhen Peng
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, China
| | - Xingjun Lu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Daqing Yang
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Jinyan Liu
- Hunan Normal University, Changsha, China
| | - Honglin Wu
- School of Public Health & Laboratory Medicine, Hunan University of Medicine, Huaihua, China
| | - Hong Peng
- Medical School, Huanghe Science & Technology College, Zhengzhou, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Ryu H, Bi TM, Pulliam TH, Sarkar K, Church CD, Kumar N, Mayer-Blackwell K, Jani S, Ramchurren N, Hansen UK, Hadrup SR, Fling SP, Koelle DM, Nghiem P, Newell EW. Merkel cell polyomavirus-specific and CD39 +CLA + CD8 T cells as blood-based predictive biomarkers for PD-1 blockade in Merkel cell carcinoma. Cell Rep Med 2024; 5:101390. [PMID: 38340724 PMCID: PMC10897544 DOI: 10.1016/j.xcrm.2023.101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024]
Abstract
Merkel cell carcinoma is a skin cancer often driven by Merkel cell polyomavirus (MCPyV) with high rates of response to anti-PD-1 therapy despite low mutational burden. MCPyV-specific CD8 T cells are implicated in anti-PD-1-associated immune responses and provide a means to directly study tumor-specific T cell responses to treatment. Using mass cytometry and combinatorial tetramer staining, we find that baseline frequencies of blood MCPyV-specific cells correlated with response and survival. Frequencies of these cells decrease markedly during response to therapy. Phenotypes of MCPyV-specific CD8 T cells have distinct expression patterns of CD39, cutaneous lymphocyte-associated antigen (CLA), and CD103. Correspondingly, overall bulk CD39+CLA+ CD8 T cell frequencies in blood correlate with MCPyV-specific cell frequencies and similarly predicted favorable clinical outcomes. Conversely, frequencies of CD39+CD103+ CD8 T cells are associated with tumor burden and worse outcomes. These cell subsets can be useful as biomarkers and to isolate blood-derived tumor-specific T cells.
Collapse
Affiliation(s)
- Heeju Ryu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Timothy M Bi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas H Pulliam
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Korok Sarkar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Candice D Church
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Nandita Kumar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Saumya Jani
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Nirasha Ramchurren
- Cancer Immunotherapy Trails Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulla K Hansen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Steven P Fling
- Cancer Immunotherapy Trails Network, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Koelle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA; Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Benaroya Research Institute, Seattle, WA, USA
| | - Paul Nghiem
- Department of Medicine, Division of Dermatology, University of Washington, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Lab Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Huang M, Wang Y, Fang L, Liu C, Feng F, Liu L, Sun C. T cell senescence: a new perspective on immunotherapy in lung cancer. Front Immunol 2024; 15:1338680. [PMID: 38415245 PMCID: PMC10896971 DOI: 10.3389/fimmu.2024.1338680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
T cell senescence is an indication of T cell dysfunction. The ability of senescent T cells to respond to cognate antigens is reduced and they are in the late stage of differentiation and proliferation; therefore, they cannot recognize and eliminate tumor cells in a timely and effective manner, leading to the formation of the suppressive tumor microenvironment. Establishing methods to reverse T cell senescence is particularly important for immunotherapy. Aging exacerbates profound changes in the immune system, leading to increased susceptibility to chronic, infectious, and autoimmune diseases. Patients with malignant lung tumors have impaired immune function with a high risk of recurrence, metastasis, and mortality. Immunotherapy based on PD-1, PD-L1, CTLA-4, and other immune checkpoints is promising for treating lung malignancies. However, T cell senescence can lead to low efficacy or unsuccessful treatment results in some immunotherapies. Efficiently blocking and reversing T cell senescence is a key goal of the enhancement of tumor immunotherapy. This study discusses the characteristics, mechanism, and expression of T cell senescence in malignant lung tumors and the treatment strategies.
Collapse
Affiliation(s)
- Mengge Huang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuetong Wang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liguang Fang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| | - Fubin Feng
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Lijuan Liu
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| |
Collapse
|
10
|
Weiss J, Gibbons K, Ehyaee V, Perez-Silos V, Zevallos A, Maienschein-Cline M, Brister E, Sverdlov M, Shah E, Balakrishna J, Symes E, Frederiksen JK, Gann PH, Post R, Lopez-Hisijos N, Reneau J, Venkataraman G, Bailey N, Brown NA, Xu ML, Wilcox RA, Inamdar K, Murga-Zamalloa C. Specific Polo-Like Kinase 1 Expression in Nodular Lymphocyte-Predominant Hodgkin Lymphoma Suggests an Intact Immune Surveillance Program. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:165-178. [PMID: 37923249 PMCID: PMC10768536 DOI: 10.1016/j.ajpath.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) is a rare and relatively indolent B-cell lymphoma. Characteristically, the [lymphocyte-predominant (LP)] tumor cells are embedded in a microenvironment enriched in lymphocytes. More aggressive variants of mature B-cell and peripheral T-cell lymphomas exhibit nuclear expression of the polo-like kinase 1 (PLK1) protein, stabilizing MYC (alias c-myc) and associated with worse clinical outcomes. This study demonstrated expression of PLK1 in the LP cells in 100% of NLPHL cases (n = 76). In contrast, <5% of classic Hodgkin lymphoma cases (n = 70) showed PLK1 expression within the tumor cells. Loss-of-function approaches demonstrated that the expression of PLK1 promoted cell proliferation and increased MYC stability in NLPHL cell lines. Correlation with clinical parameters revealed that the increased expression of PLK1 was associated with advanced-stage disease in patients with NLPHL. A multiplex immunofluorescence panel coupled with artificial intelligence algorithms was used to correlate the composition of the tumor microenvironment with the proliferative stage of LP cells. The results showed that LP cells with PLK1 (high) expression were associated with increased numbers of cytotoxic and T-regulatory T cells. Overall, the findings demonstrate that PLK1 signaling increases NLPHL proliferation and constitutes a potential vulnerability that can be targeted with PLK1 inhibitors. An active immune surveillance program in NLPHL may be a critical mechanism limiting PLK1-dependent tumor growth.
Collapse
Affiliation(s)
- Jonathan Weiss
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kathryn Gibbons
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan
| | - Vida Ehyaee
- Department of Pathology, Rush University, Chicago, Illinois
| | - Vanessa Perez-Silos
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Alejandro Zevallos
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Eileen Brister
- Research Tissue Imaging Core and Research Histology Core, University of Illinois at Chicago, Chicago, Illinois
| | - Maria Sverdlov
- Research Tissue Imaging Core and Research Histology Core, University of Illinois at Chicago, Chicago, Illinois
| | - Eshana Shah
- Department of Internal Medicine, University of Illinois at Chicago, Chicago, Illinois
| | | | - Emily Symes
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - John K Frederiksen
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Peter H Gann
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Robert Post
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - John Reneau
- Department of Internal Medicine, Ohio State University, Columbus, Ohio
| | | | - Nathanael Bailey
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Noah A Brown
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Mina L Xu
- Department of Pathology, Yale University, New Haven, Connecticut
| | - Ryan A Wilcox
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Kedar Inamdar
- Department of Pathology, Henry Ford Hospital, Detroit, Michigan.
| | | |
Collapse
|
11
|
Richter F, Paget C, Apetoh L. STING-driven activation of T cells: relevance for the adoptive cell therapy of cancer. Cell Stress 2023; 7:95-104. [PMID: 37970489 PMCID: PMC10642958 DOI: 10.15698/cst2023.11.291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023] Open
Abstract
Adoptive cell therapy (ACT) can successfully treat hematopoietic cancers but lacks efficacy against solid tumors. This is due to insufficient T cell infiltration, high tumor heterogeneity, frequent antigen loss with subsequent tumor escape, and the immunosuppressive tumor microenvironment (TME). Alternative methods to boost the anticancer efficacy of adoptively transferred cells are actively pursued. Among adjuvants that are utilized to stimulate anticancer immune responses, ligands of the stimulator of interferon genes (STING) pathway have received increasing attention. STING activation can trigger dendritic cell (DC) activation and endogenous immune responses, thereby preventing tumor escape. Activation of the STING pathway in the context of ACT was accordingly associated with improved T cell trafficking and persistence in the TME combined with the reduced presence of immunosuppressive cells. Recent findings also suggest cell-intrinsic effects of STING ligands on T cells. Activation of the STING signaling pathway was in this regard shown to enhance effector functions of CD4+ and CD8+ T cells, suggesting that the STING signaling could be exploited to harness T cell anticancer functions. In this review, we will discuss how the STING signaling can be used to enhance the anticancer efficacy of ACT.
Collapse
Affiliation(s)
- Fabian Richter
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Christophe Paget
- Centre d'Étude des Pathologies Respiratoires, U1100, INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Pérez-Baños A, Gleisner MA, Flores I, Pereda C, Navarrete M, Araya JP, Navarro G, Quezada-Monrás C, Tittarelli A, Salazar-Onfray F. Whole tumour cell-based vaccines: tuning the instruments to orchestrate an optimal antitumour immune response. Br J Cancer 2023; 129:572-585. [PMID: 37355722 PMCID: PMC10421921 DOI: 10.1038/s41416-023-02327-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.
Collapse
Affiliation(s)
- Amarilis Pérez-Baños
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Iván Flores
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristián Pereda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Juan Pablo Araya
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Giovanna Navarro
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Claudia Quezada-Monrás
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, 5110566, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile.
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute and Section for Infectious Diseases, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
13
|
Iwasaki T, Hayashi K, Matsushita M, Nonaka D, Matsumoto T, Taniguchi M, Kuwamoto S, Umekita Y, Oda Y. Clinical significance of the expression of FOXP3 and TIGIT in Merkel cell carcinoma. Sci Rep 2023; 13:13114. [PMID: 37573372 PMCID: PMC10423247 DOI: 10.1038/s41598-023-40050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
The pathogenesis of 80% of Merkel cell carcinoma (MCC) cases is associated with Merkel cell polyomavirus (MCPyV). Forkhead helix transcription factor P3 (FOXP3) and the T cell immunoreceptor with immunoglobulin and immunoreceptor tyrosine-based inhibition motif domains (TIGIT)-CD155 pathway, which are targets for immunotherapy, were assessed as prognostic factors of MCC. We analyzed mRNA expression data of 111 patients with MCC and performed immunohistochemical analysis to detect the expression of programmed death ligand 1 (PD-L1), CD8, FOXP3, TIGIT, and CD155 in 65 cases of MCC. In CD8 and FOXP3 immunostaining, the number of expressing-infiltrating cells was determined by dividing the region into tumor center and invasive front areas. FOXP3 expression was evaluated separately in cells with high and low intensities. Aberrant TIGIT expression and weak CD155 staining were observed in MCC cells. CD8- and FOXP3-positive cell infiltrations were higher in the invasive front than in the tumor center. Multivariate Cox hazard analysis revealed that high infiltration of cells with low-intensity FOXP3 expression in the invasive front is a favorable prognostic factor (p = 0.025). Thus, targeting TIGIT-CD155 signaling and FOXP3 as well as PD-L1 may be a therapeutic strategy for MCC.
Collapse
Affiliation(s)
- Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kazuhiko Hayashi
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, 86, Nishi machi, Yonago, Tottori, 683-8503, Japan
| | - Michiko Matsushita
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, 86, Nishi machi, Yonago, Tottori, 683-8503, Japan
- Department of Pathobiological Science and Technology, School of Health Science, Faculty of Medicine, Tottori University, 86, Nishi machi, Yonago, Tottori, 683-8503, Japan
| | - Daisuke Nonaka
- Department of Cellular Pathology, The Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Takamasa Matsumoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Midori Taniguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Satoshi Kuwamoto
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, 86, Nishi machi, Yonago, Tottori, 683-8503, Japan
| | - Yoshihisa Umekita
- Department of Pathology, School of Medicine, Faculty of Medicine, Tottori University, 86, Nishi machi, Yonago, Tottori, 683-8503, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
14
|
Vinokurova D, Apetoh L. The Emerging Role of IL-9 in the Anticancer Effects of Anti-PD-1 Therapy. Biomolecules 2023; 13:biom13040670. [PMID: 37189417 DOI: 10.3390/biom13040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
PD-1 blockade rescues failing anticancer immune responses, resulting in durable remissions in some cancer patients. Cytokines such as IFNγ and IL-2 contribute to the anti-tumor effect of PD-1 blockade. IL-9 was identified over the last decade as a cytokine demonstrating a potent ability to harness the anticancer functions of innate and adaptive immune cells in mice. Recent translational investigations suggest that the anticancer activity of IL-9 also extends to some human cancers. Increased T cell-derived IL-9 was proposed to predict the response to anti-PD-1 therapy. Preclinical investigations accordingly revealed that IL-9 could synergize with anti-PD-1 therapy in eliciting anticancer responses. Here, we review the findings suggesting an important contribution of IL-9 in the efficacy of anti-PD-1 therapy and discuss their clinical relevance. We will also discuss the role of host factors like the microbiota and TGFβ in the tumor microenvironment (TME) in the regulation of IL-9 secretion and anti-PD-1 treatment efficacy.
Collapse
Affiliation(s)
- Daria Vinokurova
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
15
|
Xue C, Zhou Q, Zhang P, Zhang B, Sun Q, Li S, Deng J, Liu X, Zhou J. MRI histogram analysis of tumor-infiltrating CD8+ T cell levels in patients with glioblastoma. Neuroimage Clin 2023; 37:103353. [PMID: 36812768 PMCID: PMC9958466 DOI: 10.1016/j.nicl.2023.103353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
OBJECTIVE To investigate the utility of preoperative magnetic resonance imaging histogram analysis for evaluating tumor-infiltrating CD8+ T cells in patients with glioblastoma (GBM). METHODS We retrospectively analyzed the pathological and imaging data of 61 patients with GBM confirmed by surgery and pathology. Moreover, the levels of tumor-infiltrating CD8+ T cells in tumor tissue samples obtained from the patients were quantified through immunohistochemical staining and evaluated with respect to overall survival. The patients were divided into the high and low CD8 expression groups. Preoperative T1-weighted contrast-enhanced (T1C) histogram parameters of patients with GBM were extracted using Firevoxel software. We investigated the correlation between the histogram feature parameters and CD8+ T cells. We performed statistical analyses of the T1C histogram parameters in both groups and identified characteristic parameters with significant between-group differences. Additionally, we performed a receiver operating characteristic curve (ROC) analysis to determine the predictive utility of these parameters. RESULTS The levels of tumor-infiltrating CD8+ T cells were positively associated with overall survival in patients with GBM (P = 0.0156). Among the T1C histogram features, the mean, 5th, 10th, 25th, and 50th percentiles were negatively correlated with the levels of CD8+ T cells. Moreover, the coefficient of variation (CV) was positively correlated with the levels of CD8+ T cells (all P < 0.05). There was a significant between-group difference in the CV, 1st, 5th, 10th, 25th, and 50th percentiles (all p < 0.05). The ROC curve analysis revealed that the CV had the highest AUC value (0.783; 95% confidence interval: 0.658-0.878), with sensitivity and specificity values of 0.784 and 0.750, respectively, for distinguishing between the groups. CONCLUSIONS The preoperative T1C histogram have additional value for the levels of tumor-infiltrating CD8+ T cells in patients with GBM.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Peng Zhang
- Department of Pathology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Qiu Sun
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Juan Deng
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Xianwang Liu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No. 82, Chengguan District, Lanzhou 730030, China; Second Clinical School, Lanzhou University, Lanzhou, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China.
| |
Collapse
|
16
|
Wang H, Yin X, Fang T, Lou S, Han B, Gao J, Wang Y, Zhang D, Wang X, Lu Z, Wu J, Zhang J, Wang Y, Zhang Y, Xue Y. Development and Validation of an Age-Related Gastric Cancer-Specific Immune Index. J Inflamm Res 2022; 15:6393-6407. [DOI: 10.2147/jir.s388792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
|
17
|
Kawaguchi S, Kawahara K, Fujiwara Y, Ohnishi K, Pan C, Yano H, Hirosue A, Nagata M, Hirayama M, Sakata J, Nakashima H, Arita H, Yamana K, Gohara S, Nagao Y, Maeshiro M, Iwamoto A, Hirayama M, Yoshida R, Komohara Y, Nakayama H. Naringenin potentiates anti-tumor immunity against oral cancer by inducing lymph node CD169-positive macrophage activation and cytotoxic T cell infiltration. Cancer Immunol Immunother 2022; 71:2127-2139. [PMID: 35044489 PMCID: PMC9374624 DOI: 10.1007/s00262-022-03149-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/27/2021] [Indexed: 12/30/2022]
Abstract
The CD169+ macrophages in lymph nodes are implicated in cytotoxic T lymphocyte (CTL) activation and are associated with improved prognosis in several malignancies. Here, we investigated the significance of CD169+ macrophages in oral squamous cell carcinoma (OSCC). Further, we tested the anti-tumor effects of naringenin, which has been previously shown to activate CD169+ macrophages, in a murine OSCC model. Immunohistochemical analysis for CD169 and CD8 was performed on lymph node and primary tumor specimens from 89 patients with OSCC. We also evaluated the effects of naringenin on two murine OSCC models. Increased CD169+ macrophage counts in the regional lymph nodes correlated with favorable prognosis and CD8+ cell counts within tumor sites. Additionally, naringenin suppressed tumor growth in two murine OSCC models. The mRNA levels of CD169, interleukin (IL)-12, and C-X-C motif chemokine ligand 10 (CXCL10) in lymph nodes and CTL infiltration in tumors significantly increased following naringenin administration in tumor-bearing mice. These results suggest that CD169+ macrophages in lymph nodes are involved in T cell-mediated anti-tumor immunity and could be a prognostic marker for patients with OSCC. Moreover, naringenin is a new potential agent for CD169+ macrophage activation in OSCC treatment.
Collapse
Affiliation(s)
- Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Manabu Maeshiro
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Asuka Iwamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
18
|
Qian H, Dong D, Fan P, Feng Y, Peng Y, Yao X, Wang R. Expression of KLRG1 on subpopulations of lymphocytes in the peripheral blood of patients with locally advanced nasopharyngeal carcinoma and prognostic analysis. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Hengjun Qian
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Danning Dong
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Peiwen Fan
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yaning Feng
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute University of Oxford Oxford Oxfordshire UK
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute University of Oxford Oxford Oxfordshire UK
| | - Ruozheng Wang
- Chinese Academy of Medical Sciences Key Laboratory of Cancer Immunotherapy and Radiotherapy The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- Xinjiang Key Laboratory of Oncology The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi Xinjiang China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia The Affiliated Tumor Hospital of Xinjiang Medical University Urumqi China
| |
Collapse
|
19
|
Shen Y, Li XL, Li YX, Shan ZG, Zhao YL, Cheng P, Zhao Z, Zhang JY, Chen W, Zhuang Y, Ma DY, Zou QM, Qiu Y, Peng LS. Distribution, phenotype, functional and clinical relevance of CD8 +CD103 + tissue-resident memory T cells in human gastric cancer. Cancer Immunol Immunother 2022; 71:1645-1654. [PMID: 34767045 PMCID: PMC10992218 DOI: 10.1007/s00262-021-03105-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
CD8+CD103+ tissue-resident memory T cells (TRMs) are involved in tumor immune response and linked to favorable clinical outcome in human cancer. However, the distribution, phenotype, functional properties and clinical relevance of these cells in gastric cancer (GC) remain elusive. Here, our data show that, in comparison to non-tumor tissues, the percentages of CD8+CD103+ TRMs in tumors are significantly decreased. Most tumor-infiltrating CD8+CD103+ TRMs are CD45RA-CCR7- effector-memory cells with higher PD-1 and 4-1BB expression than those from non-tumor tissues. Further, tumor-infiltrating CD8+CD103+ TRMs show impaired cytolytic capacity due to decreased granzyme B and perforin expression. Moreover, ex vivo PD-1 blockade could restore the cytolytic capacity of tumor-infiltrating CD8+CD103+ TRMs, and such anti-PD-1-mediated reinvigoration of CD8+CD103+ TRMs could be further enhanced by 4-1BB co-stimulation. Finally, lower levels of Tumor-infiltrating CD8+CD103+ TRMs are positively correlated with GC progression and poor patients' survival. Our data suggest that restoring CD8+CD103+ TRM function by combining PD-1 blockade and 4-1BB co-stimulation may be a promising strategy for treating GC.
Collapse
Affiliation(s)
- Yang Shen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Xiao-Long Li
- Department of General Surgery of Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yu-Xian Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zhi-Guo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jin-Yu Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Weisan Chen
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, VIC, 3085, Australia
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Dai-Yuan Ma
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan Province, China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Yuan Qiu
- Department of General Surgery of Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
20
|
Current Evidence on Immunotherapy for Gestational Trophoblastic Neoplasia (GTN). Cancers (Basel) 2022; 14:cancers14112782. [PMID: 35681761 PMCID: PMC9179472 DOI: 10.3390/cancers14112782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Gestational trophoblastic neoplasia (GTN) is a rare tumor group that arises from the malignant transformation of placental tissue. Based on the evaluation of International Federation of Gynecology and Obstetrics (FIGO) anatomic staging and FIGO prognostic score, GTN is divided into low-, high-, and ultra-high-risk groups if the score obtained is less than or equal to 6, greater than 6 or greater than 12, respectively. The standard treatment is chemotherapy, using a single agent in low-risk disease and multiagent chemotherapy in high- and ultra-high-risk GTN. In chemoresistant forms of GTN, the use of immune checkpoint inhibitors, such as anti-PD-1 or anti-PD-L1/2, could represent a new therapeutic strategy. In this study, we evaluate the available evidence on immune checkpoint inhibitors for GTN treatment. Abstract Background: Gestational trophoblastic disease includes a rare group of benign and malignant tumors derived from abnormal trophoblastic proliferation. Malignant forms are called gestational trophoblastic neoplasia (GTN) and include invasive mole, choriocarcinoma, placental site trophoblastic tumor and epithelioid trophoblastic tumor. Standard treatment of GTN is chemotherapy. The regimen of choice mainly depends on the FIGO prognostic score. Low-risk and high-risk GTN is treated with single-agent or multiagent chemotherapy, respectively. In the case of chemoresistance, immunotherapy may represent a new therapeutic strategy. Methods: Literature obtained from searches on PubMed concerning GTN and immunotherapy was reviewed. Results: Programmed cell death 1 (PD-1) and its ligands (PD-L1/2) are expressed in GTN. Published data on PD-1/PD-L1 inhibitors alone in GTN were available for 51 patients. Pembrolizumab is an anti-PD-1 inhibitor used in chemoresistant forms of GTN. In the TROPHIMMUN trial, Avelumab, a monoclonal antibody inhibiting PD-L1, showed promising results only in patients with GTN resistant to monochemotherapy. Conversely, in patients with resistance to multiagent chemotherapy, treatment with Avelumab was discontinued due to severe toxicity and disease progression. The association of Camrelizumab and Apatinib could represent a different treatment for forms of GTN refractory to polychemotherapy or for relapses. Conclusions: Anti-PD-1 or anti-PD-L1 might represent an important new treatment strategy for the management of chemoresistant/refractory GTN.
Collapse
|
21
|
Han J, Zhao L, Wu J, Diao Y, Guo Q, Yang J, Luo Y. Role of CD4 +T, CD8 +T Cells, and CD4 +T/CD8 +T Cell Ratio in Gastric Cancer and Its Clinical Significance. Appl Bionics Biomech 2022; 2022:1094607. [PMID: 35535325 PMCID: PMC9078800 DOI: 10.1155/2022/1094607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To study the expression and clinical importance of CD4+T, CD8+T cells, and CD4+T/CD8+T cell percentage in gastric cancer (GC) patients. Methods The blood count of CD4+T and CD8+T lymphocytes was ascertained via flow cytometry before surgery in 93 GC patients undergoing gastrectomy. The CD4+T, CD8+T, and Foxp3+T lymphocytes in cancerous and normal adjacent tissues and the presence of PD-L1 in cancerous tissues were detected via immunohistochemistry. The link between the permeation of CD4+T, CD8+T lymphocytes in venous blood, and cancer and normal adjacent tissues was analyzed. Results Lauren histotype, TNM stage, lymphatic/nervous invasion, and NLR level were all considerably associated with peripheral CD4+T and CD8+T cell levels, whereas CD8+T lymphocytes were also associated with vascular invasion (p < 0.05). The CD4+T lymphocyte counts, CD4+T, and CD8+T cell percentage in GC tissues were found to have been decreased when compared to normal adjacent tissues, whereas the CD8+T and Foxp3+T lymphocyte count was higher in GC tissues (p < 0.05). According to a Spearman analysis, the CD4+T and CD8+T cell counts in tumor tissues were positively related to the Foxp3+T lymphocyte count (p < 0.05). Greater peripheral CD4+T lymphocyte counts and increased level of CD4+T/CD8+T percentage corresponded with greater CD4+T cell levels and increased CD4+T/CD8+T quantity in normal adjacent tissues. Higher levels of peripheral CD8+T cells corresponded with higher quantities of CD8+T cells in cancer tissues. A reduced CD4+T lymphocyte count, together with a reduced CD4+T/CD8+T percentage in venous blood, was consistent with a diminished CD4+T cell count along with a reduced CD4+T/CD8+T lymphocyte ratio in cancer and normal adjacent tissues. Conclusion The peripheral quantity of CD4+T and CD8+T lymphocytes in GC patients can partly reflect the infiltrating state of these lymphocytes in cancer and normal adjacent tissues and can preliminarily predict immunotherapy response to a certain extent.
Collapse
Affiliation(s)
- Jingqi Han
- Department of Pathology, Affiliated Hospital of Qinghai University, Xining, China
| | - Linglin Zhao
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Department of Emergency, Qinghai Provincial People's Hospital, Xining, China
| | - Jianying Wu
- Department of Virology, Qinghai Center for Disease Prevention and Control, Xining, China
| | - Yinzhuo Diao
- Department of Oncology, Qinghai Province Cancer Hospital, Xining, China
| | - Qijing Guo
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, China
| | - Jie Yang
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, China
| | - Yushuang Luo
- Department of Oncology, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
22
|
Different syngeneic tumors show distinctive intrinsic tumor-immunity and mechanisms of actions (MOA) of anti-PD-1 treatment. Sci Rep 2022; 12:3278. [PMID: 35228603 PMCID: PMC8885837 DOI: 10.1038/s41598-022-07153-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Cancers are immunologically heterogeneous. A range of immunotherapies target abnormal tumor immunity via different mechanisms of actions (MOAs), particularly various tumor-infiltrate leukocytes (TILs). We modeled loss of function (LOF) in four common anti-PD-1 antibody-responsive syngeneic tumors, MC38, Hepa1-6, CT-26 and EMT-6, by systematical depleting a series of TIL lineages to explore the mechanisms of tumor immunity and treatment. CD8+-T-cells, CD4+-T-cells, Treg, NK cells and macrophages were individually depleted through either direct administration of anti-marker antibodies/reagents or using DTR (diphtheria toxin receptor) knock-in mice, for some syngeneic tumors, where specific subsets were depleted following diphtheria toxin (DT) administration. These LOF experiments revealed distinctive intrinsic tumor immunity and thus different MOAs in their responses to anti-PD-1 antibody among different syngeneic tumors. Specifically, the intrinsic tumor immunity and the associated anti-PD-1 MOA were predominately driven by CD8+ cytotoxic TILs (CTL) in all syngeneic tumors, excluding Hepa1-6 where CD4+ Teff TILs played a key role. TIL-Treg also played a critical role in supporting tumor growth in all four syngeneic models as well as M2-macrophages. Pathway analysis using pharmacodynamic readouts of immuno-genomics and proteomics on MC38 and Hepa1-6 also revealed defined, but distinctive, immune pathways of activation and suppression between the two, closely associated with the efficacy and consistent with TIL-pharmacodynamic readouts. Understanding tumor immune-pathogenesis and treatment MOAs in the different syngeneic animal models, not only assists the selection of the right model for evaluating new immunotherapy of a given MOA, but also can potentially help to understand the potential disease mechanisms and strategize optimal immune-therapies in patients.
Collapse
|
23
|
Ding XL, Su YG, Yu L, Bai ZL, Bai XH, Chen XZ, Yang X, Zhao R, He JX, Wang YY. Clinical characteristics and patient outcomes of molecular subtypes of small cell lung cancer (SCLC). World J Surg Oncol 2022; 20:54. [PMID: 35220975 PMCID: PMC8883717 DOI: 10.1186/s12957-022-02528-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Recent studies have shown that according to the expression levels of achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), and POU class 2 homeobox 3 (POU2F3), small cell lung cancer (SCLC) can be divided into four subtypes: SCLC-A (ASCL1-dominant), SCLC-N (NEUROD1-dominant), SCLC-P (POU2F3-dominant), and SCLC-I (triple negative or SCLC-inflamed). However, there are limited data on the clinical characteristics and prognosis of molecular subtypes of SCLC.
Methods
Immunohistochemistry (IHC) was used to detect the expression levels of ASCL1, NEUROD1, and POU2F3 in 53 patient samples of resectable SCLC. The subtype was defined by the differential expression of the transcription factors for ASCL1, NEUROD1, and POU2F3 or the low expression of all three factors with an inflamed gene signature (SCLC-A, SCLC-N, SCLC-P, and SCLC-I, respectively). The clinicopathological characteristics, immunological features (programmed death ligand 1 [PD-L1] expression and CD8+ tumor infiltrating lymphocyte [TIL] density), and patient outcomes of the four subtypes of SCLC were analyzed.
Results
Positive ASCL1, NEUROD1, and POU2F3 staining was detected in 43 (79.2%), 27 (51.0%), and 17 (32.1%) SCLC specimens by IHC. According to the results of IHC analysis, SCLC was divided into four subtypes: SCLC-A (39.6%), SCLC-N (28.3%), SCLC-P (17.0%), and SCLC-I (15.1%). The 5-year overall survival (OS) rates of these four subtypes were 61.9%, 69.3%, 41.7%, and 85.7%, respectively (P=0.251). There were significant differences in smoking status among different subtypes of SCLC (P= 0.031). However, we did not confirm the correlation between subtypes of SCLC and other clinicopathological factors or immune profiles. Cox multivariate analysis showed that N stage (P=0.025), CD8+ TILs (P=0.024), Ki-67 level (P=0.040), and SCLC-P (P=0.023) were independent prognostic factors for resectable SCLC.
Conclusions
Our IHC-based study validated the proposed classification of SCLC using the expression patterns of key transcriptional regulatory factors. We found that SCLC-P was associated with smokers and was one of the poor prognostic factors of limited-stage SCLC. In addition, no correlation was found between PD-L1 expression or CD8+ TIL density and SCLC subtypes.
Collapse
|
24
|
Mao C, Ding Y, Xu N. A Double-Edged Sword Role of Cytokines in Prostate Cancer Immunotherapy. Front Oncol 2021; 11:688489. [PMID: 34868907 PMCID: PMC8635015 DOI: 10.3389/fonc.2021.688489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer (PC) is one of the most common malignancies among men and is the second leading cause of cancer death. PC immunotherapy has taken relatively successful steps in recent years, and these treatments are still being developed and tested. Evidence suggests that immunotherapy using cytokines as essential mediators in the immune system may help treat cancer. It has been shown that cytokines play an important role in anti-tumor defense. On the other hand, other cytokines can also favor the tumor and suppress anti-tumor responses. Moreover, the dose of cytokine in cancer cytokine-based immunotherapy, as well as the side effects of high doses, can also affect the outcomes of treatment. Cytokines can also be determinative in the outcome of other immunotherapy methods used in PC. In this review, the role of cytokines in the pathogenesis of cancer and their impacts on the main types of immunotherapies in the treatment of PC are discussed.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Lai SCA, Gundlapalli H, Ekiz HA, Jiang A, Fernandez E, Welm AL. Blocking Short-Form Ron Eliminates Breast Cancer Metastases through Accumulation of Stem-Like CD4+ T Cells That Subvert Immunosuppression. Cancer Discov 2021; 11:3178-3197. [PMID: 34330779 PMCID: PMC8800951 DOI: 10.1158/2159-8290.cd-20-1172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapy has potential to prevent and treat metastatic breast cancer, but strategies to enhance immune-mediated killing of metastatic tumors are urgently needed. We report that a ligand-independent isoform of Ron kinase (SF-Ron) is a key target to enhance immune infiltration and eradicate metastatic tumors. Host-specific deletion of SF-Ron caused recruitment of lymphocytes to micrometastases, augmented tumor-specific T-cell responses, and nearly eliminated breast cancer metastasis in mice. Lack of host SF-Ron caused stem-like TCF1+ CD4+ T cells with type I differentiation potential to accumulate in metastases and prevent metastatic outgrowth. There was a corresponding increase in tumor-specific CD8+ T cells, which were also required to eliminate lung metastases. Treatment of mice with a Ron kinase inhibitor increased tumor-specific CD8+ T cells and protected from metastatic outgrowth. These data provide a strong preclinical rationale to pursue small-molecule Ron kinase inhibitors for the prevention and treatment of metastatic breast cancer. SIGNIFICANCE The discovery that SF-Ron promotes antitumor immune responses has significant clinical implications. Therapeutic antibodies targeting full-length Ron may not be effective for immunotherapy; poor efficacy of such antibodies in trials may be due to their inability to block SF-Ron. Our data warrant trials with inhibitors targeting SF-Ron in combination with immunotherapy. This article is highlighted in the In This Issue feature, p. 2945.
Collapse
Affiliation(s)
- Shu-Chin Alicia Lai
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Harika Gundlapalli
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - H. Atakan Ekiz
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Amanda Jiang
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Elvelyn Fernandez
- Genomics Summer Research for Minorities (GSRM) Program, University of Utah, Salt Lake City, Utah
| | - Alana L. Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| |
Collapse
|
26
|
Melo CM, Vidotto T, Chaves LP, Lautert-Dutra W, dos Reis RB, Squire JA. The Role of Somatic Mutations on the Immune Response of the Tumor Microenvironment in Prostate Cancer. Int J Mol Sci 2021; 22:9550. [PMID: 34502458 PMCID: PMC8431051 DOI: 10.3390/ijms22179550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has improved patient survival in many types of cancer, but for prostate cancer, initial results with immunotherapy have been disappointing. Prostate cancer is considered an immunologically excluded or cold tumor, unable to generate an effective T-cell response against cancer cells. However, a small but significant percentage of patients do respond to immunotherapy, suggesting that some specific molecular subtypes of this tumor may have a better response to checkpoint inhibitors. Recent findings suggest that, in addition to their function as cancer genes, somatic mutations of PTEN, TP53, RB1, CDK12, and DNA repair, or specific activation of regulatory pathways, such as ETS or MYC, may also facilitate immune evasion of the host response against cancer. This review presents an update of recent discoveries about the role that the common somatic mutations can play in changing the tumor microenvironment and immune response against prostate cancer. We describe how detailed molecular genetic analyses of the tumor microenvironment of prostate cancer using mouse models and human tumors are providing new insights into the cell types and pathways mediating immune responses. These analyses are helping researchers to design drug combinations that are more likely to target the molecular and immunological pathways that underlie treatment failure.
Collapse
Affiliation(s)
- Camila Morais Melo
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Thiago Vidotto
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Luiz Paulo Chaves
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - William Lautert-Dutra
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
| | - Rodolfo Borges dos Reis
- Division of Urology, Department of Surgery and Anatomy, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil;
| | - Jeremy Andrew Squire
- Department of Genetics, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14048-900, SP, Brazil; (C.M.M.); (T.V.); (L.P.C.); (W.L.-D.)
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
27
|
Nakid-Cordero C, Choquet S, Gauthier N, Balegroune N, Tarantino N, Morel V, Arzouk N, Burrel S, Rousseau G, Charlotte F, Larsen M, Vieillard V, Autran B, Leblond V, Guihot A. Distinct immunopathological mechanisms of EBV-positive and EBV-negative posttransplant lymphoproliferative disorders. Am J Transplant 2021; 21:2846-2863. [PMID: 33621411 DOI: 10.1111/ajt.16547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 01/25/2023]
Abstract
EBV-positive and EBV-negative posttransplant lymphoproliferative disorders (PTLDs) arise in different immunovirological contexts and might have distinct pathophysiologies. To examine this hypothesis, we conducted a multicentric prospective study with 56 EBV-positive and 39 EBV-negative PTLD patients of the K-VIROGREF cohort, recruited at PTLD diagnosis and before treatment (2013-2019), and compared them to PTLD-free Transplant Controls (TC, n = 21). We measured absolute lymphocyte counts (n = 108), analyzed NK- and T cell phenotypes (n = 49 and 94), and performed EBV-specific functional assays (n = 16 and 42) by multiparameter flow cytometry and ELISpot-IFNγ assays (n = 50). EBV-negative PTLD patients, NK cells overexpressed Tim-3; the 2-year progression-free survival (PFS) was poorer in patients with a CD4 lymphopenia (CD4+ <300 cells/mm3 , p < .001). EBV-positive PTLD patients presented a profound NK-cell lymphopenia (median = 60 cells/mm3 ) and a high proportion of NK cells expressing PD-1 (vs. TC, p = .029) and apoptosis markers (vs. TC, p < .001). EBV-specific T cells of EBV-positive PTLD patients circulated in low proportions, showed immune exhaustion (p = .013 vs. TC) and poorly recognized the N-terminal portion of EBNA-3A viral protein. Altogether, this broad comparison of EBV-positive and EBV-negative PTLDs highlight distinct patterns of immunopathological mechanisms between these two diseases and provide new clues for immunotherapeutic strategies and PTLD prognosis.
Collapse
Affiliation(s)
- Cecilia Nakid-Cordero
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | - Sylvain Choquet
- Service d'Hématologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Gauthier
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Nadine Tarantino
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France.,CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Véronique Morel
- Service d'Hématologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Nadia Arzouk
- Service de Néphrologie, Urologie et Transplantation Rénale, Hôpital Pitié-Salpêtrière, Paris, France
| | - Sonia Burrel
- Service de Virologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Géraldine Rousseau
- Service de Chirurgie Digestive, Hépato-Bilio-pancréatique et Transplantation Hépatique, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Martin Larsen
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France.,CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Vieillard
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France.,CNRS ERL8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Brigitte Autran
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Amélie Guihot
- Sorbonne Université (Univ. Paris 06), INSERM U1135, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Hôpital Pitié-Salpêtrière, Paris, France.,Département d'Immunologie, Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | | |
Collapse
|
28
|
Hou Y, Zhang G. Identification of immune-infiltrating cell-related biomarkers in hepatocellular carcinoma based on gene co-expression network analysis. Diagn Pathol 2021; 16:57. [PMID: 34218795 PMCID: PMC8255019 DOI: 10.1186/s13000-021-01118-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is often caused by chronic liver infection or inflammation. Searching for potential immunotherapy targets will aid the early diagnosis and treatment of HCC. Methods Firstly, detailed HCC data were downloaded from The Cancer Genome Atlas database. GDCRNATools was used for the comprehensive analysis of RNA sequencing data. Subsequently, the CIBERSORT package was used to estimate infiltration scores of 22 types of immune cells in complex samples. Furthermore, hub genes were identified via weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) network analysis. In addition, multiple databases were used to validate the expression of hub gene in the tumor tissue. Finally, prognostic, diagnostic and immunohistochemical analysis of key hub genes was performed. Results In the present study, 9 hub genes were identified using WGCNA and PPI network analysis. Furthermore, the expression levels of 9 genes were positively correlated with the infiltration levels of CD8-positive T (CD8+ T) cells. In multiple dataset validations, the expression levels of CCL5, CXCR6, CD3E, and LCK were decreased in cancer tissues. In addition, survival analysis revealed that patients with LCK low expression had a poor survival prognosis (P < 0.05). Immunohistochemistry results demonstrated that CCL5, CD3E and LCK were expressed at low levels in HCC cancer tissues. Conclusion The identification of CCL5, CXCR6, CD3E and LCK may be helpful in the development of early diagnosis and therapy of HCC. LCK may be a potential prognostic biomarker for immunotherapy for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13000-021-01118-y.
Collapse
Affiliation(s)
- Yinghui Hou
- Department of Gastroenterology, The Second People's Hospital of Liaocheng City, No.306 Jiankang Street, Linqing City, 252600, Shandong Province, China
| | - Guizhi Zhang
- Department of Gastroenterology, The Second People's Hospital of Liaocheng City, No.306 Jiankang Street, Linqing City, 252600, Shandong Province, China.
| |
Collapse
|
29
|
Gastric Cancer Mesenchymal Stem Cells Inhibit NK Cell Function through mTOR Signalling to Promote Tumour Growth. Stem Cells Int 2021; 2021:9989790. [PMID: 34306099 PMCID: PMC8263240 DOI: 10.1155/2021/9989790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The dysfunction of natural killer (NK) cells has been increasingly reported in malignancies, especially in solid tumours. Mesenchymal stem cells (MSCs) exhibit pleiotropic functions that include mediating immune cell exhaustion which is implicated in cancer progression. However, the association of MSCs derived from gastric cancer (gastric cancer mesenchymal stem cells: GCMSCs) with the dysfunction of NK cells remains poorly understood. In this study, we demonstrated that GCMSCs effectively contributed to the exhaustion of NK cells through the release of soluble factors. Furthermore, passivation of the antitumour effect in NK cells was closely associated with their dysfunctional state. The GCMSC-conditioned medium prevented the frequency and effector function of infiltrating NK cells in tumour-bearing mouse models, thus promoting tumour growth. Mechanistically, mammalian target of rapamycin (mTOR) signalling, a critical regulator of cellular metabolism that mediates the function of immune cells, was inhibited in NK cells treated with GCMSCs. However, the checkpoint receptor PD-1 was still present at minimal levels with or without GCMSCs. The study results revealed that GCMSCs contributed to dysfunctional NK cells involved at least partially in the inhibition of mTOR signalling, suggesting potential directions for NK cell-based cancer immunotherapy.
Collapse
|
30
|
Xie W, Guo H, Zhang J, Hu L, Wu Y, Wang X. Comprehensive Analysis of the Relationship Between Metabolic Reprogramming and Immune Function in Prostate Cancer. Onco Targets Ther 2021; 14:3251-3266. [PMID: 34040390 PMCID: PMC8140915 DOI: 10.2147/ott.s304298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Prostate cancer is the most common malignant urinary tumor among men. Treatments are currently unsatisfactory for advanced prostate cancer. Cancer biology remains the basis for developing new antitumor drugs. Therefore, it is crucial to study the metabolic reprogramming, immune microenvironment, and immune evasion of tumors. This study aimed to clarify the relationship between tumor glycolysis and immune function in prostate cancer. MATERIALS AND METHODS We downloaded the gene expression matrix and clinical data of prostate cancer from The Cancer Genome Atlas. We studied the expression profiles and prognostic significance of glycolysis-related genes and used CIBERSORT to identify the proportion of tumor-infiltrating immune cells. Through differential gene expression analysis, gene ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, gene set enrichment analysis, and correlation analysis, we further explored the relationship between glycolytic activity and immune function. We also performed immunohistochemistry, Western blot and RT-qPCR experiments using human prostate cancer tissue and cell lines to verify the expression of some glycolytic genes, macrophage infiltration and polarization. RESULTS Among glycolysis-related genes, the expression of SLC16A3 in prostate cancer tissues was lower than that in normal tissues, but its high expression was associated with poor prognosis. In the high SLC16A3 expression group, several glycolysis-related genes also showed high expression, which was confirmed by immunohistochemistry experiments and Western blot. In high-glycolysis group, the expression of immune-related genes and the interleukin-17 (IL-17) signaling pathway were upregulated. CD8+ T cells, regulatory T cells, macrophages, and other immune cells were highly enriched. Among them, M2 macrophage infiltration was associated with poor prognosis. CONCLUSION The enhanced glycolytic activity of prostate cancer may contribute to the formation of a pro-tumor immune microenvironment. The IL-17 signaling pathway may play an important mediating role in the interaction between tumor glycolysis and immune function.
Collapse
Affiliation(s)
- Weijie Xie
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Huan Guo
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Jiawei Zhang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Li Hu
- Department of Physiology, Shantou University of Medical College, Shantou, People’s Republic of China
| | - Yuqi Wu
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Xiangwei Wang
- Department of Urology & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, People’s Republic of China
- Department of Urology, 3rd Affiliated Hospital and Department of Perioperative Medicine of Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| |
Collapse
|
31
|
Labiano S, Roh V, Godfroid C, Hiou-Feige A, Romero J, Sum E, Rapp M, Boivin G, Wyss T, Simon C, Bourhis J, Umaña P, Trumpfheller C, Tolstonog GV, Vozenin MC, Romero P. CD40 Agonist Targeted to Fibroblast Activation Protein α Synergizes with Radiotherapy in Murine HPV-Positive Head and Neck Tumors. Clin Cancer Res 2021; 27:4054-4065. [PMID: 33903200 DOI: 10.1158/1078-0432.ccr-20-4717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV+-HNSCC) is rising worldwide and although current therapeutic modalities are efficient in the majority of patients, there is a high rate of treatment failures. Thus, novel combination approaches are urgently needed to achieve better disease control in patients with HPV+-HNSCC. We investigated the safety and therapeutic efficacy of a novel fibroblast activation protein (FAP)-targeted CD40 agonist (FAP-CD40) in combination with local hypofractionated radiation in a syngeneic HPV+-HNSCC model. EXPERIMENTAL DESIGN Using an established orthotopic model, we treated tumor-bearing mice with local hypofractionated radiotherapy (2 × 6 Gy) alone or in combination with a systemic administration of the FAP-CD40 antibody. Following up the mice, we evaluated the changes in the tumor microenvironment (TME) by immunofluorescence, FACS, and NanoString RNA analysis. RESULTS The suboptimal radiotherapy regimen chosen failed to control tumors in the treated mice. The FAP-CD40 administered in monotherapy transiently controlled tumor growth, whereas the combined therapy induced durable complete responses in more than 80% of the tumor-bearing mice. This notable efficacy relied on the radiotherapy-induced remodeling of the TME and activation of the CD8+ T-cell-cDC1 axis and was devoid of the systemic toxicity frequently associated with CD40-targeted therapy. Moreover, the robust immunologic memory developed effectively prevented tumor relapses, a common feature in patients with HNSCC. CONCLUSIONS Our study provides proof of concept, as well as mechanistic insights of the therapeutic efficacy of a bispecific FAP-CD40 combined with local radiotherapy in a FAP+-HNSCC model increasing overall survival and inducing long-term antitumor immunity.
Collapse
Affiliation(s)
- Sara Labiano
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Vincent Roh
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Céline Godfroid
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland
| | - Agnès Hiou-Feige
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jackeline Romero
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eva Sum
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Moritz Rapp
- Roche Innovation Center Munich (RICM), pRED, Penzberg, Germany
| | - Gael Boivin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Tania Wyss
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.,SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian Simon
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean Bourhis
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Christine Trumpfheller
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development (pRED), Schlieren, Switzerland
| | - Genrich V Tolstonog
- Department of Otolaryngology - Head and Neck Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology. Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
32
|
Abstract
CD4 T cell effector subsets not only profoundly affect cancer progression, but recent evidence also underscores their critical contribution to the anticancer efficacy of immune checkpoint inhibitors. In 2012, the two seminal studies suggested the superior antimelanoma activity of TH9 cells over other T cell subsets upon adoptive T cell transfer. While these findings provided great impetus to investigate further the unique functions of TH9 cells and explore their relevance in cancer immunotherapy, the following questions still remain outstanding: are TH9 cell anticancer functions restricted to melanoma? What are the factors favouring TH9 cell effector functions? What is the contribution of TH9 cells to cancer immunotherapy treatments? Can TH9 cells be identified in humans and, if so, what is their clinical relevance? By reviewing the studies addressing these questions, we will discuss how TH9 cells could be therapeutically harnessed for cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Isis Benoit-Lizon
- INSERM, U1231, Dijon, France; Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France; Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France; Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
33
|
Li Z, Zhao R, Yang W, Li C, Huang J, Wen Z, Du G, Jiang L. PLCG2 as a potential indicator of tumor microenvironment remodeling in soft tissue sarcoma. Medicine (Baltimore) 2021; 100:e25008. [PMID: 33725976 PMCID: PMC7982206 DOI: 10.1097/md.0000000000025008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/11/2021] [Indexed: 01/05/2023] Open
Abstract
The tumor microenvironment (TME) plays an important role in the occurrence and development of soft tissue sarcoma (STS). A number of studies have shown that to inhibit tumor growth, the TME can be remodeled into an environment unsuitable for tumor proliferation. However, a lack of understanding exists regarding the dynamic regulation of TME.In this study, we used CIBERSORT and ESTIMATE calculation methods from the Cancer Genome Atlas (TCGA) database to calculate the proportion of tumor infiltrating immune cells (TICs) and the number of immune and stromal components in 263 STS samples. Differential expression genes (DEGs) shared by Immune Score and Stromal Score were obtained via difference analysis. Univariate Cox regression analysis and construction of protein-protein interaction (PPI) networks were applied to the DEGs.Through intersection analysis of univariate COX and PPI, PLCG2 was determined as the indicator. Further analysis showed that PLCG2 expression was positively correlated with the survival of STS patients. Gene set enrichment analysis (GSEA) showed that genes in the highly expressed PLCG2 group were enriched in immune-related activities. In the low-expression PLCG2 group, genes were enriched in the E2F, G2M, and MYC pathways. Difference analysis and correlation analysis showed that CD8+ T cells, gamma delta T cells, monocytes, and M1 macrophages were positively correlated with PLCG2 expression, indicating that PLCG2 may represent the immune status of TME.Therefore, the level of PLCG2 may aid in determining the prognosis of STS patients, especially the status of TME. These data provide additional insights into the remodeling of TME.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Du
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Lingling Jiang
- Department of Anesthesiology, The second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Cao H, Quan S, Zhang L, Chen Y, Jiao G. BMPR2 expression level is correlated with low immune infiltration and predicts metastasis and poor survival in osteosarcoma. Oncol Lett 2021; 21:391. [PMID: 33777214 PMCID: PMC7988701 DOI: 10.3892/ol.2021.12652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor in adolescents and young adults, and identifying biomarkers for prognosis and therapy is necessary. Bone morphogenetic protein receptor 2 (BMPR2) is involved in various cellular functions, including cell adhesion, proliferation and invasion, inflammation, apoptosis and metastatic spread. However, the correlation between BMPR2 expression levels and prognosis and tumor-infiltrating immune cells in osteosarcoma is not well understood. In the present study, the expression level of BMPR2 was investigated using the Oncomine and R2 databases. The association between the expression level of BMPR2 and the clinical prognosis of patients with cancer was analyzed using the R2 database. The relationship between the expression level of BMPR2 and immune cell infiltration in the stroma of osteosarcoma was assessed using the Tumor Immune Estimation Resource (TIMER) and CIBERSORT. The correlations between BMPR2 expression level and infiltrated immune cell gene marker sets in osteosarcoma were validated in the TIMER and R2 databases. Analysis of a cohort of patients with osteosarcoma revealed that BMPR2 expression was significantly higher in osteosarcoma compared with in normal tissue and was correlated with poor prognosis. M0 macrophages, M2 macrophages, resting mast, γ δ T and CD8+ T cells were the top five immune cells with the highest degrees of infiltration in osteosarcoma. In addition, BMPR2 expression level showed a significant negative correlation with the gene markers of CD8+ T cells, monocytes and M2 macrophages. Low levels of infiltrating CD8+ T cells, monocytes or M2 macrophages in osteosarcoma was significantly associated with poor survival. These data suggested that CD8+ T cells, monocytes and M2 macrophages play significant roles in the establishment of the immune microenvironment of osteosarcoma. High BMPR2 expression was associated with poor prognosis and low infiltration of CD8+ T cells, monocytes and M2 macrophages in osteosarcoma. Hence, BMPR2 can be considered a biomarker of the immune infiltration, metastasis and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Hongxin Cao
- Department of Medical Oncology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Key Laboratory of Chemical Biology, Ministry of Education, Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shuang Quan
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China.,Spine and Spinal Cord Disease Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
35
|
Lehmann AA, Zhang T, Reche PA, Lehmann PV. Discordance Between the Predicted Versus the Actually Recognized CD8+ T Cell Epitopes of HCMV pp65 Antigen and Aleatory Epitope Dominance. Front Immunol 2021; 11:618428. [PMID: 33633736 PMCID: PMC7900545 DOI: 10.3389/fimmu.2020.618428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
CD8+ T cell immune monitoring aims at measuring the size and functions of antigen-specific CD8+ T cell populations, thereby providing insights into cell-mediated immunity operational in a test subject. The selection of peptides for ex vivo CD8+ T cell detection is critical because within a complex antigen exists a multitude of potential epitopes that can be presented by HLA class I molecules. Further complicating this task, there is HLA class I polygenism and polymorphism which predisposes CD8+ T cell responses towards individualized epitope recognition profiles. In this study, we compare the actual CD8+ T cell recognition of a well-characterized model antigen, human cytomegalovirus (HCMV) pp65 protein, with its anticipated epitope coverage. Due to the abundance of experimentally defined HLA-A*02:01-restricted pp65 epitopes, and because in silico epitope predictions are most advanced for HLA-A*02:01, we elected to focus on subjects expressing this allele. In each test subject, every possible CD8+ T cell epitope was systematically covered testing 553 individual peptides that walk the sequence of pp65 in steps of single amino acids. Highly individualized CD8+ T cell response profiles with aleatory epitope recognition patterns were observed. No correlation was found between epitopes' ranking on the prediction scale and their actual immune dominance. Collectively, these data suggest that accurate CD8+ T cell immune monitoring may necessitate reliance on agnostic mega peptide pools, or brute force mapping, rather than electing individual peptides as representative epitopes for tetramer and other multimer labeling of surface antigen receptors.
Collapse
Affiliation(s)
- Alexander A. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Ting Zhang
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| | - Pedro A. Reche
- Laboratorio de Inmunomedicina & Inmunoinformatica, Departamento de Immunologia & O2, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd., Shaker Heights, OH, United States
| |
Collapse
|
36
|
Udagawa K, Niki Y, Kikuchi T, Fukuhara Y, Takeda Y, Miyamoto T, Matsumoto M, Nakamura M. Overexpression of Interleukin-1α Suppresses Liver Metastasis of Lymphoma: Implications for Antitumor Effects of CD8+ T-cells. J Histochem Cytochem 2021; 69:245-255. [PMID: 33559519 DOI: 10.1369/0022155421991634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interleukin (IL)-1 plays a key role in carcinogenesis, tumor progression, and metastasis. Although IL-1 may enhance the expansion of CD8+ T-cells, the pathological contribution of IL-1-activated CD8+ T-cells to tumor metastasis remains unclear. This study used a liver metastasis model of the EL4 T-cell lymphoma cells transplanted into human IL (hIL)-1α conditional transgenic (hIL-1α cTg) mice. Overproduction of hIL-1α suppressed both macroscopic and histological liver metastasis of EL4 T-cell lymphoma. The hIL-1α-induced inflammatory state increased the number of CD8+ T-cells both within and around metastatic tumors. Moreover, larger numbers of CD8+ T-cells showed greater infiltration of liver blood vessels in hIL-1α cTg mice than in control wild-type mice. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining of liver tissue from hIL-1α cTg mice indicated increased apoptosis of cells in the tumor. Localization of apoptosis cells resembled that of CD8+ T-cells. In addition, cytotoxicity assay showed that CD8+ T-cell counts from tumor-bearing hIL-1α cTg mice correlated with cytotoxicity against EL4. In summary, IL-1α suppresses lymphoma metastasis, and IL-1α-activated CD8+ T-cells may play important roles in inhibiting both tumor metastasis and metastatic tumor growth.
Collapse
Affiliation(s)
- Kazuhiko Udagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuo Niki
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Toshiyuki Kikuchi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,National Hospital Organization Murayama Medical Center, Tokyo, Japan
| | - Yusuke Fukuhara
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Takeda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Takeshi Miyamoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Kumamoto University School of Medicine, Kumamoto, Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Liu Y, He S, Wang XL, Peng W, Chen QY, Chi DM, Chen JR, Han BW, Lin GW, Li YQ, Wang QY, Peng RJ, Wei PP, Guo X, Li B, Xia X, Mai HQ, Hu XD, Zhang Z, Zeng YX, Bei JX. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat Commun 2021; 12:741. [PMID: 33531485 PMCID: PMC7854640 DOI: 10.1038/s41467-021-21043-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
The heterogeneous nature of tumour microenvironment (TME) underlying diverse treatment responses remains unclear in nasopharyngeal carcinoma (NPC). Here, we profile 176,447 cells from 10 NPC tumour-blood pairs, using single-cell transcriptome coupled with T cell receptor sequencing. Our analyses reveal 53 cell subtypes, including tumour-infiltrating CD8+ T, regulatory T (Treg), and dendritic cells (DCs), as well as malignant cells with different Epstein-Barr virus infection status. Trajectory analyses reveal exhausted CD8+ T and immune-suppressive TNFRSF4+ Treg cells in tumours might derive from peripheral CX3CR1+CD8+ T and naïve Treg cells, respectively. Moreover, we identify immune-regulatory and tolerogenic LAMP3+ DCs. Noteworthily, we observe intensive inter-cell interactions among LAMP3+ DCs, Treg, exhausted CD8+ T, and malignant cells, suggesting potential cross-talks to foster an immune-suppressive niche for the TME. Collectively, our study uncovers the heterogeneity and interacting molecules of the TME in NPC at single-cell resolution, which provide insights into the mechanisms underlying NPC progression and the development of precise therapies for NPC.
Collapse
Affiliation(s)
- Yang Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xi-Liang Wang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Wan Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Qiu-Yan Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Dong-Mei Chi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jie-Rong Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Bo-Wei Han
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Guo-Wang Lin
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yi-Qi Li
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Qian-Yu Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Rou-Jun Peng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Pan-Pan Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Xiang Guo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China
| | - Xiaojun Xia
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Hai-Qiang Mai
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China
| | - Xue-Da Hu
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Zemin Zhang
- BIOPIC, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China.
| | - Yi-Xin Zeng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China.
| | - Jin-Xin Bei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, People's Republic of China.
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, People's Republic of China.
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
38
|
Guo Y, Feng Y, Fan P, Yao X, Peng Y, Wang R, Kuerban G. Expression and Clinical Significance of KLRG1 and 2B4 on T Cells in the Peripheral Blood and Tumour of Patients with Cervical Cancer. Immunol Invest 2021; 51:670-687. [PMID: 33401997 DOI: 10.1080/08820139.2020.1867567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Killer cell lectin-like receptor G1 (KLRG1) and 2B4 play important roles in the immune regulation and immune tolerance to tumor cells by inhibiting T cell function. However, the clinical relevance of KLRG1 and 2B4 to cervical cancer remains to be understood.Methods: We measured the frequency of KLRG1+ or 2B4+ cells in CD4+ or CD8 + T cells derived from peripheral blood or tumour biopsies in cervical cancer patients by flow cytometry.Results: Compared with healthy controls, the level of KLRG1 and 2B4 on CD8 + T cells in the blood of the patients increased significantly (P = .0056 and .0441). KLRG1 level on CD8 + T cells and 2B4 level on CD4 + T cells in peripheral blood were significantly higher than in tumor tissues (P < .0001 and P = .0003). Higher KLRG1 level on blood-derived CD8 + T cells was observed in patients older than 54 years (P = .001) or tested to be HPV-negative (P = .026). Tumor-infiltrated CD8 + T cells demonstrated elevated KLRG1 level in patients having pelvic lymph node metastasis (P = .016). Increased 2B4 level on blood-derived CD8 + T cells was also observed in patients older than 54 years (P < .001). KLRG1 expression on both CD4 + T (P = .0158) and CD8 + T (P = .0187) cells in the peripheral blood increased after radiotherapy.Conclusion: KLRG1 level on T cells was related to age and HPV in patients with cervical cancer, while 2B4 level on T cells was related to age, underlying their roles in the host immune response to cervical cancer. Radiotherapy can improve the immune function of patients.
Collapse
Affiliation(s)
- Yuping Guo
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yaning Feng
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Peiwen Fan
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xuan Yao
- Chinese Academy of Medical Sciences Oxford Institute (CAMS Oxford Institute), University of Oxford, Oxford, UK
| | - Yanchun Peng
- Chinese Academy of Medical Sciences Oxford Institute (CAMS Oxford Institute), University of Oxford, Oxford, UK
| | - Ruozheng Wang
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Gulina Kuerban
- Key Laboratory of Cancer Immunotherapy and Radiotherapy, Chinese Academy of Medical Sciences, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,Key Laboratory of Oncology of Xinjiang Uyghur Autonomous Region, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The Third Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
39
|
Gastman B, Agarwal PK, Berger A, Boland G, Broderick S, Butterfield LH, Byrd D, Fecci PE, Ferris RL, Fong Y, Goff SL, Grabowski MM, Ito F, Lim M, Lotze MT, Mahdi H, Malafa M, Morris CD, Murthy P, Neves RI, Odunsi A, Pai SI, Prabhakaran S, Rosenberg SA, Saoud R, Sethuraman J, Skitzki J, Slingluff CL, Sondak VK, Sunwoo JB, Turcotte S, Yeung CC, Kaufman HL. Defining best practices for tissue procurement in immuno-oncology clinical trials: consensus statement from the Society for Immunotherapy of Cancer Surgery Committee. J Immunother Cancer 2020; 8:e001583. [PMID: 33199512 PMCID: PMC7670953 DOI: 10.1136/jitc-2020-001583] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy is now a cornerstone for cancer treatment, and much attention has been placed on the identification of prognostic and predictive biomarkers. The success of biomarker development is dependent on accurate and timely collection of biospecimens and high-quality processing, storage and shipping. Tumors are also increasingly used as source material for the generation of therapeutic T cells. There have been few guidelines or consensus statements on how to optimally collect and manage biospecimens and source material being used for immunotherapy and related research. The Society for Immunotherapy of Cancer Surgery Committee has brought together surgical experts from multiple subspecialty disciplines to identify best practices and to provide consensus on how best to access and manage specific tissues for immuno-oncology treatments and clinical investigation. In addition, the committee recommends early integration of surgeons and other interventional physicians with expertise in biospecimen collection, especially in clinical trials, to optimize the quality of tissue and the validity of correlative clinical studies in cancer immunotherapy.
Collapse
Affiliation(s)
- Brian Gastman
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Piyush K Agarwal
- Department of Surgery, University of Chicago, Chicago, Illinois, USA
| | - Adam Berger
- Division of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Genevieve Boland
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephen Broderick
- Oncology, Johns Hopkins Medicine Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland, USA
- Department of Surgery, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Lisa H Butterfield
- Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Microbiology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - David Byrd
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert L Ferris
- Departments of Otolaryngology, Immunology, and Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Yuman Fong
- Department of Surgery, City of Hope National Medical Center, Duarte, California, USA
| | | | - Matthew M Grabowski
- Department of Neurosurgery, Duke Center for Brain and Spine Metastasis, Durham, North Carolina, USA
| | - Fumito Ito
- Center for Immunotherapy, Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Michael Lim
- Departments of Neurosurgery, Oncology, Radiation Oncology, and Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haider Mahdi
- OBGYN and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Carol D Morris
- Division of Orthopaedic Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pranav Murthy
- Department of Surgery, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rogerio I Neves
- Department of Surgery, Penn State Cancer Institute, Hershey, Pennsylvania, USA
| | - Adekunle Odunsi
- Departments of Immunology and Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Sara I Pai
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sangeetha Prabhakaran
- Division of Surgical Oncology, Department of Surgery, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Ragheed Saoud
- Department of Surgery, University of Chicago Hospitals, Chicago, Illinois, United States
| | | | - Joseph Skitzki
- Departments of Surgical Oncology and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Craig L Slingluff
- Department of Surgery, Division of Surgical Oncology, Breast and Melanoma Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - John B Sunwoo
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Simon Turcotte
- Surgery Department, Centre Hospitalier de l'Universite de Montreal, Montreal, Quebec, Canada
| | - Cecilia Cs Yeung
- Department of Pathology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Howard L Kaufman
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Immuneering Corp, Cambridge, Massachusetts, USA
| |
Collapse
|
40
|
Tsaur I, Brandt MP, Juengel E, Manceau C, Ploussard G. Immunotherapy in prostate cancer: new horizon of hurdles and hopes. World J Urol 2020; 39:1387-1403. [PMID: 33106940 PMCID: PMC8514362 DOI: 10.1007/s00345-020-03497-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Prostate cancer (PCa) is the most common malignancy in men and the cause for the second most common cancer-related death in the western world. Despite ongoing development of novel approaches such as second generation androgen receptor targeted therapies, metastatic disease is still fatal. In PCa, immunotherapy (IT) has not reached a therapeutic breakthrough as compared to several other solid tumors yet. We aimed at highlighting the underlying cellular mechanisms crucial for IT in PCa and giving an update of the most essential past and ongoing clinical trials in the field. Methods We searched for relevant publications on molecular and cellular mechanisms involved in the PCa tumor microenvironment and response to IT as well as completed and ongoing IT studies and screened appropriate abstracts of international congresses. Results Tumor progression and patient outcomes depend on complex cellular and molecular interactions of the tumor with the host immune system, driven rather dormant in case of PCa. Sipuleucel-T and pembrolizumab are the only registered immune-oncology drugs to treat this malignancy. A plethora of studies assess combination of immunotherapy with other agents or treatment modalities like radiation therapy which might increase its antineoplastic activity. No robust and clinically relevant prognostic or predictive biomarkers have been established yet. Conclusion Despite immunosuppressive functional status of PCa microenvironment, current evidence, based on cellular and molecular conditions, encourages further research in this field.
Collapse
Affiliation(s)
- Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Maximilian P Brandt
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center, Johannes Gutenberg University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Cécile Manceau
- Department of Urology, CHU-Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France
| | - Guillaume Ploussard
- Department of Urology, CHU-Institut Universitaire du Cancer Toulouse-Oncopole, Toulouse, France.,Department of Urology, La Croix du Sud Hospital, Toulouse, France
| |
Collapse
|
41
|
Sardana R, Mishra SK, Williamson SR, Mohanty A, Mohanty SK. Immune checkpoints and their inhibitors: Reappraisal of a novel diagnostic and therapeutic dimension in the urologic malignancies. Semin Oncol 2020; 47:367-379. [PMID: 33160642 DOI: 10.1053/j.seminoncol.2020.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Advances in molecular immunology have unveiled some of the complexity of the mechanisms regulating cellular immune responses and led to the successful targeting of immune checkpoints in attempts to enhance antitumor T cell responses. Surgery, chemotherapy, and radiation therapy have been the mainstay of treatment in urologic malignancies. Immune checkpoint molecules such as cytotoxic T-lymphocyte associated protein-4, programmed cell death protein-1, and programmed death-ligand 1 have been shown to play central roles in evading cancer immunity. Thus these molecules have been targeted by inhibitors for the management of cancers forming the basis of immunotherapy. Immunotherapy is now among the first line therapeutic options for metastatic renal cell carcinomas. In advanced bladder cancer, immunotherapy is the standard of care in the second line and the first line for cisplatin ineligible patients. There continues to be ongoing research to identify the role if any of immunotherapy in testicular, prostatic, and penile cancers. The ideal biomarker for response to immunotherapy is still elusive. Although programmed death-ligand 1 immunohistochemical testing has been widely used across the globe as a biomarker for immunotherapy, companion diagnostic tests have inherent issues with testing and reporting and cannot have universal applicability. Additional biomarkers including, tumor mutational burden, deficient mismatch repair, high microsatellite instability, and immune gene expression profiling are being evaluated in various clinical trials. This review appraises the data of immunotherapy in the management of urologic malignancies.
Collapse
Affiliation(s)
- Rohan Sardana
- Department of Hematopathology, Tata Memorial Hospital, Mumbai, India
| | - Sourav K Mishra
- Department of Medical Oncology, Advanced Medical Research Institute, Bhubaneswar, India
| | - Sean R Williamson
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Abhishek Mohanty
- Principal Research Officer Head of Research, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Sambit K Mohanty
- Department of Pathology and Laboratory Medicine, Advanced Medical Research Institute, Bhubaneswar, India.
| |
Collapse
|
42
|
Shen Y, Teng Y, Lv Y, Zhao Y, Qiu Y, Chen W, Wang L, Wang Y, Mao F, Cheng P, Ma D, Zhuang Y, Zou Q, Peng L. PD-1 does not mark tumor-infiltrating CD8+ T cell dysfunction in human gastric cancer. J Immunother Cancer 2020; 8:jitc-2019-000422. [PMID: 32753468 PMCID: PMC7406116 DOI: 10.1136/jitc-2019-000422] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2020] [Indexed: 01/05/2023] Open
Abstract
Background Overexpression of programmed cell death protein 1 (PD-1) is linked to CD8+ T cell dysfunction and contributes to tumor immune escape. However, the prevalence and functional regulations of PD-1 expression on CD8+ T cells in human gastric cancer (GC) remain largely unknown. Methods Flow cytometry was performed to analyze the level, phenotype, functional and clinical relevance of PD-1+CD8+ T cells in GC patients. Peripheral blood CD8+ T cells were purified and subsequently exposed to culture supernatants from digested primary GC tumor tissues (TSN) in vitro for PD-1 expression and functional assays. Tumor responses to adoptively transferred TSN-stimulated CD8+ T cells or to the TSN-stimulated CD8+ T cell transfer combined with an anti-PD-1 antibody injection were measured in an in vivo xenograft mouse model. Results GC patients’ tumors showed a significantly increased PD-1+CD8+ T cell infiltration. However, these GC-infiltrating PD-1+CD8+ T cells showed equivalent function to their PD-1−CD8+ counterparts and they did not predict tumor progression. High level of transforming growth factor-β1 (TGF-β1) in tumors was positively correlated with PD-1+CD8+ T cell infiltration, and in vitro GC-derived TGF-β1 induced PD-1 expression on CD8+ T cells via Smad3 signaling, whereas Smad2 signaling was involved in GC-derived TGF-β1-mediated CD8+ T cell dysfunction. Furthermore, GC-derived TGF-β1-mediated CD8+ T cell dysfunction contributed to tumor growth in vivo that could not be attenuated by PD-1 blockade. Conclusions Our data highlight that GC-derived TGF-β1 promotes PD-1 independent CD8+ T cell dysfunction. Therefore, restoring CD8+ T cell function by a combinational PD-1 and TGF-β1 blockade might benefit future GC immunotherapy.
Collapse
Affiliation(s)
- Yang Shen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China.,Department of oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yongsheng Teng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yipin Lv
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yongliang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery of Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Lina Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Fangyuan Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Daiyuan Ma
- Department of oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
43
|
Granier C, Gey A, Roncelin S, Weiss L, Paillaud E, Tartour E. Immunotherapy in older patients with cancer. Biomed J 2020; 44:260-271. [PMID: 33041248 PMCID: PMC8358190 DOI: 10.1016/j.bj.2020.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
Ageing implicates a remodeling of our immune system, which is a consequence of the physiological senescence of our cells and tissues coupled with environmental factors and chronic antigen exposure. An immune system that senesces includes more differentiated cells with accumulation of highly differentiated CD4 and CD8 T cells. The pool of naive T cells decreases with the exponential thymic involution induced by age. Differentiated T cells have similar, if not higher, functional capacities but scarce studies are looking at the impact of senescence among specific T cells. After a stimulation, other immune cells (monocytes, dendritic cells and NK) are functionally altered during ageing. It is as if the immune system was more efficient at the basal level, but less efficient after a stimulation in the old compared to young people, likely due to less reserve. Concerning the clinical impact, older people are more prone to certain pathogens and their clinical manifestations differ from the younger people. Severe flu and VZV reactivation are more frequent with an altered cellular response to vaccination. Vaccination failure can have detrimental consequences in people presenting frailty criteria. Old people frailty is majored by their comorbidities and diseases like cancer. Thus, chemotherapies are employed with circumspection in older patients. The use of anti-PD-1/PD-L1 immunotherapies is therefore attractive, because of less side effects with a better response compared to chemotherapy. Old persons inclusion is lacking in current studies and clinical trials. Some subgroups or pooled analyses confirm the gain in response without increased toxicities in older patients but their inclusion criteria differ from the real-life practice. Specific studies focusing on this population are needed because of the increasing cancer incidence with age and the overall ageing of the population.
Collapse
Affiliation(s)
- C Granier
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France.
| | - A Gey
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France
| | - S Roncelin
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France
| | - L Weiss
- Clinical Immunology Department, APHP, Paris, France; INSERM U976 HIPI, Paris, France; Paris Descartes Medical School, University of Paris, Paris, France
| | - E Paillaud
- Department of Geriatric, APHP, Paris Cancer Institute CARPEM, Europeen Georges Pompidou Hospital, Paris, France; Paris Est Creteil University, INSERM, IMRB, Creteil, France
| | - E Tartour
- Biological Immunology Department, APHP, Georges Pompidou European Hospital, Paris, France; University of Paris, PARCC, INSERM, APHP, Paris, France; Ligue Contre le Cancer Labeled Team, France
| |
Collapse
|
44
|
Modulation of Determinant Factors to Improve Therapeutic Combinations with Immune Checkpoint Inhibitors. Cells 2020; 9:cells9071727. [PMID: 32707692 PMCID: PMC7408477 DOI: 10.3390/cells9071727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/14/2020] [Indexed: 01/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICPi) have shown their superiority over conventional therapies to treat some cancers. ICPi are effective against immunogenic tumors. However, patients with tumors poorly infiltrated with immune cells do not respond to ICPi. Combining ICPi with other anticancer therapies such as chemotherapy, radiation, or vaccines, which can stimulate the immune system and recruit antitumor T cells into the tumor bed, may be a relevant strategy to increase the proportion of responding patients. Such an approach still raises the following questions: What are the immunological features modulated by immunogenic therapies that can be critical to ensure not only immediate but also long-lasting tumor protection? How must the combined treatments be administered to the patients to harness their full potential while limiting adverse immunological events? Here, we address these points by reviewing how immunogenic anticancer therapies can provide novel therapeutic opportunities upon combination with ICPi. We discuss their ability to create a permissive tumor microenvironment through the generation of inflamed tumors and stimulation of memory T cells such as resident (TRM) and stem-cell like (TSCM) cells. We eventually underscore the importance of sequence, dose, and duration of the combined anticancer therapies to design optimal and successful cancer immunotherapy strategies.
Collapse
|
45
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
46
|
Han J, Jiang Z, Wang C, Chen X, Li R, Sun N, Liu X, Wang H, Hong L, Zheng K, Yang J, Ikezoe T. Inhibition of Aurora-A Promotes CD8 + T-Cell Infiltration by Mediating IL10 Production in Cancer Cells. Mol Cancer Res 2020; 18:1589-1602. [PMID: 32591441 DOI: 10.1158/1541-7786.mcr-19-1226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/17/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
Intratumoral tumor-specific activated CD8+ T cells with functions in antitumor immune surveillance predict metastasis and clinical outcome in human colorectal cancer. Intratumoral CD8+ T cells also affect treatment with immune checkpoint inhibitors. Interestingly, inhibition of Aurora kinase A (Aurora-A) by its selective inhibitor alisertib obviously induced infiltration of CD8+ T cells. However, the mechanisms by which inhibition of Aurora-A promotes infiltration of intratumoral CD8+ T cells remain unclear. Our recent results demonstrated that conditional deletion of the AURKA gene or blockade of Aurora-A by alisertib slowed tumor growth in association with an increase in the infiltration of intratumoral CD8+ T cells as well as the mRNA levels of their IL10 receptor α (IL10Rα). The antitumor effects of targeting Aurora-A were attenuated in the absence of CD8+ T cells. In addition, antibody-mediated blockade of IL10Rα dramatically decreased the percentage of intratumoral CD8+ T cells. In further experiments, we found that the levels of IL10 were elevated in the serum of azoxymethane/dextran sodium sulfate-treated AURKAflox/+;VillinCre+ mice. Unexpectedly, we found that in addition to Aurora-A's mitotic role, inhibition of Aurora-A elevated IL10 transcription, which in turn increased the IL10Rα mRNA levels in CD8+ T cells. Thus, inhibition of Aurora-A could be a useful treatment strategy for recruiting tumor-specific intratumoral CD8+ T cells. IMPLICATIONS: Understanding the mechanisms by which inhibition of Aurora-A promotes CD8+ T-cell infiltration and activation, as mediated by the IL10 pathway could provide a potential strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Han
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen Jiang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chennan Wang
- Heilongjiang Province Key Laboratory of Microecology and Immunity, Heilongjiang, China.,The Department of Pathological Anatomy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xin Chen
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rongqing Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Wang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Hong
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Takayuki Ikezoe
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
47
|
IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 2020; 583:609-614. [PMID: 32581358 PMCID: PMC7381364 DOI: 10.1038/s41586-020-2422-6] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
Cytokines were the first modern immunotherapies to produce durable
responses in advanced cancer, but their application has been hampered by modest
efficacy and limited tolerability1,2. In an effort to
identify alternative cytokine pathways for immunotherapy, we found that
components of the Interleukin-18 (IL-18) pathway are upregulated on tumor
infiltrating lymphocytes (TIL), suggesting that IL-18 therapy could enhance
anti-tumor immunity. However, recombinant IL-18 previously failed to demonstrate
efficacy in clinical trials3.
Here we show that IL-18BP, a high-affinity IL-18 decoy receptor, is frequently
upregulated in diverse human and murine tumors and limits the anti-tumor
activity of IL-18 in mice. Using directed evolution, we engineered a
‘decoy-resistant’ IL-18 (DR-18), which maintains signaling
potential, but is impervious to inhibition by IL-18BP. In contrast to wild-type
IL-18, DR-18 exhibits potent anti-tumor efficacy in mouse tumor models by
promoting the development of poly-functional effector CD8+ T cells,
decreasing the prevalence of exhausted CD8+ T cells expressing TOX,
and expanding the pool of stem-like TCF1+ precursor CD8+ T
cells. DR-18 also enhances NK cell activity and maturation to effectively treat
anti-PD-1 resistant tumors that have lost MHC class I surface expression. These
results highlight the potential of the IL-18 pathway for immunotherapeutic
intervention and implicate IL-18BP as a major therapeutic barrier.
Collapse
|
48
|
Belizário J, Destro Rodrigues MF. Checkpoint inhibitor blockade and epigenetic reprogrammability in CD8 + T-cell activation and exhaustion. Ther Adv Vaccines Immunother 2020; 8:2515135520904238. [PMID: 32206744 PMCID: PMC7074507 DOI: 10.1177/2515135520904238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/19/2019] [Indexed: 11/17/2022] Open
Abstract
CD8+ T-cell exhaustion is a dysfunctional state that is regulated through the expression of inhibitory checkpoint receptor genes including the cytotoxic T-lymphocyte–associated antigen 4, programmed death 1, and DNA methylation of effector genes interferon-γ, perforin, and granzyme B. Different strategies have been used to reverse T-cell exhaustion, which is an adverse event of checkpoint inhibitor blockade. Here, we present the mechanisms by which DNA methyltransferase inhibitors and Simian virus 40 large T antigen through viral mimicry can promote the reversion of exhausted CD8+ T cells. We examine how these pharmacological strategies can work together to improve the clinical efficacy of immunotherapies.
Collapse
Affiliation(s)
- José Belizário
- Department of Pharmacology, Institute Biomedical Sciences of the University of Sao Paulo, Avenida Lineu Prestes, 1524, São Paulo, CEP 05508-900, Brazil
| | | |
Collapse
|
49
|
Mohme M, Maire CL, Schliffke S, Joosse SA, Alawi M, Matschke J, Schüller U, Dierlamm J, Martens T, Pantel K, Riethdorf S, Lamszus K, Westphal M. Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathol Commun 2020; 8:28. [PMID: 32151286 PMCID: PMC7063778 DOI: 10.1186/s40478-020-00906-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral metastases of glioblastoma (GBM) are very rare despite the ability of GBM cells to pass through the blood-brain barrier and be disseminated through the peripheral blood. Here, we describe a detailed genetic and immunological characterization of a GBM metastasis in the skeleton, which occurred during anti-PD-1 immune checkpoint therapy. We performed whole genome sequencing (WGS) and 850 K methylation profiling of the primary and recurrent intracranial GBM as well as one of the bone metastases. Copy number alterations (CNA) and mutational profiles were compared to known genomic alterations in the TCGA data base. In addition, immunophenotyping of the peripheral blood was performed. The patient who was primarily diagnosed with IDH-wildtype GBM. After the resection of the first recurrence, progressive intracranial re-growth was again detected, and chemotherapy was replaced by PD-1 checkpoint inhibition, which led to a complete intracranial remission. Two months later MR-imaging revealed multiple osseous lesions. Biopsy confirmed the GBM origin of the skeleton metastases. Immunophenotyping reflected the effective activation of a peripheral T-cell response, with, however, increase of regulatory T cells during disease progression. WGS sequencing demonstrated distinct genomic alterations of the GBM metastasis, with gains along chromosomes 3 and 9 and losses along chromosome 4, 10, and 11. Mutational analysis showed mutations in potentially immunologically relevant regions. Additionally, we correlated tumour-infiltrating lymphocyte and microglia presence to the occurrence of circulating tumour cells (CTCs) in a larger cohort and found a decreased infiltration of cytotoxic T cells in patients positive for CTCs. This study exemplifies that the tumour microenvironment may dictate the response to immune checkpoint therapy. In addition, our study highlights the fact that despite an effective control of intracranial GBM, certain tumour clones have the ability to evade the tumour-specific T-cell response and cause progression even outside of the CNS.
Collapse
|
50
|
[Comparison of T cell response in the tumor milieu of patients with HPV + and HPV - head and neck cancer]. HNO 2020; 68:80-86. [PMID: 31915881 DOI: 10.1007/s00106-019-00804-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The incidence of HPV-associated squamous cell carcinoma of the head and neck region (HNSCC) has increased dramatically in recent years. Despite a similar localization (oropharyngeal squamous cell epithelia) to smoking- and alcohol-associated cancers, HPV-associated carcinomas are considered to represent a distinct entity. Reasons for the different therapeutic responses of the two tumor entities are not yet fully understood. METHODS AND OBJECTIVE This review investigates the importance of tumor-infiltrating lymphocytes in HPV+ and HPV- HNSCC by means of articles and publications concerning the tumor micromilieu, effects on prognosis, and patients' therapeutic responses. RESULTS HNSCC patients with a positive HPV status and increased frequencies of CD8+ T cells (CD, cluster of differentiation) demonstrated an improved therapeutic response and improved outcomes. Decreased expression of the EGF (epidermal growth factor) receptor correlates with increased TH1 cytokine secretion by CD4+ T cells, which, in their role as T helper cells, can activate macrophages, dendritic cells, and cytotoxic T cells, amongst others. Regulatory T cells (Treg) execute an immune-suppressive effect in the tumor micromilieu through different metabolic and signaling pathways (IL[interleukin]‑4, IL-10, TGF‑β ["transforming growth factor‑β"]). CONCLUSION The importance of the adaptive immune response for treatment response and patients' prognosis has been supported by different investigations. Understanding the immunological processes in the tumor environment plays an important role for the development of new treatment approaches.
Collapse
|