1
|
Qiu Y, Gao T, Smith BR. Mechanical deformation and death of circulating tumor cells in the bloodstream. Cancer Metastasis Rev 2024; 43:1489-1510. [PMID: 38980581 DOI: 10.1007/s10555-024-10198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
The circulation of tumor cells through the bloodstream is a significant step in tumor metastasis. To better understand the metastatic process, circulating tumor cell (CTC) survival in the circulation must be explored. While immune interactions with CTCs in recent decades have been examined, research has yet to sufficiently explain some CTC behaviors in blood flow. Studies related to CTC mechanical responses in the bloodstream have recently been conducted to further study conditions under which CTCs might die. While experimental methods can assess the mechanical properties and death of CTCs, increasingly sophisticated computational models are being built to simulate the blood flow and CTC mechanical deformation under fluid shear stresses (FSS) in the bloodstream.Several factors contribute to the mechanical deformation and death of CTCs as they circulate. While FSS can damage CTC structure, diverse interactions between CTCs and blood components may either promote or hinder the next metastatic step-extravasation at a remote site. Overall understanding of how these factors influence the deformation and death of CTCs could serve as a basis for future experiments and simulations, enabling researchers to predict CTC death more accurately. Ultimately, these efforts can lead to improved metastasis-specific therapeutics and diagnostics specific in the future.
Collapse
Affiliation(s)
- Yunxiu Qiu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tong Gao
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Computational Mathematics, Science, and Engineering, East Lansing, MI, 48824, USA
| | - Bryan Ronain Smith
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA.
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Yu LC, Wang CA, Hu CY, Lin KC, Ou CH, Jan HC. Preoperative systemic inflammation response index enhances the prognostic value of tumor multifocalityin upper tract urothelial carcinoma. Oncol Lett 2024; 28:436. [PMID: 39081967 PMCID: PMC11287106 DOI: 10.3892/ol.2024.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/20/2024] [Indexed: 08/02/2024] Open
Abstract
In cancer, tumor-related inflammation affects disease progression and survival outcomes. However, the role of systemic inflammation in tumor multifocality in upper tract urothelial carcinoma (UTUC) is not well understood. The aim of the present study was to evaluate the impact of the systemic inflammation response index (SIRI) on tumor multifocality for predicting oncological outcomes in patients with UTUC after radical nephroureterectomy (RNU). For this purpose, data from 645 patients with non-metastatic UTUC who underwent RNU between 2008 and 2020 were retrospectively analyzed. Survival outcomes such as overall survival (OS), cancer-specific survival (CSS) and recurrence-free survival (RFS) RATES were assessed using the Kaplan-Meier method, and independent prognostic factors were identified through a multivariable Cox proportional hazards regression model. Of the 645 patients with UTUC included in the present study, 163 (25%) had multifocal UTUC. Kaplan-Meier analysis indicated that multifocal UTUC synchronous with a high-level SIRI was significantly associated with poorer outcomes after RNU. Furthermore, the results of the multivariate Cox proportional hazards model analysis demonstrated that multifocal tumor coupled with a high-level SIRI was an independent factor for predicting a shorter survival and disease progression. In conclusion, the results of the present study indicated that an elevated SIRI significantly influenced the survival rate of patients with multifocal UTUC. Specifically, integrating multifocal UTUC with a high-level SIRI emerged as an independent risk factor for poorer OS, CSS and RFS. These findings highlighted the potential role of SIRI in the risk stratification and management of patients with multifocal UTUC.
Collapse
Affiliation(s)
- Lian-Ching Yu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, R.O.C
| | - Chu-An Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Che-Yuan Hu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, R.O.C
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, R.O.C
| | - Kun-Che Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, R.O.C
| | - Chien-Hui Ou
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, R.O.C
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, R.O.C
| | - Hau-Chern Jan
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, R.O.C
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan, R.O.C
- Division of Urology, Department of Surgery, National Cheng Kung University Hospital Dou-Liou Branch, Yunlin 64043, Taiwan, R.O.C
| |
Collapse
|
3
|
Hamilton G, Hochmair MJ, Stickler S. Overcoming resistance in small-cell lung cancer. Expert Rev Respir Med 2024; 18:569-580. [PMID: 39099310 DOI: 10.1080/17476348.2024.2388288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
INTRODUCTION Small-cell lung cancer (SCLC) accounts for 15% of lung cancers and has a dismal prognosis due to early dissemination and acquired chemoresistance. The initial good response to chemotherapy is followed by refractory relapses within 1-2 years. Mechanisms leading to chemoresistance are not clear and progress is poor. AREAS COVERED This article reviews the current evidence of the resistance of SCLCs at the cellular level including alteration of key proteins and the possible presence of cancer stem cells (CSCs). Without compelling evidence for cellular mechanisms and clinical failures of novel approaches, the study of SCLC has advanced to the role of 3D tumor cell aggregates in chemoresistance. EXPERT OPINION The scarcity of viable tumor specimen from relapsed SCLC patients has hampered the investigations of acquired chemoresistance but a panel of nine SCLC circulating tumor cell (CTC) cell lines have revealed characteristics of SCLC in the advanced refractory states. The chemoresistance of relapsed SCLC seems to be linked to the spontaneous formation of large spheroids, termed tumorospheres, which contain resistant quiescent and hypoxic cells shielded by a physical barrier. So far, drugs to tackle large tumor spheroids are in preclinical and early clinical development.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Maximilian J Hochmair
- Department of Pneumonology, Karl Landsteiner Institute for Lung Research and Pulmonary Oncology, Klinik Floridsdorf, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
5
|
Zhang YW, Gvozdenovic A, Aceto N. A Molecular Voyage: Multiomics Insights into Circulating Tumor Cells. Cancer Discov 2024; 14:920-933. [PMID: 38581442 DOI: 10.1158/2159-8290.cd-24-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Circulating tumor cells (CTCs) play a pivotal role in metastasis, the leading cause of cancer-associated death. Recent improvements of CTC isolation tools, coupled with a steady development of multiomics technologies at single-cell resolution, have enabled an extensive exploration of CTC biology, unlocking insights into their molecular profiles. A detailed molecular portrait requires CTC interrogation across various levels encompassing genomic, epigenetic, transcriptomic, proteomic and metabolic features. Here, we review how state-of-the-art multiomics applied to CTCs are shedding light on how cancer spreads. Further, we highlight the potential implications of CTC profiling for clinical applications aimed at enhancing cancer diagnosis and treatment. SIGNIFICANCE Exploring the complexity of cancer progression through cutting-edge multiomics studies holds the promise of uncovering novel aspects of cancer biology and identifying therapeutic vulnerabilities to suppress metastasis.
Collapse
Affiliation(s)
- Yu Wei Zhang
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| |
Collapse
|
6
|
Gagnon B, Murphy J, Simonyan D, Penafuerte CA, Sirois J, Chasen M, Tremblay ML. Cancer anorexia-cachexia syndrome is characterized by more than one inflammatory pathway. J Cachexia Sarcopenia Muscle 2024; 15:1041-1053. [PMID: 38481033 PMCID: PMC11154782 DOI: 10.1002/jcsm.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The interdependence of cytokines and appetite-modifying hormones implicated in cancer anorexia-cachexia syndrome (CACS) remains unclear. This study aimed to regroup these cytokines and hormones into distinct inflammatory (or non-inflammatory) pathways and determine whether these pathways can classify patients with CACS phenotypes. METHODS Clinical characteristics of 133 patients [61.7% male; mean age = 63.4 (SD: 13.1) years] with advanced cancer prior to oncology treatments were documented, including weight loss history. Patients completed the Functional Assessment of Anorexia-Cachexia Therapy (FAACT) questionnaire and Timed Up and Go test and had their sex-standardized skeletal muscle index (z-SMI) and fat mass index (z-FMI) derived using computed tomography scans. Their plasma levels of cytokines and appetite-modifying hormones were also determined. Date of death was recorded. Exploratory factor analysis (EFA) was used to regroup 15 cytokines and hormone into distinct inflammatory pathways (factors). For each patient, regression factor scores (RFS), which tell how strongly the patient associates with each factor, were derived. Two-step cluster analysis on the RFS was used to classify patients into groups. CACS phenotypes were correlated with RFS and compared between groups. Groups' survival was estimated using Kaplan-Meier analysis. RESULTS Patients had low z-SMI (mean = -3.78 cm2/m2; SD: 8.88) and z-FMI (mean = 0.08 kg2/m2; SD: 56.25), and 62 (46.6%) had cachexia. EFA identified three factors: (F-1) IFN-γ, IL-1β, Il-4, IL-6, IL-10, IL-12, TGFβ1 (positive contribution), and IL-18 (negative); (F-2) IL-8, IL-18, MCP-1, TGFβ1, TNF-α (positive), and ghrelin (negative); and (F-3) TRAIL and leptin (positive), and TGFβ1 and adiponectin (negative). RFS-1 was associated with cachexia (P = 0.002); RFS-2, with higher CRP (P < 0.0001) and decreased physical function (P = 0.01); and RFS-3 with better appetite (P = 0.04), lower CRP (P = 0.002), higher z-SMI (P = 0.04) and z-FMI (P < 0.0001), and less cachexia characteristics (all P < 0.001). Four patient groups were identified with specific RFS clusters aligning with the CACS continuum from no cachexia to pre-cachexia, cachexia, and terminal cachexia. Compared to the other two groups, groups 1 and 2 had higher plasma levels of IL-18 and TRAIL. Group 1 also had lower inflammatory cytokines, adiponectin, and CRP compared to the other three groups. Group 3 had inflammatory cytokine levels similar to group 2, except for TNF-α and leptin which were lower. Group 4 had very high inflammatory cytokines, adiponectin, and CRP compared to the other 3 groups (all P < 0.0001). Groups 3 and 4 had worse cachexia characteristics (P < 0.05) and shorter survival (log rank: P = 0.0009) than the other two groups. CONCLUSIONS This exploratory study identified three distinct pathways of inflammation, or lack thereof, characterizing different CACS phenotypes.
Collapse
Affiliation(s)
- Bruno Gagnon
- Département de médecine familiale et de médecine d'urgence, Centre de recherche sur le cancerUniversité Laval, Centre de recherche du CHU de QuébecQuébecCanada
- Division of Clinical EpidemiologyMcGill University Health CentreMontrealCanada
| | - Jessica Murphy
- Division of Clinical EpidemiologyMcGill University Health CentreMontrealCanada
- Department of Health, Kinesiology, and Applied PhysiologyConcordia UniversityMontrealCanada
| | - David Simonyan
- Clinical and Evaluative Research PlatformUniversité Laval, Centre de recherche du CHU de QuébecQuébecCanada
| | - Claudia A. Penafuerte
- Cura TherapeuticsNEOMED InstituteSaint‐LaurentCanada
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| | - Jacinthe Sirois
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| | - Martin Chasen
- Departments of Medicine and Family and Community MedicineUniversity of TorontoTorontoCanada
- Department of Family MedicineMcMaster UniversityHamiltonCanada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealCanada
| |
Collapse
|
7
|
Fasano R, Serratì S, Rafaschieri T, Longo V, Di Fonte R, Porcelli L, Azzariti A. Small-Cell Lung Cancer: Is Liquid Biopsy a New Tool Able to Predict the Efficacy of Immunotherapy? Biomolecules 2024; 14:396. [PMID: 38672414 PMCID: PMC11048475 DOI: 10.3390/biom14040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Small-cell lung cancer (SCLC) cases represent approximately 15% of all lung cancer cases, remaining a recalcitrant malignancy with poor survival and few treatment options. In the last few years, the addition of immunotherapy to chemotherapy improved clinical outcomes compared to chemotherapy alone, resulting in the current standard of care for SCLC. However, the advantage of immunotherapy only applies to a few SCLC patients, and predictive biomarkers selection are lacking for SCLC. In particular, due to some features of SCLC, such as high heterogeneity, elevated cell plasticity, and low-quality tissue samples, SCLC biopsies cannot be used as biomarkers. Therefore, the characterization of the tumor and, subsequently, the selection of an appropriate therapeutic combination may benefit greatly from liquid biopsy. Soluble factors, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) are now useful tools in the characterization of SCLC. This review summarizes the most recent data on biomarkers detectable with liquid biopsy, emphasizing their role in supporting tumor detection and their potential role in SCLC treatment choice.
Collapse
Affiliation(s)
- Rossella Fasano
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Simona Serratì
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Tania Rafaschieri
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Vito Longo
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy;
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.Le O. Flacco, 65, 70124 Bari, Italy; (R.F.); (T.R.); (R.D.F.); (L.P.); (A.A.)
| |
Collapse
|
8
|
Zhang C, Hu Z, Pan Z, Ji Z, Cao X, Yu H, Qin X, Guan M. The arachidonic acid metabolome reveals elevation of prostaglandin E2 biosynthesis in colorectal cancer. Analyst 2024; 149:1907-1920. [PMID: 38372525 DOI: 10.1039/d3an01723k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Arachidonic acid metabolites are a family of bioactive lipids derived from membrane phospholipids. They are involved in cancer progression, but arachidonic acid metabolite profiles and their related biosynthetic pathways remain uncertain in colorectal cancer (CRC). To compare the arachidonic acid metabolite profiles between CRC patients and healthy controls, quantification was performed using a liquid chromatography-mass spectrometry-based analysis of serum and tissue samples. Metabolomics analysis delineated the distinct oxidized lipids in CRC patients and healthy controls. Prostaglandin (PGE2)-derived metabolites were increased, suggesting that the PGE2 biosynthetic pathway was upregulated in CRC. The qRT-PCR and immunohistochemistry analyses showed that the expression level of PGE2 synthases, the key protein of PGE2 biosynthesis, was upregulated in CRC and positively correlated with the CD68+ macrophage density and CRC development. Our study indicates that the PGE2 biosynthetic pathway is associated with macrophage infiltration and progression of CRC tumors.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Zuojian Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ziyue Pan
- Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Xinyi Cao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Hongxiu Yu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
9
|
Bandini S, Ulivi P, Rossi T. Extracellular Vesicles, Circulating Tumor Cells, and Immune Checkpoint Inhibitors: Hints and Promises. Cells 2024; 13:337. [PMID: 38391950 PMCID: PMC10887032 DOI: 10.3390/cells13040337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized the treatment of cancer, in particular lung cancer, while the introduction of predictive biomarkers from liquid biopsies has emerged as a promising tool to achieve an effective and personalized therapy response. Important progress has also been made in the molecular characterization of extracellular vesicles (EVs) and circulating tumor cells (CTCs), highlighting their tremendous potential in modulating the tumor microenvironment, acting on immunomodulatory pathways, and setting up the pre-metastatic niche. Surface antigens on EVs and CTCs have proved to be particularly useful in the case of the characterization of potential immune escape mechanisms through the expression of immunosuppressive ligands or the transport of cargos that may mitigate the antitumor immune function. On the other hand, novel approaches, to increase the expression of immunostimulatory molecules or cargo contents that can enhance the immune response, offer premium options in combinatorial clinical strategies for precision immunotherapy. In this review, we discuss recent advances in the identification of immune checkpoints using EVs and CTCs, their potential applications as predictive biomarkers for ICI therapy, and their prospective use as innovative clinical tools, considering that CTCs have already been approved by the Food and Drug Administration (FDA) for clinical use, but providing good reasons to intensify the research on both.
Collapse
Affiliation(s)
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (S.B.); (T.R.)
| | | |
Collapse
|
10
|
Ye J, Chen Z, Pan Y, Liao X, Wang X, Zhang C, Wang Q, Han P, Wei Q, Bao Y. The Prognostic Value of Preoperative Naples Prognostic Score in Upper Tract Urothelial Carcinoma Patients after Radical Nephroureterectomy. Nutr Cancer 2023; 76:80-88. [PMID: 37941300 DOI: 10.1080/01635581.2023.2279218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
This study aims to determine the prognostic value of preoperative Naples prognostic score (NPS) on survival outcomes in upper tract urothelial carcinoma (UTUC) patients after radical nephroureterectomy (RNU). We conducted a retrospective study about UTUC patients at West China Hospital from January 2015 to June 2019. The X-Tile program was used to identify the optimal cutoff value of NPS. Overall survival (OS), cancer-specific survival (CSS) and progression-free survival (PFS) were the endpoints of interest. Kaplan-Meier curves were used to estimate survival and Cox proportional hazard model was used for risk assessment. A total of 237 UTUC patients after RNU were identified and the threshold of NPS was determined to be 2. Preoperative high-NPS was associated with inferior OS (p = 0.004), CSS (p = 0.002) and PFS (p = 0.008), especially in locally advanced UTUC patients. Preoperative NPS was an independent predictor for OS (HR: 1.78; 95% CI: 1.08, 2.93), CSS (HR: 1.87; 95% CI: 1.11, 3.14) and PFS (HR: 1.60; 95% CI: 1.02, 2.50). The addition of NPS into the predictive model consisting of predictors from multivariate Cox regression resulted in better prediction performance. Preoperative NPS was a novel and reliable predictor for survival in UTUC patients after RNU, and should be further explored.
Collapse
Affiliation(s)
- Jianjun Ye
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yulong Pan
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- The Third People's Hospital of Chengdu, Chengdu, China
| | - Xinyang Liao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyuan Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Chichen Zhang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qihao Wang
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Han
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yige Bao
- Department of Urology and Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Dou X, Xi J, Zheng G, Ren G, Tian Y, Dan H, Xie Z, Niu L, Duan L, Li R, Wu H, Feng F, Zheng J. A nomogram was developed using clinicopathological features to predict postoperative liver metastasis in patients with colorectal cancer. J Cancer Res Clin Oncol 2023; 149:14045-14056. [PMID: 37548773 DOI: 10.1007/s00432-023-05168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
PURPOSE The objective of this study is to examine the risk factors that contribute to the development of liver metastasis (LM) in patients who have suffered radical resection for colorectal cancer (CRC), and to establish a nomogram model that can be used to predict the occurrence of the LM. METHODS The present study enrolled 1377 patients diagnosed with CRC between January 2010 and July 2021. The datasets were allocated to training (n = 965) and validation (n = 412) sets in a randomly stratified manner. The study utilized univariate and multivariate logistic regression analyses to establish a nomogram for predicting LM in patients with CRC. RESULTS Multivariate analysis revealed that T stage, N stage, number of harvested lymph nodes (LNH), mismatch repair (MMR) status, neutrophil count, monocyte count, postoperative carcinoembryonic antigen (CEA) levels, postoperative cancer antigen 125 (CA125) levels, and postoperative carbohydrate antigen 19-9 (CA19-9) levels were independent predictive factors for LM after radical resection. These factors were then utilized to construct a comprehensive nomogram for predicting LM. The nomogram demonstrated great discrimination, with an area under the curve (AUC) of 0.782 for the training set and 0.768 for the validation set. Additionally, the nomogram exhibited excellent calibration and significant clinical benefit as confirmed by the calibration curves and the decision curve analysis, respectively. CONCLUSION This nomogram has the potential to support clinicians in identifying high-risk patients who may develop LM post-surgery. Clinicians can devise personalized treatment and follow-up plans, ultimately leading to an improved prognosis for patients.
Collapse
Affiliation(s)
- Xinyu Dou
- Xi'an Medical University, Xi'an, China
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jiaona Xi
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Gaozan Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangming Ren
- Xi'an Medical University, Xi'an, China
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ye Tian
- Xi'an Medical University, Xi'an, China
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hanjun Dan
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhenyu Xie
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liaoran Niu
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Duan
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ruikai Li
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongze Wu
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fan Feng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
12
|
Muraro E, Brisotto G. Circulating tumor cells and host immunity: A tricky liaison. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:131-157. [PMID: 37739482 DOI: 10.1016/bs.ircmb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
During their dissemination, circulating tumor cells (CTCs) steadily face the immune system, which is a key player in the whole metastatic cascade, from intravasation to the CTC colonization of distant sites. In this chapter, we will go through the description of immune cells involved in this controversial dialogue encompassing both the anti-tumor activity and the tumor-promoting and immunosuppressive function mediated by several circulating immune effectors as natural killer (NK) cells, CD4+ and CD8+ T lymphocytes, T helper 17, regulatory T cells, neutrophils, monocytes, macrophages, myeloid-derived suppressor cells, dendritic cells, and platelets. Then, we will report on the same interaction from the CTCs point of view, depicting the direct and indirect mechanisms of crosstalk with the above mentioned immune cells. Finally, we will report the recent literature evidence on the potential prognostic role of the integrated CTCs and immune cells monitoring in cancer patients management.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers Units, Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico, Aviano, Italy.
| |
Collapse
|
13
|
Kurma K, Alix-Panabières C. Mechanobiology and survival strategies of circulating tumor cells: a process towards the invasive and metastatic phenotype. Front Cell Dev Biol 2023; 11:1188499. [PMID: 37215087 PMCID: PMC10196185 DOI: 10.3389/fcell.2023.1188499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastatic progression is the deadliest feature of cancer. Cancer cell growth, invasion, intravasation, circulation, arrest/adhesion and extravasation require specific mechanical properties to allow cell survival and the completion of the metastatic cascade. Circulating tumor cells (CTCs) come into contact with the capillary bed during extravasation/intravasation at the beginning of the metastatic cascade. However, CTC mechanobiology and survival strategies in the bloodstream, and specifically in the microcirculation, are not well known. A fraction of CTCs can extravasate and colonize distant areas despite the biomechanical constriction forces that are exerted by the microcirculation and that strongly decrease tumor cell survival. Furthermore, accumulating evidence shows that several CTC adaptations, via molecular factors and interactions with blood components (e.g., immune cells and platelets inside capillaries), may promote metastasis formation. To better understand CTC journey in the microcirculation as part of the metastatic cascade, we reviewed how CTC mechanobiology and interaction with other cell types in the bloodstream help them to survive the harsh conditions in the circulatory system and to metastasize in distant organs.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (E LBS), Hamburg, Germany
| |
Collapse
|
14
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
15
|
Hamilton G, Rath B, Stickler S. Significance of circulating tumor cells in lung cancer: a narrative review. Transl Lung Cancer Res 2023; 12:877-894. [PMID: 37197632 PMCID: PMC10183408 DOI: 10.21037/tlcr-22-712] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023]
Abstract
Background and Objective In cancer patients, circulating tumor cells (CTCs) are employed as "Liquid Biopsy" for tumor detection, prognosis and assessment of the response to therapy. CTCs are responsible for tumor dissemination but the mechanisms involved in intravasation, survival in the circulation and extravasation at secondary sites to establish metastases are not fully characterized. In lung cancer patients, CTCs are present in very high numbers in small cell lung cancer (SCLC) that is found disseminated in most patients upon first presentation and has a dismal prognosis. This review aims at the discussion of recent work on metastatic SCLC and novel insights into the process of dissemination derived from the access to a panel of unique SCLC CTC lines. Methods PubMed and Euro PMC were searched from January 1st, 2015 to September 23th, 2022 using the following key words: "SCLC", "NSCLC", "CTC" and "Angiogenesis" and supplemented by data from our own work. Key Content and Findings Experimental and clinical data indicate that the intravasation of single, apoptotic or clustered CTCs occur via leaky neoangiogenetic vessels in the tumor core and not via crossing of the adjacent tumor stroma after EMT. Furthermore, in lung cancer only EpCAM-positive CTCs have been found to have prognostic impact. All our established SCLC CTC lines form spontaneously EpCAM-positive large and chemoresistant spheroids (tumorospheres) that may become trapped in microvessels in vivo and are suggested to extravasate by physical force. The rate-limiting step of the shedding of CTCs is most likely the presence of irregular and leaky tumor vessels or in case of SCLC, also via vessels formed by vasculogenic mimicry. Therefore, lower microvessel densities (MVD) in NSCLC can explain the relative rarity of CTCs in NSCLC versus SCLC. Conclusions The detection of CTCs lacks standardized techniques, is difficult in non-metastatic patients and important cell biological mechanisms of dissemination need still to be resolved, especially in respect to the actual metastasis-inducing cells. Expression of VEGF and the MVD are key prognostic indicators for tumors and ultimately, enumeration of CTCs seems to reflect neoangiogenetic vascular supply of tumors and prognosis.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Çimen F, Aloğlu M, Düzgün S, Şentürk A, Atikcan Ş. Role of Inflammatory Response Biomarkers, Monocytes, and Platelets as Prognostic Indicators in Lung Cancer Patients Presenting with Malignant Pleural Effusion. CYPRUS JOURNAL OF MEDICAL SCIENCES 2023. [DOI: 10.4274/cjms.2022.2022-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
17
|
Rath B, Plangger A, Klameth L, Hochmair M, Ulsperger E, Boeckx B, Neumayer C, Hamilton G. Small cell lung cancer: circulating tumor cell lines and expression of mediators of angiogenesis and coagulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:355-365. [PMID: 37205313 PMCID: PMC10185438 DOI: 10.37349/etat.2023.00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 05/21/2023] Open
Abstract
Aim Coagulation is frequently activated in cancer patients and has been correlated with an unfavorable prognosis. To evaluate whether a putative release of tissue factor (TF) by circulating tumor cells (CTCs) represents a target to impair the dissemination of small cell lung cancer (SCLC), the expression of relevant proteins in a panel of permanent SCLC and SCLC CTC cell lines that have been established at the Medical University of Vienna. Methods Five CTC and SCLC lines were analyzed using a TF enzyme-linked immunosorbent assay (ELISA) tests, RNA sequencing, and western blot arrays covering 55 angiogenic mediators. Furthermore, the influence of topotecan and epirubicin as well as hypoxia-like conditions on the expression of these mediators was investigated. Results The results demonstrate that the SCLC CTC cell lines express no significant amounts of active TF but thrombospondin-1 (TSP-1), urokinase-type plasminogen activator receptor (uPAR), vascular endothelial-derived growth factor (VEGF) and angiopoietin-2 in two cases. The major difference between the SCLC and SCLC CTC cell lines found was the loss of the expression of angiogenin in the blood-derived CTC lines. Topotecan and epirubicin decreased the expression of VEGF, whereas hypoxia-like conditions upregulated VEGF. Conclusions Active TF capable of triggering coagulation seems not to be expressed in SCLC CTC cell lines in significant levels and, thus, CTC-derived TF seems dispensable for dissemination. Nevertheless, all CTC lines form large spheroids, termed tumorospheres, which may become trapped in clots of the microvasculature and extravasate in this supportive microenvironment. The contribution of clotting to the protection and dissemination of CTCs in SCLC may be different from other solid tumors such as breast cancer.
Collapse
Affiliation(s)
- Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Adelina Plangger
- Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Klameth
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Maximilian Hochmair
- Karl Landsteiner Institute of Lung Research and Pulmonary Oncology, Hospital Floridsdorf, 1210 Vienna, Austria
| | | | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, 3580 Leuven, Belgium
| | - Christoph Neumayer
- Department of Vascular Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: Gerhard Hamilton, Institute of Pharmacology, Medical University of Vienna, Waehringer Street 13A, 1090 Vienna, Austria.
| |
Collapse
|
18
|
Qian H, Beltran AS. Mesoscience in cell biology and cancer research. CANCER INNOVATION 2022; 1:271-284. [PMID: 38089088 PMCID: PMC10686186 DOI: 10.1002/cai2.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 10/15/2024]
Abstract
Mesoscale characteristics and their interdimensional correlation are the focus of contemporary interdisciplinary research. Mesoscience is a discipline that has the potential to radically update the existing knowledge structure, which differs from the conventional unit-scale and system-scale research models, revealing a previously untouchable area for scientific research. Integrative biology research aims to dissect the complex problems of life systems by conducting comprehensive research and integrating various disciplines from all biological levels of the living organism. However, the mesoscientific issues between different research units are neglected and challenging. Mesoscale research in biology requires the integration of research theories and methods from other disciplines (mathematics, physics, engineering, and even visual imaging) to investigate theoretical and frontier questions of biological processes through experiments, computations, and modeling. We reviewed integrative paradigms and methods for the biological mesoscale problems (focusing on oncology research) and prospected the potential of their multiple dimensions and upcoming challenges. We expect to establish an interactive and collaborative theoretical platform for further expanding the depth and width of our understanding on the nature of biology.
Collapse
Affiliation(s)
- Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Adriana Sujey Beltran
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
19
|
Guo W, Qiao T, Li T. The role of stem cells in small-cell lung cancer: evidence from chemoresistance to immunotherapy. Semin Cancer Biol 2022; 87:160-169. [PMID: 36371027 DOI: 10.1016/j.semcancer.2022.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Small cell lung cancer (SCLC) is the most aggressive subtype of lung cancer, accounting for approximately 15% among all lung cancers. Despite the ability of chemotherapy, the first-line treatment for SCLC, to rapidly shrink tumors, nearly all patients experience recurrence and metastasis within a few months. Cancer stem cells (CSCs) are a small population of tumor cells responsible for tumorigenesis, metastasis, and recurrence after treatment, which play a crucial role in chemoresistance by promoting DNA repair and expression of drug resistance-associated proteins. Thus, targeting CSCs has been successful in certain malignancies. Tumor therapy has entered the era of immunotherapy and numerous preclinical trials have demonstrated the effectiveness of immunotherapeutic approaches targeting CSCs, such as tumor vaccines and chimeric antigen receptor (CAR) T cell, and the feasibility of combining them with chemotherapy. Therefore, a deeper understanding of the interaction between CSCs and immune system is essential to facilitate the advances of new immunotherapies approaches targeting CSCs as well as combination with standard drugs such as chemotherapy. This narrative review summarizes the mechanisms of chemoresistance of CSCs in SCLC and the latest advances in targeted therapies. Thereafter, we discuss the effects of CSCs on tumor immune microenvironment in SCLC and corresponding immunotherapeutic approaches. Eventually, we propose that the combination of immunotherapy targeting CSCs with standard drugs is a promising direction for SCLC therapies.
Collapse
Affiliation(s)
- Wenwen Guo
- Department of Pathology, Xianyang Central Hospital, Xianyang 712000, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
20
|
Tao J, Zhu L, Yakoub M, Reißfelder C, Loges S, Schölch S. Cell-Cell Interactions Drive Metastasis of Circulating Tumor Microemboli. Cancer Res 2022; 82:2661-2671. [PMID: 35856896 DOI: 10.1158/0008-5472.can-22-0906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Circulating tumor cells are the cellular mediators of distant metastasis in solid malignancies. Their metastatic potential can be augmented by clustering with other tumor cells or nonmalignant cells, forming circulating tumor microemboli (CTM). Cell-cell interactions are key regulators within CTM that convey enhanced metastatic properties, including improved cell survival, immune evasion, and effective extravasation into distant organs. However, the cellular and molecular mechanism of CTM formation, as well as the biology of interactions between tumor cells and immune cells, platelets, and stromal cells in the circulation, remains to be determined. Here, we review the current literature on cell-cell interactions in homotypic and heterotypic CTM and provide perspectives on therapeutic strategies to attenuate CTM-mediated metastasis by targeting cell-cell interactions.
Collapse
Affiliation(s)
- Jianxin Tao
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lei Zhu
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mina Yakoub
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Reißfelder
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sonja Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sebastian Schölch
- JCCU Translational Surgical Oncology (A430), German Cancer Research Center (DKFZ), Heidelberg, Germany.,DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.,Department of Surgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Xu Y, He H, Zang Y, Yu Z, Hu H, Cui J, Wang W, Gao Y, Wei H, Wang Z. Systemic inflammation response index (SIRI) as a novel biomarker in patients with rheumatoid arthritis: a multi-center retrospective study. Clin Rheumatol 2022; 41:1989-2000. [PMID: 35266094 DOI: 10.1007/s10067-022-06122-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To evaluate the potential ability of systemic inflammation response index (SIRI) as a novel biomarker in patients with rheumatoid arthritis (RA) and explore the mechanisms. METHOD Patients fulfilling the 2010 ACR/EULAR classification criteria for RA were enrolled in this study. Demographic, clinical, and laboratory characteristics of all subjects were collected. Neutrophil/lymphocyte ratio (NLR), monocyte/lymphocyte ratio (MLR), platelet/lymphocyte ratio (PLR), and SIRI were calculated. Statistical analysis was performed, and P-values < 0.05 were considered statistically significant. RESULTS One thousand four hundred ninety-nine RA patients from five hospitals were included, with 366 healthy volunteers served as controls. The NLR, MLR, PLR, and SIRI significantly increased in RA patients. Receiver operating characteristics (ROC) curve analysis showed SIRI, and NLR could distinguish RA from healthy controls. Correlation analysis and multiple linear regression analysis indicated that SIRI and PLR positively correlated with disease activity in RA. The NLR, MLR, and SIRI increased significantly in patients with RA-associated interstitial lung disease (ILD). There was a good accuracy of SIRI in differentiating RA-ILD from RA patients without ILD. SIRI was also found to be higher in RA patients with tumor and could differentiate them from RA patients without tumor. CONCLUSIONS SIRI could be evaluated as a novel, non-invasive, and suitable biomarker for assisting in the diagnosis process and demonstrating the disease activity of RA, as well as predicting RA-ILD and tumor development of RA patients. Key Points • As a novel biomarker, systemic inflammation response index (SIRI) may assist in the diagnosis process and indicate the disease activity of RA patients • SIRI may predict the development of RA-associated interstitial lung disease (RA-ILD) and tumor in RA patients • SIRI is more satisfactory than other blood cells-based indexes in the assessment of RA patients.
Collapse
Affiliation(s)
- Yunyun Xu
- Department of Rheumatology and Immunology, Taixing People's Hospital, 98 Runtai South Road, Taixing, 225400, Jiangsu, China.
| | - Hongjun He
- Department of Rheumatology and Immunology, Taixing People's Hospital, 98 Runtai South Road, Taixing, 225400, Jiangsu, China
| | - Yinshan Zang
- Department of Rheumatology and Immunology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Zhe Yu
- Department of Rheumatology and Immunology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Huaixia Hu
- Department of Rheumatology and Immunology, Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Jiajia Cui
- Department of Rheumatology and Immunology, Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Wenwen Wang
- Department of Rheumatology and Immunology, Affiliated Hospital 2 of Nantong University and Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Yingying Gao
- Department of Rheumatology and Immunology, Affiliated Hospital 2 of Nantong University and Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Hua Wei
- Department of Rheumatology and Immunology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Zhuqing Wang
- Department of Laboratory Medicine, Taixing People's Hospital, Taixing, Jiangsu, China
| |
Collapse
|
22
|
Dotse E, Lim KH, Wang M, Wijanarko KJ, Chow KT. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life (Basel) 2022; 12:323. [PMID: 35207611 PMCID: PMC8878951 DOI: 10.3390/life12020323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Immune modulation is a hallmark of cancer. Cancer-immune interaction shapes the course of disease progression at every step of tumorigenesis, including metastasis, of which circulating tumor cells (CTCs) are regarded as an indicator. These CTCs are a heterogeneous population of tumor cells that have disseminated from the tumor into circulation. They have been increasingly studied in recent years due to their importance in diagnosis, prognosis, and monitoring of treatment response. Ample evidence demonstrates that CTCs interact with immune cells in circulation, where they must evade immune surveillance or modulate immune response. The interaction between CTCs and the immune system is emerging as a critical point by which CTCs facilitate metastatic progression. Understanding the complex crosstalk between the two may provide a basis for devising new diagnostic and treatment strategies. In this review, we will discuss the current understanding of CTCs and the complex immune-CTC interactions. We also present novel options in clinical interventions, targeting the immune-CTC interfaces, and provide some suggestions on future research directions.
Collapse
Affiliation(s)
- Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - King H. Lim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| | - Kevin Julio Wijanarko
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3010, Australia;
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC 3052, Australia
| | - Kwan T. Chow
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, China; (E.D.); (K.H.L.); (M.W.)
| |
Collapse
|
23
|
Yoshida C, Kadota K, Ishikawa R, Go T, Haba R, Yokomise H. OUP accepted manuscript. Interact Cardiovasc Thorac Surg 2022; 34:1081-1088. [PMID: 35079802 PMCID: PMC9159418 DOI: 10.1093/icvts/ivac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/11/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Chihiro Yoshida
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kyuichi Kadota
- Department of Pathology, Faculty of Medicine, Shimane University, Shimane, Japan
- Corresponding author. Department of Pathology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan. Tel: +81-87-891-2305; fax: +81-87-891-2191; e-mail: (K. Kadota)
| | - Ryo Ishikawa
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tetsuhiko Go
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroyasu Yokomise
- Department of General Thoracic Surgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
24
|
Plaja A, Moran T, Carcereny E, Saigi M, Hernández A, Cucurull M, Domènech M. Small-Cell Lung Cancer Long-Term Survivor Patients: How to Find a Needle in a Haystack? Int J Mol Sci 2021; 22:ijms222413508. [PMID: 34948300 PMCID: PMC8707503 DOI: 10.3390/ijms222413508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Small-cell lung cancer (SCLC) is an aggressive malignancy characterized by a rapid progression and a high resistance to treatments. Unlike other solid tumors, there has been a scarce improvement in emerging treatments and survival during the last years. A better understanding of SCLC biology has allowed for the establishment of a molecular classification based on four transcription factors, and certain therapeutic vulnerabilities have been proposed. The universal inactivation of TP53 and RB1, along with the absence of mutations in known targetable oncogenes, has hampered the development of targeted therapies. On the other hand, the immunosuppressive microenvironment makes the success of immune checkpoint inhibitors (ICIs), which have achieved a modest improvement in overall survival in patients with extensive disease, difficult. Currently, atezolizumab or durvalumab, in combination with platinum–etoposide chemotherapy, is the standard of care in first-line setting. However, the magnitude of the benefit is scarce and no predictive biomarkers of response have yet been established. In this review, we describe SCLC biology and molecular classification, examine the SCLC tumor microenvironment and the challenges of predictive biomarkers of response to new treatments, and, finally, assess clinical and molecular characteristics of long-term survivor patients in order to identify possible prognostic factors and treatment vulnerabilities.
Collapse
|
25
|
Espejo-Cruz ML, González-Rubio S, Zamora-Olaya J, Amado-Torres V, Alejandre R, Sánchez-Frías M, Ciria R, De la Mata M, Rodríguez-Perálvarez M, Ferrín G. Circulating Tumor Cells in Hepatocellular Carcinoma: A Comprehensive Review and Critical Appraisal. Int J Mol Sci 2021; 22:ijms222313073. [PMID: 34884878 PMCID: PMC8657934 DOI: 10.3390/ijms222313073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common neoplasm and a major cause of cancer-related death worldwide. There is no ideal biomarker allowing early diagnosis of HCC and tumor surveillance in patients receiving therapy. Liquid biopsy, and particularly circulating tumor cells (CTCs), have emerged as a useful tool for diagnosis and monitoring therapeutic responses in different tumors. In the present manuscript, we evaluate the current evidence supporting the quantitative and qualitative assessment of CTCs as potential biomarkers of HCC, as well as technical aspects related to isolation, identification, and classification of CTCs. Although the dynamic assessment of CTCs in patients with HCC may aid the decision-making process, there are still many uncertainties and technical caveats to be solved before this methodology has a true impact on clinical practice guidelines. More studies are needed to identify the optimal combination of surface markers, to increase the efficiency of ex-vivo expansion of CTCs, or even to target CTCs as a potential therapeutic strategy to prevent HCC recurrence after surgery or to hamper tumor progression and extrahepatic spreading.
Collapse
Affiliation(s)
- María Lola Espejo-Cruz
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Sandra González-Rubio
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
| | - Javier Zamora-Olaya
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Víctor Amado-Torres
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Rafael Alejandre
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Marina Sánchez-Frías
- Department of Pathology, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain;
| | - Rubén Ciria
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatobiliary Surgery and Liver Transplantation, Reina Sofía University Hospital, 14004 Córdoba, Spain
| | - Manuel De la Mata
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Manuel Rodríguez-Perálvarez
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Department of Hepatology and Liver Transplantation, Reina Sofía University Hospital, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
- Correspondence:
| | - Gustavo Ferrín
- Maimónides Institute of Biomedical Research (IMIBIC), University of Córdoba, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain; (M.L.E.-C.); (S.G.-R.); (J.Z.-O.); (V.A.-T.); (R.A.); (R.C.); (M.D.l.M.); (G.F.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
26
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y, Zhou J. Circulating tumor cells: biology and clinical significance. Signal Transduct Target Ther 2021; 6:404. [PMID: 34803167 PMCID: PMC8606574 DOI: 10.1038/s41392-021-00817-8] [Citation(s) in RCA: 364] [Impact Index Per Article: 121.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that have sloughed off the primary tumor and extravasate into and circulate in the blood. Understanding of the metastatic cascade of CTCs has tremendous potential for the identification of targets against cancer metastasis. Detecting these very rare CTCs among the massive blood cells is challenging. However, emerging technologies for CTCs detection have profoundly contributed to deepening investigation into the biology of CTCs and have facilitated their clinical application. Current technologies for the detection of CTCs are summarized herein, together with their advantages and disadvantages. The detection of CTCs is usually dependent on molecular markers, with the epithelial cell adhesion molecule being the most widely used, although molecular markers vary between different types of cancer. Properties associated with epithelial-to-mesenchymal transition and stemness have been identified in CTCs, indicating their increased metastatic capacity. Only a small proportion of CTCs can survive and eventually initiate metastases, suggesting that an interaction and modulation between CTCs and the hostile blood microenvironment is essential for CTC metastasis. Single-cell sequencing of CTCs has been extensively investigated, and has enabled researchers to reveal the genome and transcriptome of CTCs. Herein, we also review the clinical applications of CTCs, especially for monitoring response to cancer treatment and in evaluating prognosis. Hence, CTCs have and will continue to contribute to providing significant insights into metastatic processes and will open new avenues for useful clinical applications.
Collapse
Affiliation(s)
- Danfeng Lin
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lesang Shen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Yang
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangfang Zhu
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhou
- Department of Surgery, Traditional Chinese Medical Hospital of Zhuji, Shaoxing, China
| | - Shu Zheng
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiaojiao Zhou
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
27
|
Ramírez-Pavez TN, Martínez-Esparza M, Ruiz-Alcaraz AJ, Marín-Sánchez P, Machado-Linde F, García-Peñarrubia P. The Role of Peritoneal Macrophages in Endometriosis. Int J Mol Sci 2021; 22:ijms221910792. [PMID: 34639133 PMCID: PMC8509388 DOI: 10.3390/ijms221910792] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disorder, defined as the growth of endometrial stromal cells and glands at extrauterine sites. Endometriotic lesions are more frequently located into the abdominal cavity, although they can also be implanted in distant places. Among its etiological factors, the presence of immune dysregulation occupies a prominent place, pointing out the beneficial and harmful outcomes of macrophages in the pathogenesis of this disease. Macrophages are tissue-resident cells that connect innate and adaptive immunity, playing a key role in maintaining local homeostasis in healthy conditions and being critical in the development and sustainment of many inflammatory diseases. Macrophages accumulate in the peritoneal cavity of women with endometriosis, but their ability to clear migrated endometrial fragments seems to be inefficient. Hence, the characteristics of the peritoneal immune system in endometriosis must be further studied to facilitate the search for new diagnostic and therapeutic tools. In this review, we summarize recent relevant advances obtained in both mouse, as the main animal model used to study endometriosis, and human, focusing on peritoneal macrophages obtained from endometriotic patients and healthy donors, under the perspective of its future clinical translation to the role that these cells play on this pathology.
Collapse
Affiliation(s)
- Tamara N. Ramírez-Pavez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - Antonio J. Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
| | - Pilar Marín-Sánchez
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB, 30120 Murcia, Spain;
| | - Francisco Machado-Linde
- Servicio de Ginecología y Obstetricia, Hospital Clínico Universitario Reina Sofía, CARM, 30002 Murcia, Spain;
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence “Campus Mare Nostrum”, Universidad de Murcia, 30100 Murcia, Spain; (T.N.R.-P.); (M.M.-E.); (A.J.R.-A.)
- Correspondence: ; Tel.: +34-8-6888-4673
| |
Collapse
|
28
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
29
|
Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021; 13:cancers13092189. [PMID: 34063272 PMCID: PMC8124844 DOI: 10.3390/cancers13092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present review is aimed to discuss the relevance of assaying for the presence and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite results being mostly preliminary. The possibility to identify CTCs holds a great promise for both applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint the mechanism of the metastatic process through the characterization of tumor mesenchymal cells. Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis, identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and patient stratification. Abstract Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-documented relevance for applications of liquid biopsy in precision medicine. In the present review, the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal tumors are presented, and results provide a promising basis for clinical application of CTC detection in sarcoma.
Collapse
|
30
|
Liu Z, Sun D, Zhu Q, Liu X. The screening of immune-related biomarkers for prognosis of lung adenocarcinoma. Bioengineered 2021; 12:1273-1285. [PMID: 33870858 PMCID: PMC8806236 DOI: 10.1080/21655979.2021.1911211] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) accounts for a frequently seen non-small cell lung cancer (NSCLC) histological subtype, and it is associated with dismal prognostic outcome. However, the benefits of traditional treatment are still limited, and the efficacies of immunotherapy are quite different. Therefore, it is of great significance to identify novel immune-related therapeutic targets in lung adenocarcinoma. In this study, we identified a set of immune-related biomarkers for prognosis of lung adenocarcinoma, which could provide new ideas for immunotherapy of lung adenocarcinoma. Datasets related to LUAD were filtered from the GEO database. The appropriate packages were used to identify differentially expressed genes (DEGs) and to carry out enrichment analysis, followed by the construction of prognostic biomarkers. The Kaplan-Meier (K-M) curves were plotted to analyze patient survival based on hub genes. Associations between the expression of selected biomarkers and six types of tumor-infiltrating immune cells were evaluated based on the online tool TIMER. After analyzing five GEO datasets(GSE32867, GSE46539, GSE63459, GSE75037 and GSE116959), we discovered altogether 67 DEGs, among which, 15 showed up-regulation while 52 showed down-regulation. Enrichments of integrated DEGs were identified in the ontology categories. CAV1, CFD, FMO2 and CLEC3B were eventually selected as independent prognostic biomarkers, they were correlated with clinical outcomes of LUAD patients. Moreover, a positive correlation was observed between biomarker expression and all different types of immune infiltration, and the expression level of the four biomarkers was all positively related to macrophage.
Collapse
Affiliation(s)
- Zhonghui Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Dan Sun
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| | - Qing Zhu
- Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
31
|
Dai Z, Gu XY, Xiang SY, Gong DD, Man CF, Fan Y. Research and application of single-cell sequencing in tumor heterogeneity and drug resistance of circulating tumor cells. Biomark Res 2020; 8:60. [PMID: 33292625 PMCID: PMC7653877 DOI: 10.1186/s40364-020-00240-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Malignant tumor is a largely harmful disease worldwide. The cure rate of malignant tumors increases with the continuous discovery of anti-tumor drugs and the optimisation of chemotherapy options. However, drug resistance of tumor cells remains a massive obstacle in the treatment of anti-tumor drugs. The heterogeneity of malignant tumors makes studying it further difficult for us. In recent years, using single-cell sequencing technology to study and analyse circulating tumor cells can avoid the interference of tumor heterogeneity and provide a new perspective for us to understand tumor drug resistance.
Collapse
Affiliation(s)
- Zhe Dai
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Xu-yu Gu
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Shou-yan Xiang
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Dan-dan Gong
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Chang-feng Man
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| | - Yu Fan
- Cancer Institution, Affiliated People’s Hospital of Jiangsu University, No.8 Dianli Road, Zhenjiang, Jiangsu Province 212002 People’s Republic of China
| |
Collapse
|
32
|
Ge Z, Ding S. The Crosstalk Between Tumor-Associated Macrophages (TAMs) and Tumor Cells and the Corresponding Targeted Therapy. Front Oncol 2020; 10:590941. [PMID: 33224886 PMCID: PMC7670061 DOI: 10.3389/fonc.2020.590941] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tumor microenvironment (TME) is composed of tumor cells and surrounding non-tumor stromal cells, mainly including tumor associated macrophages (TAMs), endothelial cells, and carcinoma-associated fibroblasts (CAFs). The TAMs are the major components of non-tumor stromal cells, and play an important role in promoting the occurrence and development of tumors. Macrophages originate from bone marrow hematopoietic stem cells and embryonic yolk sacs. There is close crosstalk between TAMs and tumor cells. With the occurrence of tumors, tumor cells secrete various chemokines to recruit monocytes to infiltrate tumor tissues and further promote their M2-type polarization. Importantly, M2-like TAMs can in turn accelerate tumor growth, promote tumor cell invasion and metastasis, and inhibit immune killing to promote tumor progression. Therefore, targeting TAMs in tumor tissues has become one of the principal strategies in current tumor immunotherapy. Current treatment strategies focus on reducing macrophage infiltration in tumor tissues and reprogramming TAMs to M1-like to kill tumors. Although these treatments have had some success, their effects are still limited. This paper mainly summarized the recruitment and polarization of macrophages by tumors, the support of TAMs for the growth of tumors, and the research progress of TAMs targeting tumors, to provide new treatment strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhe Ge
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| | - Shuzhe Ding
- School of Physical Education & Health Care, East China Normal University, Shanghai, China.,Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
| |
Collapse
|
33
|
Zhu Y, Wu S. [Immune Characteristics of Small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:889-896. [PMID: 33070515 PMCID: PMC7583879 DOI: 10.3779/j.issn.1009-3419.2020.101.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
小细胞肺癌(small cell lung cancer, SCLC)是预后极差的一类肿瘤,30年来药物治疗无显著进展,免疫检查点抑制剂(immune checkpoint inhibitor, ICI)成为近年唯一突破:程序性死亡-1(programmed death-1, PD-1)抑制剂单药或联合细胞毒T淋巴细胞抗原-4(cytotoxic T-lymphocyte antigen-4, CTLA-4)抑制剂后线治疗SCLC的有效率为10%-33%,有效时间较持久;程序性死亡配体-1(programmed death ligand-1, PD-L1)抑制剂联合化疗对比传统化疗一线治疗广泛期SCLC(extensive stage-SCLC, ES-SCLC)的总生存期延长。尽管取得一定疗效,相对于非小细胞肺癌(non-small cell lung cancer, NSCLC)等对免疫治疗敏感的肿瘤类型,SCLC的疗效仍不令人满意,这可能与其免疫抑制特征有关。本综述对SCLC免疫特征的研究现状进行总结,包括淋巴细胞和免疫抑制细胞在肿瘤内浸润情况、PD-L1和主要组织相容复合物(major histocompatibility complex, MHC)在肿瘤的表达以及外周血免疫细胞的改变,并对这些免疫特征的预后及其对ICI疗效的预测价值进行分析。
Collapse
Affiliation(s)
- Yan Zhu
- Department of Oncology, Peking University First Hospital, Beijing 100034, China
| | - Shikai Wu
- Department of Oncology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
34
|
Liu J, Wu P, Lai S, Song X, Fu C, Wang X, Liu S, Hou H, Liu M, Wang J. Preoperative Monocyte-to-lymphocyte Ratio Predicts for Intravesical Recurrence in Patients With Urothelial Carcinoma of the Upper Urinary Tract After Radical Nephroureterectomy Without a History of Bladder Cancer. Clin Genitourin Cancer 2020; 19:e156-e165. [PMID: 33121908 DOI: 10.1016/j.clgc.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND This study aimed to investigate the preoperative monocyte-to-lymphocyte ratio (MLR) as a biomarker for intravesical recurrence (IVR) in upper urinary tract urothelial carcinoma (UTUC) after radical nephroureterectomy (RNU) for the first time. PATIENTS AND METHODS This study involved the clinical data of 255 patients with UTUC without a history of bladder cancer who had undergone RNU from March 2004 to February 2019 at an academic institution. The associations between MLR and IVR were assessed with Kaplan-Meier method and Cox regression analysis. RESULTS The median follow-up was 43.93 months. Of the 255 patients, 37 developed IVR during the follow-up period. Kaplan-Meier analysis revealed that patients with high MLR (> 0.22) had poor IVR-free survival (P = .001); this prognostic value was in accordance with patients with high grade and more advanced stage UTUC. Cox regression preoperative models showed that ureteral tumor site (hazard ratio [HR], 2.784; P = .005), surgical approach (HR, 2.745; P = .008), and high MLR (HR, 4.085; P < .001) were an independent risk factor for IVR. These factors were used as a signature to establish a prognostic risk model, which revealed significant differences among the 3 subgroups of patients with low, intermediate, and high risk (P < .001). CONCLUSION Ureteral tumor site, surgical approach, and preoperative MLR are significant predictors for IVR in patients with UTUC after RNU. MLR may become a useful biomarker to predict IVR in patients with UTUC after RNU.
Collapse
Affiliation(s)
- Jianyong Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Pengjie Wu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Shicong Lai
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xinda Song
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Chunlong Fu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Xuan Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Shengjie Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Ming Liu
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China.
| | - Jianye Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of the Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P. R. China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, P. R. China.
| |
Collapse
|
35
|
Flerin NC, Pinioti S, Menga A, Castegna A, Mazzone M. Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages. Cold Spring Harb Perspect Med 2020; 10:a037044. [PMID: 31615868 PMCID: PMC7461771 DOI: 10.1101/cshperspect.a037044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite improved treatment options, cancer remains the leading cause of morbidity and mortality worldwide, with 90% of this mortality correlated to the development of metastasis. Since metastasis has such an impact on treatment success, disease outcome, and global health, it is important to understand the different steps and factors playing key roles in this process, how these factors relate to immune cell function and how we can target metabolic processes at different steps of metastasis in order to improve cancer treatment and patient prognosis. Recent insights in immunometabolism direct to promising therapeutic targets for cancer treatment, however, the specific contribution of metabolism on antitumor immunity in different metastatic niches warrant further investigation. Here, we provide an overview of what is so far known in the field of immunometabolism at different steps of the metastatic cascade, and what may represent the next steps forward. Focusing on metabolic checkpoints in order to translate these findings from in vitro and mouse studies to the clinic has the potential to revolutionize cancer immunotherapy and greatly improve patient prognosis.
Collapse
Affiliation(s)
- Nina C Flerin
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Sotiria Pinioti
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessio Menga
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari 70125, Italy
- IBIOM-CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven B3000, Belgium
- Department of Oncology, Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, KU Leuven, Leuven B3000, Belgium
| |
Collapse
|
36
|
Zhu K, Li P, Mo Y, Wang J, Jiang X, Ge J, Huang W, Liu Y, Tang Y, Gong Z, Liao Q, Li X, Li G, Xiong W, Zeng Z, Yu J. Neutrophils: Accomplices in metastasis. Cancer Lett 2020; 492:11-20. [PMID: 32745581 DOI: 10.1016/j.canlet.2020.07.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022]
Abstract
Metastasis is a critical cause of treatment failure and death in patients with advanced malignancies. Tumor cells can leave the primary site and enter the bloodstream; these circulating tumor cells then colonize target organs by overcoming blood shear stress, evading immune surveillance, and silencing the offensive capabilities of immune cells, eventually forming metastatic foci. From leaving the primary focus to the completion of distant metastasis, malignant tumor cells are supported and/or antagonized by certain immune cells. In particular, it has been found that myeloid granulocytes play an important role in this process. This review therefore aims to comprehensively describe the significance of neutrophils in solid tumor metastasis in terms of their supporting role in initiating the invasion and migration of tumor cells and assisting the colonization of circulating tumor cells in distant target organs, with the hope of providing insight into and ideas for anti-tumor metastasis treatment of tumor patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weilun Huang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yan Liu
- Department of Plastic and Cosmetic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyan Tang
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Guiyuan Li
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| | - Jianjun Yu
- Department of Head and Neck Surgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
37
|
The Significance of Circulating Tumor Cells in Patients with Hepatocellular Carcinoma: Real-Time Monitoring and Moving Targets for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071734. [PMID: 32610709 PMCID: PMC7408113 DOI: 10.3390/cancers12071734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is ranked as the sixth most common cancer around the world. With the emergence of the state-of-the-art modalities lately, such as liver transplantation, image-guided ablation, and chemoembolization, the death rate is still high due to high metastasis rate after therapy. Observation by biannual ultrasonography allows effective diagnosis at an early stage for candidates with no extrahepatic metastasis, but its effectiveness still remains unsatisfactory. Developing a new test with improved effectiveness and specificity is urgently needed for HCC diagnosis, especially for patients after first line therapy. Circulating tumor cells (CTCs) are a small sub-population of tumor cells in human peripheral blood, they release from the primary tumor and invade into the blood circulatory system, thereby residing into the distal tissues and survive. As CTCs have specific and aggressive properties, they can evade from immune defenses, induce gene alterations, and modulate signal transductions. Ultimately, CTCs can manipulate tumor behaviors and patient reactions to anti-tumor treatment. Given the fact that in HCC blood is present around the immediate vicinity of the tumor, which allows thousands of CTCs to release into the blood circulation daily, so CTCs are considered to be the main cause for HCC occurrence, and are also a pivotal factor for HCC prognosis. In this review, we highlight the characteristics and enrichment strategies of CTCs, and focus on the use of CTCs for tumor evaluation and management in patients with HCC.
Collapse
|
38
|
Inflammation-Based Scores Increase the Prognostic Value of Circulating Tumor Cells in Primary Breast Cancer. Cancers (Basel) 2020; 12:cancers12051134. [PMID: 32369910 PMCID: PMC7281016 DOI: 10.3390/cancers12051134] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/26/2022] Open
Abstract
A correlation between circulating tumor cells (CTCs) and monocytes in metastatic breast cancer (BC), where CTCs and monocyte-to-lymphocyte ratio (MLR) were predictors of overall survival (OS), was recently shown. Herein, we aimed to assess the association between CTCs and the complete blood count (CBC)-derived inflammation-based scores in 284 primary BC patients. CTCs were determined in CD45-depleted peripheral blood mononuclear cells by real time-PCR. This method allowed us to detect a subset of CTCs with an epithelial-to-mesenchymal transition phenotype (CTC EMT), previously associated with inferior outcomes in primary BC. In the present study, CTC EMT positivity (hazard ratio (HR) = 2.4; 95% CI 1.20–4.66, p = 0.013) and elevated neutrophil-to-lymphocyte ratio (NLR) (HR = 2.20; 95% CI 1.07–4.55; p = 0.033) were associated with shorter progression-free survival (PFS) in primary BC patients. Multivariate analysis showed that CTC EMT-positive patients with NLR ≥ 3 had 8.6 times increased risk of disease recurrence (95% CI 2.35–31.48, p = 0.001) compared with CTC EMT-negative patients with NLR < 3. Similarly, disease recurrence was 13.14 times more likely in CTC EMT-positive patients with MLR ≥ 0.34 (95% CI 4.35–39.67, p < 0.001). Given its low methodological and financial demands, the CBC-derived inflammation-based score determination could, after broader validation, significantly improve the prognostication of BC patients.
Collapse
|
39
|
Shoji F, Kozuma Y, Toyokawa G, Yamazaki K, Takeo S. Complete Blood Cell Count-Derived Inflammatory Biomarkers in Early-Stage Non-Small-Cell Lung Cancer. Ann Thorac Cardiovasc Surg 2020; 26:248-255. [PMID: 32074540 PMCID: PMC7641888 DOI: 10.5761/atcs.oa.19-00315] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Complete blood cell count (CBC)-derived inflammatory biomarkers are widely used as prognostic parameters for various malignancies, but the best predictive biomarker for early-stage non-small-cell lung cancer (NSCLC) is unclear. We retrospectively analyzed early-stage NSCLC patients to investigate predictive effects of preoperative CBC-derived inflammatory biomarkers. PATIENTS AND METHODS We selected 311 consecutive patients with pathological stage IA NSCLC surgically resected from April 2006 to December 2012. Univariate and multivariate Cox proportional analyses of recurrence-free survival (RFS) were used to test the preoperative systemic immune inflammation index (SII), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and monocyte-lymphocyte ratio (MLR). RESULTS Preoperative high MLR levels were significantly associated with patient sex, smoking status, and postoperative recurrence (p <0.0001, p = 0.0307, and p = 0.0146, respectively), and preoperative high SII levels were significantly correlated with postoperative recurrence (p = 0.0458). Neither NLR nor PLR were associated with any related factors. Only preoperative MLR levels (p = 0.0269) were identified as an independent predictor of shorter RFS. The relative risk (RR) for preoperative high MLR level versus low level patients was 2.259 (95% confidence interval [CI]: 1.094-5.000). Five-year RFS rates in patients with preoperatively high MLR levels were significantly lower than in those with low MLR levels (82.21% vs. 92.05%, p = 0.0062). In subgroup analysis by tumor size and MLR level, the high MLR level subgroup with tumors >2 cm had significantly shorter RFS than other subgroups (p = 0.0289). CONCLUSIONS The preoperative MLR level is the optimal predictor of recurrence in patients with pathological stage IA NSCLC.
Collapse
Affiliation(s)
- Fumihiro Shoji
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Yuka Kozuma
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Koji Yamazaki
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| | - Sadanori Takeo
- Department of Thoracic Surgery, Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Fukuoka, Japan
| |
Collapse
|
40
|
Tomasin R, Martin ACBM, Cominetti MR. Metastasis and cachexia: alongside in clinics, but not so in animal models. J Cachexia Sarcopenia Muscle 2019; 10:1183-1194. [PMID: 31436396 PMCID: PMC6903449 DOI: 10.1002/jcsm.12475] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/06/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer cachexia is a paraneoplastic syndrome characterized by lean mass wasting (with or without fat mass decrease), culminating in involuntary weight loss, which is the key clinical observation nowadays. There is a notable lack of studies involving animal models to mimic the clinical reality, which are mostly patients with cachexia and metastatic disease. This mismatch between the clinical reality and animal models could at least partly contribute to the poor translation observed in the field. In this paper, we retrieved and compared animal models used for cachexia research from 2017 and 10 years earlier (2007) and observed that very little has changed. Especially, clinically relevant models where cachexia is studied in an orthotopic or metastatic context were and still are very scarce. Finally, we described and supported the biological rationale behind why, despite technical challenges, these two phenomena-metastasis and cachexia-should be modelled in parallel, highlighting the overlapping pathways between them. To sum up, this review aims to contribute to rethinking and possibly switching the models currently used for cachexia research, to hopefully obtain better and more translational outcomes.
Collapse
Affiliation(s)
- Rebeka Tomasin
- Laboratory of Biology of Aging (LABEN), Department of Gerontology, Federal University of São Carlos, São Carlos, Brazil
| | | | - Márcia Regina Cominetti
- Laboratory of Biology of Aging (LABEN), Department of Gerontology, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
41
|
Heikenwalder M, Lorentzen A. The role of polarisation of circulating tumour cells in cancer metastasis. Cell Mol Life Sci 2019; 76:3765-3781. [PMID: 31218452 PMCID: PMC6744547 DOI: 10.1007/s00018-019-03169-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Metastasis is the spread of cancer cells from a primary tumour to a distant site of the body. Metastasising tumour cells have to survive and readjust to different environments, such as heterogeneous solid tissues and liquid phase in lymph- or blood circulation, which they achieve through a high degree of plasticity that renders them adaptable to varying conditions. One defining characteristic of the metastatic process is the transition of tumour cells between different polarised phenotypes, ranging from differentiated epithelial polarity to migratory front-rear polarity. Here, we review the polarisation types adopted by tumour cells during the metastatic process and describe the recently discovered single-cell polarity in liquid phase observed in circulating tumour cells. We propose that single-cell polarity constitutes a mode of polarisation of the cell cortex that is uncoupled from the intracellular polarisation machinery, which distinguishes single-cell polarity from other types of polarity identified so far. We discuss how single-cell polarity can contribute to tumour metastasis and the therapeutic potential of this new discovery.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
42
|
Kielbassa K, Vegna S, Ramirez C, Akkari L. Understanding the Origin and Diversity of Macrophages to Tailor Their Targeting in Solid Cancers. Front Immunol 2019; 10:2215. [PMID: 31611871 PMCID: PMC6773830 DOI: 10.3389/fimmu.2019.02215] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are a major component of the tumor immune microenvironment (TIME) and are associated with a poor prognostic factor in several cancers. TAMs promote tumor growth by facilitating immunosuppression, angiogenesis, and inflammation, and can promote tumor recurrence post-therapeutic intervention. Major TAM-targeted therapies include depletion, reprogramming, as well as disrupting the balance of macrophage recruitment and their effector functions. However, intervention-targeting macrophages have been challenging, since TAM populations are highly plastic and adaptation or resistance to these approaches often arise. Defining a roadmap of macrophage dynamics in the TIME related to tissue and tumor type could represent exploitable vulnerabilities related to their altered functions in cancer malignancy. Here, we review multiple macrophage-targeting strategies in brain, liver, and lung cancers, which all emerge in tissues rich in resident macrophages. We discuss the successes and failures of these therapeutic approaches as well as the potential of personalized macrophage-targeting treatments in combination therapies.
Collapse
Affiliation(s)
| | | | | | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
43
|
Zheng Y, Chen Y, Chen J, Chen W, Pan Y, Bao L, Gao X. Combination of Systemic Inflammation Response Index and Platelet-to-Lymphocyte Ratio as a Novel Prognostic Marker of Upper Tract Urothelial Carcinoma After Radical Nephroureterectomy. Front Oncol 2019; 9:914. [PMID: 31620369 PMCID: PMC6759944 DOI: 10.3389/fonc.2019.00914] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
This study aimed to evaluate the preoperative prognostic value of systemic inflammation response index and platelet-to-lymphocyte ratio (SIRI-PLR) in patients with upper tract urothelial carcinoma (UTUC). The prognostic ability of SIRI-PLR was evaluated in a training cohort comprising 259 patients with UTUC who underwent radical nephroureterectomy and was further validated in an independent cohort comprising of 274 patients. Multivariate Cox regression models showed that SIRI was significantly associated with overall-survival (OS), cancer-specific survival (CSS), and metastatic-free survival (MFS), and PLR significantly affected OS and CSS (all P < 0.05). In particular, a simultaneously high SIRI-PLR value was considered an independent risk factor even after adjusting for confounding factors and was superior to SIRI alone in predicting survival among patients with UTUC. The analyses of concordance-index and receiver operating characteristic curve showed that incorporation of SIRI-PLR vs. without its incorporation into newly developed nomograms or currently available clinical parameters, such as pathologic T stage, N stage, or tumor grade, had higher accuracy in predicting urologic outcomes of patients with UTUC. These results were observed in the training cohort and were confirmed in the validation cohort. In conclusion, patients with a simultaneously high SIRI-PLR value had significantly poor prognosis. Incorporating SIRI-PLR into currently available clinical parameters can help in patient management.
Collapse
Affiliation(s)
- Yangqin Zheng
- Department of Hematology, The Third Clinical Institute Affiliated to Wenzhou Medical University, People's Hospital of Wenzhou, Wenzhou, China
| | - Yuming Chen
- Department of Urology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingfeng Chen
- Department of Anorectal Surgery, Sixth Affiliated Hospital of Wenzhou Medical University (Lishui People's Hospital), Lishui, China
| | - Wu Chen
- Department of Urology, The Third Clinical Institute Affiliated to Wenzhou Medical University, People's Hospital of Wenzhou, Wenzhou, China
| | - Yue Pan
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lianmin Bao
- Department of Respiratory, Rui'an People's Hospital, The Third Affiliated Hospital of the Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
44
|
Hochmair M, Rath B, Klameth L, Ulsperger E, Weinlinger C, Fazekas A, Plangger A, Zeillinger R, Hamilton G. Effects of salinomycin and niclosamide on small cell lung cancer and small cell lung cancer circulating tumor cell lines. Invest New Drugs 2019; 38:946-955. [PMID: 31446534 PMCID: PMC7340652 DOI: 10.1007/s10637-019-00847-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Tumor dissemination and recurrence is attributed to highly resistant cancer stem cells (CSCs) which may constitute a fraction of circulating tumor cells (CTCs). Small cell lung cancer (SCLC) constitutes a suitable model to investigate the relation of CTCs and CSCs due to rapid tumor spread and a high number of CTCs. Expansion of five SCLC CTC lines (BHGc7, 10, 16, 26 and UHGc5) in vitro at our institution allowed for the analysis of CSC markers and cytotoxicity of the CSC-selective drugs salinomycin and niclosamide against CTC single cell suspensions or CTC spheroids/ tumorospheres (TOS). Salinomycin exerted dose-dependent cytotoxicity against the SCLC lines but, with exception of BHGc7 TOS, there was no markedly enhanced activity against TOS. Similarly, niclosamide exhibits high activity against BHGc7 TOS and UHGc5 TOS but not against the other CTC spheroids. High expression of the CSC marker CD133 was restricted to three SCLC tumor lines and the BHGc10 CTC line. All SCLC CTCs are CD24-positive but lack expression of CD44 and ABCG2 in contrast to the SCLC tumor lines which show a phenotype more similar to that of CSCs. The stem cell marker SOX2 was found in all CTC lines and SCLC GLC14/16, whereas elevated expression of Oct-3/4 and Nanog was restricted to BHGc26 and UHGc5. In conclusion, the SCLC CTCs established from patients with relapsed disease lack a typical CSC phenotype in respect to chemosensitivity to CSC-selective drugs, surface markers, expression of pluripotent stem cell and transcription factors.
Collapse
Affiliation(s)
- Maximilian Hochmair
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Barbara Rath
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria
| | - Lukas Klameth
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Weinlinger
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Andreas Fazekas
- Respiratory Oncology Unit, Otto Wagner Hospital, Baumgartner Höhe, Vienna, Austria
| | - Adelina Plangger
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria
| | - Robert Zeillinger
- Department of Gynecology and Obstetrics, Molecular Oncology Group, Medical University of Vienna, Vienna, Austria
| | - Gerhard Hamilton
- Department of Surgery, Medical University of Vienna, Spitalgasse, Vienna, Austria.
| |
Collapse
|
45
|
Wang D, Guo D, Shi F, Zhu Y, Li A, Kong L, Teng F, Yu J. The predictive effect of the systemic immune-inflammation index for patients with small-cell lung cancer. Future Oncol 2019; 15:3367-3379. [PMID: 31424272 DOI: 10.2217/fon-2019-0288] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: The purpose of this study was to investigate the predictive power of the systemic immune inflammation index (SII) based on neutrophil (N), platelet (P) and lymphocyte (L) on the clinical outcomes of patients with SCLC. Patients & methods: Blood samples of 228 patients were obtained 1 week before treatment to measure the SII (SII = P × N/L). Overall survival (OS) and progression-free survival (PFS) were estimated using the Kaplan-Meier curves and Cox regression models. Results: Higher SII was associated with poorer OS (p < 0.001) and poorer PFS (p < 0.001). Multivariable analyses further revealed SII as an independent prognostic factor for OS (p < 0.001) and PFS (p < 0.001). Conclusion: Pretreatment SII was a valuable prognostic factor for PFS and OS in SCLC patients.
Collapse
Affiliation(s)
- Duoying Wang
- Department of Clinical Medicine, Weifang Medical University, Weifang, PR China.,Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Dong Guo
- Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Fang Shi
- Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Ying Zhu
- Department of Clinical Medicine, Weifang Medical University, Weifang, PR China
| | - Aijie Li
- Department of Clinical Medicine, Weifang Medical University, Weifang, PR China.,Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Li Kong
- Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Feifei Teng
- Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Jinming Yu
- Department of Radiotherapy, Shandong Cancer Hospital & Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| |
Collapse
|
46
|
Heeke S, Mograbi B, Alix-Panabières C, Hofman P. Never Travel Alone: The Crosstalk of Circulating Tumor Cells and the Blood Microenvironment. Cells 2019; 8:cells8070714. [PMID: 31337010 PMCID: PMC6678604 DOI: 10.3390/cells8070714] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Commonly, circulating tumor cells (CTCs) are described as source of metastasis in cancer patients. However, in this process cancer cells of the primary tumor site need to survive the physical and biological challenges in the blood stream before leaving the circulation to become the seed of a new metastatic site in distant parenchyma. Most of the CTCs released in the blood stream will not resist those challenges and will consequently fail to induce metastasis. A few of them, however, interact closely with other blood cells, such as neutrophils, platelets, and/or macrophages to survive in the blood stream. Recent studies demonstrated that the interaction and modulation of the blood microenvironment by CTCs is pivotal for the development of new metastasis, making it an interesting target for potential novel treatment strategies. This review will discuss the recent research on the processes in the blood microenvironment with CTCs and will outline currently investigated treatment strategies.
Collapse
Affiliation(s)
- Simon Heeke
- Université Côte d'Azur, CHU Nice, FHU OncoAge, 06000 Nice, France
- Université Côte d'Azur, CNRS UMR7284, Inserm U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, 06000 Nice, France
| | - Baharia Mograbi
- Université Côte d'Azur, CHU Nice, FHU OncoAge, 06000 Nice, France
- Université Côte d'Azur, CNRS UMR7284, Inserm U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, 06000 Nice, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre, EA2415, Montpellier University, 34093 Montpellier, France
| | - Paul Hofman
- Université Côte d'Azur, CHU Nice, FHU OncoAge, 06000 Nice, France.
- Université Côte d'Azur, CNRS UMR7284, Inserm U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), FHU OncoAge, 06000 Nice, France.
- Laboratory of Clinical and Experimental Pathology and Biobank BB-0033-00025, Pasteur Hospital, FHU OncoAge, 06000 Nice, France.
| |
Collapse
|
47
|
Leibold AT, Monaco GN, Dey M. The role of the immune system in brain metastasis. CURRENT NEUROBIOLOGY 2019; 10:33-48. [PMID: 31097897 PMCID: PMC6513348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metastatic brain tumors are the most common brain tumors in adults. With numerous successful advancements in systemic treatment of most common cancer types, brain metastasis is becoming increasingly important in the overall prognosis of cancer patients. Brain metastasis of peripheral tumor is the result of complex interplay of primary tumor, immune system and central nervous system microenvironment. Once formed, brain metastases hide behind the blood brain barrier and become inaccessible to chemotherapies that are otherwise successful in targeting systemic cancer. The approval of immune checkpoint inhibitors for several common cancers such as advanced melanoma and lung cancers brings with it the opportunity and obligation to further understand the mechanisms of immunosuppression by tumors that spread to the brain as well as the interaction between the brain environment and tumor microenvironment. In this review paper we define the central role of the immune system in the development of brain metastases. We performed a comprehensive review of the literature to outline the molecular mechanisms of immunosuppression used by tumors and how the immune system interacts with the central nervous system to facilitate brain metastasis. In particular we discuss the tumor-type-specific mechanisms of metastasis of cancers that preferentially metastasize to the brain as well as the therapies that effectively modulate the immune response, such as immune checkpoint inhibitors and vaccines.
Collapse
Affiliation(s)
- Adam T Leibold
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| | - Gina N Monaco
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, IU Simon Cancer Center, Indiana University, Purdue University Indianapolis, Indiana, USA
| |
Collapse
|
48
|
Tellez-Gabriel M, Heymann MF, Heymann D. Circulating Tumor Cells as a Tool for Assessing Tumor Heterogeneity. Am J Cancer Res 2019; 9:4580-4594. [PMID: 31367241 PMCID: PMC6643448 DOI: 10.7150/thno.34337] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor heterogeneity is the major cause of failure in cancer prognosis and prediction. Accurately detecting heterogeneity for the development of biomarkers and the detection of the clones resistant to therapy is one of the main goals of contemporary medicine. Metastases belong to the natural history of cancer. The present review gives an overview on the origin of tumor heterogeneity. Recent progress has made it possible to isolate and characterize circulating tumor cells (CTCs), which are the drivers of the disease between the primary sites and metastatic foci. The most recent methods for characterizing CTCs are summarized and we discuss the power of CTC profiling for analyzing tumor heterogeneity in early and advanced diseases.
Collapse
|
49
|
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is a highly malignant disease with a dismal prognosis that is currently being tested for theclinical activity of checkpoint inhibitors. SCLC is associated with smoking and exhibits a high mutational burden. However, low expression of PD-L1 and MHC antigens, as well low levels of immune cell infiltration and rapid tumor progress seems to limit the efficacy of anticancer immunity. Nevertheless, long-term survival was reported from studies using anti-PD-1/PD-L1 and CTLA-4 agents. AREAS COVERED Data of clinical trials of checkpoint inhibitors in SCLC show lower success rates compared to NSCLC. The mechanisms of resistance to immunotherapy are discussed for their relevance to SCLC patients. EXPERT OPINION Although some factors, such as a high mutation rate, favor immunotherapy for SCLC patients, downregulation of MHC class I, low expression of PD-L1, poor tumor infiltration by effector T cells, presence of myeloid-derived suppressor cells as well as regulatory T lymphocytes counteract the immune system activation by checkpoint inhibitors. Furthermore, this tumor develops avascular regions which have immunosuppressive effects and restrict access of lymphocytes and antibodies. In conclusion, immunotherapy in SCLC is effective in highly selected patients with good performance status and special and unknown preconditions contributing to long-lasting responses.
Collapse
Affiliation(s)
- Gerhard Hamilton
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| | - Barbara Rath
- a Department of Surgery , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
50
|
Jan HC, Yang WH, Ou CH. Combination of the Preoperative Systemic Immune-Inflammation Index and Monocyte-Lymphocyte Ratio as a Novel Prognostic Factor in Patients with Upper-Tract Urothelial Carcinoma. Ann Surg Oncol 2018; 26:669-684. [PMID: 30374917 DOI: 10.1245/s10434-018-6942-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study aimed to evaluate the clinical significance of the preoperative systemic immune-inflammation index (SII) combined with the monocyte-lymphocyte ratio (MLR) for patients with upper-tract urothelial carcinoma (UTUC). METHODS The clinical data of 424 patients who underwent radical nephroureterectomy from January 2007 to June 2017 were analyzed. Kaplan-Meier analyses and Cox proportional hazards models were used to evaluate associations of preoperative systemic immune-inflammatory biomarkers with overall survival (OS), cancer-specific survival (CSS), and progression-free survival (PFS). Moreover, logistic regression preoperative models were applied to predict advanced disease. RESULTS Multivariate analyses showed that SII significantly influenced both OS and CSS (both P < 0.05), whereas MLR exhibited the most significant association with OS (P = 0.008). In particular, simultaneously high SII and MLR values correlated significantly with OS, CSS, and PFS (all P < 0.05). Logistic regression preoperative models showed that the combination of high SII and high MLR was a significant predictor of non-organ-confined UTUC (P = 0.001). Furthermore, Kaplan-Meier analysis showed that the combination of high SII and high MLR was significantly linked with poor OS, CSS, and PFS in non-organ-confined UTUC (all P < 0.05). CONCLUSION The study reviewed serum inflammation biomarkers in a subset of patients with UTUC and demonstrated the ability of combined SII and MLR to predict disease progression and survival. Patients with both high SII and high MLR were significantly more likely to have non-organ-confined disease and poor survival outcomes.
Collapse
Affiliation(s)
- Hau-Chern Jan
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Horng Yang
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan.,Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Hui Ou
- Department of Urology, National Cheng Kung University Hospital, Tainan, Taiwan. .,Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|